From 65cabb2693e78abd356faeaa567643a8ebdf9b7e Mon Sep 17 00:00:00 2001 From: Vladimir Mandic Date: Sat, 24 Apr 2021 16:04:49 -0400 Subject: [PATCH] rewrite posenet decoder --- CHANGELOG.md | 4 +- demo/index.js | 6 +- dist/human.esm-nobundle.js | 18 +- dist/human.esm-nobundle.js.map | 6 +- dist/human.esm.js | 692 +++++++++++++++--------------- dist/human.esm.js.map | 6 +- dist/human.js | 692 +++++++++++++++--------------- dist/human.js.map | 6 +- dist/human.node-gpu.js | 20 +- dist/human.node-gpu.js.map | 6 +- dist/human.node-wasm.js | 20 +- dist/human.node-wasm.js.map | 6 +- dist/human.node.js | 20 +- dist/human.node.js.map | 6 +- server/build.log | 34 ++ src/config.ts | 2 +- src/human.ts | 6 +- src/posenet/decodeMultiple.ts | 78 ---- src/posenet/decodeParts.ts | 48 --- src/posenet/decodeSingle.ts | 104 ----- src/posenet/posenet.ts | 67 +-- src/posenet/posenetModel.ts | 38 -- src/posenet/poses.ts | 140 ++++++ typedoc/classes/human.html | 4 +- types/human.d.ts | 2 +- types/posenet/decodeMultiple.d.ts | 7 - types/posenet/decodeParts.d.ts | 3 - types/posenet/decodeSingle.d.ts | 13 - types/posenet/posenet.d.ts | 10 +- types/posenet/posenetModel.d.ts | 7 - types/posenet/poses.d.ts | 8 + 31 files changed, 962 insertions(+), 1117 deletions(-) delete mode 100644 src/posenet/decodeMultiple.ts delete mode 100644 src/posenet/decodeParts.ts delete mode 100644 src/posenet/decodeSingle.ts delete mode 100644 src/posenet/posenetModel.ts create mode 100644 src/posenet/poses.ts delete mode 100644 types/posenet/decodeMultiple.d.ts delete mode 100644 types/posenet/decodeParts.d.ts delete mode 100644 types/posenet/decodeSingle.d.ts delete mode 100644 types/posenet/posenetModel.d.ts create mode 100644 types/posenet/poses.d.ts diff --git a/CHANGELOG.md b/CHANGELOG.md index 9ede507b..89a6faa4 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -12,8 +12,10 @@ Repository: **** ### **HEAD -> main** 2021/04/24 mandic00@live.com -### **origin/main** 2021/04/22 mandic00@live.com +### **origin/main** 2021/04/24 mandic00@live.com +- remove efficientpose +- major version rebuild ### **1.6.1** 2021/04/22 mandic00@live.com diff --git a/demo/index.js b/demo/index.js index 3a0a9f59..8b021dfc 100644 --- a/demo/index.js +++ b/demo/index.js @@ -18,17 +18,17 @@ const userConfig = { warmup: 'full', videoOptimized: false, filter: { - enabled: true, + enabled: false, flip: false, }, - face: { enabled: true, + face: { enabled: false, mesh: { enabled: true }, iris: { enabled: true }, description: { enabled: false }, emotion: { enabled: false }, }, hand: { enabled: false }, - gesture: { enabled: true }, + gesture: { enabled: false }, body: { enabled: true, modelPath: 'posenet.json' }, // body: { enabled: true, modelPath: 'blazepose.json' }, // object: { enabled: true }, diff --git a/dist/human.esm-nobundle.js b/dist/human.esm-nobundle.js index 70ebeda3..644a3532 100644 --- a/dist/human.esm-nobundle.js +++ b/dist/human.esm-nobundle.js @@ -5,14 +5,14 @@ author: ' */ -var l1=Object.defineProperty;var g0=Object.prototype.hasOwnProperty,T0=Object.getOwnPropertyNames,P0=Object.getOwnPropertyDescriptor;var C=(e,t)=>{for(var r in t)l1(e,r,{get:t[r],enumerable:!0})},l=(e,t,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let A of T0(t))!g0.call(e,A)&&A!=="default"&&l1(e,A,{get:()=>t[A],enumerable:!(r=P0(t,A))||r.enumerable});return e};var d1=(e,t,r)=>{if(!t.has(e))throw TypeError("Cannot "+r)};var J=(e,t,r)=>(d1(e,t,"read from private field"),r?r.call(e):t.get(e)),Ae=(e,t,r,A)=>(d1(e,t,"write to private field"),A?A.call(e,r):t.set(e,r),r);function j(e,t){let r=e.endsWith("/")?"":"/",_=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${r}${t}`;if(!_.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${_} Expecting JSON file`);return _}function f(...e){let t=new Date,r=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(r,"Human:",...e)}var E=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function U(...e){let t=r=>r&&typeof r=="object";return e.reduce((r,A)=>(Object.keys(A||{}).forEach(_=>{let c=r[_],n=A[_];Array.isArray(c)&&Array.isArray(n)?r[_]=c.concat(...n):t(c)&&t(n)?r[_]=U(c,n):r[_]=n}),r),{})}function f1(){let e,t;if(typeof navigator!="undefined"){let r=navigator.userAgent.match(/\(([^()]+)\)/g);if(r&&r[0]){let A=r[0].match(/\(([^()]+)\)/g);e=A?A[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(r[0],""),e[1]&&(t=t.replace(r[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var o={};C(o,{data:()=>v0,version:()=>R0});l(o,pn);l(o,un);l(o,bn);l(o,gn);l(o,Tn);l(o,Pn);import*as m1 from"@tensorflow/tfjs/package.json";import*as p1 from"@tensorflow/tfjs-core/package.json";import*as u1 from"@tensorflow/tfjs-data/package.json";import*as b1 from"@tensorflow/tfjs-layers/package.json";import*as g1 from"@tensorflow/tfjs-converter/package.json";import{version_cpu as M0}from"@tensorflow/tfjs-backend-cpu/dist/index.js";import{version_webgl as z0}from"@tensorflow/tfjs-backend-webgl/dist/index.js";import{version_wasm as E0}from"@tensorflow/tfjs-backend-wasm/dist/index.js";import*as pn from"@tensorflow/tfjs-core/dist/index.js";import*as un from"@tensorflow/tfjs-layers/dist/index.js";import*as bn from"@tensorflow/tfjs-converter/dist/index.js";import*as v0 from"@tensorflow/tfjs-data/dist/index.js";import*as gn from"@tensorflow/tfjs-backend-cpu/dist/index.js";import*as Tn from"@tensorflow/tfjs-backend-webgl/dist/index.js";import*as Pn from"@tensorflow/tfjs-backend-wasm/dist/index.js";var R0={tfjs:(m1==null?void 0:m1.version)||void 0,"tfjs-core":(p1==null?void 0:p1.version)||void 0,"tfjs-data":(u1==null?void 0:u1.version)||void 0,"tfjs-layers":(b1==null?void 0:b1.version)||void 0,"tfjs-converter":(g1==null?void 0:g1.version)||void 0,"tfjs-backend-cpu":M0||void 0,"tfjs-backend-webgl":z0||void 0,"tfjs-backend-wasm":E0||void 0};var F={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function T1(){if(!o.findBackend(F.name)){f("backend registration:",F.name);try{F.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(F.width,F.height):document.createElement("canvas")}catch(e){f("error: cannot create canvas:",e);return}try{F.gl=F.canvas.getContext("webgl2",F.webGLattr)}catch(e){f("error: cannot get WebGL2 context:",e);return}try{o.setWebGLContext(2,F.gl)}catch(e){f("error: cannot set WebGL2 context:",e);return}try{let e=new o.GPGPUContext(F.gl);o.registerBackend(F.name,()=>new o.MathBackendWebGL(e),F.priority)}catch(e){f("error: cannot register WebGL backend:",e);return}try{o.getKernelsForBackend("webgl").forEach(t=>{let r={...t,backendName:F.name};o.registerKernel(r)})}catch(e){f("error: cannot update WebGL backend registration:",e);return}try{o.ENV.set("WEBGL_VERSION",2)}catch(e){f("error: cannot set WebGL backend flags:",e);return}f("backend registered:",F.name)}}var ht={};C(ht,{load:()=>it,predict:()=>je});var ve={};function L(e,t){if(!t||!t.kernels)return;let r=5,A=t.kernels.filter(n=>n.kernelTimeMs>0).reduce((n,s)=>n+=s.kernelTimeMs,0),_=t.kernels.map((n,s)=>(n.id=s,n)).filter(n=>n.kernelTimeMs>0).sort((n,s)=>s.kernelTimeMs-n.kernelTimeMs),c=t.kernels.map((n,s)=>(n.id=s,n)).filter(n=>n.totalBytesSnapshot>0).sort((n,s)=>s.totalBytesSnapshot-n.totalBytesSnapshot);_.length>r&&(_.length=r),c.length>r&&(c.length=r),ve[e]={model:e,newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:A,slowestKernelOps:_,largestKernelOps:c},f("profiler",e,ve[e])}var K,Re={age:0},Se=Number.MAX_SAFE_INTEGER;async function it(e){return K?e.debug&&f("cached model:",K.modelUrl):(K=await o.loadGraphModel(j(e.modelBasePath,e.face.age.modelPath)),!K||!K.modelUrl?f("load model failed:",e.face.age.modelPath):e.debug&&f("load model:",K.modelUrl)),K}async function je(e,t){return K?Se0?(Se++,Re):(t.videoOptimized?Se=0:Se=Number.MAX_SAFE_INTEGER,new Promise(async r=>{let A=o.image.resizeBilinear(e,[K.inputs[0].shape[2],K.inputs[0].shape[1]],!1),_=o.mul(A,[255]);o.dispose(A);let c,n={age:0};if(!t.profile)t.face.age.enabled&&(c=await K.predict(_));else{let s=t.face.age.enabled?await o.profile(()=>K.predict(_)):{};c=s.result.clone(),s.result.dispose(),L("age",s)}if(_.dispose(),c){let s=c.dataSync();n.age=Math.trunc(10*s[0])/10}c.dispose(),Re=n,r(n)})):null}var at={};C(at,{load:()=>lt,predict:()=>Ne});var Y,xt={gender:""},We=Number.MAX_SAFE_INTEGER,yt=!1,wt=[.2989,.587,.114];async function lt(e){return Y?e.debug&&f("cached model:",Y.modelUrl):(Y=await o.loadGraphModel(j(e.modelBasePath,e.face.gender.modelPath)),yt=Y.inputs[0].shape[3]===1,!Y||!Y.modelUrl?f("load model failed:",e.face.gender.modelPath):e.debug&&f("load model:",Y.modelUrl)),Y}async function Ne(e,t){return Y?We{let A=o.image.resizeBilinear(e,[Y.inputs[0].shape[2],Y.inputs[0].shape[1]],!1),_;yt?_=o.tidy(()=>{let[s,h,a]=o.split(A,3,3),x=o.mul(s,wt[0]),i=o.mul(h,wt[1]),w=o.mul(a,wt[2]);return o.addN([x,i,w]).sub(.5).mul(2)}):_=o.mul(A,[255]),o.dispose(A);let c,n={gender:"",confidence:0};if(!t.profile)t.face.gender.enabled&&(c=await Y.predict(_));else{let s=t.face.gender.enabled?await o.profile(()=>Y.predict(_)):{};c=s.result.clone(),s.result.dispose(),L("gender",s)}if(_.dispose(),c)if(Array.isArray(c)){let s=c[0].dataSync(),h=Math.trunc(200*Math.abs(s[0]-.5))/100;h>t.face.gender.minConfidence&&(n.gender=s[0]<=.5?"female":"male",n.confidence=Math.min(.99,h)),c.forEach(a=>o.dispose(a))}else{let s=c.dataSync();if(yt)(s[0]>t.face.gender.minConfidence||s[1]>t.face.gender.minConfidence)&&(n.gender=s[0]>s[1]?"female":"male",n.confidence=s[0]>s[1]?Math.trunc(100*s[0])/100:Math.trunc(100*s[1])/100);else{let h=Math.trunc(200*Math.abs(s[0]-.5))/100;h>t.face.gender.minConfidence&&(n.gender=s[0]<=.5?"female":"male",n.confidence=Math.min(.99,h))}c.dispose()}xt=n,r(n)})):null}var dt={};C(dt,{load:()=>pt,predict:()=>Ie});var S0=["angry","disgust","fear","happy","sad","surprise","neutral"],D,ft=[],ke=Number.MAX_SAFE_INTEGER,mt=[.2989,.587,.114];async function pt(e){return D?e.debug&&f("cached model:",D.modelUrl):(D=await o.loadGraphModel(j(e.modelBasePath,e.face.emotion.modelPath)),!D||!D.modelUrl?f("load model failed:",e.face.emotion.modelPath):e.debug&&f("load model:",D.modelUrl)),D}async function Ie(e,t){return D?ke0?(ke++,ft):(t.videoOptimized?ke=0:ke=Number.MAX_SAFE_INTEGER,new Promise(async r=>{let A=o.image.resizeBilinear(e,[D.inputs[0].shape[2],D.inputs[0].shape[1]],!1),[_,c,n]=o.split(A,3,3);A.dispose();let s=o.mul(_,mt[0]),h=o.mul(c,mt[1]),a=o.mul(n,mt[2]);_.dispose(),c.dispose(),n.dispose();let x=o.addN([s,h,a]);s.dispose(),h.dispose(),a.dispose();let i=o.tidy(()=>x.sub(.5).mul(2));x.dispose();let w=[];if(t.face.emotion.enabled){let m;if(t.profile){let p=await o.profile(()=>D.predict(i));m=p.result.dataSync(),p.result.dispose(),L("emotion",p)}else{let p=await D.predict(i);m=p.dataSync(),o.dispose(p)}for(let p=0;pt.face.emotion.minConfidence&&w.push({score:Math.min(.99,Math.trunc(100*m[p])/100),emotion:S0[p]});w.sort((p,y)=>y.score-p.score)}i.dispose(),ft=w,r(w)})):null}var q;async function ut(e){return q?e.debug&&f("cached model:",q.modelUrl):(q=await o.loadGraphModel(j(e.modelBasePath,e.face.embedding.modelPath)),!q||!q.modelUrl?f("load model failed:",e.face.embedding.modelPath):e.debug&&f("load model:",q.modelUrl)),q}function P1(e,t,r=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let A=e.map((c,n)=>Math.abs(e[n]-t[n])**r).reduce((c,n)=>c+n,0)**(1/r);return Math.max(Math.trunc(1e3*(1-A))/1e3,0)}function j0(e){return o.tidy(()=>{let r=[[.05,.15,.85,.85]],A=e.image||e.tensor;if(!(A instanceof o.Tensor))return null;let _=A.shape.length===3?o.image.cropAndResize(o.expandDims(A,0),r,[0],[q.inputs[0].shape[2],q.inputs[0].shape[1]]):o.image.cropAndResize(A,r,[0],[q.inputs[0].shape[2],q.inputs[0].shape[1]]),c=[.2989,.587,.114],[n,s,h]=o.split(_,3,3),a=o.mul(n,c[0]),x=o.mul(s,c[1]),i=o.mul(h,c[2]),w=o.addN([a,x,i]),m=o.stack([w,w,w],3).squeeze(4),p=m.sub(m.min());return p.div(p.max())})}async function bt(e,t){return q?new Promise(async r=>{let A=[];if(t.face.embedding.enabled){let _=j0(e);if(!t.profile)A=o.tidy(()=>[...q.predict(_).reshape([128,2]).logSumExp(1).dataSync()]);else{let c=await o.profile(()=>q.predict({img_inputs:_}));A=[...c.result.dataSync()],c.result.dispose(),L("emotion",c)}o.dispose(_)}r(A)}):[]}var gt={};C(gt,{enhance:()=>Mt,load:()=>Tt,match:()=>M1,predict:()=>Ze,similarity:()=>Pt});var B,Oe={age:0},Le=Number.MAX_SAFE_INTEGER;async function Tt(e){return B?e.debug&&f("cached model:",B.modelUrl):(B=await o.loadGraphModel(j(e.modelBasePath,e.face.description.modelPath)),!B||!B.modelUrl?f("load model failed:",e.face.description.modelPath):e.debug&&f("load model:",B.modelUrl)),B}function Pt(e,t,r=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let A=5*e.map((c,n)=>Math.abs(e[n]-t[n])**r).reduce((c,n)=>c+n,0)**(1/r);return Math.max(0,100-A)/100}function M1(e,t,r=0){let A={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return A;for(let _ of t)if(_.embedding&&_.name){let c=Pt(e,_.embedding);c>r&&c>A.similarity&&(A={..._,similarity:c})}return A}function Mt(e){return o.tidy(()=>{let r=e.image||e.tensor||e;if(!(r instanceof o.Tensor))return null;let A=[[.05,.15,.85,.85]];return(r.shape.length===3?o.image.cropAndResize(o.expandDims(r,0),A,[0],[B.inputs[0].shape[2],B.inputs[0].shape[1]]):o.image.cropAndResize(r,A,[0],[B.inputs[0].shape[2],B.inputs[0].shape[1]])).mul(255)})}async function Ze(e,t){return B?Le0?(Le++,Oe):(t.videoOptimized?Le=0:Le=Number.MAX_SAFE_INTEGER,new Promise(async r=>{let A=Mt(e),_,c={age:0,gender:"unknown",genderConfidence:0,descriptor:[]};if(!t.profile)t.face.description.enabled&&(_=await B.predict(A));else{let n=t.face.description.enabled?await o.profile(()=>B.predict(A)):{};_=n.result,L("faceres",n)}o.dispose(A),_&&(o.tidy(()=>{let n=_.find(i=>i.shape[1]===1).dataSync(),s=Math.trunc(200*Math.abs(n[0]-.5))/100;s>t.face.gender.minConfidence&&(c.gender=n[0]<=.5?"female":"male",c.genderConfidence=Math.min(.99,s));let h=_.find(i=>i.shape[1]===100).argMax(1).dataSync()[0],a=_.find(i=>i.shape[1]===100).dataSync();c.age=Math.round(a[h-1]>a[h+1]?10*h-100*a[h-1]:10*h+100*a[h+1])/10;let x=_.find(i=>i.shape[1]===1024);c.descriptor=[...x.dataSync()]}),_.forEach(n=>o.dispose(n))),Oe=c,r(c)})):null}var W0=(e,t)=>{let r=u=>u*180/Math.PI,A=u=>{let b=Math.sqrt(u[0]*u[0]+u[1]*u[1]+u[2]*u[2]);return u[0]/=b,u[1]/=b,u[2]/=b,u},_=(u,b)=>{let M=u[0]-b[0],v=u[1]-b[1],N=u[2]-b[2];return[M,v,N]},c=(u,b)=>{let M=u[1]*b[2]-u[2]*b[1],v=u[2]*b[0]-u[0]*b[2],N=u[0]*b[1]-u[1]*b[0];return[M,v,N]},n=u=>{let[b,M,v,N,g,d,T,z,R]=u,I,re,X;return N<1?N>-1?(X=Math.asin(N),re=Math.atan2(-T,b),I=Math.atan2(-d,g)):(X=-Math.PI/2,re=-Math.atan2(z,R),I=0):(X=Math.PI/2,re=Math.atan2(z,R),I=0),{pitch:2*-I,yaw:2*-re,roll:2*-X}},s=u=>{let b=(v,N,g,d)=>Math.atan2(d-N,g-v);return{pitch:b(u[10][1],u[10][2],u[152][1],u[152][2]),yaw:b(u[33][0],u[33][2],u[263][0],u[263][2]),roll:b(u[33][0],u[33][1],u[263][0],u[263][1])}},h=e.meshRaw;if(!h||h.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1]};let a=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,x=[h[10],h[152],h[234],h[454]].map(u=>[u[0]*t[0]/a,u[1]*t[1]/a,u[2]]),i=A(_(x[1],x[0])),w=A(_(x[3],x[2])),m=A(c(w,i));w=c(i,m);let p=[w[0],w[1],w[2],i[0],i[1],i[2],m[0],m[1],m[2]];return{angle:n(p),matrix:p}},zt=async(e,t)=>{var x,i,w,m,p,y,u;let r,A,_,c,n,s,h=[];e.state="run:face",r=E();let a=await((x=e.models.face)==null?void 0:x.estimateFaces(t,e.config));if(e.perf.face=Math.trunc(E()-r),!a)return[];for(let b of a){if(e.analyze("Get Face"),!b.image||b.image.isDisposedInternal){f("Face object is disposed:",b.image);continue}let M=W0(b,[t.shape[2],t.shape[1]]);e.analyze("Start Age:"),e.config.async?A=e.config.face.age.enabled?je(b.image,e.config):{}:(e.state="run:age",r=E(),A=e.config.face.age.enabled?await je(b.image,e.config):{},e.perf.age=Math.trunc(E()-r)),e.analyze("Start Gender:"),e.config.async?_=e.config.face.gender.enabled?Ne(b.image,e.config):{}:(e.state="run:gender",r=E(),_=e.config.face.gender.enabled?await Ne(b.image,e.config):{},e.perf.gender=Math.trunc(E()-r)),e.analyze("Start Emotion:"),e.config.async?c=e.config.face.emotion.enabled?Ie(b.image,e.config):{}:(e.state="run:emotion",r=E(),c=e.config.face.emotion.enabled?await Ie(b.image,e.config):{},e.perf.emotion=Math.trunc(E()-r)),e.analyze("End Emotion:"),e.analyze("Start Embedding:"),e.config.async?n=e.config.face.embedding.enabled?bt(b,e.config):[]:(e.state="run:embedding",r=E(),n=e.config.face.embedding.enabled?await bt(b,e.config):[],e.perf.embedding=Math.trunc(E()-r)),e.analyze("End Embedding:"),e.analyze("Start Description:"),e.config.async?s=e.config.face.description.enabled?Ze(b,e.config):[]:(e.state="run:description",r=E(),s=e.config.face.description.enabled?await Ze(b.image,e.config):[],e.perf.embedding=Math.trunc(E()-r)),e.analyze("End Description:"),e.config.async&&([A,_,c,n,s]=await Promise.all([A,_,c,n,s])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((i=b==null?void 0:b.annotations)==null?void 0:i.leftEyeIris)&&((w=b==null?void 0:b.annotations)==null?void 0:w.rightEyeIris)&&(delete b.annotations.leftEyeIris,delete b.annotations.rightEyeIris);let v=((m=b.annotations)==null?void 0:m.leftEyeIris)&&((p=b.annotations)==null?void 0:p.rightEyeIris)?11.7*Math.max(Math.abs(b.annotations.leftEyeIris[3][0]-b.annotations.leftEyeIris[1][0]),Math.abs(b.annotations.rightEyeIris[4][1]-b.annotations.rightEyeIris[2][1])):0;h.push({...b,age:s.age||A.age,gender:s.gender||_.gender,genderConfidence:s.genderConfidence||_.confidence,embedding:s.descriptor||n,emotion:c,iris:v!==0?Math.trunc(v)/100:0,rotation:M,tensor:e.config.face.detector.return?(y=b.image)==null?void 0:y.squeeze():null}),(u=b.image)==null||u.dispose(),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.perf.face&&delete e.perf.face,e.perf.age&&delete e.perf.age,e.perf.gender&&delete e.perf.gender,e.perf.emotion&&delete e.perf.emotion),h};var Wt={};C(Wt,{MediaPipeFaceMesh:()=>Nt,load:()=>kt,triangulation:()=>I1,uvmap:()=>O1});var z1=6;function N0(e){let t={strides:[e/16,e/8],anchors:[2,6]},r=[];for(let A=0;A({startEndTensor:e,startPoint:o.slice(e,[0,0],[-1,2]),endPoint:o.slice(e,[0,2],[-1,2])});function I0(e,t,r){let A=o.slice(e,[0,1],[-1,2]),_=o.add(A,t),c=o.slice(e,[0,3],[-1,2]),n=o.div(c,r),s=o.div(_,r),h=o.div(n,2),a=o.sub(s,h),x=o.add(s,h),i=o.mul(a,r),w=o.mul(x,r);return o.concat2d([i,w],1)}var E1=class{constructor(t,r){this.model=t,this.anchorsData=N0(t.inputs[0].shape[1]),this.anchors=o.tensor2d(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=r}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[r,A,_]=o.tidy(()=>{let w=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),m=this.model.predict(w),p;if(Array.isArray(m)){let M=m.sort((d,T)=>d.size-T.size),v=o.concat([M[0],M[2]],2),N=o.concat([M[1],M[3]],2);p=o.concat([N,v],1).squeeze(0)}else p=m.squeeze();let y=I0(p,this.anchors,[this.inputSize,this.inputSize]),u=o.slice(p,[0,0],[-1,1]),b=o.sigmoid(u).squeeze();return[p,y,b]}),c=await o.image.nonMaxSuppressionAsync(A,_,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),n=c.arraySync();c.dispose();let h=n.map(i=>o.slice(A,[i,0],[1,-1])).map(i=>{let w=i.arraySync();return i.dispose(),w}),a=_.dataSync(),x=[];for(let i=0;ithis.config.face.detector.minConfidence){let p=k0(h[i]),y=this.anchorsData[w],u=o.tidy(()=>o.slice(r,[w,z1-1],[1,-1]).squeeze().reshape([z1,-1]));x.push({box:p,landmarks:u,anchor:y,confidence:m})}}return r.dispose(),A.dispose(),_.dispose(),{boxes:x,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function v1(e){let t=await o.loadGraphModel(j(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),r=new E1(t,e);return!t||!t.modelUrl?f("load model failed:",e.face.detector.modelPath):e.debug&&f("load model:",t.modelUrl),r}function R1(e,t){let r=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],A=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:r,endPoint:A}}function me(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function ae(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function xe(e,t,r){let A=t.shape[1],_=t.shape[2],c=[[e.startPoint[1]/A,e.startPoint[0]/_,e.endPoint[1]/A,e.endPoint[0]/_]];return o.image.cropAndResize(t,c,[0],r)}function He(e,t=1.5){let r=ae(e),A=me(e),_=[t*A[0]/2,t*A[1]/2],c=[r[0]-_[0],r[1]-_[1]],n=[r[0]+_[0],r[1]+_[1]];return{startPoint:c,endPoint:n,landmarks:e.landmarks}}function Ve(e){let t=ae(e),r=me(e),_=Math.max(...r)/2,c=[t[0]-_,t[1]-_],n=[t[0]+_,t[1]+_];return{startPoint:c,endPoint:n,landmarks:e.landmarks}}var Xe=[[1,0,0],[0,1,0],[0,0,1]];function O0(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Et(e,t){let r=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return O0(r)}function S1(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function ee(e,t){let r=0;for(let A=0;Ape[e]),or=H0.map(e=>pe[e]),sr=V0.map(e=>pe[e]);var Rt=G.leftEyeLower0,St=G.rightEyeLower0,ye={leftBounds:[Rt[0],Rt[Rt.length-1]],rightBounds:[St[0],St[St.length-1]]},qe={count:468,mouth:13,symmetryLine:[13,G.midwayBetweenEyes[0]]},k1={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},we={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function Be(e,t,r,A){for(let _=0;_[c[0]/this.meshSize*(i[0]-this.meshSize/2),c[1]/this.meshSize*(i[1]-this.meshSize/2),i[2]]),s=A!==0?Fe(A,[0,0]):Xe,h=A!==0?n.map(i=>[...N1(i,s),i[2]]):n,a=A!==0?W1(_):Xe,x=[...ae({startPoint:r.startPoint,endPoint:r.endPoint}),1];return h.map(i=>[i[0]+ee(x,a[0]),i[1]+ee(x,a[1]),i[2]])}getLeftToRightEyeDepthDifference(t){let r=t[ye.leftBounds[0]][2],A=t[ye.rightBounds[0]][2];return r-A}getEyeBox(t,r,A,_,c=!1){let n=Ve(He(this.calculateLandmarksBoundingBox([t[A],t[_]]),this.irisEnlarge)),s=me(n),h=o.image.cropAndResize(r,[[n.startPoint[1]/this.meshSize,n.startPoint[0]/this.meshSize,n.endPoint[1]/this.meshSize,n.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return c&&o.ENV.flags.IS_BROWSER&&(h=o.image.flipLeftRight(h)),{box:n,boxSize:s,crop:h}}getEyeCoords(t,r,A,_=!1){let c=[];for(let n=0;n{let a=n;return h===2?a=_:h===4&&(a=c),[s[0],s[1],a]})}async predict(t,r){let A=!1,_;if((this.skipped===0||this.skipped>r.face.detector.skipFrames||!r.face.mesh.enabled||!r.videoOptimized)&&(_=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),r.videoOptimized&&this.skipped++,!r.videoOptimized||_&&_.boxes&&(!r.face.mesh.enabled||_.boxes.length!==this.detectedFaces&&this.detectedFaces!==r.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let n of _.boxes)this.storedBoxes.push({startPoint:n.box.startPoint.dataSync(),endPoint:n.box.endPoint.dataSync(),landmarks:n.landmarks,confidence:n.confidence});this.storedBoxes.length>0&&(A=!0)}if(r.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),A){if(!_||!_.boxes||_.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let n=0;n{n.box.startPoint.dispose(),n.box.endPoint.dispose(),n.landmarks.dispose()});let c=o.tidy(()=>this.storedBoxes.map((n,s)=>{let h=n.confidence,a,x=0,i;if(r.face.detector.rotation&&r.face.mesh.enabled&&o.ENV.flags.IS_BROWSER){let[g,d]=n.landmarks.length>=qe.count?qe.symmetryLine:k1.symmetryLine;x=Et(n.landmarks[g],n.landmarks[d]);let T=ae({startPoint:n.startPoint,endPoint:n.endPoint}),z=[T[0]/t.shape[2],T[1]/t.shape[1]],R=o.image.rotateWithOffset(t,x,0,z);i=Fe(-x,T),r.face.mesh.enabled?a=xe({startPoint:n.startPoint,endPoint:n.endPoint},R,[this.meshSize,this.meshSize]).div(255):a=xe({startPoint:n.startPoint,endPoint:n.endPoint},R,[this.boxSize,this.boxSize]).div(255)}else{i=Xe;let g=t.clone();r.face.mesh.enabled?a=xe({startPoint:n.startPoint,endPoint:n.endPoint},g,[this.meshSize,this.meshSize]).div(255):a=xe({startPoint:n.startPoint,endPoint:n.endPoint},g,[this.boxSize,this.boxSize]).div(255)}if(!r.face.mesh.enabled)return{coords:null,box:n,faceConfidence:null,boxConfidence:h,confidence:n.confidence,image:a};let[,w,m]=this.meshDetector.predict(a),p=w.dataSync()[0];if(p=qe.count?qe.symmetryLine:k1.symmetryLine;x=Et(n.landmarks[g],n.landmarks[d]);let T=ae({startPoint:n.startPoint,endPoint:n.endPoint}),z=[T[0]/t.shape[2],T[1]/t.shape[1]],R=o.image.rotateWithOffset(t.toFloat(),x,0,z);i=Fe(-x,T),a=xe({startPoint:n.startPoint,endPoint:n.endPoint},R,[this.meshSize,this.meshSize]).div(255)}let v={coords:M,box:n,faceConfidence:p,boxConfidence:h,image:a,rawCoords:u},N=Ve(n);return this.storedBoxes[s]={...N,landmarks:b,confidence:n.confidence,faceConfidence:p},v}));return c=c.filter(n=>n!==null),r.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(n=>n.faceConfidence>r.face.detector.minConfidence)),this.detectedFaces=c.length,c}calculateLandmarksBoundingBox(t){let r=t.map(n=>n[0]),A=t.map(n=>n[1]),_=[Math.min(...r),Math.min(...A)],c=[Math.max(...r),Math.max(...A)];return{startPoint:_,endPoint:c,landmarks:t}}};var Nt=class{constructor(t,r,A,_){this.facePipeline=new jt(t,r,A),this.config=_}async estimateFaces(t,r){let A=await this.facePipeline.predict(t,r),_=[];for(let c of A||[]){if(c.isDisposedInternal)continue;let n=c.coords?c.coords.arraySync():[],s=n.map(i=>[i[0]/t.shape[2],i[1]/t.shape[1],i[2]/this.facePipeline.meshSize]),h={};if(n&&n.length>0)for(let i of Object.keys(G))h[i]=G[i].map(w=>n[w]);let a=c.box?[Math.max(0,c.box.startPoint[0]),Math.max(0,c.box.startPoint[1]),Math.min(t.shape[2],c.box.endPoint[0])-Math.max(0,c.box.startPoint[0]),Math.min(t.shape[1],c.box.endPoint[1])-Math.max(0,c.box.startPoint[1])]:0,x=c.box?[c.box.startPoint[0]/t.shape[2],c.box.startPoint[1]/t.shape[1],(c.box.endPoint[0]-c.box.startPoint[0])/t.shape[2],(c.box.endPoint[1]-c.box.startPoint[1])/t.shape[1]]:[];_.push({confidence:Math.round(100*c.faceConfidence||100*c.boxConfidence||0)/100,boxConfidence:Math.round(100*c.boxConfidence)/100,faceConfidence:Math.round(100*c.faceConfidence)/100,box:a,boxRaw:x,mesh:n,meshRaw:s,annotations:h,image:c.image?c.image.clone():null}),c.coords&&c.coords.dispose(),c.image&&c.image.dispose()}return _}},O=[null,null,null];async function kt(e){return!O[0]&&e.face.enabled||!O[1]&&e.face.mesh.enabled||!O[2]&&e.face.iris.enabled?(O=await Promise.all([!O[0]&&e.face.enabled?v1(e):null,!O[1]&&e.face.mesh.enabled?o.loadGraphModel(j(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!O[2]&&e.face.iris.enabled?o.loadGraphModel(j(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!O[1]||!O[1].modelUrl?f("load model failed:",e.face.mesh.modelPath):e.debug&&f("load model:",O[1].modelUrl)),e.face.iris.enabled&&(!O[2]||!O[1].modelUrl?f("load model failed:",e.face.iris.modelPath):e.debug&&f("load model:",O[2].modelUrl))):e.debug&&(f("cached model:",O[0].model.modelUrl),f("cached model:",O[1].modelUrl),f("cached model:",O[2].modelUrl)),new Nt(O[0],O[1],O[2],e)}var I1=_e,O1=pe;var qt={};C(qt,{PoseNet:()=>Bt,load:()=>Ut});var X0=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];function F0(e){let[t,r,A,_]=e;return{offsets:t,heatmap:r,displacementFwd:A,displacementBwd:_}}var It=class{constructor(t){this.model=t,this.inputSize=t.inputs[0].shape[1]}predict(t){return o.tidy(()=>{let A=t.resizeBilinear([this.inputSize,this.inputSize]).toFloat().div(127.5).sub(1),c=this.model.execute(A,X0).map(s=>s.squeeze([0])),n=F0(c);return{heatmapScores:n.heatmap.sigmoid(),offsets:n.offsets,displacementFwd:n.displacementFwd,displacementBwd:n.displacementBwd}})}dispose(){this.model.dispose()}};var le=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],de=le.length,ue=le.reduce((e,t,r)=>(e[t]=r,e),{}),q0=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],B0=q0.map(([e,t])=>[ue[e],ue[t]]),L1=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function Z1(e,t){let r=de,A=[];for(let _=0;_[r.get(c,n,s),r.get(c,n,s+de)],_=()=>{let c=[];for(let n=0;ne.toTensor().mul(o.scalar(t,"int32")).toFloat().add(_()))}function V1(e){let t=(c,n)=>o.tidy(()=>{let s=c.div(o.scalar(n,"int32"));return c.sub(s.mul(o.scalar(n,"int32")))}),[r,A,_]=e.shape;return o.tidy(()=>{let n=e.reshape([r*A,_]).argMax(0),s=n.div(o.scalar(A,"int32")).expandDims(1),h=t(n,A).expandDims(1);return o.concat([s,h],1)})}function Ue(e){let t=e.reduce(({maxX:r,maxY:A,minX:_,minY:c},{position:{x:n,y:s}})=>({maxX:Math.max(r,n),maxY:Math.max(A,s),minX:Math.min(_,n),minY:Math.min(c,s)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Ot(e,[t,r],[A,_]){let c=(s,h,a)=>({score:s.score,box:[Math.trunc(s.box[0]*a),Math.trunc(s.box[1]*h),Math.trunc(s.box[2]*a),Math.trunc(s.box[3]*h)],keypoints:s.keypoints.map(({score:x,part:i,position:w})=>({score:x,part:i,position:{x:Math.trunc(w.x*a),y:Math.trunc(w.y*h)}}))});return e.map(s=>c(s,t/A,r/_))}var Lt=class{constructor(t,r){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=r}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let r=2*t;if(rr?r:e}function X1(e,t,r,A){let _=r-e,c=A-t;return _*_+c*c}function Vt(e,t){return{x:e.x+t.x,y:e.y+t.y}}var F1=L1.map(([e,t])=>[ue[e],ue[t]]),Xt=F1.map(([,e])=>e),q1=F1.map(([e])=>e),U0=16;function Y0(e,t,r){let A=r.shape[2]/2;return{y:r.get(t.y,t.x,e),x:r.get(t.y,t.x,A+e)}}function Ft(e,t,r,A){return{y:Ht(Math.round(e.y/t),0,r-1),x:Ht(Math.round(e.x/t),0,A-1)}}function B1(e,t,r,A,_,c,n,s=2){let[h,a]=A.shape,x=Ft(t.position,c,h,a),i=Y0(e,x,n),m=Vt(t.position,i);for(let u=0;u=0;--w){let m=Xt[w],p=q1[w];h[m]&&!h[p]&&(h[p]=B1(w,h[m],p,t,r,A,c))}for(let w=0;wp>r).map((p,y)=>(i+=p,{position:{y:a[2*y+0],x:a[2*y+1]},part:le[y],score:p}));A.dispose(),h.dispose();let m=Ue(w);return{keypoints:w,box:m,score:Math.round(100*i/w.length)/100}}var C0=1,C1=16;function J0(e,t,r,A,_,c){let[n,s]=c.shape,h=!0,a=Math.max(r-_,0),x=Math.min(r+_+1,n);for(let i=a;it){h=!1;break}if(!h)break}return h}function K0(e,t,r){let[A,_,c]=r.shape,n=new Lt(A*_*c,({score:s})=>s);for(let s=0;s{let n=c[_].position;return X1(A,r,n.y,n.x)<=t})}function D0(e,t,r){return r.reduce((_,{position:c,score:n},s)=>(J1(e,t,c,s)||(_+=n),_),0)/r.length}function K1(e,t,r,A,_,c,n){let s=[],h=K0(n,C0,e),a=_^2;for(;s.lengthn&&s.push({keypoints:w,box:p,score:Math.round(100*m)/100})}return s}var oe;async function G0(e,t,r,A){let _=c=>Promise.all(c.map(n=>n.buffer()));return new Promise(async c=>{let n=await _([t.heatmapScores,t.offsets,t.displacementFwd,t.displacementBwd]),s=n[0],h=n[1],a=n[2],x=n[3],i=await K1(s,h,a,x,r.body.nmsRadius,r.body.maxDetections,r.body.scoreThreshold),w=Ot(i,[e.shape[1],e.shape[2]],[A,A]);c(w)})}async function Q0(e,t,r,A){return new Promise(async _=>{let c=await Y1(t.heatmapScores,t.offsets,r.body.scoreThreshold),n=Ot([c],[e.shape[1],e.shape[2]],[A,A]);_(n)})}var Bt=class{constructor(t){this.baseModel=t,this.inputSize=t.model.inputs[0].shape[1]}async estimatePoses(t,r){let A=this.baseModel.predict(t,r),_=r.body.maxDetections<2?await Q0(t,A,r,this.inputSize):await G0(t,A,r,this.inputSize);return A.heatmapScores.dispose(),A.offsets.dispose(),A.displacementFwd.dispose(),A.displacementBwd.dispose(),_}dispose(){this.baseModel.dispose()}};async function Ut(e){oe?e.debug&&f("cached model:",oe.modelUrl):(oe=await o.loadGraphModel(j(e.modelBasePath,e.body.modelPath)),!oe||!oe.modelUrl?f("load model failed:",e.body.modelPath):e.debug&&f("load model:",oe.modelUrl));let t=new It(oe);return new Bt(t)}var Dt={};C(Dt,{HandPose:()=>Qt,load:()=>$t});function Ce(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function be(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function D1(e,t,r){let A=t.shape[1],_=t.shape[2],c=[[e.startPoint[1]/A,e.startPoint[0]/_,e.endPoint[1]/A,e.endPoint[0]/_]];return o.image.cropAndResize(t,c,[0],r)}function G1(e,t){let r=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],A=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],_=e.palmLandmarks.map(c=>[c[0]*t[0],c[1]*t[1]]);return{startPoint:r,endPoint:A,palmLandmarks:_,confidence:e.confidence}}function Je(e,t=1.5){let r=be(e),A=Ce(e),_=[t*A[0]/2,t*A[1]/2],c=[r[0]-_[0],r[1]-_[1]],n=[r[0]+_[0],r[1]+_[1]];return{startPoint:c,endPoint:n,palmLandmarks:e.palmLandmarks}}function Ke(e){let t=be(e),r=Ce(e),_=Math.max(...r)/2,c=[t[0]-_,t[1]-_],n=[t[0]+_,t[1]+_];return{startPoint:c,endPoint:n,palmLandmarks:e.palmLandmarks}}var Yt=class{constructor(t,r,A){this.model=t,this.anchors=A.map(_=>[_.x_center,_.y_center]),this.anchorsTensor=o.tensor2d(this.anchors),this.inputSize=r,this.inputSizeTensor=o.tensor1d([r,r]),this.doubleInputSizeTensor=o.tensor1d([r*2,r*2])}normalizeBoxes(t){return o.tidy(()=>{let r=o.slice(t,[0,0],[-1,2]),A=o.slice(t,[0,2],[-1,2]),_=o.add(o.div(r,this.inputSizeTensor),this.anchorsTensor),c=o.div(A,this.doubleInputSizeTensor),n=o.mul(o.sub(_,c),this.inputSizeTensor),s=o.mul(o.add(_,c),this.inputSizeTensor);return o.concat2d([n,s],1)})}normalizeLandmarks(t,r){return o.tidy(()=>{let A=o.add(o.div(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[r]);return o.mul(A,this.inputSizeTensor)})}async getBoxes(t,r){let A=this.model.predict(t),_=A.squeeze();A.dispose();let c=o.tidy(()=>o.sigmoid(o.slice(_,[0,0],[-1,1])).squeeze()),n=c.dataSync(),s=o.slice(_,[0,1],[-1,4]),h=this.normalizeBoxes(s);s.dispose();let a=await o.image.nonMaxSuppressionAsync(h,n,r.hand.maxHands,r.hand.iouThreshold,r.hand.scoreThreshold),x=a.arraySync();c.dispose(),a.dispose();let i=[];for(let w of x)if(n[w]>=r.hand.minConfidence){let m=o.slice(h,[w,0],[1,-1]),p=o.slice(_,[w,5],[1,14]),y=o.tidy(()=>this.normalizeLandmarks(p,w).reshape([-1,2]));p.dispose(),i.push({box:m,palmLandmarks:y,confidence:n[w]})}return _.dispose(),h.dispose(),i}async estimateHandBounds(t,r){let A=t.shape[1],_=t.shape[2],c=o.tidy(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),n=await this.getBoxes(c,r);c.dispose();let s=[];if(!n||n.length===0)return s;for(let h of n){let a=h.box.dataSync(),x=a.slice(0,2),i=a.slice(2,4),w=h.palmLandmarks.arraySync();h.box.dispose(),h.palmLandmarks.dispose(),s.push(G1({startPoint:x,endPoint:i,palmLandmarks:w,confidence:h.confidence},[_/this.inputSize,A/this.inputSize]))}return s}};function $0(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Q1(e,t){let r=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return $0(r)}var $1=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function te(e,t){let r=0;for(let A=0;AJt([...c,1],r)),_=this.calculateLandmarksBoundingBox(A);return Je(Ke(_),tn)}getBoxForHandLandmarks(t){let r=this.calculateLandmarksBoundingBox(t),A=Je(Ke(r),n0);A.palmLandmarks=[];for(let _=0;_[n[0]*(m[0]-this.inputSize/2),n[1]*(m[1]-this.inputSize/2),n[2]*m[2]]),h=Ct(A,[0,0]),a=s.map(m=>[...Jt(m,h),m[2]]),x=t0(_),i=[...be(r),1],w=[te(i,x[0]),te(i,x[1])];return a.map(m=>[m[0]+w[0],m[1]+w[1],m[2]])}async estimateHands(t,r){let A=!1,_;(this.skipped===0||this.skipped>r.hand.skipFrames||!r.hand.landmarks||!r.videoOptimized)&&(_=await this.handDetector.estimateHandBounds(t,r),this.skipped=0),r.videoOptimized&&this.skipped++,_&&_.length>0&&(_.length!==this.detectedHands&&this.detectedHands!==r.hand.maxHands||!r.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[..._],this.storedBoxes.length>0&&(A=!0));let c=[];r.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let n=0;n=r.hand.minConfidence){let v=o.reshape(b,[-1,3]),N=v.arraySync();b.dispose(),v.dispose();let g=this.transformRawCoords(N,m,h,w),d=this.getBoxForHandLandmarks(g);this.storedBoxes[n]=d;let T={landmarks:g,confidence:M,box:{topLeft:d.startPoint,bottomRight:d.endPoint}};c.push(T)}else this.storedBoxes[n]=null;b.dispose()}else{let h=Je(Ke(s),n0),a={confidence:s.confidence,box:{topLeft:h.startPoint,bottomRight:h.endPoint}};c.push(a)}}return this.storedBoxes=this.storedBoxes.filter(n=>n!==null),this.detectedHands=c.length,c}calculateLandmarksBoundingBox(t){let r=t.map(n=>n[0]),A=t.map(n=>n[1]),_=[Math.min(...r),Math.min(...A)],c=[Math.max(...r),Math.max(...A)];return{startPoint:_,endPoint:c}}};var c0=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var Gt={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},Qt=class{constructor(t){this.handPipeline=t}static getAnnotations(){return Gt}async estimateHands(t,r){let A=await this.handPipeline.estimateHands(t,r);if(!A)return[];let _=[];for(let c of A){let n={};if(c.landmarks)for(let a of Object.keys(Gt))n[a]=Gt[a].map(x=>c.landmarks[x]);let s=c.box?[Math.max(0,c.box.topLeft[0]),Math.max(0,c.box.topLeft[1]),Math.min(t.shape[2],c.box.bottomRight[0])-Math.max(0,c.box.topLeft[0]),Math.min(t.shape[1],c.box.bottomRight[1])-Math.max(0,c.box.topLeft[1])]:[],h=[c.box.topLeft[0]/t.shape[2],c.box.topLeft[1]/t.shape[1],(c.box.bottomRight[0]-c.box.topLeft[0])/t.shape[2],(c.box.bottomRight[1]-c.box.topLeft[1])/t.shape[1]];_.push({confidence:Math.round(100*c.confidence)/100,box:s,boxRaw:h,landmarks:c.landmarks,annotations:n})}return _}},Q,$;async function $t(e){!Q||!$?([Q,$]=await Promise.all([e.hand.enabled?o.loadGraphModel(j(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?o.loadGraphModel(j(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!Q||!Q.modelUrl?f("load model failed:",e.hand.detector.modelPath):e.debug&&f("load model:",Q.modelUrl),!$||!$.modelUrl?f("load model failed:",e.hand.skeleton.modelPath):e.debug&&f("load model:",$.modelUrl))):(e.debug&&f("cached model:",Q.modelUrl),e.debug&&f("cached model:",$.modelUrl));let t=new Yt(Q,Q==null?void 0:Q.inputs[0].shape[2],c0),r=new Kt(t,$,$==null?void 0:$.inputs[0].shape[2]);return new Qt(r)}var e1={};C(e1,{load:()=>t1,predict:()=>n1});var A0=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],_0=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var Z;async function t1(e){return Z?e.debug&&f("cached model:",Z.modelUrl):(Z=await o.loadGraphModel(j(e.modelBasePath,e.body.modelPath)),Z.width=parseInt(Z.signature.inputs["input_1:0"].tensorShape.dim[2].size),Z.height=parseInt(Z.signature.inputs["input_1:0"].tensorShape.dim[1].size),!Z||!Z.modelUrl?f("load model failed:",e.body.modelPath):e.debug&&f("load model:",Z.modelUrl)),Z}async function n1(e,t){if(!Z||!t.body.enabled)return null;let r={width:e.shape[2],height:e.shape[1]},A=o.image.resizeBilinear(e,[Z.width,Z.height],!1),_=o.div(A,[255]);A.dispose();let c;if(t.profile){let x=await o.profile(()=>Z.predict(_));c=x.result.find(i=>i.size===195||i.size===155).dataSync(),x.result.forEach(i=>i.dispose()),L("blazepose",x)}else{let x=await Z.predict(_);c=x.find(i=>i.size===195||i.size===155).dataSync(),x.forEach(i=>i.dispose())}_.dispose();let n=[],s=c.length===195?A0:_0,h=5;for(let x=0;xi.score>x?i.score:x,0),keypoints:n}]}var H,ge=[],De=Number.MAX_SAFE_INTEGER,cn=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function r1(e){return H?e.debug&&f("cached model:",H.modelUrl):(H=await o.loadGraphModel(j(e.modelBasePath,e.body.modelPath)),!H||!H.modelUrl?f("load model failed:",e.body.modelPath):e.debug&&f("load model:",H.modelUrl)),H}function An(e,t){let[r,A]=e.shape;return o.tidy(()=>{let _=(s,h)=>o.sub(s,o.mul(o.div(s,o.scalar(h,"int32")),o.scalar(h,"int32"))),c=o.reshape(e,[A*r]),n=o.max(c,0).dataSync()[0];if(n>t){let s=o.argMax(c,0),h=_(s,r).dataSync()[0],a=o.div(s,o.scalar(r,"int32")).dataSync()[0];return[h,a,n]}return[0,0,n]})}async function c1(e,t){return H?De0?(De++,ge):(t.videoOptimized?De=0:De=Number.MAX_SAFE_INTEGER,new Promise(async r=>{let A=o.tidy(()=>{let n=o.image.resizeBilinear(e,[H.inputs[0].shape[2],H.inputs[0].shape[1]],!1);return o.mul(n,2).sub(1)}),_;if(!t.profile)t.body.enabled&&(_=await H.predict(A));else{let n=t.body.enabled?await o.profile(()=>H.predict(A)):{};_=n.result.clone(),n.result.dispose(),L("body",n)}if(A.dispose(),_){let n=[],s=_.squeeze();o.dispose(_);let h=s.unstack(2);o.dispose(s);for(let a=0;at.body.scoreThreshold&&n.push({id:a,score:Math.round(100*w)/100,part:cn[a],positionRaw:{xRaw:x/H.inputs[0].shape[2],yRaw:i/H.inputs[0].shape[1]},position:{x:Math.round(e.shape[2]*x/H.inputs[0].shape[2]),y:Math.round(e.shape[1]*i/H.inputs[0].shape[1])}})}h.forEach(a=>o.dispose(a)),ge=n}let c=ge.reduce((n,s)=>s.score>n?s.score:n,0);r([{score:c,keypoints:ge}])})):null}var A1={};C(A1,{load:()=>o1,predict:()=>s1});var Ge=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var V,_1=[],Qe=Number.MAX_SAFE_INTEGER,$e=2.5;async function o1(e){if(V)e.debug&&f("cached model:",V.modelUrl);else{V=await o.loadGraphModel(j(e.modelBasePath,e.object.modelPath));let t=Object.values(V.modelSignature.inputs);if(V.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!V.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!V||!V.modelUrl?f("load model failed:",e.object.modelPath):e.debug&&f("load model:",V.modelUrl)}return V}async function _n(e,t,r,A){let _=0,c=[];for(let a of[1,2,4])o.tidy(()=>{var u,b;let x=a*13,i=(u=e.find(M=>M.shape[1]===x**2&&M.shape[2]===Ge.length))==null?void 0:u.squeeze(),w=(b=e.find(M=>M.shape[1]===x**2&&M.shape[2]A.object.minConfidence&&v!==61){let g=(.5+Math.trunc(M%x))/x,d=(.5+Math.trunc(M/x))/x,T=p[M].map(ce=>ce*(x/a/t)),[z,R]=[g-$e/a*T[0],d-$e/a*T[1]],[I,re]=[g+$e/a*T[2]-z,d+$e/a*T[3]-R],X=[z,R,I,re];X=X.map(ce=>Math.max(0,Math.min(ce,1)));let st=[X[0]*r[0],X[1]*r[1],X[2]*r[0],X[3]*r[1]],Ee={id:_++,strideSize:a,score:Math.round(100*N)/100,class:v+1,label:Ge[v].label,center:[Math.trunc(r[0]*g),Math.trunc(r[1]*d)],centerRaw:[g,d],box:st.map(ce=>Math.trunc(ce)),boxRaw:X};c.push(Ee)}}});e.forEach(a=>o.dispose(a));let n=c.map(a=>a.boxRaw),s=c.map(a=>a.score),h=[];if(n&&n.length>0){let a=await o.image.nonMaxSuppressionAsync(n,s,A.object.maxResults,A.object.iouThreshold,A.object.minConfidence);h=a.dataSync(),o.dispose(a)}return c=c.filter((a,x)=>h.includes(x)).sort((a,x)=>x.score-a.score),c}async function s1(e,t){return V?Qe0?(Qe++,_1):(t.videoOptimized?Qe=0:Qe=Number.MAX_SAFE_INTEGER,new Promise(async r=>{let A=[e.shape[2],e.shape[1]],_=o.image.resizeBilinear(e,[V.inputSize,V.inputSize],!1),c=_.div(255),n=c.transpose([0,3,1,2]);c.dispose(),_.dispose();let s;if(!t.profile)t.object.enabled&&(s=await V.predict(n));else{let a=t.object.enabled?await o.profile(()=>V.predict(n)):{};s=a.result,L("object",a)}n.dispose();let h=await _n(s,V.inputSize,A,t);_1=h,r(h)})):null}var o0=e=>{if(!e)return[];let t=[];for(let r=0;rh.part==="leftWrist"),_=e[r].keypoints.find(h=>h.part==="rightWrist"),c=e[r].keypoints.find(h=>h.part==="nose");c&&A&&_&&A.position.yh.part==="leftShoulder"),s=e[r].keypoints.find(h=>h.part==="rightShoulder");n&&s&&t.push({body:r,gesture:`leaning ${n.position.y>s.position.y?"left":"right"}`})}return t},s0=e=>{if(!e)return[];let t=[];for(let r=0;r0){let A=e[r].mesh[33][2]-e[r].mesh[263][2];Math.abs(A)<10?t.push({face:r,gesture:"facing center"}):t.push({face:r,gesture:`facing ${A<0?"left":"right"}`}),Math.abs(e[r].mesh[374][1]-e[r].mesh[386][1])/Math.abs(e[r].mesh[443][1]-e[r].mesh[450][1])<.2&&t.push({face:r,gesture:"blink left eye"}),Math.abs(e[r].mesh[145][1]-e[r].mesh[159][1])/Math.abs(e[r].mesh[223][1]-e[r].mesh[230][1])<.2&&t.push({face:r,gesture:"blink right eye"});let n=Math.min(100,500*Math.abs(e[r].mesh[13][1]-e[r].mesh[14][1])/Math.abs(e[r].mesh[10][1]-e[r].mesh[152][1]));n>10&&t.push({face:r,gesture:`mouth ${Math.trunc(n)}% open`});let s=e[r].mesh[152][2];Math.abs(s)>10&&t.push({face:r,gesture:`head ${s<0?"up":"down"}`})}return t},h0=e=>{if(!e)return[];let t=[];for(let r=0;r.033||i>.033)&&(a=!1),w>.033&&t.push({iris:r,gesture:"looking right"}),i>.033&&t.push({iris:r,gesture:"looking left"});let m=Math.abs(e[r].mesh[145][1]-e[r].annotations.rightEyeIris[0][1])/e[r].annotations.rightEyeIris[0][1],p=Math.abs(e[r].mesh[374][1]-e[r].annotations.leftEyeIris[0][1])/e[r].annotations.leftEyeIris[0][1];(p<.015||m<.015||p>.03||m>.03)&&(a=!1),(p<.015||m<.015)&&t.push({iris:r,gesture:"looking down"}),(p>.03||m>.03)&&t.push({iris:r,gesture:"looking up"}),a&&t.push({iris:r,gesture:"looking center"})}return t},i0=e=>{if(!e)return[];let t=[];for(let r=0;r0){let _=A.reduce((n,s)=>n.position[2]n.position[1]i1});function on(e,t,r){let A=function(s,h,a){let x=new RegExp("\\b"+h+" \\w+ (\\w+)","ig");s.replace(x,(i,w)=>(a[w]=0,i))},_=function(s,h){let a=e.createShader(h);if(e.shaderSource(a,s),e.compileShader(a),!e.getShaderParameter(a,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(a));return a};this.uniform={},this.attribute={};let c=_(t,e.VERTEX_SHADER),n=_(r,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,c),e.attachShader(this.id,n),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),A(t,"attribute",this.attribute);for(let s in this.attribute)this.attribute[s]=e.getAttribLocation(this.id,s);A(t,"uniform",this.uniform),A(r,"uniform",this.uniform);for(let s in this.uniform)this.uniform[s]=e.getUniformLocation(this.id,s)}function a0(e){e||(e={});let t=0,r=null,A=!1,_=-1,c=[null,null],n=[],s=-1,h=-1,a=null,x=null,i={},w=e.canvas||document.createElement("canvas"),m={},p={INTERMEDIATE:1},y=w.getContext("webgl");if(!y)throw new Error("Filter: getContext() failed");this.addFilter=function(g){let d=Array.prototype.slice.call(arguments,1),T=i[g];n.push({func:T,args:d})},this.reset=function(){n=[]};let u=function(g,d){if(!(g===s&&d===h)){if(w.width=g,s=g,w.height=d,h=d,!a){let T=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);a=y.createBuffer(),y.bindBuffer(y.ARRAY_BUFFER,a),y.bufferData(y.ARRAY_BUFFER,T,y.STATIC_DRAW),y.pixelStorei(y.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}y.viewport(0,0,s,h),c=[null,null]}},b=function(g,d){let T=y.createFramebuffer();y.bindFramebuffer(y.FRAMEBUFFER,T);let z=y.createRenderbuffer();y.bindRenderbuffer(y.RENDERBUFFER,z);let R=y.createTexture();return y.bindTexture(y.TEXTURE_2D,R),y.texImage2D(y.TEXTURE_2D,0,y.RGBA,g,d,0,y.RGBA,y.UNSIGNED_BYTE,null),y.texParameteri(y.TEXTURE_2D,y.TEXTURE_MAG_FILTER,y.LINEAR),y.texParameteri(y.TEXTURE_2D,y.TEXTURE_MIN_FILTER,y.LINEAR),y.texParameteri(y.TEXTURE_2D,y.TEXTURE_WRAP_S,y.CLAMP_TO_EDGE),y.texParameteri(y.TEXTURE_2D,y.TEXTURE_WRAP_T,y.CLAMP_TO_EDGE),y.framebufferTexture2D(y.FRAMEBUFFER,y.COLOR_ATTACHMENT0,y.TEXTURE_2D,R,0),y.bindTexture(y.TEXTURE_2D,null),y.bindFramebuffer(y.FRAMEBUFFER,null),{fbo:T,texture:R}},M=function(g){return c[g]=c[g]||b(s,h),c[g]},v=function(g=null){var R,I;let d=null,T=null,z=!1;t===0?d=r:d=(R=M(_))==null?void 0:R.texture,t++,A&&!(g&p.INTERMEDIATE)?(T=null,z=t%2==0):(_=(_+1)%2,T=(I=M(_))==null?void 0:I.fbo),y.bindTexture(y.TEXTURE_2D,d),y.bindFramebuffer(y.FRAMEBUFFER,T),y.uniform1f(x.uniform.flipY,z?-1:1),y.drawArrays(y.TRIANGLES,0,6)};this.apply=function(g){if(u(g.width,g.height),t=0,r||(r=y.createTexture()),y.bindTexture(y.TEXTURE_2D,r),y.texParameteri(y.TEXTURE_2D,y.TEXTURE_WRAP_S,y.CLAMP_TO_EDGE),y.texParameteri(y.TEXTURE_2D,y.TEXTURE_WRAP_T,y.CLAMP_TO_EDGE),y.texParameteri(y.TEXTURE_2D,y.TEXTURE_MIN_FILTER,y.NEAREST),y.texParameteri(y.TEXTURE_2D,y.TEXTURE_MAG_FILTER,y.NEAREST),y.texImage2D(y.TEXTURE_2D,0,y.RGBA,y.RGBA,y.UNSIGNED_BYTE,g),n.length===0)return v(),w;for(let d=0;d{for(var r in t)it(e,r,{get:t[r],enumerable:!0})},w=(e,t,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let A of w0(t))!y0.call(e,A)&&A!=="default"&&it(e,A,{get:()=>t[A],enumerable:!(r=l0(t,A))||r.enumerable});return e};var at=(e,t,r)=>{if(!t.has(e))throw TypeError("Cannot "+r)};var C=(e,t,r)=>(at(e,t,"read from private field"),r?r.call(e):t.get(e)),_e=(e,t,r,A)=>(at(e,t,"write to private field"),A?A.call(e,r):t.set(e,r),r);function W(e,t){let r=e.endsWith("/")?"":"/",_=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${r}${t}`;if(!_.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${_} Expecting JSON file`);return _}function f(...e){let t=new Date,r=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(r,"Human:",...e)}var v=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function U(...e){let t=r=>r&&typeof r=="object";return e.reduce((r,A)=>(Object.keys(A||{}).forEach(_=>{let c=r[_],n=A[_];Array.isArray(c)&&Array.isArray(n)?r[_]=c.concat(...n):t(c)&&t(n)?r[_]=U(c,n):r[_]=n}),r),{})}function xt(){let e,t;if(typeof navigator!="undefined"){let r=navigator.userAgent.match(/\(([^()]+)\)/g);if(r&&r[0]){let A=r[0].match(/\(([^()]+)\)/g);e=A?A[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(r[0],""),e[1]&&(t=t.replace(r[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var o={};J(o,{data:()=>p0,version:()=>u0});w(o,cn);w(o,An);w(o,_n);w(o,on);w(o,sn);w(o,hn);import*as yt from"@tensorflow/tfjs/package.json";import*as wt from"@tensorflow/tfjs-core/package.json";import*as lt from"@tensorflow/tfjs-data/package.json";import*as dt from"@tensorflow/tfjs-layers/package.json";import*as ft from"@tensorflow/tfjs-converter/package.json";import{version_cpu as d0}from"@tensorflow/tfjs-backend-cpu/dist/index.js";import{version_webgl as f0}from"@tensorflow/tfjs-backend-webgl/dist/index.js";import{version_wasm as m0}from"@tensorflow/tfjs-backend-wasm/dist/index.js";import*as cn from"@tensorflow/tfjs-core/dist/index.js";import*as An from"@tensorflow/tfjs-layers/dist/index.js";import*as _n from"@tensorflow/tfjs-converter/dist/index.js";import*as p0 from"@tensorflow/tfjs-data/dist/index.js";import*as on from"@tensorflow/tfjs-backend-cpu/dist/index.js";import*as sn from"@tensorflow/tfjs-backend-webgl/dist/index.js";import*as hn from"@tensorflow/tfjs-backend-wasm/dist/index.js";var u0={tfjs:(yt==null?void 0:yt.version)||void 0,"tfjs-core":(wt==null?void 0:wt.version)||void 0,"tfjs-data":(lt==null?void 0:lt.version)||void 0,"tfjs-layers":(dt==null?void 0:dt.version)||void 0,"tfjs-converter":(ft==null?void 0:ft.version)||void 0,"tfjs-backend-cpu":d0||void 0,"tfjs-backend-webgl":f0||void 0,"tfjs-backend-wasm":m0||void 0};var F={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function mt(){if(!o.findBackend(F.name)){f("backend registration:",F.name);try{F.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(F.width,F.height):document.createElement("canvas")}catch(e){f("error: cannot create canvas:",e);return}try{F.gl=F.canvas.getContext("webgl2",F.webGLattr)}catch(e){f("error: cannot get WebGL2 context:",e);return}try{o.setWebGLContext(2,F.gl)}catch(e){f("error: cannot set WebGL2 context:",e);return}try{let e=new o.GPGPUContext(F.gl);o.registerBackend(F.name,()=>new o.MathBackendWebGL(e),F.priority)}catch(e){f("error: cannot register WebGL backend:",e);return}try{o.getKernelsForBackend("webgl").forEach(t=>{let r={...t,backendName:F.name};o.registerKernel(r)})}catch(e){f("error: cannot update WebGL backend registration:",e);return}try{o.ENV.set("WEBGL_VERSION",2)}catch(e){f("error: cannot set WebGL backend flags:",e);return}f("backend registered:",F.name)}}var o1={};J(o1,{load:()=>s1,predict:()=>je});var Ee={};function L(e,t){if(!t||!t.kernels)return;let r=5,A=t.kernels.filter(n=>n.kernelTimeMs>0).reduce((n,s)=>n+=s.kernelTimeMs,0),_=t.kernels.map((n,s)=>(n.id=s,n)).filter(n=>n.kernelTimeMs>0).sort((n,s)=>s.kernelTimeMs-n.kernelTimeMs),c=t.kernels.map((n,s)=>(n.id=s,n)).filter(n=>n.totalBytesSnapshot>0).sort((n,s)=>s.totalBytesSnapshot-n.totalBytesSnapshot);_.length>r&&(_.length=r),c.length>r&&(c.length=r),Ee[e]={model:e,newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:A,slowestKernelOps:_,largestKernelOps:c},f("profiler",e,Ee[e])}var K,ve={age:0},Re=Number.MAX_SAFE_INTEGER;async function s1(e){return K?e.debug&&f("cached model:",K.modelUrl):(K=await o.loadGraphModel(W(e.modelBasePath,e.face.age.modelPath)),!K||!K.modelUrl?f("load model failed:",e.face.age.modelPath):e.debug&&f("load model:",K.modelUrl)),K}async function je(e,t){return K?Re0?(Re++,ve):(t.videoOptimized?Re=0:Re=Number.MAX_SAFE_INTEGER,new Promise(async r=>{let A=o.image.resizeBilinear(e,[K.inputs[0].shape[2],K.inputs[0].shape[1]],!1),_=o.mul(A,[255]);o.dispose(A);let c,n={age:0};if(!t.profile)t.face.age.enabled&&(c=await K.predict(_));else{let s=t.face.age.enabled?await o.profile(()=>K.predict(_)):{};c=s.result.clone(),s.result.dispose(),L("age",s)}if(_.dispose(),c){let s=c.dataSync();n.age=Math.trunc(10*s[0])/10}c.dispose(),ve=n,r(n)})):null}var h1={};J(h1,{load:()=>y1,predict:()=>We});var Y,i1={gender:""},Se=Number.MAX_SAFE_INTEGER,a1=!1,x1=[.2989,.587,.114];async function y1(e){return Y?e.debug&&f("cached model:",Y.modelUrl):(Y=await o.loadGraphModel(W(e.modelBasePath,e.face.gender.modelPath)),a1=Y.inputs[0].shape[3]===1,!Y||!Y.modelUrl?f("load model failed:",e.face.gender.modelPath):e.debug&&f("load model:",Y.modelUrl)),Y}async function We(e,t){return Y?Se{let A=o.image.resizeBilinear(e,[Y.inputs[0].shape[2],Y.inputs[0].shape[1]],!1),_;a1?_=o.tidy(()=>{let[s,h,a]=o.split(A,3,3),y=o.mul(s,x1[0]),i=o.mul(h,x1[1]),d=o.mul(a,x1[2]);return o.addN([y,i,d]).sub(.5).mul(2)}):_=o.mul(A,[255]),o.dispose(A);let c,n={gender:"",confidence:0};if(!t.profile)t.face.gender.enabled&&(c=await Y.predict(_));else{let s=t.face.gender.enabled?await o.profile(()=>Y.predict(_)):{};c=s.result.clone(),s.result.dispose(),L("gender",s)}if(_.dispose(),c)if(Array.isArray(c)){let s=c[0].dataSync(),h=Math.trunc(200*Math.abs(s[0]-.5))/100;h>t.face.gender.minConfidence&&(n.gender=s[0]<=.5?"female":"male",n.confidence=Math.min(.99,h)),c.forEach(a=>o.dispose(a))}else{let s=c.dataSync();if(a1)(s[0]>t.face.gender.minConfidence||s[1]>t.face.gender.minConfidence)&&(n.gender=s[0]>s[1]?"female":"male",n.confidence=s[0]>s[1]?Math.trunc(100*s[0])/100:Math.trunc(100*s[1])/100);else{let h=Math.trunc(200*Math.abs(s[0]-.5))/100;h>t.face.gender.minConfidence&&(n.gender=s[0]<=.5?"female":"male",n.confidence=Math.min(.99,h))}c.dispose()}i1=n,r(n)})):null}var w1={};J(w1,{load:()=>f1,predict:()=>ke});var b0=["angry","disgust","fear","happy","sad","surprise","neutral"],D,l1=[],Ne=Number.MAX_SAFE_INTEGER,d1=[.2989,.587,.114];async function f1(e){return D?e.debug&&f("cached model:",D.modelUrl):(D=await o.loadGraphModel(W(e.modelBasePath,e.face.emotion.modelPath)),!D||!D.modelUrl?f("load model failed:",e.face.emotion.modelPath):e.debug&&f("load model:",D.modelUrl)),D}async function ke(e,t){return D?Ne0?(Ne++,l1):(t.videoOptimized?Ne=0:Ne=Number.MAX_SAFE_INTEGER,new Promise(async r=>{let A=o.image.resizeBilinear(e,[D.inputs[0].shape[2],D.inputs[0].shape[1]],!1),[_,c,n]=o.split(A,3,3);A.dispose();let s=o.mul(_,d1[0]),h=o.mul(c,d1[1]),a=o.mul(n,d1[2]);_.dispose(),c.dispose(),n.dispose();let y=o.addN([s,h,a]);s.dispose(),h.dispose(),a.dispose();let i=o.tidy(()=>y.sub(.5).mul(2));y.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let T=await o.profile(()=>D.predict(i));p=T.result.dataSync(),T.result.dispose(),L("emotion",T)}else{let T=await D.predict(i);p=T.dataSync(),o.dispose(T)}for(let T=0;Tt.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*p[T])/100),emotion:b0[T]});d.sort((T,x)=>x.score-T.score)}i.dispose(),l1=d,r(d)})):null}var q;async function m1(e){return q?e.debug&&f("cached model:",q.modelUrl):(q=await o.loadGraphModel(W(e.modelBasePath,e.face.embedding.modelPath)),!q||!q.modelUrl?f("load model failed:",e.face.embedding.modelPath):e.debug&&f("load model:",q.modelUrl)),q}function pt(e,t,r=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let A=e.map((c,n)=>Math.abs(e[n]-t[n])**r).reduce((c,n)=>c+n,0)**(1/r);return Math.max(Math.trunc(1e3*(1-A))/1e3,0)}function g0(e){return o.tidy(()=>{let r=[[.05,.15,.85,.85]],A=e.image||e.tensor;if(!(A instanceof o.Tensor))return null;let _=A.shape.length===3?o.image.cropAndResize(o.expandDims(A,0),r,[0],[q.inputs[0].shape[2],q.inputs[0].shape[1]]):o.image.cropAndResize(A,r,[0],[q.inputs[0].shape[2],q.inputs[0].shape[1]]),c=[.2989,.587,.114],[n,s,h]=o.split(_,3,3),a=o.mul(n,c[0]),y=o.mul(s,c[1]),i=o.mul(h,c[2]),d=o.addN([a,y,i]),p=o.stack([d,d,d],3).squeeze(4),T=p.sub(p.min());return T.div(T.max())})}async function p1(e,t){return q?new Promise(async r=>{let A=[];if(t.face.embedding.enabled){let _=g0(e);if(!t.profile)A=o.tidy(()=>[...q.predict(_).reshape([128,2]).logSumExp(1).dataSync()]);else{let c=await o.profile(()=>q.predict({img_inputs:_}));A=[...c.result.dataSync()],c.result.dispose(),L("emotion",c)}o.dispose(_)}r(A)}):[]}var u1={};J(u1,{enhance:()=>T1,load:()=>b1,match:()=>ut,predict:()=>Le,similarity:()=>g1});var B,Ie={age:0},Oe=Number.MAX_SAFE_INTEGER;async function b1(e){return B?e.debug&&f("cached model:",B.modelUrl):(B=await o.loadGraphModel(W(e.modelBasePath,e.face.description.modelPath)),!B||!B.modelUrl?f("load model failed:",e.face.description.modelPath):e.debug&&f("load model:",B.modelUrl)),B}function g1(e,t,r=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let A=5*e.map((c,n)=>Math.abs(e[n]-t[n])**r).reduce((c,n)=>c+n,0)**(1/r);return Math.max(0,100-A)/100}function ut(e,t,r=0){let A={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return A;for(let _ of t)if(_.embedding&&_.name){let c=g1(e,_.embedding);c>r&&c>A.similarity&&(A={..._,similarity:c})}return A}function T1(e){return o.tidy(()=>{let r=e.image||e.tensor||e;if(!(r instanceof o.Tensor))return null;let A=[[.05,.15,.85,.85]];return(r.shape.length===3?o.image.cropAndResize(o.expandDims(r,0),A,[0],[B.inputs[0].shape[2],B.inputs[0].shape[1]]):o.image.cropAndResize(r,A,[0],[B.inputs[0].shape[2],B.inputs[0].shape[1]])).mul(255)})}async function Le(e,t){return B?Oe0?(Oe++,Ie):(t.videoOptimized?Oe=0:Oe=Number.MAX_SAFE_INTEGER,new Promise(async r=>{let A=T1(e),_,c={age:0,gender:"unknown",genderConfidence:0,descriptor:[]};if(!t.profile)t.face.description.enabled&&(_=await B.predict(A));else{let n=t.face.description.enabled?await o.profile(()=>B.predict(A)):{};_=n.result,L("faceres",n)}o.dispose(A),_&&(o.tidy(()=>{let n=_.find(i=>i.shape[1]===1).dataSync(),s=Math.trunc(200*Math.abs(n[0]-.5))/100;s>t.face.gender.minConfidence&&(c.gender=n[0]<=.5?"female":"male",c.genderConfidence=Math.min(.99,s));let h=_.find(i=>i.shape[1]===100).argMax(1).dataSync()[0],a=_.find(i=>i.shape[1]===100).dataSync();c.age=Math.round(a[h-1]>a[h+1]?10*h-100*a[h-1]:10*h+100*a[h+1])/10;let y=_.find(i=>i.shape[1]===1024);c.descriptor=[...y.dataSync()]}),_.forEach(n=>o.dispose(n))),Ie=c,r(c)})):null}var T0=(e,t)=>{let r=m=>m*180/Math.PI,A=m=>{let u=Math.sqrt(m[0]*m[0]+m[1]*m[1]+m[2]*m[2]);return m[0]/=u,m[1]/=u,m[2]/=u,m},_=(m,u)=>{let M=m[0]-u[0],z=m[1]-u[1],j=m[2]-u[2];return[M,z,j]},c=(m,u)=>{let M=m[1]*u[2]-m[2]*u[1],z=m[2]*u[0]-m[0]*u[2],j=m[0]*u[1]-m[1]*u[0];return[M,z,j]},n=m=>{let[u,M,z,j,b,l,g,E,R]=m,I,ce,X;return j<1?j>-1?(X=Math.asin(j),ce=Math.atan2(-g,u),I=Math.atan2(-l,b)):(X=-Math.PI/2,ce=-Math.atan2(E,R),I=0):(X=Math.PI/2,ce=Math.atan2(E,R),I=0),{pitch:2*-I,yaw:2*-ce,roll:2*-X}},s=m=>{let u=(z,j,b,l)=>Math.atan2(l-j,b-z);return{pitch:u(m[10][1],m[10][2],m[152][1],m[152][2]),yaw:u(m[33][0],m[33][2],m[263][0],m[263][2]),roll:u(m[33][0],m[33][1],m[263][0],m[263][1])}},h=e.meshRaw;if(!h||h.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1]};let a=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,y=[h[10],h[152],h[234],h[454]].map(m=>[m[0]*t[0]/a,m[1]*t[1]/a,m[2]]),i=A(_(y[1],y[0])),d=A(_(y[3],y[2])),p=A(c(d,i));d=c(i,p);let T=[d[0],d[1],d[2],i[0],i[1],i[2],p[0],p[1],p[2]];return{angle:n(T),matrix:T}},P1=async(e,t)=>{var y,i,d,p,T,x,m;let r,A,_,c,n,s,h=[];e.state="run:face",r=v();let a=await((y=e.models.face)==null?void 0:y.estimateFaces(t,e.config));if(e.perf.face=Math.trunc(v()-r),!a)return[];for(let u of a){if(e.analyze("Get Face"),!u.image||u.image.isDisposedInternal){f("Face object is disposed:",u.image);continue}let M=T0(u,[t.shape[2],t.shape[1]]);e.analyze("Start Age:"),e.config.async?A=e.config.face.age.enabled?je(u.image,e.config):{}:(e.state="run:age",r=v(),A=e.config.face.age.enabled?await je(u.image,e.config):{},e.perf.age=Math.trunc(v()-r)),e.analyze("Start Gender:"),e.config.async?_=e.config.face.gender.enabled?We(u.image,e.config):{}:(e.state="run:gender",r=v(),_=e.config.face.gender.enabled?await We(u.image,e.config):{},e.perf.gender=Math.trunc(v()-r)),e.analyze("Start Emotion:"),e.config.async?c=e.config.face.emotion.enabled?ke(u.image,e.config):{}:(e.state="run:emotion",r=v(),c=e.config.face.emotion.enabled?await ke(u.image,e.config):{},e.perf.emotion=Math.trunc(v()-r)),e.analyze("End Emotion:"),e.analyze("Start Embedding:"),e.config.async?n=e.config.face.embedding.enabled?p1(u,e.config):[]:(e.state="run:embedding",r=v(),n=e.config.face.embedding.enabled?await p1(u,e.config):[],e.perf.embedding=Math.trunc(v()-r)),e.analyze("End Embedding:"),e.analyze("Start Description:"),e.config.async?s=e.config.face.description.enabled?Le(u,e.config):[]:(e.state="run:description",r=v(),s=e.config.face.description.enabled?await Le(u.image,e.config):[],e.perf.embedding=Math.trunc(v()-r)),e.analyze("End Description:"),e.config.async&&([A,_,c,n,s]=await Promise.all([A,_,c,n,s])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((i=u==null?void 0:u.annotations)==null?void 0:i.leftEyeIris)&&((d=u==null?void 0:u.annotations)==null?void 0:d.rightEyeIris)&&(delete u.annotations.leftEyeIris,delete u.annotations.rightEyeIris);let z=((p=u.annotations)==null?void 0:p.leftEyeIris)&&((T=u.annotations)==null?void 0:T.rightEyeIris)?11.7*Math.max(Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0]),Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])):0;h.push({...u,age:s.age||A.age,gender:s.gender||_.gender,genderConfidence:s.genderConfidence||_.confidence,embedding:s.descriptor||n,emotion:c,iris:z!==0?Math.trunc(z)/100:0,rotation:M,tensor:e.config.face.detector.return?(x=u.image)==null?void 0:x.squeeze():null}),(m=u.image)==null||m.dispose(),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.perf.face&&delete e.perf.face,e.perf.age&&delete e.perf.age,e.perf.gender&&delete e.perf.gender,e.perf.emotion&&delete e.perf.emotion),h};var j1={};J(j1,{MediaPipeFaceMesh:()=>S1,load:()=>W1,triangulation:()=>jt,uvmap:()=>St});var bt=6;function P0(e){let t={strides:[e/16,e/8],anchors:[2,6]},r=[];for(let A=0;A({startEndTensor:e,startPoint:o.slice(e,[0,0],[-1,2]),endPoint:o.slice(e,[0,2],[-1,2])});function z0(e,t,r){let A=o.slice(e,[0,1],[-1,2]),_=o.add(A,t),c=o.slice(e,[0,3],[-1,2]),n=o.div(c,r),s=o.div(_,r),h=o.div(n,2),a=o.sub(s,h),y=o.add(s,h),i=o.mul(a,r),d=o.mul(y,r);return o.concat2d([i,d],1)}var gt=class{constructor(t,r){this.model=t,this.anchorsData=P0(t.inputs[0].shape[1]),this.anchors=o.tensor2d(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=r}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[r,A,_]=o.tidy(()=>{let d=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),p=this.model.predict(d),T;if(Array.isArray(p)){let M=p.sort((l,g)=>l.size-g.size),z=o.concat([M[0],M[2]],2),j=o.concat([M[1],M[3]],2);T=o.concat([j,z],1).squeeze(0)}else T=p.squeeze();let x=z0(T,this.anchors,[this.inputSize,this.inputSize]),m=o.slice(T,[0,0],[-1,1]),u=o.sigmoid(m).squeeze();return[T,x,u]}),c=await o.image.nonMaxSuppressionAsync(A,_,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),n=c.arraySync();c.dispose();let h=n.map(i=>o.slice(A,[i,0],[1,-1])).map(i=>{let d=i.arraySync();return i.dispose(),d}),a=_.dataSync(),y=[];for(let i=0;ithis.config.face.detector.minConfidence){let T=M0(h[i]),x=this.anchorsData[d],m=o.tidy(()=>o.slice(r,[d,bt-1],[1,-1]).squeeze().reshape([bt,-1]));y.push({box:T,landmarks:m,anchor:x,confidence:p})}}return r.dispose(),A.dispose(),_.dispose(),{boxes:y,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function Tt(e){let t=await o.loadGraphModel(W(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),r=new gt(t,e);return!t||!t.modelUrl?f("load model failed:",e.face.detector.modelPath):e.debug&&f("load model:",t.modelUrl),r}function Pt(e,t){let r=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],A=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:r,endPoint:A}}function de(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function ae(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function xe(e,t,r){let A=t.shape[1],_=t.shape[2],c=[[e.startPoint[1]/A,e.startPoint[0]/_,e.endPoint[1]/A,e.endPoint[0]/_]];return o.image.cropAndResize(t,c,[0],r)}function Ze(e,t=1.5){let r=ae(e),A=de(e),_=[t*A[0]/2,t*A[1]/2],c=[r[0]-_[0],r[1]-_[1]],n=[r[0]+_[0],r[1]+_[1]];return{startPoint:c,endPoint:n,landmarks:e.landmarks}}function He(e){let t=ae(e),r=de(e),_=Math.max(...r)/2,c=[t[0]-_,t[1]-_],n=[t[0]+_,t[1]+_];return{startPoint:c,endPoint:n,landmarks:e.landmarks}}var Ve=[[1,0,0],[0,1,0],[0,0,1]];function E0(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function M1(e,t){let r=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return E0(r)}function Mt(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function te(e,t){let r=0;for(let A=0;Afe[e]),Jn=j0.map(e=>fe[e]),Cn=S0.map(e=>fe[e]);var E1=Q.leftEyeLower0,v1=Q.rightEyeLower0,ye={leftBounds:[E1[0],E1[E1.length-1]],rightBounds:[v1[0],v1[v1.length-1]]},Fe={count:468,mouth:13,symmetryLine:[13,Q.midwayBetweenEyes[0]]},Rt={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},we={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function qe(e,t,r,A){for(let _=0;_[c[0]/this.meshSize*(i[0]-this.meshSize/2),c[1]/this.meshSize*(i[1]-this.meshSize/2),i[2]]),s=A!==0?Xe(A,[0,0]):Ve,h=A!==0?n.map(i=>[...vt(i,s),i[2]]):n,a=A!==0?Et(_):Ve,y=[...ae({startPoint:r.startPoint,endPoint:r.endPoint}),1];return h.map(i=>[i[0]+te(y,a[0]),i[1]+te(y,a[1]),i[2]])}getLeftToRightEyeDepthDifference(t){let r=t[ye.leftBounds[0]][2],A=t[ye.rightBounds[0]][2];return r-A}getEyeBox(t,r,A,_,c=!1){let n=He(Ze(this.calculateLandmarksBoundingBox([t[A],t[_]]),this.irisEnlarge)),s=de(n),h=o.image.cropAndResize(r,[[n.startPoint[1]/this.meshSize,n.startPoint[0]/this.meshSize,n.endPoint[1]/this.meshSize,n.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return c&&o.ENV.flags.IS_BROWSER&&(h=o.image.flipLeftRight(h)),{box:n,boxSize:s,crop:h}}getEyeCoords(t,r,A,_=!1){let c=[];for(let n=0;n{let a=n;return h===2?a=_:h===4&&(a=c),[s[0],s[1],a]})}async predict(t,r){let A=!1,_;if((this.skipped===0||this.skipped>r.face.detector.skipFrames||!r.face.mesh.enabled||!r.videoOptimized)&&(_=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),r.videoOptimized&&this.skipped++,!r.videoOptimized||_&&_.boxes&&(!r.face.mesh.enabled||_.boxes.length!==this.detectedFaces&&this.detectedFaces!==r.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let n of _.boxes)this.storedBoxes.push({startPoint:n.box.startPoint.dataSync(),endPoint:n.box.endPoint.dataSync(),landmarks:n.landmarks,confidence:n.confidence});this.storedBoxes.length>0&&(A=!0)}if(r.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),A){if(!_||!_.boxes||_.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let n=0;n{n.box.startPoint.dispose(),n.box.endPoint.dispose(),n.landmarks.dispose()});let c=o.tidy(()=>this.storedBoxes.map((n,s)=>{let h=n.confidence,a,y=0,i;if(r.face.detector.rotation&&r.face.mesh.enabled&&o.ENV.flags.IS_BROWSER){let[b,l]=n.landmarks.length>=Fe.count?Fe.symmetryLine:Rt.symmetryLine;y=M1(n.landmarks[b],n.landmarks[l]);let g=ae({startPoint:n.startPoint,endPoint:n.endPoint}),E=[g[0]/t.shape[2],g[1]/t.shape[1]],R=o.image.rotateWithOffset(t,y,0,E);i=Xe(-y,g),r.face.mesh.enabled?a=xe({startPoint:n.startPoint,endPoint:n.endPoint},R,[this.meshSize,this.meshSize]).div(255):a=xe({startPoint:n.startPoint,endPoint:n.endPoint},R,[this.boxSize,this.boxSize]).div(255)}else{i=Ve;let b=t.clone();r.face.mesh.enabled?a=xe({startPoint:n.startPoint,endPoint:n.endPoint},b,[this.meshSize,this.meshSize]).div(255):a=xe({startPoint:n.startPoint,endPoint:n.endPoint},b,[this.boxSize,this.boxSize]).div(255)}if(!r.face.mesh.enabled)return{coords:null,box:n,faceConfidence:null,boxConfidence:h,confidence:n.confidence,image:a};let[,d,p]=this.meshDetector.predict(a),T=d.dataSync()[0];if(T=Fe.count?Fe.symmetryLine:Rt.symmetryLine;y=M1(n.landmarks[b],n.landmarks[l]);let g=ae({startPoint:n.startPoint,endPoint:n.endPoint}),E=[g[0]/t.shape[2],g[1]/t.shape[1]],R=o.image.rotateWithOffset(t.toFloat(),y,0,E);i=Xe(-y,g),a=xe({startPoint:n.startPoint,endPoint:n.endPoint},R,[this.meshSize,this.meshSize]).div(255)}let z={coords:M,box:n,faceConfidence:T,boxConfidence:h,image:a,rawCoords:m},j=He(n);return this.storedBoxes[s]={...j,landmarks:u,confidence:n.confidence,faceConfidence:T},z}));return c=c.filter(n=>n!==null),r.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(n=>n.faceConfidence>r.face.detector.minConfidence)),this.detectedFaces=c.length,c}calculateLandmarksBoundingBox(t){let r=t.map(n=>n[0]),A=t.map(n=>n[1]),_=[Math.min(...r),Math.min(...A)],c=[Math.max(...r),Math.max(...A)];return{startPoint:_,endPoint:c,landmarks:t}}};var S1=class{constructor(t,r,A,_){this.facePipeline=new R1(t,r,A),this.config=_}async estimateFaces(t,r){let A=await this.facePipeline.predict(t,r),_=[];for(let c of A||[]){if(c.isDisposedInternal)continue;let n=c.coords?c.coords.arraySync():[],s=n.map(i=>[i[0]/t.shape[2],i[1]/t.shape[1],i[2]/this.facePipeline.meshSize]),h={};if(n&&n.length>0)for(let i of Object.keys(Q))h[i]=Q[i].map(d=>n[d]);let a=c.box?[Math.max(0,c.box.startPoint[0]),Math.max(0,c.box.startPoint[1]),Math.min(t.shape[2],c.box.endPoint[0])-Math.max(0,c.box.startPoint[0]),Math.min(t.shape[1],c.box.endPoint[1])-Math.max(0,c.box.startPoint[1])]:0,y=c.box?[c.box.startPoint[0]/t.shape[2],c.box.startPoint[1]/t.shape[1],(c.box.endPoint[0]-c.box.startPoint[0])/t.shape[2],(c.box.endPoint[1]-c.box.startPoint[1])/t.shape[1]]:[];_.push({confidence:Math.round(100*c.faceConfidence||100*c.boxConfidence||0)/100,boxConfidence:Math.round(100*c.boxConfidence)/100,faceConfidence:Math.round(100*c.faceConfidence)/100,box:a,boxRaw:y,mesh:n,meshRaw:s,annotations:h,image:c.image?c.image.clone():null}),c.coords&&c.coords.dispose(),c.image&&c.image.dispose()}return _}},O=[null,null,null];async function W1(e){return!O[0]&&e.face.enabled||!O[1]&&e.face.mesh.enabled||!O[2]&&e.face.iris.enabled?(O=await Promise.all([!O[0]&&e.face.enabled?Tt(e):null,!O[1]&&e.face.mesh.enabled?o.loadGraphModel(W(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!O[2]&&e.face.iris.enabled?o.loadGraphModel(W(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!O[1]||!O[1].modelUrl?f("load model failed:",e.face.mesh.modelPath):e.debug&&f("load model:",O[1].modelUrl)),e.face.iris.enabled&&(!O[2]||!O[1].modelUrl?f("load model failed:",e.face.iris.modelPath):e.debug&&f("load model:",O[2].modelUrl))):e.debug&&(f("cached model:",O[0].model.modelUrl),f("cached model:",O[1].modelUrl),f("cached model:",O[2].modelUrl)),new S1(O[0],O[1],O[2],e)}var jt=oe,St=fe;var Z1={};J(Z1,{load:()=>V1,predict:()=>H1});var me=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Wt=me.length,pe=me.reduce((e,t,r)=>(e[t]=r,e),{}),W0=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],N0=W0.map(([e,t])=>[pe[e],pe[t]]),Nt=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function kt(e){let t=e.reduce(({maxX:r,maxY:A,minX:_,minY:c},{position:{x:n,y:s}})=>({maxX:Math.max(r,n),maxY:Math.max(A,s),minX:Math.min(_,n),minY:Math.min(c,s)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function It(e,[t,r],[A,_]){let c=(s,h,a)=>({score:s.score,box:[Math.trunc(s.box[0]*a),Math.trunc(s.box[1]*h),Math.trunc(s.box[2]*a),Math.trunc(s.box[3]*h)],keypoints:s.keypoints.map(({score:y,part:i,position:d})=>({score:y,part:i,position:{x:Math.trunc(d.x*a),y:Math.trunc(d.y*h)}}))});return e.map(s=>c(s,t/A,r/_))}var N1=class{constructor(t,r){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=r}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let r=2*t;if(rr?r:e}function Ot(e,t,r,A){let _=r-e,c=A-t;return _*_+c*c}function L1(e,t){return{x:e.x+t.x,y:e.y+t.y}}var Be=1,Lt=16;function Zt(e,t,r,A,_,c,n,s=2){let h=M=>({y:n.get(M.y,M.x,e),x:n.get(M.y,M.x,n.shape[2]/2+e)}),a=(M,z,j)=>({y:O1(Math.round(M.y/c),0,z-1),x:O1(Math.round(M.x/c),0,j-1)}),[y,i]=A.shape,d=a(t.position,y,i),p=h(d),x=L1(t.position,p);for(let M=0;M[pe[x],pe[m]]),s=n.map(([,x])=>x),h=n.map(([x])=>x),a=t.shape[2],y=s.length,i=new Array(a),{part:d,score:p}=e,T=I1(d,A,r);i[d.id]={score:p,part:me[d.id],position:T};for(let x=y-1;x>=0;--x){let m=s[x],u=h[x];i[m]&&!i[u]&&(i[u]=Zt(x,i[m],u,t,r,A,c))}for(let x=0;xt){s=!1;break}if(!s)break}return s}function O0(e,t){let[r,A,_]=t.shape,c=new N1(r*A*_,({score:n})=>n);for(let n=0;n{let n=c[_].position;return Ot(A,r,n.y,n.x)<=t})}function L0(e,t,r){return r.reduce((_,{position:c,score:n},s)=>(Ht(e,t,c,s)||(_+=n),_),0)/r.length}function Vt(e,t,r,A,_,c,n){let s=[],h=O0(n,t),a=_**2;for(;s.lengthm.score>n),T=L0(s,a,p),x=kt(p);T>n&&s.push({keypoints:p,box:x,score:Math.round(100*T)/100})}return s}var G,Z0=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function H1(e,t){let r=o.tidy(()=>{let s=e.resizeBilinear([G.inputs[0].shape[2],G.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),a=G.execute(s,Z0).map(y=>y.squeeze([0]));return a[1]=a[1].sigmoid(),a}),A=await Promise.all(r.map(n=>n.buffer()));for(let n of r)n.dispose();let _=await Vt(A[0],A[1],A[2],A[3],t.body.nmsRadius,t.body.maxDetections,t.body.scoreThreshold);return It(_,[e.shape[1],e.shape[2]],[G.inputs[0].shape[2],G.inputs[0].shape[1]])}async function V1(e){return G?e.debug&&f("cached model:",G.modelUrl):(G=await o.loadGraphModel(W(e.modelBasePath,e.body.modelPath)),!G||!G.modelUrl?f("load model failed:",e.body.modelPath):e.debug&&f("load model:",G.modelUrl)),G}var U1={};J(U1,{HandPose:()=>J1,load:()=>C1});function Ue(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function ue(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Xt(e,t,r){let A=t.shape[1],_=t.shape[2],c=[[e.startPoint[1]/A,e.startPoint[0]/_,e.endPoint[1]/A,e.endPoint[0]/_]];return o.image.cropAndResize(t,c,[0],r)}function Ft(e,t){let r=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],A=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],_=e.palmLandmarks.map(c=>[c[0]*t[0],c[1]*t[1]]);return{startPoint:r,endPoint:A,palmLandmarks:_,confidence:e.confidence}}function Ye(e,t=1.5){let r=ue(e),A=Ue(e),_=[t*A[0]/2,t*A[1]/2],c=[r[0]-_[0],r[1]-_[1]],n=[r[0]+_[0],r[1]+_[1]];return{startPoint:c,endPoint:n,palmLandmarks:e.palmLandmarks}}function Je(e){let t=ue(e),r=Ue(e),_=Math.max(...r)/2,c=[t[0]-_,t[1]-_],n=[t[0]+_,t[1]+_];return{startPoint:c,endPoint:n,palmLandmarks:e.palmLandmarks}}var X1=class{constructor(t,r,A){this.model=t,this.anchors=A.map(_=>[_.x_center,_.y_center]),this.anchorsTensor=o.tensor2d(this.anchors),this.inputSize=r,this.inputSizeTensor=o.tensor1d([r,r]),this.doubleInputSizeTensor=o.tensor1d([r*2,r*2])}normalizeBoxes(t){return o.tidy(()=>{let r=o.slice(t,[0,0],[-1,2]),A=o.slice(t,[0,2],[-1,2]),_=o.add(o.div(r,this.inputSizeTensor),this.anchorsTensor),c=o.div(A,this.doubleInputSizeTensor),n=o.mul(o.sub(_,c),this.inputSizeTensor),s=o.mul(o.add(_,c),this.inputSizeTensor);return o.concat2d([n,s],1)})}normalizeLandmarks(t,r){return o.tidy(()=>{let A=o.add(o.div(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[r]);return o.mul(A,this.inputSizeTensor)})}async getBoxes(t,r){let A=this.model.predict(t),_=A.squeeze();A.dispose();let c=o.tidy(()=>o.sigmoid(o.slice(_,[0,0],[-1,1])).squeeze()),n=c.dataSync(),s=o.slice(_,[0,1],[-1,4]),h=this.normalizeBoxes(s);s.dispose();let a=await o.image.nonMaxSuppressionAsync(h,n,r.hand.maxHands,r.hand.iouThreshold,r.hand.scoreThreshold),y=a.arraySync();c.dispose(),a.dispose();let i=[];for(let d of y)if(n[d]>=r.hand.minConfidence){let p=o.slice(h,[d,0],[1,-1]),T=o.slice(_,[d,5],[1,14]),x=o.tidy(()=>this.normalizeLandmarks(T,d).reshape([-1,2]));T.dispose(),i.push({box:p,palmLandmarks:x,confidence:n[d]})}return _.dispose(),h.dispose(),i}async estimateHandBounds(t,r){let A=t.shape[1],_=t.shape[2],c=o.tidy(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),n=await this.getBoxes(c,r);c.dispose();let s=[];if(!n||n.length===0)return s;for(let h of n){let a=h.box.dataSync(),y=a.slice(0,2),i=a.slice(2,4),d=h.palmLandmarks.arraySync();h.box.dispose(),h.palmLandmarks.dispose(),s.push(Ft({startPoint:y,endPoint:i,palmLandmarks:d,confidence:h.confidence},[_/this.inputSize,A/this.inputSize]))}return s}};function H0(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function qt(e,t){let r=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return H0(r)}var Bt=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ne(e,t){let r=0;for(let A=0;Aq1([...c,1],r)),_=this.calculateLandmarksBoundingBox(A);return Ye(Je(_),X0)}getBoxForHandLandmarks(t){let r=this.calculateLandmarksBoundingBox(t),A=Ye(Je(r),Jt);A.palmLandmarks=[];for(let _=0;_[n[0]*(p[0]-this.inputSize/2),n[1]*(p[1]-this.inputSize/2),n[2]*p[2]]),h=F1(A,[0,0]),a=s.map(p=>[...q1(p,h),p[2]]),y=Yt(_),i=[...ue(r),1],d=[ne(i,y[0]),ne(i,y[1])];return a.map(p=>[p[0]+d[0],p[1]+d[1],p[2]])}async estimateHands(t,r){let A=!1,_;(this.skipped===0||this.skipped>r.hand.skipFrames||!r.hand.landmarks||!r.videoOptimized)&&(_=await this.handDetector.estimateHandBounds(t,r),this.skipped=0),r.videoOptimized&&this.skipped++,_&&_.length>0&&(_.length!==this.detectedHands&&this.detectedHands!==r.hand.maxHands||!r.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[..._],this.storedBoxes.length>0&&(A=!0));let c=[];r.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let n=0;n=r.hand.minConfidence){let z=o.reshape(u,[-1,3]),j=z.arraySync();u.dispose(),z.dispose();let b=this.transformRawCoords(j,p,h,d),l=this.getBoxForHandLandmarks(b);this.storedBoxes[n]=l;let g={landmarks:b,confidence:M,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};c.push(g)}else this.storedBoxes[n]=null;u.dispose()}else{let h=Ye(Je(s),Jt),a={confidence:s.confidence,box:{topLeft:h.startPoint,bottomRight:h.endPoint}};c.push(a)}}return this.storedBoxes=this.storedBoxes.filter(n=>n!==null),this.detectedHands=c.length,c}calculateLandmarksBoundingBox(t){let r=t.map(n=>n[0]),A=t.map(n=>n[1]),_=[Math.min(...r),Math.min(...A)],c=[Math.max(...r),Math.max(...A)];return{startPoint:_,endPoint:c}}};var Kt=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var Y1={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},J1=class{constructor(t){this.handPipeline=t}static getAnnotations(){return Y1}async estimateHands(t,r){let A=await this.handPipeline.estimateHands(t,r);if(!A)return[];let _=[];for(let c of A){let n={};if(c.landmarks)for(let a of Object.keys(Y1))n[a]=Y1[a].map(y=>c.landmarks[y]);let s=c.box?[Math.max(0,c.box.topLeft[0]),Math.max(0,c.box.topLeft[1]),Math.min(t.shape[2],c.box.bottomRight[0])-Math.max(0,c.box.topLeft[0]),Math.min(t.shape[1],c.box.bottomRight[1])-Math.max(0,c.box.topLeft[1])]:[],h=[c.box.topLeft[0]/t.shape[2],c.box.topLeft[1]/t.shape[1],(c.box.bottomRight[0]-c.box.topLeft[0])/t.shape[2],(c.box.bottomRight[1]-c.box.topLeft[1])/t.shape[1]];_.push({confidence:Math.round(100*c.confidence)/100,box:s,boxRaw:h,landmarks:c.landmarks,annotations:n})}return _}},$,ee;async function C1(e){!$||!ee?([$,ee]=await Promise.all([e.hand.enabled?o.loadGraphModel(W(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?o.loadGraphModel(W(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!$||!$.modelUrl?f("load model failed:",e.hand.detector.modelPath):e.debug&&f("load model:",$.modelUrl),!ee||!ee.modelUrl?f("load model failed:",e.hand.skeleton.modelPath):e.debug&&f("load model:",ee.modelUrl))):(e.debug&&f("cached model:",$.modelUrl),e.debug&&f("cached model:",ee.modelUrl));let t=new X1($,$==null?void 0:$.inputs[0].shape[2],Kt),r=new B1(t,ee,ee==null?void 0:ee.inputs[0].shape[2]);return new J1(r)}var K1={};J(K1,{load:()=>D1,predict:()=>G1});var Dt=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],Gt=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var Z;async function D1(e){return Z?e.debug&&f("cached model:",Z.modelUrl):(Z=await o.loadGraphModel(W(e.modelBasePath,e.body.modelPath)),Z.width=parseInt(Z.signature.inputs["input_1:0"].tensorShape.dim[2].size),Z.height=parseInt(Z.signature.inputs["input_1:0"].tensorShape.dim[1].size),!Z||!Z.modelUrl?f("load model failed:",e.body.modelPath):e.debug&&f("load model:",Z.modelUrl)),Z}async function G1(e,t){if(!Z||!t.body.enabled)return null;let r={width:e.shape[2],height:e.shape[1]},A=o.image.resizeBilinear(e,[Z.width,Z.height],!1),_=o.div(A,[255]);A.dispose();let c;if(t.profile){let y=await o.profile(()=>Z.predict(_));c=y.result.find(i=>i.size===195||i.size===155).dataSync(),y.result.forEach(i=>i.dispose()),L("blazepose",y)}else{let y=await Z.predict(_);c=y.find(i=>i.size===195||i.size===155).dataSync(),y.forEach(i=>i.dispose())}_.dispose();let n=[],s=c.length===195?Dt:Gt,h=5;for(let y=0;yi.score>y?i.score:y,0),keypoints:n}]}var H,be=[],Ce=Number.MAX_SAFE_INTEGER,B0=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function Q1(e){return H?e.debug&&f("cached model:",H.modelUrl):(H=await o.loadGraphModel(W(e.modelBasePath,e.body.modelPath)),!H||!H.modelUrl?f("load model failed:",e.body.modelPath):e.debug&&f("load model:",H.modelUrl)),H}function U0(e,t){let[r,A]=e.shape;return o.tidy(()=>{let _=(s,h)=>o.sub(s,o.mul(o.div(s,o.scalar(h,"int32")),o.scalar(h,"int32"))),c=o.reshape(e,[A*r]),n=o.max(c,0).dataSync()[0];if(n>t){let s=o.argMax(c,0),h=_(s,r).dataSync()[0],a=o.div(s,o.scalar(r,"int32")).dataSync()[0];return[h,a,n]}return[0,0,n]})}async function $1(e,t){return H?Ce0?(Ce++,be):(t.videoOptimized?Ce=0:Ce=Number.MAX_SAFE_INTEGER,new Promise(async r=>{let A=o.tidy(()=>{let n=o.image.resizeBilinear(e,[H.inputs[0].shape[2],H.inputs[0].shape[1]],!1);return o.mul(n,2).sub(1)}),_;if(!t.profile)t.body.enabled&&(_=await H.predict(A));else{let n=t.body.enabled?await o.profile(()=>H.predict(A)):{};_=n.result.clone(),n.result.dispose(),L("body",n)}if(A.dispose(),_){let n=[],s=_.squeeze();o.dispose(_);let h=s.unstack(2);o.dispose(s);for(let a=0;at.body.scoreThreshold&&n.push({id:a,score:Math.round(100*d)/100,part:B0[a],positionRaw:{xRaw:y/H.inputs[0].shape[2],yRaw:i/H.inputs[0].shape[1]},position:{x:Math.round(e.shape[2]*y/H.inputs[0].shape[2]),y:Math.round(e.shape[1]*i/H.inputs[0].shape[1])}})}h.forEach(a=>o.dispose(a)),be=n}let c=be.reduce((n,s)=>s.score>n?s.score:n,0);r([{score:c,keypoints:be}])})):null}var et={};J(et,{load:()=>nt,predict:()=>rt});var Ke=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var V,tt=[],De=Number.MAX_SAFE_INTEGER,Ge=2.5;async function nt(e){if(V)e.debug&&f("cached model:",V.modelUrl);else{V=await o.loadGraphModel(W(e.modelBasePath,e.object.modelPath));let t=Object.values(V.modelSignature.inputs);if(V.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!V.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!V||!V.modelUrl?f("load model failed:",e.object.modelPath):e.debug&&f("load model:",V.modelUrl)}return V}async function Y0(e,t,r,A){let _=0,c=[];for(let a of[1,2,4])o.tidy(()=>{var m,u;let y=a*13,i=(m=e.find(M=>M.shape[1]===y**2&&M.shape[2]===Ke.length))==null?void 0:m.squeeze(),d=(u=e.find(M=>M.shape[1]===y**2&&M.shape[2]A.object.minConfidence&&z!==61){let b=(.5+Math.trunc(M%y))/y,l=(.5+Math.trunc(M/y))/y,g=T[M].map(Ae=>Ae*(y/a/t)),[E,R]=[b-Ge/a*g[0],l-Ge/a*g[1]],[I,ce]=[b+Ge/a*g[2]-E,l+Ge/a*g[3]-R],X=[E,R,I,ce];X=X.map(Ae=>Math.max(0,Math.min(Ae,1)));let _1=[X[0]*r[0],X[1]*r[1],X[2]*r[0],X[3]*r[1]],ze={id:_++,strideSize:a,score:Math.round(100*j)/100,class:z+1,label:Ke[z].label,center:[Math.trunc(r[0]*b),Math.trunc(r[1]*l)],centerRaw:[b,l],box:_1.map(Ae=>Math.trunc(Ae)),boxRaw:X};c.push(ze)}}});e.forEach(a=>o.dispose(a));let n=c.map(a=>a.boxRaw),s=c.map(a=>a.score),h=[];if(n&&n.length>0){let a=await o.image.nonMaxSuppressionAsync(n,s,A.object.maxResults,A.object.iouThreshold,A.object.minConfidence);h=a.dataSync(),o.dispose(a)}return c=c.filter((a,y)=>h.includes(y)).sort((a,y)=>y.score-a.score),c}async function rt(e,t){return V?De0?(De++,tt):(t.videoOptimized?De=0:De=Number.MAX_SAFE_INTEGER,new Promise(async r=>{let A=[e.shape[2],e.shape[1]],_=o.image.resizeBilinear(e,[V.inputSize,V.inputSize],!1),c=_.div(255),n=c.transpose([0,3,1,2]);c.dispose(),_.dispose();let s;if(!t.profile)t.object.enabled&&(s=await V.predict(n));else{let a=t.object.enabled?await o.profile(()=>V.predict(n)):{};s=a.result,L("object",a)}n.dispose();let h=await Y0(s,V.inputSize,A,t);tt=h,r(h)})):null}var Qt=e=>{if(!e)return[];let t=[];for(let r=0;rh.part==="leftWrist"),_=e[r].keypoints.find(h=>h.part==="rightWrist"),c=e[r].keypoints.find(h=>h.part==="nose");c&&A&&_&&A.position.yh.part==="leftShoulder"),s=e[r].keypoints.find(h=>h.part==="rightShoulder");n&&s&&t.push({body:r,gesture:`leaning ${n.position.y>s.position.y?"left":"right"}`})}return t},$t=e=>{if(!e)return[];let t=[];for(let r=0;r0){let A=e[r].mesh[33][2]-e[r].mesh[263][2];Math.abs(A)<10?t.push({face:r,gesture:"facing center"}):t.push({face:r,gesture:`facing ${A<0?"left":"right"}`}),Math.abs(e[r].mesh[374][1]-e[r].mesh[386][1])/Math.abs(e[r].mesh[443][1]-e[r].mesh[450][1])<.2&&t.push({face:r,gesture:"blink left eye"}),Math.abs(e[r].mesh[145][1]-e[r].mesh[159][1])/Math.abs(e[r].mesh[223][1]-e[r].mesh[230][1])<.2&&t.push({face:r,gesture:"blink right eye"});let n=Math.min(100,500*Math.abs(e[r].mesh[13][1]-e[r].mesh[14][1])/Math.abs(e[r].mesh[10][1]-e[r].mesh[152][1]));n>10&&t.push({face:r,gesture:`mouth ${Math.trunc(n)}% open`});let s=e[r].mesh[152][2];Math.abs(s)>10&&t.push({face:r,gesture:`head ${s<0?"up":"down"}`})}return t},e0=e=>{if(!e)return[];let t=[];for(let r=0;r.033||i>.033)&&(a=!1),d>.033&&t.push({iris:r,gesture:"looking right"}),i>.033&&t.push({iris:r,gesture:"looking left"});let p=Math.abs(e[r].mesh[145][1]-e[r].annotations.rightEyeIris[0][1])/e[r].annotations.rightEyeIris[0][1],T=Math.abs(e[r].mesh[374][1]-e[r].annotations.leftEyeIris[0][1])/e[r].annotations.leftEyeIris[0][1];(T<.015||p<.015||T>.03||p>.03)&&(a=!1),(T<.015||p<.015)&&t.push({iris:r,gesture:"looking down"}),(T>.03||p>.03)&&t.push({iris:r,gesture:"looking up"}),a&&t.push({iris:r,gesture:"looking center"})}return t},t0=e=>{if(!e)return[];let t=[];for(let r=0;r0){let _=A.reduce((n,s)=>n.position[2]n.position[1]At});function J0(e,t,r){let A=function(s,h,a){let y=new RegExp("\\b"+h+" \\w+ (\\w+)","ig");s.replace(y,(i,d)=>(a[d]=0,i))},_=function(s,h){let a=e.createShader(h);if(e.shaderSource(a,s),e.compileShader(a),!e.getShaderParameter(a,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(a));return a};this.uniform={},this.attribute={};let c=_(t,e.VERTEX_SHADER),n=_(r,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,c),e.attachShader(this.id,n),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),A(t,"attribute",this.attribute);for(let s in this.attribute)this.attribute[s]=e.getAttribLocation(this.id,s);A(t,"uniform",this.uniform),A(r,"uniform",this.uniform);for(let s in this.uniform)this.uniform[s]=e.getUniformLocation(this.id,s)}function n0(e){e||(e={});let t=0,r=null,A=!1,_=-1,c=[null,null],n=[],s=-1,h=-1,a=null,y=null,i={},d=e.canvas||document.createElement("canvas"),p={},T={INTERMEDIATE:1},x=d.getContext("webgl");if(!x)throw new Error("Filter: getContext() failed");this.addFilter=function(b){let l=Array.prototype.slice.call(arguments,1),g=i[b];n.push({func:g,args:l})},this.reset=function(){n=[]};let m=function(b,l){if(!(b===s&&l===h)){if(d.width=b,s=b,d.height=l,h=l,!a){let g=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);a=x.createBuffer(),x.bindBuffer(x.ARRAY_BUFFER,a),x.bufferData(x.ARRAY_BUFFER,g,x.STATIC_DRAW),x.pixelStorei(x.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}x.viewport(0,0,s,h),c=[null,null]}},u=function(b,l){let g=x.createFramebuffer();x.bindFramebuffer(x.FRAMEBUFFER,g);let E=x.createRenderbuffer();x.bindRenderbuffer(x.RENDERBUFFER,E);let R=x.createTexture();return x.bindTexture(x.TEXTURE_2D,R),x.texImage2D(x.TEXTURE_2D,0,x.RGBA,b,l,0,x.RGBA,x.UNSIGNED_BYTE,null),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_MAG_FILTER,x.LINEAR),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_MIN_FILTER,x.LINEAR),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_WRAP_S,x.CLAMP_TO_EDGE),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_WRAP_T,x.CLAMP_TO_EDGE),x.framebufferTexture2D(x.FRAMEBUFFER,x.COLOR_ATTACHMENT0,x.TEXTURE_2D,R,0),x.bindTexture(x.TEXTURE_2D,null),x.bindFramebuffer(x.FRAMEBUFFER,null),{fbo:g,texture:R}},M=function(b){return c[b]=c[b]||u(s,h),c[b]},z=function(b=null){var R,I;let l=null,g=null,E=!1;t===0?l=r:l=(R=M(_))==null?void 0:R.texture,t++,A&&!(b&T.INTERMEDIATE)?(g=null,E=t%2==0):(_=(_+1)%2,g=(I=M(_))==null?void 0:I.fbo),x.bindTexture(x.TEXTURE_2D,l),x.bindFramebuffer(x.FRAMEBUFFER,g),x.uniform1f(y.uniform.flipY,E?-1:1),x.drawArrays(x.TRIANGLES,0,6)};this.apply=function(b){if(m(b.width,b.height),t=0,r||(r=x.createTexture()),x.bindTexture(x.TEXTURE_2D,r),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_WRAP_S,x.CLAMP_TO_EDGE),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_WRAP_T,x.CLAMP_TO_EDGE),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_MIN_FILTER,x.NEAREST),x.texParameteri(x.TEXTURE_2D,x.TEXTURE_MAG_FILTER,x.NEAREST),x.texImage2D(x.TEXTURE_2D,0,x.RGBA,x.RGBA,x.UNSIGNED_BYTE,b),n.length===0)return z(),d;for(let l=0;l0,c=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,n=_,s=c;if(n>et&&(n=et,s=n*c/_),s>et&&(s=et,n=s*_/c),t.filter.width>0?n=t.filter.width:t.filter.height>0&&(n=_*(t.filter.height/c)),t.filter.height>0?s=t.filter.height:t.filter.width>0&&(s=c*(t.filter.width/_)),!n||!s)throw new Error("Human: Input cannot determine dimension");(!P||(P==null?void 0:P.width)!==n||(P==null?void 0:P.height)!==s)&&(P=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,s):document.createElement("canvas"),(P==null?void 0:P.width)!==n&&(P.width=n),(P==null?void 0:P.height)!==s&&(P.height=s));let h=P.getContext("2d");if(e instanceof ImageData?h.putImageData(e,0,0):t.filter.flip&&typeof h.translate!="undefined"?(h.translate(_,0),h.scale(-1,1),h.drawImage(e,0,0,_,c,0,0,P==null?void 0:P.width,P==null?void 0:P.height),h.setTransform(1,0,0,1,0,0)):h.drawImage(e,0,0,_,c,0,0,P==null?void 0:P.width,P==null?void 0:P.height),t.filter.enabled){if((!k||!W||P.width!==W.width||(P==null?void 0:P.height)!==(W==null?void 0:W.height))&&(W=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(P==null?void 0:P.width,P==null?void 0:P.height):document.createElement("canvas"),(W==null?void 0:W.width)!==(P==null?void 0:P.width)&&(W.width=P==null?void 0:P.width),(W==null?void 0:W.height)!==(P==null?void 0:P.height)&&(W.height=P==null?void 0:P.height),k=o.ENV.flags.IS_BROWSER?new a0({canvas:W}):null),!k)return{tensor:null,canvas:P};k.reset(),k.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&k.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&k.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&k.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&k.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&k.addFilter("hue",t.filter.hue),t.filter.negative&&k.addFilter("negative"),t.filter.sepia&&k.addFilter("sepia"),t.filter.vintage&&k.addFilter("brownie"),t.filter.sepia&&k.addFilter("sepia"),t.filter.kodachrome&&k.addFilter("kodachrome"),t.filter.technicolor&&k.addFilter("technicolor"),t.filter.polaroid&&k.addFilter("polaroid"),t.filter.pixelate!==0&&k.addFilter("pixelate",t.filter.pixelate),k.apply(P)}else W=P,k&&(k=null);let a;if(W.data){let i=[W.height,W.width,3];a=o.tensor3d(W.data,i,"int32")}else if(W instanceof ImageData)a=o.browser.fromPixels(W);else if(t.backend==="webgl"||t.backend==="humangl"){let i=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,s):document.createElement("canvas");i.width=n,i.height=s;let w=i.getContext("2d");w==null||w.drawImage(W,0,0),a=o.browser.fromPixels(i)}else{let i=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,s):document.createElement("canvas");i.width=n,i.height=s;let w=i.getContext("2d");w==null||w.drawImage(W,0,0);let m=w==null?void 0:w.getImageData(0,0,n,s);a=o.browser.fromPixels(m)}let x=a.toFloat();r=x.expandDims(0),a.dispose(),x.dispose()}let A=t.filter.return?W:null;return{tensor:r,canvas:A}}var a1={};C(a1,{all:()=>hn,body:()=>w0,canvas:()=>sn,face:()=>y0,gesture:()=>x0,hand:()=>l0,object:()=>d0,options:()=>se});var S={backend:"webgl",modelBasePath:"../models/",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface-back.json",rotation:!1,maxFaces:10,skipFrames:21,skipInitial:!1,minConfidence:.2,iouThreshold:.1,scoreThreshold:.2,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:31},emotion:{enabled:!0,minConfidence:.1,skipFrames:32,modelPath:"emotion.json"},age:{enabled:!1,modelPath:"age.json",skipFrames:33},gender:{enabled:!1,minConfidence:.1,modelPath:"gender.json",skipFrames:34},embedding:{enabled:!1,modelPath:"mobileface.json"}},body:{enabled:!0,modelPath:"posenet.json",maxDetections:1,scoreThreshold:.3,nmsRadius:20},hand:{enabled:!0,rotation:!1,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"nanodet.json",minConfidence:.2,iouThreshold:.4,maxResults:10,skipFrames:41}};var se={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!1,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1,calculateHandBox:!0};function tt(e,t,r,A=0,_){e.fillStyle=_.useDepth&&A?`rgba(${127.5+2*A}, ${127.5-2*A}, 255, 0.3)`:_.color,e.beginPath(),e.arc(t,r,_.pointSize,0,2*Math.PI),e.fill()}function he(e,t,r,A,_,c){if(e.beginPath(),c.useCurves){let n=(t+t+A)/2,s=(r+r+_)/2;e.ellipse(n,s,A/2,_/2,0,0,2*Math.PI)}else e.lineWidth=c.lineWidth,e.moveTo(t+c.roundRect,r),e.lineTo(t+A-c.roundRect,r),e.quadraticCurveTo(t+A,r,t+A,r+c.roundRect),e.lineTo(t+A,r+_-c.roundRect),e.quadraticCurveTo(t+A,r+_,t+A-c.roundRect,r+_),e.lineTo(t+c.roundRect,r+_),e.quadraticCurveTo(t,r+_,t,r+_-c.roundRect),e.lineTo(t,r+c.roundRect),e.quadraticCurveTo(t,r,t+c.roundRect,r),e.closePath();e.stroke()}function x1(e,t=[],r){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let A of t)e.strokeStyle=r.useDepth&&A[2]?`rgba(${127.5+2*A[2]}, ${127.5-2*A[2]}, 255, 0.3)`:r.color,e.fillStyle=r.useDepth&&A[2]?`rgba(${127.5+2*A[2]}, ${127.5-2*A[2]}, 255, 0.3)`:r.color,e.lineTo(A[0],parseInt(A[1]));e.stroke(),r.fillPolygons&&(e.closePath(),e.fill())}}function Te(e,t=[],r){if(!(t===void 0||t.length===0)){if(!r.useCurves||t.length<=2){x1(e,t,r);return}e.moveTo(t[0][0],t[0][1]);for(let A=0;A1&&h[1].length>0){let a=s[1]>0?`#${s[1]}`:"",x=`${s[0]} ${a}: ${h[1]}`;A.shadowColor&&A.shadowColor!==""&&(_.fillStyle=A.shadowColor,_.fillText(x,8,2+c*A.lineHeight)),_.fillStyle=A.labelColor,_.fillText(x,6,0+c*A.lineHeight),c+=1}}}async function y0(e,t,r){let A=U(se,r);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let _=e.getContext("2d");if(!!_)for(let c of t){_.font=A.font,_.strokeStyle=A.color,_.fillStyle=A.color,A.drawBoxes&&(A.useRawBoxes?he(_,e.width*c.boxRaw[0],e.height*c.boxRaw[1],e.width*c.boxRaw[2],e.height*c.boxRaw[3],A):he(_,c.box[0],c.box[1],c.box[2],c.box[3],A));let n=[];if(n.push(`face confidence: ${Math.trunc(100*c.confidence)}%`),c.genderConfidence&&n.push(`${c.gender||""} ${Math.trunc(100*c.genderConfidence)}% confident`),c.age&&n.push(`age: ${c.age||""}`),c.iris&&n.push(`iris distance: ${c.iris}`),c.emotion&&c.emotion.length>0){let s=c.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);n.push(s.join(" "))}c.rotation&&c.rotation.angle&&c.rotation.angle.roll&&n.push(`roll: ${Math.trunc(100*c.rotation.angle.roll)/100} yaw:${Math.trunc(100*c.rotation.angle.yaw)/100} pitch:${Math.trunc(100*c.rotation.angle.pitch)/100}`),n.length===0&&n.push("face"),_.fillStyle=A.color;for(let s=n.length-1;s>=0;s--){let h=Math.max(c.box[0],0),a=s*A.lineHeight+c.box[1];A.shadowColor&&A.shadowColor!==""&&(_.fillStyle=A.shadowColor,_.fillText(n[s],h+5,a+16)),_.fillStyle=A.labelColor,_.fillText(n[s],h+4,a+15)}if(_.lineWidth=1,c.mesh&&c.mesh.length>0){if(A.drawPoints)for(let s of c.mesh)tt(_,s[0],s[1],s[2],A);if(A.drawPolygons){_.lineWidth=1;for(let s=0;s<_e.length/3;s++){let h=[_e[s*3+0],_e[s*3+1],_e[s*3+2]].map(a=>c.mesh[a]);x1(_,h,A)}if(c.annotations&&c.annotations.leftEyeIris){_.strokeStyle=A.useDepth?"rgba(255, 200, 255, 0.3)":A.color,_.beginPath();let s=Math.abs(c.annotations.leftEyeIris[3][0]-c.annotations.leftEyeIris[1][0])/2,h=Math.abs(c.annotations.leftEyeIris[4][1]-c.annotations.leftEyeIris[2][1])/2;_.ellipse(c.annotations.leftEyeIris[0][0],c.annotations.leftEyeIris[0][1],s,h,0,0,2*Math.PI),_.stroke(),A.fillPolygons&&(_.fillStyle=A.useDepth?"rgba(255, 255, 200, 0.3)":A.color,_.fill())}if(c.annotations&&c.annotations.rightEyeIris){_.strokeStyle=A.useDepth?"rgba(255, 200, 255, 0.3)":A.color,_.beginPath();let s=Math.abs(c.annotations.rightEyeIris[3][0]-c.annotations.rightEyeIris[1][0])/2,h=Math.abs(c.annotations.rightEyeIris[4][1]-c.annotations.rightEyeIris[2][1])/2;_.ellipse(c.annotations.rightEyeIris[0][0],c.annotations.rightEyeIris[0][1],s,h,0,0,2*Math.PI),_.stroke(),A.fillPolygons&&(_.fillStyle=A.useDepth?"rgba(255, 255, 200, 0.3)":A.color,_.fill())}}}}}var ne=[];async function w0(e,t,r){let A=U(se,r);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let _=e.getContext("2d");if(!!_){_.lineJoin="round";for(let c=0;ch.part==="leftShoulder"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightShoulder"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),Te(_,s,A),s.length=0,n=t[c].keypoints.find(h=>h.part==="rightShoulder"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightHip"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftHip"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftShoulder"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),s.length===4&&x1(_,s,A),s.length=0,n=t[c].keypoints.find(h=>h.part==="leftHip"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftKnee"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftAnkle"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftHeel"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftFoot"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),Te(_,s,A),s.length=0,n=t[c].keypoints.find(h=>h.part==="rightHip"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightKnee"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightAnkle"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightHeel"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightFoot"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),Te(_,s,A),s.length=0,n=t[c].keypoints.find(h=>h.part==="leftShoulder"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftElbow"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftWrist"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftPalm"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),Te(_,s,A),s.length=0,n=t[c].keypoints.find(h=>h.part==="rightShoulder"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightElbow"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightWrist"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightPalm"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),Te(_,s,A)}}}}async function l0(e,t,r){let A=U(se,r);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let _=e.getContext("2d");if(!!_){_.lineJoin="round",_.font=A.font;for(let c of t){if(A.drawBoxes){_.strokeStyle=A.color,_.fillStyle=A.color;let n;if(!A.calculateHandBox)n=A.useRawBoxes?c.boxRaw:c.box;else if(n=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],c.landmarks&&c.landmarks.length>0){for(let s of c.landmarks)s[0]n[2]&&(n[2]=s[0]),s[1]>n[3]&&(n[3]=s[1]);n[2]-=n[0],n[3]-=n[1]}A.useRawBoxes?he(_,e.width*n[0],e.height*n[1],e.width*n[2],e.height*n[3],A):he(_,n[0],n[1],n[2],n[3],A),A.drawLabels&&(A.shadowColor&&A.shadowColor!==""&&(_.fillStyle=A.shadowColor,_.fillText("hand",n[0]+3,1+n[1]+A.lineHeight,n[2])),_.fillStyle=A.labelColor,_.fillText("hand",n[0]+2,0+n[1]+A.lineHeight,n[2])),_.stroke()}if(A.drawPoints&&c.landmarks&&c.landmarks.length>0)for(let n of c.landmarks)_.fillStyle=A.useDepth?`rgba(${127.5+2*n[2]}, ${127.5-2*n[2]}, 255, 0.5)`:A.color,tt(_,n[0],n[1],0,A);if(A.drawPolygons){let n=s=>{if(!!s)for(let h=0;h0?h-1:0][0],s[h>0?h-1:0][1]),_.lineTo(s[h][0],s[h][1]),_.stroke()};n(c.annotations.indexFinger),n(c.annotations.middleFinger),n(c.annotations.ringFinger),n(c.annotations.pinky),n(c.annotations.thumb)}}}}async function d0(e,t,r){let A=U(se,r);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let _=e.getContext("2d");if(!!_){_.lineJoin="round",_.font=A.font;for(let c of t)if(A.drawBoxes){if(_.strokeStyle=A.color,_.fillStyle=A.color,A.useRawBoxes?he(_,e.width*c.boxRaw[0],e.height*c.boxRaw[1],e.width*c.boxRaw[2],e.height*c.boxRaw[3],A):he(_,c.box[0],c.box[1],c.box[2],c.box[3],A),A.drawLabels){let n=`${Math.round(100*c.score)}% ${c.label}`;A.shadowColor&&A.shadowColor!==""&&(_.fillStyle=A.shadowColor,_.fillText(n,c.box[0]+3,1+c.box[1]+A.lineHeight,c.box[2])),_.fillStyle=A.labelColor,_.fillText(n,c.box[0]+2,0+c.box[1]+A.lineHeight,c.box[2])}_.stroke()}}}async function sn(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let r=e.getContext("2d");r==null||r.drawImage(e,0,0)}async function hn(e,t,r){let A=U(se,r);!t||!e||e instanceof HTMLCanvasElement&&(y0(e,t.face,A),w0(e,t.body,A),l0(e,t.hand,A),x0(e,t.gesture,A),d0(e,t.object,A))}var nt=` +`),i.brightness=function(b){let l=(b||0)+1;i.colorMatrix([l,0,0,0,0,0,l,0,0,0,0,0,l,0,0,0,0,0,1,0])},i.saturation=function(b){let l=(b||0)*2/3+1,g=(l-1)*-.5;i.colorMatrix([l,g,g,0,0,g,l,g,0,0,g,g,l,0,0,0,0,0,1,0])},i.desaturate=function(){i.saturation(-1)},i.contrast=function(b){let l=(b||0)+1,g=-128*(l-1);i.colorMatrix([l,0,0,0,g,0,l,0,0,g,0,0,l,0,g,0,0,0,1,0])},i.negative=function(){i.contrast(-2)},i.hue=function(b){b=(b||0)/180*Math.PI;let l=Math.cos(b),g=Math.sin(b),E=.213,R=.715,I=.072;i.colorMatrix([E+l*(1-E)+g*-E,R+l*-R+g*-R,I+l*-I+g*(1-I),0,0,E+l*-E+g*.143,R+l*(1-R)+g*.14,I+l*-I+g*-.283,0,0,E+l*-E+g*-(1-E),R+l*-R+g*R,I+l*(1-I)+g*I,0,0,0,0,0,1,0])},i.desaturateLuminance=function(){i.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},i.sepia=function(){i.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},i.brownie=function(){i.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},i.vintagePinhole=function(){i.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},i.kodachrome=function(){i.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},i.technicolor=function(){i.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},i.polaroid=function(){i.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},i.shiftToBGR=function(){i.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},i.convolution=function(b){let l=new Float32Array(b),g=1/s,E=1/h,R=j(i.convolution.SHADER);x.uniform1fv(R.uniform.m,l),x.uniform2f(R.uniform.px,g,E),z()},i.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(` +`),i.detectEdges=function(){i.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},i.sobelX=function(){i.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},i.sobelY=function(){i.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},i.sharpen=function(b){let l=b||1;i.convolution.call(this,[0,-1*l,0,-1*l,1+4*l,-1*l,0,-1*l,0])},i.emboss=function(b){let l=b||1;i.convolution.call(this,[-2*l,-1*l,0,-1*l,1,1*l,0,1*l,2*l])},i.blur=function(b){let l=b/7/s,g=b/7/h,E=j(i.blur.SHADER);x.uniform2f(E.uniform.px,0,g),z(T.INTERMEDIATE),x.uniform2f(E.uniform.px,l,0),z()},i.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(` +`),i.pixelate=function(b){let l=b/s,g=b/h,E=j(i.pixelate.SHADER);x.uniform2f(E.uniform.size,l,g),z()},i.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(` +`)}var Qe=2048,P,N,k;function At(e,t){let r;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof o.Tensor)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof o.Tensor)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)r=o.clone(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let _=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,c=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,n=_,s=c;if(n>Qe&&(n=Qe,s=n*c/_),s>Qe&&(s=Qe,n=s*_/c),t.filter.width>0?n=t.filter.width:t.filter.height>0&&(n=_*(t.filter.height/c)),t.filter.height>0?s=t.filter.height:t.filter.width>0&&(s=c*(t.filter.width/_)),!n||!s)throw new Error("Human: Input cannot determine dimension");(!P||(P==null?void 0:P.width)!==n||(P==null?void 0:P.height)!==s)&&(P=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,s):document.createElement("canvas"),(P==null?void 0:P.width)!==n&&(P.width=n),(P==null?void 0:P.height)!==s&&(P.height=s));let h=P.getContext("2d");if(e instanceof ImageData?h.putImageData(e,0,0):t.filter.flip&&typeof h.translate!="undefined"?(h.translate(_,0),h.scale(-1,1),h.drawImage(e,0,0,_,c,0,0,P==null?void 0:P.width,P==null?void 0:P.height),h.setTransform(1,0,0,1,0,0)):h.drawImage(e,0,0,_,c,0,0,P==null?void 0:P.width,P==null?void 0:P.height),t.filter.enabled){if((!k||!N||P.width!==N.width||(P==null?void 0:P.height)!==(N==null?void 0:N.height))&&(N=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(P==null?void 0:P.width,P==null?void 0:P.height):document.createElement("canvas"),(N==null?void 0:N.width)!==(P==null?void 0:P.width)&&(N.width=P==null?void 0:P.width),(N==null?void 0:N.height)!==(P==null?void 0:P.height)&&(N.height=P==null?void 0:P.height),k=o.ENV.flags.IS_BROWSER?new n0({canvas:N}):null),!k)return{tensor:null,canvas:P};k.reset(),k.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&k.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&k.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&k.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&k.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&k.addFilter("hue",t.filter.hue),t.filter.negative&&k.addFilter("negative"),t.filter.sepia&&k.addFilter("sepia"),t.filter.vintage&&k.addFilter("brownie"),t.filter.sepia&&k.addFilter("sepia"),t.filter.kodachrome&&k.addFilter("kodachrome"),t.filter.technicolor&&k.addFilter("technicolor"),t.filter.polaroid&&k.addFilter("polaroid"),t.filter.pixelate!==0&&k.addFilter("pixelate",t.filter.pixelate),k.apply(P)}else N=P,k&&(k=null);let a;if(N.data){let i=[N.height,N.width,3];a=o.tensor3d(N.data,i,"int32")}else if(N instanceof ImageData)a=o.browser.fromPixels(N);else if(t.backend==="webgl"||t.backend==="humangl"){let i=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,s):document.createElement("canvas");i.width=n,i.height=s;let d=i.getContext("2d");d==null||d.drawImage(N,0,0),a=o.browser.fromPixels(i)}else{let i=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,s):document.createElement("canvas");i.width=n,i.height=s;let d=i.getContext("2d");d==null||d.drawImage(N,0,0);let p=d==null?void 0:d.getImageData(0,0,n,s);a=o.browser.fromPixels(p)}let y=a.toFloat();r=y.expandDims(0),a.dispose(),y.dispose()}let A=t.filter.return?N:null;return{tensor:r,canvas:A}}var _t={};J(_t,{all:()=>K0,body:()=>A0,canvas:()=>C0,face:()=>c0,gesture:()=>r0,hand:()=>_0,object:()=>o0,options:()=>se});var S={backend:"webgl",modelBasePath:"../models/",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface-back.json",rotation:!1,maxFaces:10,skipFrames:21,skipInitial:!1,minConfidence:.2,iouThreshold:.1,scoreThreshold:.2,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:31},emotion:{enabled:!0,minConfidence:.1,skipFrames:32,modelPath:"emotion.json"},age:{enabled:!1,modelPath:"age.json",skipFrames:33},gender:{enabled:!1,minConfidence:.1,modelPath:"gender.json",skipFrames:34},embedding:{enabled:!1,modelPath:"mobileface.json"}},body:{enabled:!0,modelPath:"posenet.json",maxDetections:1,scoreThreshold:.2,nmsRadius:20},hand:{enabled:!0,rotation:!1,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"nanodet.json",minConfidence:.2,iouThreshold:.4,maxResults:10,skipFrames:41}};var se={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!1,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1,calculateHandBox:!0};function $e(e,t,r,A=0,_){e.fillStyle=_.useDepth&&A?`rgba(${127.5+2*A}, ${127.5-2*A}, 255, 0.3)`:_.color,e.beginPath(),e.arc(t,r,_.pointSize,0,2*Math.PI),e.fill()}function he(e,t,r,A,_,c){if(e.beginPath(),c.useCurves){let n=(t+t+A)/2,s=(r+r+_)/2;e.ellipse(n,s,A/2,_/2,0,0,2*Math.PI)}else e.lineWidth=c.lineWidth,e.moveTo(t+c.roundRect,r),e.lineTo(t+A-c.roundRect,r),e.quadraticCurveTo(t+A,r,t+A,r+c.roundRect),e.lineTo(t+A,r+_-c.roundRect),e.quadraticCurveTo(t+A,r+_,t+A-c.roundRect,r+_),e.lineTo(t+c.roundRect,r+_),e.quadraticCurveTo(t,r+_,t,r+_-c.roundRect),e.lineTo(t,r+c.roundRect),e.quadraticCurveTo(t,r,t+c.roundRect,r),e.closePath();e.stroke()}function ot(e,t=[],r){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let A of t)e.strokeStyle=r.useDepth&&A[2]?`rgba(${127.5+2*A[2]}, ${127.5-2*A[2]}, 255, 0.3)`:r.color,e.fillStyle=r.useDepth&&A[2]?`rgba(${127.5+2*A[2]}, ${127.5-2*A[2]}, 255, 0.3)`:r.color,e.lineTo(A[0],parseInt(A[1]));e.stroke(),r.fillPolygons&&(e.closePath(),e.fill())}}function ge(e,t=[],r){if(!(t===void 0||t.length===0)){if(!r.useCurves||t.length<=2){ot(e,t,r);return}e.moveTo(t[0][0],t[0][1]);for(let A=0;A1&&h[1].length>0){let a=s[1]>0?`#${s[1]}`:"",y=`${s[0]} ${a}: ${h[1]}`;A.shadowColor&&A.shadowColor!==""&&(_.fillStyle=A.shadowColor,_.fillText(y,8,2+c*A.lineHeight)),_.fillStyle=A.labelColor,_.fillText(y,6,0+c*A.lineHeight),c+=1}}}async function c0(e,t,r){let A=U(se,r);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let _=e.getContext("2d");if(!!_)for(let c of t){_.font=A.font,_.strokeStyle=A.color,_.fillStyle=A.color,A.drawBoxes&&(A.useRawBoxes?he(_,e.width*c.boxRaw[0],e.height*c.boxRaw[1],e.width*c.boxRaw[2],e.height*c.boxRaw[3],A):he(_,c.box[0],c.box[1],c.box[2],c.box[3],A));let n=[];if(n.push(`face confidence: ${Math.trunc(100*c.confidence)}%`),c.genderConfidence&&n.push(`${c.gender||""} ${Math.trunc(100*c.genderConfidence)}% confident`),c.age&&n.push(`age: ${c.age||""}`),c.iris&&n.push(`iris distance: ${c.iris}`),c.emotion&&c.emotion.length>0){let s=c.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);n.push(s.join(" "))}c.rotation&&c.rotation.angle&&c.rotation.angle.roll&&n.push(`roll: ${Math.trunc(100*c.rotation.angle.roll)/100} yaw:${Math.trunc(100*c.rotation.angle.yaw)/100} pitch:${Math.trunc(100*c.rotation.angle.pitch)/100}`),n.length===0&&n.push("face"),_.fillStyle=A.color;for(let s=n.length-1;s>=0;s--){let h=Math.max(c.box[0],0),a=s*A.lineHeight+c.box[1];A.shadowColor&&A.shadowColor!==""&&(_.fillStyle=A.shadowColor,_.fillText(n[s],h+5,a+16)),_.fillStyle=A.labelColor,_.fillText(n[s],h+4,a+15)}if(_.lineWidth=1,c.mesh&&c.mesh.length>0){if(A.drawPoints)for(let s of c.mesh)$e(_,s[0],s[1],s[2],A);if(A.drawPolygons){_.lineWidth=1;for(let s=0;sc.mesh[a]);ot(_,h,A)}if(c.annotations&&c.annotations.leftEyeIris){_.strokeStyle=A.useDepth?"rgba(255, 200, 255, 0.3)":A.color,_.beginPath();let s=Math.abs(c.annotations.leftEyeIris[3][0]-c.annotations.leftEyeIris[1][0])/2,h=Math.abs(c.annotations.leftEyeIris[4][1]-c.annotations.leftEyeIris[2][1])/2;_.ellipse(c.annotations.leftEyeIris[0][0],c.annotations.leftEyeIris[0][1],s,h,0,0,2*Math.PI),_.stroke(),A.fillPolygons&&(_.fillStyle=A.useDepth?"rgba(255, 255, 200, 0.3)":A.color,_.fill())}if(c.annotations&&c.annotations.rightEyeIris){_.strokeStyle=A.useDepth?"rgba(255, 200, 255, 0.3)":A.color,_.beginPath();let s=Math.abs(c.annotations.rightEyeIris[3][0]-c.annotations.rightEyeIris[1][0])/2,h=Math.abs(c.annotations.rightEyeIris[4][1]-c.annotations.rightEyeIris[2][1])/2;_.ellipse(c.annotations.rightEyeIris[0][0],c.annotations.rightEyeIris[0][1],s,h,0,0,2*Math.PI),_.stroke(),A.fillPolygons&&(_.fillStyle=A.useDepth?"rgba(255, 255, 200, 0.3)":A.color,_.fill())}}}}}var re=[];async function A0(e,t,r){let A=U(se,r);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let _=e.getContext("2d");if(!!_){_.lineJoin="round";for(let c=0;ch.part==="leftShoulder"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightShoulder"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),ge(_,s,A),s.length=0,n=t[c].keypoints.find(h=>h.part==="rightShoulder"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightHip"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftHip"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftShoulder"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),s.length===4&&ot(_,s,A),s.length=0,n=t[c].keypoints.find(h=>h.part==="leftHip"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftKnee"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftAnkle"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftHeel"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftFoot"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),ge(_,s,A),s.length=0,n=t[c].keypoints.find(h=>h.part==="rightHip"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightKnee"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightAnkle"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightHeel"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightFoot"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),ge(_,s,A),s.length=0,n=t[c].keypoints.find(h=>h.part==="leftShoulder"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftElbow"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftWrist"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="leftPalm"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),ge(_,s,A),s.length=0,n=t[c].keypoints.find(h=>h.part==="rightShoulder"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightElbow"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightWrist"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),n=t[c].keypoints.find(h=>h.part==="rightPalm"),n&&n.score>S.body.scoreThreshold&&s.push([n.position.x,n.position.y]),ge(_,s,A)}}}}async function _0(e,t,r){let A=U(se,r);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let _=e.getContext("2d");if(!!_){_.lineJoin="round",_.font=A.font;for(let c of t){if(A.drawBoxes){_.strokeStyle=A.color,_.fillStyle=A.color;let n;if(!A.calculateHandBox)n=A.useRawBoxes?c.boxRaw:c.box;else if(n=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],c.landmarks&&c.landmarks.length>0){for(let s of c.landmarks)s[0]n[2]&&(n[2]=s[0]),s[1]>n[3]&&(n[3]=s[1]);n[2]-=n[0],n[3]-=n[1]}A.useRawBoxes?he(_,e.width*n[0],e.height*n[1],e.width*n[2],e.height*n[3],A):he(_,n[0],n[1],n[2],n[3],A),A.drawLabels&&(A.shadowColor&&A.shadowColor!==""&&(_.fillStyle=A.shadowColor,_.fillText("hand",n[0]+3,1+n[1]+A.lineHeight,n[2])),_.fillStyle=A.labelColor,_.fillText("hand",n[0]+2,0+n[1]+A.lineHeight,n[2])),_.stroke()}if(A.drawPoints&&c.landmarks&&c.landmarks.length>0)for(let n of c.landmarks)_.fillStyle=A.useDepth?`rgba(${127.5+2*n[2]}, ${127.5-2*n[2]}, 255, 0.5)`:A.color,$e(_,n[0],n[1],0,A);if(A.drawPolygons){let n=s=>{if(!!s)for(let h=0;h0?h-1:0][0],s[h>0?h-1:0][1]),_.lineTo(s[h][0],s[h][1]),_.stroke()};n(c.annotations.indexFinger),n(c.annotations.middleFinger),n(c.annotations.ringFinger),n(c.annotations.pinky),n(c.annotations.thumb)}}}}async function o0(e,t,r){let A=U(se,r);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let _=e.getContext("2d");if(!!_){_.lineJoin="round",_.font=A.font;for(let c of t)if(A.drawBoxes){if(_.strokeStyle=A.color,_.fillStyle=A.color,A.useRawBoxes?he(_,e.width*c.boxRaw[0],e.height*c.boxRaw[1],e.width*c.boxRaw[2],e.height*c.boxRaw[3],A):he(_,c.box[0],c.box[1],c.box[2],c.box[3],A),A.drawLabels){let n=`${Math.round(100*c.score)}% ${c.label}`;A.shadowColor&&A.shadowColor!==""&&(_.fillStyle=A.shadowColor,_.fillText(n,c.box[0]+3,1+c.box[1]+A.lineHeight,c.box[2])),_.fillStyle=A.labelColor,_.fillText(n,c.box[0]+2,0+c.box[1]+A.lineHeight,c.box[2])}_.stroke()}}}async function C0(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let r=e.getContext("2d");r==null||r.drawImage(e,0,0)}async function K0(e,t,r){let A=U(se,r);!t||!e||e instanceof HTMLCanvasElement&&(c0(e,t.face,A),A0(e,t.body,A),_0(e,t.hand,A),r0(e,t.gesture,A),o0(e,t.object,A))}var e1=` /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob @@ -163,7 +163,7 @@ PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1 8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3 ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY -euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,rt=` +euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,t1=` /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA @@ -731,5 +731,5 @@ AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ -2Q==`;var f0="1.6.1";var fe,Pe,Me,ie,ct,ze,At,_t,ot,xn=class{constructor(t={}){fe.set(this,void 0);Pe.set(this,void 0);Me.set(this,void 0);ie.set(this,void 0);this.analyze=(...t)=>{if(!J(this,Pe))return;let r=this.tf.engine().state.numTensors,A=J(this,fe);Ae(this,fe,r);let _=r-A;_!==0&&f(...t,_)};ct.set(this,t=>{if(!J(this,Me))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof o.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(r){return"backend not loaded"}return null});ze.set(this,async(t=!1)=>{var r;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let A=E();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&f("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&f("wasm path:",this.config.wasmPath),typeof((r=this.tf)==null?void 0:r.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let _=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),c=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&f(`wasm execution: ${_?"SIMD":"no SIMD"} ${c?"multithreaded":"singlethreaded"}`),this.config.debug&&!_&&f("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&T1();try{await this.tf.setBackend(this.config.backend)}catch(_){f("error: cannot set backend:",this.config.backend,_)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),this.config.deallocate&&(f("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let _=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&f(`gl version:${_.getParameter(_.VERSION)} renderer:${_.getParameter(_.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(E()-A)}});At.set(this,async()=>{let t=(_,c="application/octet-stream")=>fetch(`data:${c};base64,${_}`).then(n=>n.blob()),r,A;switch(this.config.warmup){case"face":r=await t(nt);break;case"full":r=await t(rt);break;default:r=null}if(r){let _=await createImageBitmap(r);A=await this.detect(_,this.config),_.close()}return A});_t.set(this,async()=>new Promise(t=>{let r,A=0;switch(this.config.warmup){case"face":A=256,r="data:image/jpeg;base64,"+nt;break;case"full":case"body":A=1200,r="data:image/jpeg;base64,"+rt;break;default:r=null}let _=new Image;_.onload=async()=>{let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(A,A):document.createElement("canvas");c.width=_.naturalWidth,c.height=_.naturalHeight;let n=c.getContext("2d");n==null||n.drawImage(_,0,0);let s=await this.detect(c,this.config);t(s)},r?_.src=r:t(null)}));ot.set(this,async()=>{let t=_=>Buffer.from(_,"base64"),r;if(this.config.warmup==="face"&&(r=t(nt)),(this.config.warmup==="body"||this.config.warmup==="full")&&(r=t(rt)),!r)return null;let A;if(typeof o.node!="undefined"){let _=o.node.decodeJpeg(r),c=_.expandDims(0);this.tf.dispose(_),A=await this.detect(c,this.config),this.tf.dispose(c)}else this.config.debug&&f("Warmup tfjs-node not loaded");return A});this.tf=o,this.draw=a1,this.version=f0,this.config=U(S,t),this.state="idle",Ae(this,fe,0),Ae(this,Pe,!1),Ae(this,Me,!1),Ae(this,ie,!0),this.perf={},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,faceres:null},this.image=r=>i1(r,this.config),this.classes={facemesh:Wt,age:ht,gender:at,emotion:dt,faceres:gt,body:this.config.body.modelPath.includes("posenet")?qt:e1,hand:Dt,nanodet:A1},this.faceTriangulation=I1,this.faceUVMap=O1,this.sysinfo=f1()}profileData(){return this.config.profile?ve:{}}similarity(t,r){return this.config.face.description.enabled?Pt(t,r):this.config.face.embedding.enabled?P1(t,r):0}enhance(t){return Mt(t)}match(t,r,A=0){return M1(t,r,A)}async load(t={}){this.state="load";let r=E();t&&(this.config=U(this.config,t)),J(this,ie)&&(this.config.debug&&f(`version: ${this.version}`),this.config.debug&&f(`tfjs version: ${this.tf.version_core}`),this.config.debug&&f("platform:",this.sysinfo.platform),this.config.debug&&f("agent:",this.sysinfo.agent),await J(this,ze).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&f("configuration:",this.config),this.config.debug&&f("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.efficientpose,this.models.nanodet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?kt(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?it(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?lt(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?pt(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?ut(this.config):null),this.models.handpose||(this.config.hand.enabled?$t(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?Ut(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?t1(this.config):null),this.models.efficientpose||(this.config.body.enabled&&this.config.body.modelPath.includes("efficientpose")?r1(this.config):null),this.models.nanodet||(this.config.object.enabled?o1(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?Tt(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await kt(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await it(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await lt(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await pt(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await ut(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await $t(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await Ut(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await t1(this.config)),this.config.body.enabled&&!this.models.efficientpose&&this.config.body.modelPath.includes("efficientpose")&&(this.models.efficientpose=await r1(this.config)),this.config.object.enabled&&!this.models.nanodet&&(this.models.nanodet=await o1(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await Tt(this.config))),J(this,ie)&&(this.config.debug&&f("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),Ae(this,ie,!1));let A=Math.trunc(E()-r);A>(this.perf.load||0)&&(this.perf.load=A)}async detect(t,r={}){return new Promise(async A=>{var u,b,M,v;this.state="config";let _;this.config=U(this.config,r),this.state="check";let c=J(this,ct).call(this,t);c&&(f(c,t),A({error:c}));let n=E();await J(this,ze).call(this),await this.load(),this.config.scoped&&this.tf.engine().startScope(),this.analyze("Start Scope:");let s;t&&this.config.videoOptimized&&(typeof HTMLImageElement!="undefined"&&t instanceof HTMLImageElement||typeof Image!="undefined"&&t instanceof Image||typeof ImageData!="undefined"&&t instanceof ImageData||typeof ImageBitmap!="undefined"&&h1 instanceof ImageBitmap)&&(f("disabling video optimization"),s=this.config.videoOptimized,this.config.videoOptimized=!1),_=E();let h=i1(t,this.config);if(!h||!h.tensor){f("could not convert input to tensor"),A({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(E()-_),this.analyze("Get Image:");let a,x,i,w,m;this.config.async?(i=this.config.face.enabled?zt(this,h.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",_=E(),i=this.config.face.enabled?await zt(this,h.tensor):[],m=Math.trunc(E()-_),m>0&&(this.perf.face=m)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?a=this.config.body.enabled?(u=this.models.posenet)==null?void 0:u.estimatePoses(h.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?a=this.config.body.enabled?n1(h.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(a=this.config.body.enabled?c1(h.tensor,this.config):[]),this.perf.body&&delete this.perf.body):(this.state="run:body",_=E(),this.config.body.modelPath.includes("posenet")?a=this.config.body.enabled?await((b=this.models.posenet)==null?void 0:b.estimatePoses(h.tensor,this.config)):[]:this.config.body.modelPath.includes("blazepose")?a=this.config.body.enabled?await n1(h.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(a=this.config.body.enabled?await c1(h.tensor,this.config):[]),m=Math.trunc(E()-_),m>0&&(this.perf.body=m)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(x=this.config.hand.enabled?(M=this.models.handpose)==null?void 0:M.estimateHands(h.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",_=E(),x=this.config.hand.enabled?await((v=this.models.handpose)==null?void 0:v.estimateHands(h.tensor,this.config)):[],m=Math.trunc(E()-_),m>0&&(this.perf.hand=m)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(w=this.config.object.enabled?s1(h.tensor,this.config):[],this.perf.object&&delete this.perf.object):(this.state="run:object",_=E(),w=this.config.object.enabled?await s1(h.tensor,this.config):[],m=Math.trunc(E()-_),m>0&&(this.perf.object=m)),this.analyze("End Object:"),this.config.async&&([i,a,x,w]=await Promise.all([i,a,x,w])),o.dispose(h.tensor),this.config.scoped&&this.tf.engine().endScope(),this.analyze("End Scope:");let p=[];this.config.gesture.enabled&&(_=E(),p=[...s0(i),...o0(a),...i0(x),...h0(i)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(E()-_)),s&&(this.config.videoOptimized=s),this.perf.total=Math.trunc(E()-n),this.state="idle";let y={face:i,body:a,hand:x,gesture:p,object:w,performance:this.perf,canvas:h.canvas};A(y)})}async warmup(t={}){let r=E();if(t&&(this.config=U(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let A=this.config.videoOptimized;this.config.videoOptimized=!1;let _;typeof createImageBitmap=="function"?_=await J(this,At).call(this):typeof Image!="undefined"?_=await J(this,_t).call(this):_=await J(this,ot).call(this),this.config.videoOptimized=A;let c=E();return this.config.debug&&f("Warmup",this.config.warmup,Math.round(c-r),"ms",_),_}};fe=new WeakMap,Pe=new WeakMap,Me=new WeakMap,ie=new WeakMap,ct=new WeakMap,ze=new WeakMap,At=new WeakMap,_t=new WeakMap,ot=new WeakMap;export{xn as Human,xn as default}; +2Q==`;var s0="1.6.1";var le,Te,Pe,ie,n1,Me,r1,c1,A1,G0=class{constructor(t={}){le.set(this,void 0);Te.set(this,void 0);Pe.set(this,void 0);ie.set(this,void 0);this.analyze=(...t)=>{if(!C(this,Te))return;let r=this.tf.engine().state.numTensors,A=C(this,le);_e(this,le,r);let _=r-A;_!==0&&f(...t,_)};n1.set(this,t=>{if(!C(this,Pe))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof o.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(r){return"backend not loaded"}return null});Me.set(this,async(t=!1)=>{var r;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let A=v();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&f("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&f("wasm path:",this.config.wasmPath),typeof((r=this.tf)==null?void 0:r.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let _=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),c=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&f(`wasm execution: ${_?"SIMD":"no SIMD"} ${c?"multithreaded":"singlethreaded"}`),this.config.debug&&!_&&f("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&mt();try{await this.tf.setBackend(this.config.backend)}catch(_){f("error: cannot set backend:",this.config.backend,_)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),this.config.deallocate&&(f("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let _=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&f(`gl version:${_.getParameter(_.VERSION)} renderer:${_.getParameter(_.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(v()-A)}});r1.set(this,async()=>{let t=(_,c="application/octet-stream")=>fetch(`data:${c};base64,${_}`).then(n=>n.blob()),r,A;switch(this.config.warmup){case"face":r=await t(e1);break;case"full":r=await t(t1);break;default:r=null}if(r){let _=await createImageBitmap(r);A=await this.detect(_,this.config),_.close()}return A});c1.set(this,async()=>new Promise(t=>{let r,A=0;switch(this.config.warmup){case"face":A=256,r="data:image/jpeg;base64,"+e1;break;case"full":case"body":A=1200,r="data:image/jpeg;base64,"+t1;break;default:r=null}let _=new Image;_.onload=async()=>{let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(A,A):document.createElement("canvas");c.width=_.naturalWidth,c.height=_.naturalHeight;let n=c.getContext("2d");n==null||n.drawImage(_,0,0);let s=await this.detect(c,this.config);t(s)},r?_.src=r:t(null)}));A1.set(this,async()=>{let t=_=>Buffer.from(_,"base64"),r;if(this.config.warmup==="face"&&(r=t(e1)),(this.config.warmup==="body"||this.config.warmup==="full")&&(r=t(t1)),!r)return null;let A;if(typeof o.node!="undefined"){let _=o.node.decodeJpeg(r),c=_.expandDims(0);this.tf.dispose(_),A=await this.detect(c,this.config),this.tf.dispose(c)}else this.config.debug&&f("Warmup tfjs-node not loaded");return A});this.tf=o,this.draw=_t,this.version=s0,this.config=U(S,t),this.state="idle",_e(this,le,0),_e(this,Te,!1),_e(this,Pe,!1),_e(this,ie,!0),this.perf={},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,faceres:null},this.image=r=>At(r,this.config),this.classes={facemesh:j1,age:o1,gender:h1,emotion:w1,faceres:u1,body:this.config.body.modelPath.includes("posenet")?Z1:K1,hand:U1,nanodet:et},this.faceTriangulation=jt,this.faceUVMap=St,this.sysinfo=xt()}profileData(){return this.config.profile?Ee:{}}similarity(t,r){return this.config.face.description.enabled?g1(t,r):this.config.face.embedding.enabled?pt(t,r):0}enhance(t){return T1(t)}match(t,r,A=0){return ut(t,r,A)}async load(t={}){this.state="load";let r=v();t&&(this.config=U(this.config,t)),C(this,ie)&&(this.config.debug&&f(`version: ${this.version}`),this.config.debug&&f(`tfjs version: ${this.tf.version_core}`),this.config.debug&&f("platform:",this.sysinfo.platform),this.config.debug&&f("agent:",this.sysinfo.agent),await C(this,Me).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&f("configuration:",this.config),this.config.debug&&f("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.efficientpose,this.models.nanodet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?W1(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?s1(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?y1(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?f1(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?m1(this.config):null),this.models.handpose||(this.config.hand.enabled?C1(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?V1(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?D1(this.config):null),this.models.efficientpose||(this.config.body.enabled&&this.config.body.modelPath.includes("efficientpose")?Q1(this.config):null),this.models.nanodet||(this.config.object.enabled?nt(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?b1(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await W1(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await s1(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await y1(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await f1(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await m1(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await C1(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await V1(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await D1(this.config)),this.config.body.enabled&&!this.models.efficientpose&&this.config.body.modelPath.includes("efficientpose")&&(this.models.efficientpose=await Q1(this.config)),this.config.object.enabled&&!this.models.nanodet&&(this.models.nanodet=await nt(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await b1(this.config))),C(this,ie)&&(this.config.debug&&f("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),_e(this,ie,!1));let A=Math.trunc(v()-r);A>(this.perf.load||0)&&(this.perf.load=A)}async detect(t,r={}){return new Promise(async A=>{var m,u;this.state="config";let _;this.config=U(this.config,r),this.state="check";let c=C(this,n1).call(this,t);c&&(f(c,t),A({error:c}));let n=v();await C(this,Me).call(this),await this.load(),this.config.scoped&&this.tf.engine().startScope(),this.analyze("Start Scope:");let s;t&&this.config.videoOptimized&&(typeof HTMLImageElement!="undefined"&&t instanceof HTMLImageElement||typeof Image!="undefined"&&t instanceof Image||typeof ImageData!="undefined"&&t instanceof ImageData||typeof ImageBitmap!="undefined"&&ct instanceof ImageBitmap)&&(f("disabling video optimization"),s=this.config.videoOptimized,this.config.videoOptimized=!1),_=v();let h=At(t,this.config);if(!h||!h.tensor){f("could not convert input to tensor"),A({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(v()-_),this.analyze("Get Image:");let a,y,i,d,p;this.config.async?(i=this.config.face.enabled?P1(this,h.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",_=v(),i=this.config.face.enabled?await P1(this,h.tensor):[],p=Math.trunc(v()-_),p>0&&(this.perf.face=p)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?a=this.config.body.enabled?H1(h.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?a=this.config.body.enabled?G1(h.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(a=this.config.body.enabled?$1(h.tensor,this.config):[]),this.perf.body&&delete this.perf.body):(this.state="run:body",_=v(),this.config.body.modelPath.includes("posenet")?a=this.config.body.enabled?await H1(h.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?a=this.config.body.enabled?await G1(h.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(a=this.config.body.enabled?await $1(h.tensor,this.config):[]),p=Math.trunc(v()-_),p>0&&(this.perf.body=p)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(y=this.config.hand.enabled?(m=this.models.handpose)==null?void 0:m.estimateHands(h.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",_=v(),y=this.config.hand.enabled?await((u=this.models.handpose)==null?void 0:u.estimateHands(h.tensor,this.config)):[],p=Math.trunc(v()-_),p>0&&(this.perf.hand=p)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(d=this.config.object.enabled?rt(h.tensor,this.config):[],this.perf.object&&delete this.perf.object):(this.state="run:object",_=v(),d=this.config.object.enabled?await rt(h.tensor,this.config):[],p=Math.trunc(v()-_),p>0&&(this.perf.object=p)),this.analyze("End Object:"),this.config.async&&([i,a,y,d]=await Promise.all([i,a,y,d])),o.dispose(h.tensor),this.config.scoped&&this.tf.engine().endScope(),this.analyze("End Scope:");let T=[];this.config.gesture.enabled&&(_=v(),T=[...$t(i),...Qt(a),...t0(y),...e0(i)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(v()-_)),s&&(this.config.videoOptimized=s),this.perf.total=Math.trunc(v()-n),this.state="idle";let x={face:i,body:a,hand:y,gesture:T,object:d,performance:this.perf,canvas:h.canvas};A(x)})}async warmup(t={}){let r=v();if(t&&(this.config=U(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let A=this.config.videoOptimized;this.config.videoOptimized=!1;let _;typeof createImageBitmap=="function"?_=await C(this,r1).call(this):typeof Image!="undefined"?_=await C(this,c1).call(this):_=await C(this,A1).call(this),this.config.videoOptimized=A;let c=v();return this.config.debug&&f("Warmup",this.config.warmup,Math.round(c-r),"ms",_),_}};le=new WeakMap,Te=new WeakMap,Pe=new WeakMap,ie=new WeakMap,n1=new WeakMap,Me=new WeakMap,r1=new WeakMap,c1=new WeakMap,A1=new WeakMap;export{G0 as Human,G0 as default}; //# sourceMappingURL=human.esm-nobundle.js.map diff --git a/dist/human.esm-nobundle.js.map b/dist/human.esm-nobundle.js.map index 55fa2556..65edfc19 100644 --- a/dist/human.esm-nobundle.js.map +++ b/dist/human.esm-nobundle.js.map @@ -1,7 +1,7 @@ { "version": 3, - "sources": ["../src/helpers.ts", "../src/sysinfo.ts", "../src/tfjs/tf-browser.ts", "../src/tfjs/backend.ts", "../src/age/age.ts", "../src/profile.ts", "../src/gender/gender.ts", "../src/emotion/emotion.ts", "../src/embedding/embedding.ts", "../src/faceres/faceres.ts", "../src/faceall.ts", "../src/blazeface/facemesh.ts", "../src/blazeface/blazeface.ts", "../src/blazeface/box.ts", "../src/blazeface/util.ts", "../src/blazeface/coords.ts", "../src/blazeface/facepipeline.ts", "../src/posenet/posenet.ts", "../src/posenet/posenetModel.ts", "../src/posenet/keypoints.ts", "../src/posenet/decodeParts.ts", "../src/posenet/utils.ts", "../src/posenet/decodeSingle.ts", "../src/posenet/decodeMultiple.ts", "../src/handpose/handpose.ts", "../src/handpose/box.ts", "../src/handpose/handdetector.ts", "../src/handpose/util.ts", "../src/handpose/handpipeline.ts", "../src/handpose/anchors.ts", "../src/blazepose/blazepose.ts", "../src/blazepose/annotations.ts", "../src/efficientpose/efficientpose.ts", "../src/nanodet/nanodet.ts", "../src/nanodet/labels.ts", "../src/gesture/gesture.ts", "../src/image/image.ts", "../src/image/imagefx.js", "../src/draw/draw.ts", "../src/config.ts", "../src/sample.ts", "../src/human.ts"], - "sourcesContent": ["// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`Human: ModelPath Error: ${path} Expecting JSON file`);\n return path;\n}\n\n// helper function: wrapper around console output\nexport function log(...msg) {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n // eslint-disable-next-line no-console\n if (msg) console.log(ts, 'Human:', ...msg);\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: perform deep merge of multiple objects so it allows full inheriance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n", "export function info(): { platform: string, agent: string } {\n let platform;\n let agent;\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw && raw[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n platform = platformMatch ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n agent = navigator.userAgent.replace(raw[0], '');\n if (platform[1]) agent = agent.replace(raw[1], '');\n agent = agent.replace(/ /g, ' ');\n }\n } else if (typeof process !== 'undefined') {\n platform = `${process.platform} ${process.arch}`;\n agent = `NodeJS ${process.version}`;\n }\n return { platform, agent };\n}\n", "// wrapper to load tfjs in a single place so version can be changed quickly\n\n// simplified\n// { modules: 1250, moduleBytes: 4013323, imports: 7, importBytes: 2255, outputBytes: 2991826, outputFiles: 'dist/tfjs.esm.js' }\n// export * from '@tensorflow/tfjs/dist/index.js';\n// export * from '@tensorflow/tfjs-backend-wasm';\n\n// modular\n// { modules: 1253, moduleBytes: 4029357, imports: 7, importBytes: 2285, outputBytes: 2998298, outputFiles: 'dist/tfjs.esm.js' }\n\n// get versions of all packages.\nimport * as packageBundle from '@tensorflow/tfjs/package.json';\nimport * as packageCore from '@tensorflow/tfjs-core/package.json';\nimport * as packageData from '@tensorflow/tfjs-data/package.json';\nimport * as packageLayers from '@tensorflow/tfjs-layers/package.json';\nimport * as packageConverter from '@tensorflow/tfjs-converter/package.json';\n// for backends, get version from source so it can register backend during import\nimport { version_cpu } from '@tensorflow/tfjs-backend-cpu/dist/index.js';\nimport { version_webgl } from '@tensorflow/tfjs-backend-webgl/dist/index.js';\nimport { version_wasm } from '@tensorflow/tfjs-backend-wasm/dist/index.js';\n\n// export all - compiled\nexport * from '@tensorflow/tfjs-core/dist/index.js';\nexport * from '@tensorflow/tfjs-layers/dist/index.js';\nexport * from '@tensorflow/tfjs-converter/dist/index.js';\nexport * as data from '@tensorflow/tfjs-data/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-cpu/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-webgl/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-wasm/dist/index.js';\n\n// export all - sources\n/*\nexport * from '@tensorflow/tfjs-core/src/index';\nexport * from '@tensorflow/tfjs-layers/src/index';\nexport * from '@tensorflow/tfjs-converter/src/index';\nexport * as data from '@tensorflow/tfjs-data/src/index';\nexport * from '@tensorflow/tfjs-backend-cpu/src/index';\nexport * from '@tensorflow/tfjs-backend-webgl/src/index';\nexport * from '@tensorflow/tfjs-backend-wasm/src/index';\n*/\n\n// export versions\nexport const version = {\n tfjs: packageBundle?.version || undefined,\n 'tfjs-core': packageCore?.version || undefined,\n 'tfjs-data': packageData?.version || undefined,\n 'tfjs-layers': packageLayers?.version || undefined,\n 'tfjs-converter': packageConverter?.version || undefined,\n 'tfjs-backend-cpu': version_cpu || undefined,\n 'tfjs-backend-webgl': version_webgl || undefined,\n 'tfjs-backend-wasm': version_wasm || undefined,\n};\n// export const version = {};\n", "import { log } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\n\nexport const config = {\n name: 'humangl',\n priority: 99,\n canvas: null,\n gl: null,\n width: 1024,\n height: 1024,\n webGLattr: { // https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.2\n alpha: false,\n antialias: false,\n premultipliedAlpha: false,\n preserveDrawingBuffer: false,\n depth: false,\n stencil: false,\n failIfMajorPerformanceCaveat: false,\n desynchronized: true,\n },\n};\n\nexport function register(): void {\n if (!tf.findBackend(config.name)) {\n log('backend registration:', config.name);\n try {\n config.canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(config.width, config.height) : document.createElement('canvas');\n } catch (err) {\n log('error: cannot create canvas:', err);\n return;\n }\n try {\n config.gl = config.canvas.getContext('webgl2', config.webGLattr);\n } catch (err) {\n log('error: cannot get WebGL2 context:', err);\n return;\n }\n try {\n tf.setWebGLContext(2, config.gl);\n } catch (err) {\n log('error: cannot set WebGL2 context:', err);\n return;\n }\n try {\n const ctx = new tf.GPGPUContext(config.gl);\n tf.registerBackend(config.name, () => new tf.MathBackendWebGL(ctx), config.priority);\n } catch (err) {\n log('error: cannot register WebGL backend:', err);\n return;\n }\n try {\n const kernels = tf.getKernelsForBackend('webgl');\n kernels.forEach((kernelConfig) => {\n const newKernelConfig = { ...kernelConfig, backendName: config.name };\n tf.registerKernel(newKernelConfig);\n });\n } catch (err) {\n log('error: cannot update WebGL backend registration:', err);\n return;\n }\n try {\n tf.ENV.set('WEBGL_VERSION', 2);\n // tf.ENV.set('WEBGL_MAX_TEXTURE_SIZE', config.gl.getParameter(config.gl.MAX_TEXTURE_SIZE));\n // tf.ENV.set('WEBGL_FORCE_F16_TEXTURES', true);\n // tf.ENV.set('WEBGL_PACK_DEPTHWISECONV', true);\n } catch (err) {\n log('error: cannot set WebGL backend flags:', err);\n return;\n }\n log('backend registered:', config.name);\n }\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\nlet model;\nlet last = { age: 0 };\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.age.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.face.age.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if ((skipped < config.face.age.skipFrames) && config.videoOptimized && last.age && (last.age > 0)) {\n skipped++;\n return last;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const enhance = tf.mul(resize, [255.0]);\n tf.dispose(resize);\n\n let ageT;\n const obj = { age: 0 };\n\n if (!config.profile) {\n if (config.face.age.enabled) ageT = await model.predict(enhance);\n } else {\n const profileAge = config.face.age.enabled ? await tf.profile(() => model.predict(enhance)) : {};\n ageT = profileAge.result.clone();\n profileAge.result.dispose();\n profile.run('age', profileAge);\n }\n enhance.dispose();\n\n if (ageT) {\n const data = ageT.dataSync();\n obj.age = Math.trunc(10 * data[0]) / 10;\n }\n ageT.dispose();\n\n last = obj;\n resolve(obj);\n });\n}\n", "import { log } from './helpers';\n\nexport const data = {};\n\nexport function run(modelName: string, profileData: any): void {\n if (!profileData || !profileData.kernels) return;\n const maxResults = 5;\n const time = profileData.kernels\n .filter((a) => a.kernelTimeMs > 0)\n .reduce((a, b) => a += b.kernelTimeMs, 0);\n const slowest = profileData.kernels\n .map((a, i) => { a.id = i; return a; })\n .filter((a) => a.kernelTimeMs > 0)\n .sort((a, b) => b.kernelTimeMs - a.kernelTimeMs);\n const largest = profileData.kernels\n .map((a, i) => { a.id = i; return a; })\n .filter((a) => a.totalBytesSnapshot > 0)\n .sort((a, b) => b.totalBytesSnapshot - a.totalBytesSnapshot);\n if (slowest.length > maxResults) slowest.length = maxResults;\n if (largest.length > maxResults) largest.length = maxResults;\n data[modelName] = {\n model: modelName,\n newBytes: profileData.newBytes,\n newTensors: profileData.newTensors,\n peakBytes: profileData.peakBytes,\n numKernelOps: profileData.kernels.length,\n timeKernelOps: time,\n slowestKernelOps: slowest,\n largestKernelOps: largest,\n };\n log('profiler', modelName, data[modelName]);\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\nlet model;\nlet last = { gender: '' };\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet alternative = false;\n\n// tuning values\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.gender.modelPath));\n alternative = model.inputs[0].shape[3] === 1;\n if (!model || !model.modelUrl) log('load model failed:', config.face.gender.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if ((skipped < config.face.gender.skipFrames) && config.videoOptimized && last.gender !== '') {\n skipped++;\n return last;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n let enhance;\n if (alternative) {\n enhance = tf.tidy(() => {\n const [red, green, blue] = tf.split(resize, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const normalize = grayscale.sub(0.5).mul(2); // range grayscale:-1..1\n return normalize;\n });\n } else {\n enhance = tf.mul(resize, [255.0]); // range RGB:0..255\n }\n tf.dispose(resize);\n\n let genderT;\n const obj = { gender: '', confidence: 0 };\n\n if (!config.profile) {\n if (config.face.gender.enabled) genderT = await model.predict(enhance);\n } else {\n const profileGender = config.face.gender.enabled ? await tf.profile(() => model.predict(enhance)) : {};\n genderT = profileGender.result.clone();\n profileGender.result.dispose();\n profile.run('gender', profileGender);\n }\n enhance.dispose();\n\n if (genderT) {\n if (!Array.isArray(genderT)) {\n const data = genderT.dataSync();\n if (alternative) {\n // returns two values 0..1, bigger one is prediction\n if (data[0] > config.face.gender.minConfidence || data[1] > config.face.gender.minConfidence) {\n obj.gender = data[0] > data[1] ? 'female' : 'male';\n obj.confidence = data[0] > data[1] ? (Math.trunc(100 * data[0]) / 100) : (Math.trunc(100 * data[1]) / 100);\n }\n } else {\n // returns one value 0..1, .5 is prediction threshold\n const confidence = Math.trunc(200 * Math.abs((data[0] - 0.5))) / 100;\n if (confidence > config.face.gender.minConfidence) {\n obj.gender = data[0] <= 0.5 ? 'female' : 'male';\n obj.confidence = Math.min(0.99, confidence);\n }\n }\n genderT.dispose();\n } else {\n const gender = genderT[0].dataSync();\n const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;\n if (confidence > config.face.gender.minConfidence) {\n obj.gender = gender[0] <= 0.5 ? 'female' : 'male';\n obj.confidence = Math.min(0.99, confidence);\n }\n /*\n let age = genderT[1].argMax(1).dataSync()[0];\n const all = genderT[1].dataSync();\n age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;\n const descriptor = genderT[1].dataSync();\n */\n genderT.forEach((t) => tf.dispose(t));\n }\n }\n last = obj;\n resolve(obj);\n });\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\nconst annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'];\nlet model;\nlet last: Array<{ score: number, emotion: string }> = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\n// tuning values\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.emotion.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.face.emotion.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if ((skipped < config.face.emotion.skipFrames) && config.videoOptimized && (last.length > 0)) {\n skipped++;\n return last;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const [red, green, blue] = tf.split(resize, 3, 3);\n resize.dispose();\n // weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n red.dispose();\n green.dispose();\n blue.dispose();\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n redNorm.dispose();\n greenNorm.dispose();\n blueNorm.dispose();\n const normalize = tf.tidy(() => grayscale.sub(0.5).mul(2));\n grayscale.dispose();\n const obj: Array<{ score: number, emotion: string }> = [];\n if (config.face.emotion.enabled) {\n let data;\n if (!config.profile) {\n const emotionT = await model.predict(normalize); // result is already in range 0..1, no need for additional activation\n data = emotionT.dataSync();\n tf.dispose(emotionT);\n } else {\n const profileData = await tf.profile(() => model.predict(normalize));\n data = profileData.result.dataSync();\n profileData.result.dispose();\n profile.run('emotion', profileData);\n }\n for (let i = 0; i < data.length; i++) {\n if (data[i] > config.face.emotion.minConfidence) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] });\n }\n obj.sort((a, b) => b.score - a.score);\n }\n normalize.dispose();\n last = obj;\n resolve(obj);\n });\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\ntype Tensor = typeof tf.Tensor;\ntype DB = Array<{ name: string, source: string, embedding: number[] }>;\nlet model;\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.embedding.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.face.embedding.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport function similarity(embedding1, embedding2, order = 2): number {\n if (!embedding1 || !embedding2) return 0;\n if (embedding1?.length === 0 || embedding2?.length === 0) return 0;\n if (embedding1?.length !== embedding2?.length) return 0;\n // general minkowski distance, euclidean distance is limited case where order is 2\n const distance = embedding1\n .map((val, i) => (Math.abs(embedding1[i] - embedding2[i]) ** order)) // distance squared\n .reduce((sum, now) => (sum + now), 0) // sum all distances\n ** (1 / order); // get root of\n const res = Math.max(Math.trunc(1000 * (1 - distance)) / 1000, 0);\n return res;\n}\n\nexport function match(embedding: Array, db: DB, threshold = 0) {\n let best = { similarity: 0, name: '', source: '', embedding: [] as number[] };\n if (!embedding || !db || !Array.isArray(embedding) || !Array.isArray(db)) return best;\n for (const f of db) {\n if (f.embedding && f.name) {\n const perc = similarity(embedding, f.embedding);\n if (perc > threshold && perc > best.similarity) best = { ...f, similarity: perc };\n }\n }\n return best;\n}\n\nexport function enhance(input): Tensor {\n const image = tf.tidy(() => {\n // input received from detector is already normalized to 0..1\n // input is also assumed to be straightened\n // const data = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model\n // do a tight crop of image and resize it to fit the model\n const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n const tensor = input.image || input.tensor;\n if (!(tensor instanceof tf.Tensor)) return null;\n const crop = (tensor.shape.length === 3)\n ? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing\n : tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n\n // convert to black&white to avoid colorization impact\n const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const [red, green, blue] = tf.split(crop, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n\n /*\n // optional increase image contrast\n // or do it per-channel so mean is done on each channel\n // or do it based on histogram\n const mean = merge.mean();\n const factor = 5;\n const contrast = merge.sub(mean).mul(factor).add(mean);\n */\n\n // normalize brightness from 0..1\n const darken = merge.sub(merge.min());\n const lighten = darken.div(darken.max());\n\n return lighten;\n });\n return image;\n}\n\nexport async function predict(input, config): Promise {\n if (!model) return [];\n return new Promise(async (resolve) => {\n // let data: Array<[]> = [];\n let data: Array = [];\n if (config.face.embedding.enabled) {\n const image = enhance(input);\n if (!config.profile) {\n data = tf.tidy(() => {\n /*\n // if needed convert from NHWC to NCHW\n const nchw = image.transpose([3, 0, 1, 2]);\n */\n\n const res = model.predict(image);\n\n /*\n // optionally do it twice with flipped image and average results\n const res1 = model.predict(image);\n const flipped = tf.image.flipLeftRight(image);\n const res2 = model.predict(flipped);\n const merge = tf.stack([res1, res2], 2).squeeze();\n const res = reshape.logSumExp(1);\n */\n\n /*\n // optional normalize outputs with l2 normalization\n const scaled = tf.tidy(() => {\n const l2 = res.norm('euclidean');\n const scale = res.div(l2);\n return scale;\n });\n */\n\n // optional reduce feature vector complexity\n const reshape = res.reshape([128, 2]); // split 256 vectors into 128 x 2\n const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it\n\n const output: Array = reduce.dataSync();\n return [...output]; // convert typed array to simple array\n });\n } else {\n const profileData = await tf.profile(() => model.predict({ img_inputs: image }));\n data = [...profileData.result.dataSync()];\n profileData.result.dispose();\n profile.run('emotion', profileData);\n }\n tf.dispose(image);\n }\n resolve(data);\n });\n}\n\n/*\ngit clone https://github.com/becauseofAI/MobileFace\ncd MobileFace/MobileFace_Identification\nmmconvert --srcFramework mxnet --inputWeight MobileFace_Identification_V3-0000.params --inputNetwork MobileFace_Identification_V3-symbol.json --inputShape 3,112,112 --dstFramework tensorflow --outputModel saved\nsaved_model_cli show --dir saved/\ntensorflowjs_converter --input_format tf_saved_model --output_format tfjs_graph_model --saved_model_tags train saved/ graph/\n~/dev/detector/signature.js graph/\n2021-03-12 08:25:12 DATA: created on: 2021-03-12T13:17:11.960Z\n2021-03-12 08:25:12 INFO: graph model: /home/vlado/dev/face/MobileFace/MobileFace_Identification/graph/model.json\n2021-03-12 08:25:12 INFO: size: { unreliable: true, numTensors: 75, numDataBuffers: 75, numBytes: 2183192 }\n2021-03-12 08:25:12 INFO: model inputs based on signature\n2021-03-12 08:25:12 INFO: model outputs based on signature\n2021-03-12 08:25:12 DATA: inputs: [ { name: 'data:0', dtype: 'DT_FLOAT', shape: [ -1, 112, 112, 3, [length]: 4 ] }, [length]: 1 ]\n2021-03-12 08:25:12 DATA: outputs: [ { id: 0, name: 'batchnorm0/add_1:0', dytpe: 'DT_FLOAT', shape: [ -1, 256, [length]: 2 ] }, [length]: 1 ]\n*/\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\nlet model;\nlet last = { age: 0 };\nlet skipped = Number.MAX_SAFE_INTEGER;\n\ntype Tensor = typeof tf.Tensor;\ntype DB = Array<{ name: string, source: string, embedding: number[] }>;\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.description.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.face.description.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport function similarity(embedding1, embedding2, order = 2): number {\n if (!embedding1 || !embedding2) return 0;\n if (embedding1?.length === 0 || embedding2?.length === 0) return 0;\n if (embedding1?.length !== embedding2?.length) return 0;\n // general minkowski distance, euclidean distance is limited case where order is 2\n const distance = 5.0 * embedding1\n .map((val, i) => (Math.abs(embedding1[i] - embedding2[i]) ** order)) // distance squared\n .reduce((sum, now) => (sum + now), 0) // sum all distances\n ** (1 / order); // get root of\n const res = Math.max(0, 100 - distance) / 100.0;\n return res;\n}\n\nexport function match(embedding: Array, db: DB, threshold = 0) {\n let best = { similarity: 0, name: '', source: '', embedding: [] as number[] };\n if (!embedding || !db || !Array.isArray(embedding) || !Array.isArray(db)) return best;\n for (const f of db) {\n if (f.embedding && f.name) {\n const perc = similarity(embedding, f.embedding);\n if (perc > threshold && perc > best.similarity) best = { ...f, similarity: perc };\n }\n }\n return best;\n}\n\nexport function enhance(input): Tensor {\n const image = tf.tidy(() => {\n // input received from detector is already normalized to 0..1\n // input is also assumed to be straightened\n const tensor = input.image || input.tensor || input;\n if (!(tensor instanceof tf.Tensor)) return null;\n // do a tight crop of image and resize it to fit the model\n const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // const box = [[0.0, 0.0, 1.0, 1.0]]; // basically no crop for test\n const crop = (tensor.shape.length === 3)\n ? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing\n : tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n // const crop = tf.image.resizeBilinear(tensor, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model\n\n /*\n // convert to black&white to avoid colorization impact\n const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const [red, green, blue] = tf.split(crop, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n */\n\n /*\n // optional increase image contrast\n // or do it per-channel so mean is done on each channel\n // or do it based on histogram\n const mean = merge.mean();\n const factor = 5;\n const contrast = merge.sub(mean).mul(factor).add(mean);\n */\n\n /*\n // normalize brightness from 0..1\n const darken = crop.sub(crop.min());\n const lighten = darken.div(darken.max());\n */\n\n const norm = crop.mul(255);\n\n return norm;\n });\n return image;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if ((skipped < config.face.description.skipFrames) && config.videoOptimized && last.age && (last.age > 0)) {\n skipped++;\n return last;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const enhanced = enhance(image);\n\n let resT;\n const obj = {\n age: 0,\n gender: 'unknown',\n genderConfidence: 0,\n descriptor: [] };\n\n if (!config.profile) {\n if (config.face.description.enabled) resT = await model.predict(enhanced);\n } else {\n const profileDesc = config.face.description.enabled ? await tf.profile(() => model.predict(enhanced)) : {};\n resT = profileDesc.result;\n profile.run('faceres', profileDesc);\n }\n tf.dispose(enhanced);\n\n if (resT) {\n tf.tidy(() => {\n const gender = resT.find((t) => t.shape[1] === 1).dataSync();\n const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;\n if (confidence > config.face.gender.minConfidence) {\n obj.gender = gender[0] <= 0.5 ? 'female' : 'male';\n obj.genderConfidence = Math.min(0.99, confidence);\n }\n const age = resT.find((t) => t.shape[1] === 100).argMax(1).dataSync()[0];\n const all = resT.find((t) => t.shape[1] === 100).dataSync();\n obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;\n\n const desc = resT.find((t) => t.shape[1] === 1024);\n // const reshape = desc.reshape([128, 8]);\n // const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it\n\n obj.descriptor = [...desc.dataSync()];\n });\n resT.forEach((t) => tf.dispose(t));\n }\n\n last = obj;\n resolve(obj);\n });\n}\n", "import { log, now } from './helpers';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as age from './age/age';\nimport * as gender from './gender/gender';\nimport * as emotion from './emotion/emotion';\nimport * as embedding from './embedding/embedding';\nimport * as faceres from './faceres/faceres';\n\ntype Tensor = typeof tf.Tensor;\n\nconst calculateFaceAngle = (face, image_size): { angle: { pitch: number, yaw: number, roll: number }, matrix: [number, number, number, number, number, number, number, number, number] } => {\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const degrees = (theta) => (theta * 180) / Math.PI;\n // const degrees = (theta) => Math.abs(((theta * 180) / Math.PI) % 360);\n const normalize = (v) => { // normalize vector\n const length = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);\n v[0] /= length;\n v[1] /= length;\n v[2] /= length;\n return v;\n };\n const subVectors = (a, b) => { // vector subtraction (a - b)\n const x = a[0] - b[0];\n const y = a[1] - b[1];\n const z = a[2] - b[2];\n return [x, y, z];\n };\n const crossVectors = (a, b) => { // vector cross product (a x b)\n const x = a[1] * b[2] - a[2] * b[1];\n const y = a[2] * b[0] - a[0] * b[2];\n const z = a[0] * b[1] - a[1] * b[0];\n return [x, y, z];\n };\n // 3x3 rotation matrix to Euler angles based on https://www.geometrictools.com/Documentation/EulerAngles.pdf\n const rotationMatrixToEulerAngle = (r) => {\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const [r00, r01, r02, r10, r11, r12, r20, r21, r22] = r;\n let thetaX; let thetaY; let thetaZ;\n if (r10 < 1) { // YZX calculation\n if (r10 > -1) {\n thetaZ = Math.asin(r10);\n thetaY = Math.atan2(-r20, r00);\n thetaX = Math.atan2(-r12, r11);\n } else {\n thetaZ = -Math.PI / 2;\n thetaY = -Math.atan2(r21, r22);\n thetaX = 0;\n }\n } else {\n thetaZ = Math.PI / 2;\n thetaY = Math.atan2(r21, r22);\n thetaX = 0;\n }\n return { pitch: 2 * -thetaX, yaw: 2 * -thetaY, roll: 2 * -thetaZ };\n };\n // simple Euler angle calculation based existing 3D mesh\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const meshToEulerAngle = (mesh) => {\n const radians = (a1, a2, b1, b2) => Math.atan2(b2 - a2, b1 - a1);\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const angle = {\n // values are in radians in range of -pi/2 to pi/2 which is -90 to +90 degrees\n // value of 0 means center\n // pitch is face move up/down\n pitch: radians(mesh[10][1], mesh[10][2], mesh[152][1], mesh[152][2]), // looking at y,z of top and bottom points of the face\n // yaw is face turn left/right\n yaw: radians(mesh[33][0], mesh[33][2], mesh[263][0], mesh[263][2]), // looking at x,z of outside corners of leftEye and rightEye\n // roll is face lean left/right\n roll: radians(mesh[33][0], mesh[33][1], mesh[263][0], mesh[263][1]), // looking at x,y of outside corners of leftEye and rightEye\n };\n return angle;\n };\n\n const mesh = face.meshRaw;\n if (!mesh || mesh.length < 300) return { angle: { pitch: 0, yaw: 0, roll: 0 }, matrix: [1, 0, 0, 0, 1, 0, 0, 0, 1] };\n\n const size = Math.max(face.boxRaw[2] * image_size[0], face.boxRaw[3] * image_size[1]) / 1.5;\n // top, bottom, left, right\n const pts = [mesh[10], mesh[152], mesh[234], mesh[454]].map((pt) => [\n // make the xyz coordinates proportional, independent of the image/box size\n pt[0] * image_size[0] / size,\n pt[1] * image_size[1] / size,\n pt[2],\n ]);\n\n const y_axis = normalize(subVectors(pts[1], pts[0]));\n let x_axis = normalize(subVectors(pts[3], pts[2]));\n const z_axis = normalize(crossVectors(x_axis, y_axis));\n // adjust x_axis to make sure that all axes are perpendicular to each other\n x_axis = crossVectors(y_axis, z_axis);\n\n // Rotation Matrix from Axis Vectors - http://renderdan.blogspot.com/2006/05/rotation-matrix-from-axis-vectors.html\n // 3x3 rotation matrix is flatten to array in row-major order. Note that the rotation represented by this matrix is inverted.\n const matrix: [number, number, number, number, number, number, number, number, number] = [\n x_axis[0], x_axis[1], x_axis[2],\n y_axis[0], y_axis[1], y_axis[2],\n z_axis[0], z_axis[1], z_axis[2],\n ];\n const angle = rotationMatrixToEulerAngle(matrix);\n // const angle = meshToEulerAngle(mesh);\n return { angle, matrix };\n};\n\nexport const detectFace = async (parent, input): Promise => {\n // run facemesh, includes blazeface and iris\n // eslint-disable-next-line no-async-promise-executor\n let timeStamp;\n let ageRes;\n let genderRes;\n let emotionRes;\n let embeddingRes;\n let descRes;\n const faceRes: Array<{\n confidence: number,\n boxConfidence: number,\n faceConfidence: number,\n box: [number, number, number, number],\n mesh: Array<[number, number, number]>\n meshRaw: Array<[number, number, number]>\n boxRaw: [number, number, number, number],\n annotations: Array<{ part: string, points: Array<[number, number, number]>[] }>,\n age: number,\n gender: string,\n genderConfidence: number,\n emotion: string,\n embedding: number[],\n iris: number,\n rotation: {\n angle: { pitch: number, yaw: number, roll: number },\n matrix: [number, number, number, number, number, number, number, number, number]\n },\n tensor: Tensor,\n }> = [];\n parent.state = 'run:face';\n timeStamp = now();\n const faces = await parent.models.face?.estimateFaces(input, parent.config);\n parent.perf.face = Math.trunc(now() - timeStamp);\n if (!faces) return [];\n for (const face of faces) {\n parent.analyze('Get Face');\n\n // is something went wrong, skip the face\n if (!face.image || face.image.isDisposedInternal) {\n log('Face object is disposed:', face.image);\n continue;\n }\n\n const rotation = calculateFaceAngle(face, [input.shape[2], input.shape[1]]);\n\n // run age, inherits face from blazeface\n parent.analyze('Start Age:');\n if (parent.config.async) {\n ageRes = parent.config.face.age.enabled ? age.predict(face.image, parent.config) : {};\n } else {\n parent.state = 'run:age';\n timeStamp = now();\n ageRes = parent.config.face.age.enabled ? await age.predict(face.image, parent.config) : {};\n parent.perf.age = Math.trunc(now() - timeStamp);\n }\n\n // run gender, inherits face from blazeface\n parent.analyze('Start Gender:');\n if (parent.config.async) {\n genderRes = parent.config.face.gender.enabled ? gender.predict(face.image, parent.config) : {};\n } else {\n parent.state = 'run:gender';\n timeStamp = now();\n genderRes = parent.config.face.gender.enabled ? await gender.predict(face.image, parent.config) : {};\n parent.perf.gender = Math.trunc(now() - timeStamp);\n }\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Emotion:');\n if (parent.config.async) {\n emotionRes = parent.config.face.emotion.enabled ? emotion.predict(face.image, parent.config) : {};\n } else {\n parent.state = 'run:emotion';\n timeStamp = now();\n emotionRes = parent.config.face.emotion.enabled ? await emotion.predict(face.image, parent.config) : {};\n parent.perf.emotion = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Emotion:');\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Embedding:');\n if (parent.config.async) {\n embeddingRes = parent.config.face.embedding.enabled ? embedding.predict(face, parent.config) : [];\n } else {\n parent.state = 'run:embedding';\n timeStamp = now();\n embeddingRes = parent.config.face.embedding.enabled ? await embedding.predict(face, parent.config) : [];\n parent.perf.embedding = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Embedding:');\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Description:');\n if (parent.config.async) {\n descRes = parent.config.face.description.enabled ? faceres.predict(face, parent.config) : [];\n } else {\n parent.state = 'run:description';\n timeStamp = now();\n descRes = parent.config.face.description.enabled ? await faceres.predict(face.image, parent.config) : [];\n parent.perf.embedding = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Description:');\n\n // if async wait for results\n if (parent.config.async) {\n [ageRes, genderRes, emotionRes, embeddingRes, descRes] = await Promise.all([ageRes, genderRes, emotionRes, embeddingRes, descRes]);\n }\n\n parent.analyze('Finish Face:');\n\n // calculate iris distance\n // iris: array[ center, left, top, right, bottom]\n if (!parent.config.face.iris.enabled && face?.annotations?.leftEyeIris && face?.annotations?.rightEyeIris) {\n delete face.annotations.leftEyeIris;\n delete face.annotations.rightEyeIris;\n }\n const irisSize = (face.annotations?.leftEyeIris && face.annotations?.rightEyeIris)\n /* average human iris size is 11.7mm */\n ? 11.7 * Math.max(Math.abs(face.annotations.leftEyeIris[3][0] - face.annotations.leftEyeIris[1][0]), Math.abs(face.annotations.rightEyeIris[4][1] - face.annotations.rightEyeIris[2][1]))\n : 0;\n\n // combine results\n faceRes.push({\n ...face,\n age: descRes.age || ageRes.age,\n gender: descRes.gender || genderRes.gender,\n genderConfidence: descRes.genderConfidence || genderRes.confidence,\n embedding: descRes.descriptor || embeddingRes,\n emotion: emotionRes,\n iris: (irisSize !== 0) ? Math.trunc(irisSize) / 100 : 0,\n rotation,\n tensor: parent.config.face.detector.return ? face.image?.squeeze() : null,\n });\n // dispose original face tensor\n face.image?.dispose();\n\n parent.analyze('End Face');\n }\n parent.analyze('End FaceMesh:');\n if (parent.config.async) {\n if (parent.perf.face) delete parent.perf.face;\n if (parent.perf.age) delete parent.perf.age;\n if (parent.perf.gender) delete parent.perf.gender;\n if (parent.perf.emotion) delete parent.perf.emotion;\n }\n return faceRes;\n};\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as blazeface from './blazeface';\nimport * as facepipeline from './facepipeline';\nimport * as coords from './coords';\n\nexport class MediaPipeFaceMesh {\n facePipeline: any;\n config: any;\n\n constructor(blazeFace, blazeMeshModel, irisModel, config) {\n this.facePipeline = new facepipeline.Pipeline(blazeFace, blazeMeshModel, irisModel);\n this.config = config;\n }\n\n async estimateFaces(input, config): Promise<{ confidence, boxConfidence, faceConfidence, box, mesh, boxRaw, meshRaw, annotations, image }[]> {\n const predictions = await this.facePipeline.predict(input, config);\n const results: Array<{ confidence, boxConfidence, faceConfidence, box, mesh, boxRaw, meshRaw, annotations, image }> = [];\n for (const prediction of (predictions || [])) {\n if (prediction.isDisposedInternal) continue; // guard against disposed tensors on long running operations such as pause in middle of processing\n const mesh = prediction.coords ? prediction.coords.arraySync() : [];\n const meshRaw = mesh.map((pt) => [\n pt[0] / input.shape[2],\n pt[1] / input.shape[1],\n pt[2] / this.facePipeline.meshSize,\n ]);\n const annotations = {};\n if (mesh && mesh.length > 0) {\n for (const key of Object.keys(coords.MESH_ANNOTATIONS)) annotations[key] = coords.MESH_ANNOTATIONS[key].map((index) => mesh[index]);\n }\n const box = prediction.box ? [\n Math.max(0, prediction.box.startPoint[0]),\n Math.max(0, prediction.box.startPoint[1]),\n Math.min(input.shape[2], prediction.box.endPoint[0]) - Math.max(0, prediction.box.startPoint[0]),\n Math.min(input.shape[1], prediction.box.endPoint[1]) - Math.max(0, prediction.box.startPoint[1]),\n ] : 0;\n const boxRaw = prediction.box ? [\n prediction.box.startPoint[0] / input.shape[2],\n prediction.box.startPoint[1] / input.shape[1],\n (prediction.box.endPoint[0] - prediction.box.startPoint[0]) / input.shape[2],\n (prediction.box.endPoint[1] - prediction.box.startPoint[1]) / input.shape[1],\n ] : [];\n results.push({\n confidence: Math.round(100 * prediction.faceConfidence || 100 * prediction.boxConfidence || 0) / 100,\n boxConfidence: Math.round(100 * prediction.boxConfidence) / 100,\n faceConfidence: Math.round(100 * prediction.faceConfidence) / 100,\n box,\n boxRaw,\n mesh,\n meshRaw,\n annotations,\n image: prediction.image ? prediction.image.clone() : null,\n });\n if (prediction.coords) prediction.coords.dispose();\n if (prediction.image) prediction.image.dispose();\n }\n return results;\n }\n}\n\nlet faceModels:[any, any, any] = [null, null, null];\nexport async function load(config): Promise {\n if ((!faceModels[0] && config.face.enabled) || (!faceModels[1] && config.face.mesh.enabled) || (!faceModels[2] && config.face.iris.enabled)) {\n faceModels = await Promise.all([\n (!faceModels[0] && config.face.enabled) ? blazeface.load(config) : null,\n (!faceModels[1] && config.face.mesh.enabled) ? tf.loadGraphModel(join(config.modelBasePath, config.face.mesh.modelPath), { fromTFHub: config.face.mesh.modelPath.includes('tfhub.dev') }) : null,\n (!faceModels[2] && config.face.iris.enabled) ? tf.loadGraphModel(join(config.modelBasePath, config.face.iris.modelPath), { fromTFHub: config.face.iris.modelPath.includes('tfhub.dev') }) : null,\n ]);\n if (config.face.mesh.enabled) {\n if (!faceModels[1] || !faceModels[1].modelUrl) log('load model failed:', config.face.mesh.modelPath);\n else if (config.debug) log('load model:', faceModels[1].modelUrl);\n }\n if (config.face.iris.enabled) {\n if (!faceModels[2] || !faceModels[1].modelUrl) log('load model failed:', config.face.iris.modelPath);\n else if (config.debug) log('load model:', faceModels[2].modelUrl);\n }\n } else if (config.debug) {\n log('cached model:', faceModels[0].model.modelUrl);\n log('cached model:', faceModels[1].modelUrl);\n log('cached model:', faceModels[2].modelUrl);\n }\n const faceMesh = new MediaPipeFaceMesh(faceModels[0], faceModels[1], faceModels[2], config);\n return faceMesh;\n}\n\nexport const triangulation = coords.TRI468;\nexport const uvmap = coords.UV468;\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\n\nconst NUM_LANDMARKS = 6;\n\nfunction generateAnchors(inputSize) {\n const spec = { strides: [inputSize / 16, inputSize / 8], anchors: [2, 6] };\n const anchors: Array<[number, number]> = [];\n for (let i = 0; i < spec.strides.length; i++) {\n const stride = spec.strides[i];\n const gridRows = Math.floor((inputSize + stride - 1) / stride);\n const gridCols = Math.floor((inputSize + stride - 1) / stride);\n const anchorsNum = spec.anchors[i];\n for (let gridY = 0; gridY < gridRows; gridY++) {\n const anchorY = stride * (gridY + 0.5);\n for (let gridX = 0; gridX < gridCols; gridX++) {\n const anchorX = stride * (gridX + 0.5);\n for (let n = 0; n < anchorsNum; n++) {\n anchors.push([anchorX, anchorY]);\n }\n }\n }\n }\n return anchors;\n}\n\nexport const disposeBox = (box) => {\n box.startEndTensor.dispose();\n box.startPoint.dispose();\n box.endPoint.dispose();\n};\n\nconst createBox = (startEndTensor) => ({\n startEndTensor,\n startPoint: tf.slice(startEndTensor, [0, 0], [-1, 2]),\n endPoint: tf.slice(startEndTensor, [0, 2], [-1, 2]),\n});\n\nfunction decodeBounds(boxOutputs, anchors, inputSize) {\n const boxStarts = tf.slice(boxOutputs, [0, 1], [-1, 2]);\n const centers = tf.add(boxStarts, anchors);\n const boxSizes = tf.slice(boxOutputs, [0, 3], [-1, 2]);\n const boxSizesNormalized = tf.div(boxSizes, inputSize);\n const centersNormalized = tf.div(centers, inputSize);\n const halfBoxSize = tf.div(boxSizesNormalized, 2);\n const starts = tf.sub(centersNormalized, halfBoxSize);\n const ends = tf.add(centersNormalized, halfBoxSize);\n const startNormalized = tf.mul(starts, inputSize);\n const endNormalized = tf.mul(ends, inputSize);\n const concatAxis = 1;\n return tf.concat2d([startNormalized, endNormalized], concatAxis);\n}\n\nexport class BlazeFaceModel {\n model: any;\n anchorsData: any;\n anchors: any;\n inputSize: number;\n config: any;\n\n constructor(model, config) {\n this.model = model;\n this.anchorsData = generateAnchors(model.inputs[0].shape[1]);\n this.anchors = tf.tensor2d(this.anchorsData);\n this.inputSize = model.inputs[0].shape[2];\n this.config = config;\n }\n\n async getBoundingBoxes(inputImage) {\n // sanity check on input\n if ((!inputImage) || (inputImage.isDisposedInternal) || (inputImage.shape.length !== 4) || (inputImage.shape[1] < 1) || (inputImage.shape[2] < 1)) return null;\n const [batch, boxes, scores] = tf.tidy(() => {\n const resizedImage = inputImage.resizeBilinear([this.inputSize, this.inputSize]);\n // const normalizedImage = tf.mul(tf.sub(resizedImage.div(255), 0.5), 2);\n const normalizedImage = resizedImage.div(127.5).sub(0.5);\n const batchedPrediction = this.model.predict(normalizedImage);\n let batchOut;\n // are we using tfhub or pinto converted model?\n if (Array.isArray(batchedPrediction)) {\n const sorted = batchedPrediction.sort((a, b) => a.size - b.size);\n const concat384 = tf.concat([sorted[0], sorted[2]], 2); // dim: 384, 1 + 16\n const concat512 = tf.concat([sorted[1], sorted[3]], 2); // dim: 512, 1 + 16\n const concat = tf.concat([concat512, concat384], 1);\n batchOut = concat.squeeze(0);\n } else {\n batchOut = batchedPrediction.squeeze(); // when using tfhub model\n }\n const boxesOut = decodeBounds(batchOut, this.anchors, [this.inputSize, this.inputSize]);\n const logits = tf.slice(batchOut, [0, 0], [-1, 1]);\n const scoresOut = tf.sigmoid(logits).squeeze();\n return [batchOut, boxesOut, scoresOut];\n });\n const boxIndicesTensor = await tf.image.nonMaxSuppressionAsync(boxes, scores, this.config.face.detector.maxFaces, this.config.face.detector.iouThreshold, this.config.face.detector.scoreThreshold);\n const boxIndices = boxIndicesTensor.arraySync();\n boxIndicesTensor.dispose();\n const boundingBoxesMap = boxIndices.map((boxIndex) => tf.slice(boxes, [boxIndex, 0], [1, -1]));\n const boundingBoxes = boundingBoxesMap.map((boundingBox) => {\n const vals = boundingBox.arraySync();\n boundingBox.dispose();\n return vals;\n });\n\n const scoresVal = scores.dataSync();\n const annotatedBoxes: Array<{ box: any, landmarks: any, anchor: any, confidence: number }> = [];\n for (let i = 0; i < boundingBoxes.length; i++) {\n const boxIndex = boxIndices[i];\n const confidence = scoresVal[boxIndex];\n if (confidence > this.config.face.detector.minConfidence) {\n const box = createBox(boundingBoxes[i]);\n const anchor = this.anchorsData[boxIndex];\n const landmarks = tf.tidy(() => tf.slice(batch, [boxIndex, NUM_LANDMARKS - 1], [1, -1]).squeeze().reshape([NUM_LANDMARKS, -1]));\n annotatedBoxes.push({ box, landmarks, anchor, confidence });\n }\n }\n batch.dispose();\n boxes.dispose();\n scores.dispose();\n return {\n boxes: annotatedBoxes,\n scaleFactor: [inputImage.shape[2] / this.inputSize, inputImage.shape[1] / this.inputSize],\n };\n }\n}\n\nexport async function load(config) {\n const model = await tf.loadGraphModel(join(config.modelBasePath, config.face.detector.modelPath), { fromTFHub: config.face.detector.modelPath.includes('tfhub.dev') });\n const blazeFace = new BlazeFaceModel(model, config);\n if (!model || !model.modelUrl) log('load model failed:', config.face.detector.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n return blazeFace;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n return { startPoint, endPoint };\n}\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]];\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]];\n return { startPoint, endPoint, landmarks: box.landmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [centers[0] - halfSize, centers[1] - halfSize];\n const endPoint = [centers[0] + halfSize, centers[1] + halfSize];\n return { startPoint, endPoint, landmarks: box.landmarks };\n}\n", "export const IDENTITY_MATRIX = [[1, 0, 0], [0, 1, 0], [0, 0, 1]];\n/**\n * Normalizes the provided angle to the range -pi to pi.\n * @param angle The angle in radians to be normalized.\n */\nexport function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\n/**\n * Computes the angle of rotation between two anchor points.\n * @param point1 First anchor point\n * @param point2 Second anchor point\n */\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport function radToDegrees(rad) {\n return rad * 180 / Math.PI;\n}\n\nexport function buildTranslationMatrix(x, y) {\n return [[1, 0, x], [0, 1, y], [0, 0, 1]];\n}\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n\nexport function xyDistanceBetweenPoints(a, b) {\n return Math.sqrt(((a[0] - b[0]) ** 2) + ((a[1] - b[1]) ** 2));\n}\n", "export const MESH_ANNOTATIONS = {\n silhouette: [\n 10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288,\n 397, 365, 379, 378, 400, 377, 152, 148, 176, 149, 150, 136,\n 172, 58, 132, 93, 234, 127, 162, 21, 54, 103, 67, 109,\n ],\n lipsUpperOuter: [61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291],\n lipsLowerOuter: [146, 91, 181, 84, 17, 314, 405, 321, 375, 291],\n lipsUpperInner: [78, 191, 80, 81, 82, 13, 312, 311, 310, 415, 308],\n lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308],\n rightEyeUpper0: [246, 161, 160, 159, 158, 157, 173],\n rightEyeLower0: [33, 7, 163, 144, 145, 153, 154, 155, 133],\n rightEyeUpper1: [247, 30, 29, 27, 28, 56, 190],\n rightEyeLower1: [130, 25, 110, 24, 23, 22, 26, 112, 243],\n rightEyeUpper2: [113, 225, 224, 223, 222, 221, 189],\n rightEyeLower2: [226, 31, 228, 229, 230, 231, 232, 233, 244],\n rightEyeLower3: [143, 111, 117, 118, 119, 120, 121, 128, 245],\n rightEyebrowUpper: [156, 70, 63, 105, 66, 107, 55, 193],\n rightEyebrowLower: [35, 124, 46, 53, 52, 65],\n rightEyeIris: [473, 474, 475, 476, 477],\n leftEyeUpper0: [466, 388, 387, 386, 385, 384, 398],\n leftEyeLower0: [263, 249, 390, 373, 374, 380, 381, 382, 362],\n leftEyeUpper1: [467, 260, 259, 257, 258, 286, 414],\n leftEyeLower1: [359, 255, 339, 254, 253, 252, 256, 341, 463],\n leftEyeUpper2: [342, 445, 444, 443, 442, 441, 413],\n leftEyeLower2: [446, 261, 448, 449, 450, 451, 452, 453, 464],\n leftEyeLower3: [372, 340, 346, 347, 348, 349, 350, 357, 465],\n leftEyebrowUpper: [383, 300, 293, 334, 296, 336, 285, 417],\n leftEyebrowLower: [265, 353, 276, 283, 282, 295],\n leftEyeIris: [468, 469, 470, 471, 472],\n midwayBetweenEyes: [168],\n noseTip: [1],\n noseBottom: [2],\n noseRightCorner: [98],\n noseLeftCorner: [327],\n rightCheek: [205],\n leftCheek: [425],\n};\n\nexport const MESH_TO_IRIS_INDICES_MAP = [ // A mapping from facemesh model keypoints to iris model keypoints.\n { key: 'EyeUpper0', indices: [9, 10, 11, 12, 13, 14, 15] },\n { key: 'EyeUpper1', indices: [25, 26, 27, 28, 29, 30, 31] },\n { key: 'EyeUpper2', indices: [41, 42, 43, 44, 45, 46, 47] },\n { key: 'EyeLower0', indices: [0, 1, 2, 3, 4, 5, 6, 7, 8] },\n { key: 'EyeLower1', indices: [16, 17, 18, 19, 20, 21, 22, 23, 24] },\n { key: 'EyeLower2', indices: [32, 33, 34, 35, 36, 37, 38, 39, 40] },\n { key: 'EyeLower3', indices: [54, 55, 56, 57, 58, 59, 60, 61, 62] },\n // { key: 'EyebrowUpper', indices: [63, 64, 65, 66, 67, 68, 69, 70] },\n // { key: 'EyebrowLower', indices: [48, 49, 50, 51, 52, 53] },\n];\n\nexport const UV468 = [\n [0.499976992607117, 0.652534008026123],\n [0.500025987625122, 0.547487020492554],\n [0.499974012374878, 0.602371990680695],\n [0.482113003730774, 0.471979022026062],\n [0.500150978565216, 0.527155995368958],\n [0.499909996986389, 0.498252987861633],\n [0.499523013830185, 0.40106201171875],\n [0.289712011814117, 0.380764007568359],\n [0.499954998493195, 0.312398016452789],\n [0.499987006187439, 0.269918978214264],\n [0.500023007392883, 0.107050001621246],\n [0.500023007392883, 0.666234016418457],\n [0.5000159740448, 0.679224014282227],\n [0.500023007392883, 0.692348003387451],\n [0.499976992607117, 0.695277988910675],\n [0.499976992607117, 0.70593398809433],\n [0.499976992607117, 0.719385027885437],\n [0.499976992607117, 0.737019002437592],\n [0.499967992305756, 0.781370997428894],\n [0.499816000461578, 0.562981009483337],\n [0.473773002624512, 0.573909997940063],\n [0.104906998574734, 0.254140973091125],\n [0.365929991006851, 0.409575998783112],\n [0.338757991790771, 0.41302502155304],\n [0.311120003461838, 0.409460008144379],\n [0.274657994508743, 0.389131009578705],\n [0.393361985683441, 0.403706014156342],\n [0.345234006643295, 0.344011008739471],\n [0.370094001293182, 0.346076011657715],\n [0.319321990013123, 0.347265005111694],\n [0.297903001308441, 0.353591024875641],\n [0.24779200553894, 0.410809993743896],\n [0.396889001131058, 0.842755019664764],\n [0.280097991228104, 0.375599980354309],\n [0.106310002505779, 0.399955987930298],\n [0.2099249958992, 0.391353011131287],\n [0.355807989835739, 0.534406006336212],\n [0.471751004457474, 0.65040397644043],\n [0.474155008792877, 0.680191993713379],\n [0.439785003662109, 0.657229006290436],\n [0.414617002010345, 0.66654098033905],\n [0.450374007225037, 0.680860996246338],\n [0.428770989179611, 0.682690978050232],\n [0.374971002340317, 0.727805018424988],\n [0.486716985702515, 0.547628998756409],\n [0.485300987958908, 0.527395009994507],\n [0.257764995098114, 0.314490020275116],\n [0.401223003864288, 0.455172002315521],\n [0.429818987846375, 0.548614978790283],\n [0.421351999044418, 0.533740997314453],\n [0.276895999908447, 0.532056987285614],\n [0.483370006084442, 0.499586999416351],\n [0.33721199631691, 0.282882988452911],\n [0.296391993761063, 0.293242990970612],\n [0.169294998049736, 0.193813979625702],\n [0.447580009698868, 0.302609980106354],\n [0.392390012741089, 0.353887975215912],\n [0.354490011930466, 0.696784019470215],\n [0.067304998636246, 0.730105042457581],\n [0.442739009857178, 0.572826027870178],\n [0.457098007202148, 0.584792017936707],\n [0.381974011659622, 0.694710969924927],\n [0.392388999462128, 0.694203019142151],\n [0.277076005935669, 0.271932005882263],\n [0.422551989555359, 0.563233017921448],\n [0.385919004678726, 0.281364023685455],\n [0.383103013038635, 0.255840003490448],\n [0.331431001424789, 0.119714021682739],\n [0.229923993349075, 0.232002973556519],\n [0.364500999450684, 0.189113974571228],\n [0.229622006416321, 0.299540996551514],\n [0.173287004232407, 0.278747975826263],\n [0.472878992557526, 0.666198015213013],\n [0.446828007698059, 0.668527007102966],\n [0.422762006521225, 0.673889994621277],\n [0.445307999849319, 0.580065965652466],\n [0.388103008270264, 0.693961024284363],\n [0.403039008378983, 0.706539988517761],\n [0.403629004955292, 0.693953037261963],\n [0.460041999816895, 0.557139039039612],\n [0.431158006191254, 0.692366003990173],\n [0.452181994915009, 0.692366003990173],\n [0.475387006998062, 0.692366003990173],\n [0.465828001499176, 0.779190003871918],\n [0.472328990697861, 0.736225962638855],\n [0.473087012767792, 0.717857003211975],\n [0.473122000694275, 0.704625964164734],\n [0.473033010959625, 0.695277988910675],\n [0.427942007780075, 0.695277988910675],\n [0.426479011774063, 0.703539967536926],\n [0.423162013292313, 0.711845993995667],\n [0.4183090031147, 0.720062971115112],\n [0.390094995498657, 0.639572978019714],\n [0.013953999616206, 0.560034036636353],\n [0.499913990497589, 0.58014702796936],\n [0.413199990987778, 0.69539999961853],\n [0.409626007080078, 0.701822996139526],\n [0.468080013990402, 0.601534962654114],\n [0.422728985548019, 0.585985004901886],\n [0.463079988956451, 0.593783974647522],\n [0.37211999297142, 0.47341400384903],\n [0.334562003612518, 0.496073007583618],\n [0.411671012639999, 0.546965003013611],\n [0.242175996303558, 0.14767599105835],\n [0.290776997804642, 0.201445996761322],\n [0.327338010072708, 0.256527006626129],\n [0.399509996175766, 0.748921036720276],\n [0.441727995872498, 0.261676013469696],\n [0.429764986038208, 0.187834024429321],\n [0.412198007106781, 0.108901023864746],\n [0.288955003023148, 0.398952007293701],\n [0.218936994671822, 0.435410976409912],\n [0.41278201341629, 0.398970007896423],\n [0.257135003805161, 0.355440020561218],\n [0.427684992551804, 0.437960982322693],\n [0.448339998722076, 0.536936044692993],\n [0.178560003638268, 0.45755398273468],\n [0.247308000922203, 0.457193970680237],\n [0.286267012357712, 0.467674970626831],\n [0.332827985286713, 0.460712015628815],\n [0.368755996227264, 0.447206974029541],\n [0.398963987827301, 0.432654976844788],\n [0.476410001516342, 0.405806005001068],\n [0.189241006970406, 0.523923993110657],\n [0.228962004184723, 0.348950982093811],\n [0.490725994110107, 0.562400996685028],\n [0.404670000076294, 0.485132992267609],\n [0.019469000399113, 0.401564002037048],\n [0.426243007183075, 0.420431017875671],\n [0.396993011236191, 0.548797011375427],\n [0.266469985246658, 0.376977026462555],\n [0.439121007919312, 0.51895797252655],\n [0.032313998788595, 0.644356966018677],\n [0.419054001569748, 0.387154996395111],\n [0.462783008813858, 0.505746960639954],\n [0.238978996872902, 0.779744982719421],\n [0.198220998048782, 0.831938028335571],\n [0.107550002634525, 0.540755033493042],\n [0.183610007166862, 0.740257024765015],\n [0.134409993886948, 0.333683013916016],\n [0.385764002799988, 0.883153975009918],\n [0.490967005491257, 0.579378008842468],\n [0.382384985685349, 0.508572995662689],\n [0.174399003386497, 0.397670984268188],\n [0.318785011768341, 0.39623498916626],\n [0.343364000320435, 0.400596976280212],\n [0.396100014448166, 0.710216999053955],\n [0.187885001301765, 0.588537991046906],\n [0.430987000465393, 0.944064974784851],\n [0.318993002176285, 0.898285031318665],\n [0.266247987747192, 0.869701027870178],\n [0.500023007392883, 0.190576016902924],\n [0.499976992607117, 0.954452991485596],\n [0.366169989109039, 0.398822009563446],\n [0.393207013607025, 0.39553701877594],\n [0.410373002290726, 0.391080021858215],\n [0.194993004202843, 0.342101991176605],\n [0.388664990663528, 0.362284004688263],\n [0.365961998701096, 0.355970978736877],\n [0.343364000320435, 0.355356991291046],\n [0.318785011768341, 0.35834002494812],\n [0.301414996385574, 0.363156020641327],\n [0.058132998645306, 0.319076001644135],\n [0.301414996385574, 0.387449026107788],\n [0.499987989664078, 0.618434011936188],\n [0.415838003158569, 0.624195992946625],\n [0.445681989192963, 0.566076993942261],\n [0.465844005346298, 0.620640993118286],\n [0.49992299079895, 0.351523995399475],\n [0.288718998432159, 0.819945991039276],\n [0.335278987884521, 0.852819979190826],\n [0.440512001514435, 0.902418971061707],\n [0.128294005990028, 0.791940987110138],\n [0.408771991729736, 0.373893976211548],\n [0.455606997013092, 0.451801002025604],\n [0.499877005815506, 0.908990025520325],\n [0.375436991453171, 0.924192011356354],\n [0.11421000212431, 0.615022003650665],\n [0.448662012815475, 0.695277988910675],\n [0.4480200111866, 0.704632043838501],\n [0.447111994028091, 0.715808033943176],\n [0.444831997156143, 0.730794012546539],\n [0.430011987686157, 0.766808986663818],\n [0.406787008047104, 0.685672998428345],\n [0.400738000869751, 0.681069016456604],\n [0.392399996519089, 0.677703022956848],\n [0.367855995893478, 0.663918972015381],\n [0.247923001646996, 0.601333022117615],\n [0.452769994735718, 0.420849978923798],\n [0.43639200925827, 0.359887003898621],\n [0.416164010763168, 0.368713974952698],\n [0.413385987281799, 0.692366003990173],\n [0.228018000721931, 0.683571994304657],\n [0.468268007040024, 0.352671027183533],\n [0.411361992359161, 0.804327011108398],\n [0.499989002943039, 0.469825029373169],\n [0.479153990745544, 0.442654013633728],\n [0.499974012374878, 0.439637005329132],\n [0.432112008333206, 0.493588984012604],\n [0.499886006116867, 0.866917014122009],\n [0.49991300702095, 0.821729004383087],\n [0.456548988819122, 0.819200992584229],\n [0.344549000263214, 0.745438992977142],\n [0.37890899181366, 0.574010014533997],\n [0.374292999505997, 0.780184984207153],\n [0.319687992334366, 0.570737957954407],\n [0.357154995203018, 0.604269981384277],\n [0.295284003019333, 0.621580958366394],\n [0.447750002145767, 0.862477004528046],\n [0.410986006259918, 0.508723020553589],\n [0.31395098567009, 0.775308012962341],\n [0.354128003120422, 0.812552988529205],\n [0.324548006057739, 0.703992962837219],\n [0.189096003770828, 0.646299958229065],\n [0.279776990413666, 0.71465802192688],\n [0.1338230073452, 0.682700991630554],\n [0.336768001317978, 0.644733011722565],\n [0.429883986711502, 0.466521978378296],\n [0.455527991056442, 0.548622965812683],\n [0.437114000320435, 0.558896005153656],\n [0.467287987470627, 0.529924988746643],\n [0.414712011814117, 0.335219979286194],\n [0.37704598903656, 0.322777986526489],\n [0.344107985496521, 0.320150971412659],\n [0.312875986099243, 0.32233202457428],\n [0.283526003360748, 0.333190023899078],\n [0.241245999932289, 0.382785975933075],\n [0.102986000478268, 0.468762993812561],\n [0.267612010240555, 0.424560010433197],\n [0.297879010438919, 0.433175981044769],\n [0.333433985710144, 0.433878004550934],\n [0.366427004337311, 0.426115989685059],\n [0.396012008190155, 0.416696012020111],\n [0.420121014118195, 0.41022801399231],\n [0.007561000064015, 0.480777025222778],\n [0.432949006557465, 0.569517970085144],\n [0.458638995885849, 0.479089021682739],\n [0.473466008901596, 0.545744001865387],\n [0.476087987422943, 0.563830018043518],\n [0.468472003936768, 0.555056989192963],\n [0.433990985155106, 0.582361996173859],\n [0.483518004417419, 0.562983989715576],\n [0.482482999563217, 0.57784903049469],\n [0.42645001411438, 0.389798998832703],\n [0.438998997211456, 0.39649498462677],\n [0.450067013502121, 0.400434017181396],\n [0.289712011814117, 0.368252992630005],\n [0.276670008897781, 0.363372981548309],\n [0.517862021923065, 0.471948027610779],\n [0.710287988185883, 0.380764007568359],\n [0.526226997375488, 0.573909997940063],\n [0.895093023777008, 0.254140973091125],\n [0.634069979190826, 0.409575998783112],\n [0.661242008209229, 0.41302502155304],\n [0.688880026340485, 0.409460008144379],\n [0.725341975688934, 0.389131009578705],\n [0.606630027294159, 0.40370500087738],\n [0.654766023159027, 0.344011008739471],\n [0.629905998706818, 0.346076011657715],\n [0.680678009986877, 0.347265005111694],\n [0.702096998691559, 0.353591024875641],\n [0.75221198797226, 0.410804986953735],\n [0.602918028831482, 0.842862963676453],\n [0.719901978969574, 0.375599980354309],\n [0.893692970275879, 0.399959981441498],\n [0.790081977844238, 0.391354024410248],\n [0.643998026847839, 0.534487962722778],\n [0.528249025344849, 0.65040397644043],\n [0.525849997997284, 0.680191040039062],\n [0.560214996337891, 0.657229006290436],\n [0.585384011268616, 0.66654098033905],\n [0.549625992774963, 0.680860996246338],\n [0.57122802734375, 0.682691991329193],\n [0.624852001667023, 0.72809898853302],\n [0.513050019741058, 0.547281980514526],\n [0.51509702205658, 0.527251958847046],\n [0.742246985435486, 0.314507007598877],\n [0.598631024360657, 0.454979002475739],\n [0.570338010787964, 0.548575043678284],\n [0.578631997108459, 0.533622980117798],\n [0.723087012767792, 0.532054007053375],\n [0.516445994377136, 0.499638974666595],\n [0.662801027297974, 0.282917976379395],\n [0.70362401008606, 0.293271005153656],\n [0.830704987049103, 0.193813979625702],\n [0.552385985851288, 0.302568018436432],\n [0.607609987258911, 0.353887975215912],\n [0.645429015159607, 0.696707010269165],\n [0.932694971561432, 0.730105042457581],\n [0.557260990142822, 0.572826027870178],\n [0.542901992797852, 0.584792017936707],\n [0.6180260181427, 0.694710969924927],\n [0.607590973377228, 0.694203019142151],\n [0.722943007946014, 0.271963000297546],\n [0.577413976192474, 0.563166975975037],\n [0.614082992076874, 0.281386971473694],\n [0.616907000541687, 0.255886018276215],\n [0.668509006500244, 0.119913995265961],\n [0.770092010498047, 0.232020974159241],\n [0.635536015033722, 0.189248979091644],\n [0.77039098739624, 0.299556016921997],\n [0.826722025871277, 0.278755009174347],\n [0.527121007442474, 0.666198015213013],\n [0.553171992301941, 0.668527007102966],\n [0.577238023281097, 0.673889994621277],\n [0.554691970348358, 0.580065965652466],\n [0.611896991729736, 0.693961024284363],\n [0.59696102142334, 0.706539988517761],\n [0.596370995044708, 0.693953037261963],\n [0.539958000183105, 0.557139039039612],\n [0.568841993808746, 0.692366003990173],\n [0.547818005084991, 0.692366003990173],\n [0.52461302280426, 0.692366003990173],\n [0.534089982509613, 0.779141008853912],\n [0.527670979499817, 0.736225962638855],\n [0.526912987232208, 0.717857003211975],\n [0.526877999305725, 0.704625964164734],\n [0.526966989040375, 0.695277988910675],\n [0.572058022022247, 0.695277988910675],\n [0.573521018028259, 0.703539967536926],\n [0.57683801651001, 0.711845993995667],\n [0.581691026687622, 0.720062971115112],\n [0.609944999217987, 0.639909982681274],\n [0.986046016216278, 0.560034036636353],\n [0.5867999792099, 0.69539999961853],\n [0.590372025966644, 0.701822996139526],\n [0.531915009021759, 0.601536989212036],\n [0.577268004417419, 0.585934996604919],\n [0.536915004253387, 0.593786001205444],\n [0.627542972564697, 0.473352015018463],\n [0.665585994720459, 0.495950996875763],\n [0.588353991508484, 0.546862006187439],\n [0.757824003696442, 0.14767599105835],\n [0.709249973297119, 0.201507985591888],\n [0.672684013843536, 0.256581008434296],\n [0.600408971309662, 0.74900496006012],\n [0.55826598405838, 0.261672019958496],\n [0.570303976535797, 0.187870979309082],\n [0.588165998458862, 0.109044015407562],\n [0.711045026779175, 0.398952007293701],\n [0.781069993972778, 0.435405015945435],\n [0.587247014045715, 0.398931980133057],\n [0.742869973182678, 0.355445981025696],\n [0.572156012058258, 0.437651991844177],\n [0.55186802148819, 0.536570012569427],\n [0.821442008018494, 0.457556009292603],\n [0.752701997756958, 0.457181990146637],\n [0.71375697851181, 0.467626988887787],\n [0.66711300611496, 0.460672974586487],\n [0.631101012229919, 0.447153985500336],\n [0.6008620262146, 0.432473003864288],\n [0.523481011390686, 0.405627012252808],\n [0.810747981071472, 0.523926019668579],\n [0.771045982837677, 0.348959028720856],\n [0.509127020835876, 0.562718033790588],\n [0.595292985439301, 0.485023975372314],\n [0.980530977249146, 0.401564002037048],\n [0.573499977588654, 0.420000016689301],\n [0.602994978427887, 0.548687994480133],\n [0.733529984951019, 0.376977026462555],\n [0.560611009597778, 0.519016981124878],\n [0.967685997486115, 0.644356966018677],\n [0.580985009670258, 0.387160003185272],\n [0.537728011608124, 0.505385041236877],\n [0.760966002941132, 0.779752969741821],\n [0.801778972148895, 0.831938028335571],\n [0.892440974712372, 0.54076099395752],\n [0.816350996494293, 0.740260004997253],\n [0.865594983100891, 0.333687007427216],\n [0.614073991775513, 0.883246004581451],\n [0.508952975273132, 0.579437971115112],\n [0.617941975593567, 0.508316040039062],\n [0.825608015060425, 0.397674977779388],\n [0.681214988231659, 0.39623498916626],\n [0.656635999679565, 0.400596976280212],\n [0.603900015354156, 0.710216999053955],\n [0.81208598613739, 0.588539004325867],\n [0.56801301240921, 0.944564998149872],\n [0.681007981300354, 0.898285031318665],\n [0.733752012252808, 0.869701027870178],\n [0.633830010890961, 0.398822009563446],\n [0.606792986392975, 0.39553701877594],\n [0.589659988880157, 0.391062021255493],\n [0.805015981197357, 0.342108011245728],\n [0.611334979534149, 0.362284004688263],\n [0.634037971496582, 0.355970978736877],\n [0.656635999679565, 0.355356991291046],\n [0.681214988231659, 0.35834002494812],\n [0.698584973812103, 0.363156020641327],\n [0.941866993904114, 0.319076001644135],\n [0.698584973812103, 0.387449026107788],\n [0.584177017211914, 0.624107003211975],\n [0.554318010807037, 0.566076993942261],\n [0.534153997898102, 0.62064003944397],\n [0.711217999458313, 0.819975018501282],\n [0.664629995822906, 0.852871000766754],\n [0.559099972248077, 0.902631998062134],\n [0.871706008911133, 0.791940987110138],\n [0.591234028339386, 0.373893976211548],\n [0.544341027736664, 0.451583981513977],\n [0.624562978744507, 0.924192011356354],\n [0.88577002286911, 0.615028977394104],\n [0.551338016986847, 0.695277988910675],\n [0.551980018615723, 0.704632043838501],\n [0.552887976169586, 0.715808033943176],\n [0.555167973041534, 0.730794012546539],\n [0.569944024085999, 0.767035007476807],\n [0.593203008174896, 0.685675978660583],\n [0.599261999130249, 0.681069016456604],\n [0.607599973678589, 0.677703022956848],\n [0.631937980651855, 0.663500010967255],\n [0.752032995223999, 0.601315021514893],\n [0.547226011753082, 0.420395016670227],\n [0.563543975353241, 0.359827995300293],\n [0.583841025829315, 0.368713974952698],\n [0.586614012718201, 0.692366003990173],\n [0.771915018558502, 0.683578014373779],\n [0.531597018241882, 0.352482974529266],\n [0.588370978832245, 0.804440975189209],\n [0.52079701423645, 0.442565023899078],\n [0.567984998226166, 0.493479013442993],\n [0.543282985687256, 0.819254994392395],\n [0.655317008495331, 0.745514988899231],\n [0.621008992195129, 0.574018001556396],\n [0.625559985637665, 0.78031200170517],\n [0.680198013782501, 0.570719003677368],\n [0.64276397228241, 0.604337990283966],\n [0.704662978649139, 0.621529996395111],\n [0.552012026309967, 0.862591981887817],\n [0.589071989059448, 0.508637011051178],\n [0.685944974422455, 0.775357007980347],\n [0.645735025405884, 0.812640011310577],\n [0.675342977046967, 0.703978002071381],\n [0.810858011245728, 0.646304965019226],\n [0.72012197971344, 0.714666962623596],\n [0.866151988506317, 0.682704985141754],\n [0.663187026977539, 0.644596993923187],\n [0.570082008838654, 0.466325998306274],\n [0.544561982154846, 0.548375964164734],\n [0.562758982181549, 0.558784961700439],\n [0.531987011432648, 0.530140042304993],\n [0.585271000862122, 0.335177004337311],\n [0.622952997684479, 0.32277899980545],\n [0.655896008014679, 0.320163011550903],\n [0.687132000923157, 0.322345972061157],\n [0.716481983661652, 0.333200991153717],\n [0.758756995201111, 0.382786989212036],\n [0.897013008594513, 0.468769013881683],\n [0.732392013072968, 0.424547016620636],\n [0.70211398601532, 0.433162987232208],\n [0.66652500629425, 0.433866024017334],\n [0.633504986763, 0.426087975502014],\n [0.603875994682312, 0.416586995124817],\n [0.579657971858978, 0.409945011138916],\n [0.992439985275269, 0.480777025222778],\n [0.567192018032074, 0.569419980049133],\n [0.54136598110199, 0.478899002075195],\n [0.526564002037048, 0.546118021011353],\n [0.523913025856018, 0.563830018043518],\n [0.531529009342194, 0.555056989192963],\n [0.566035985946655, 0.582329034805298],\n [0.51631098985672, 0.563053965568542],\n [0.5174720287323, 0.577877044677734],\n [0.573594987392426, 0.389806985855103],\n [0.560697972774506, 0.395331978797913],\n [0.549755990505219, 0.399751007556915],\n [0.710287988185883, 0.368252992630005],\n [0.723330020904541, 0.363372981548309],\n];\n\nexport const TRI468 = [\n 127, 34, 139, 11, 0, 37, 232, 231, 120, 72, 37, 39, 128, 121, 47, 232, 121, 128, 104, 69, 67, 175, 171, 148, 157, 154, 155, 118, 50, 101, 73, 39, 40, 9,\n 151, 108, 48, 115, 131, 194, 204, 211, 74, 40, 185, 80, 42, 183, 40, 92, 186, 230, 229, 118, 202, 212, 214, 83, 18, 17, 76, 61, 146, 160, 29, 30, 56,\n 157, 173, 106, 204, 194, 135, 214, 192, 203, 165, 98, 21, 71, 68, 51, 45, 4, 144, 24, 23, 77, 146, 91, 205, 50, 187, 201, 200, 18, 91, 106, 182, 90, 91,\n 181, 85, 84, 17, 206, 203, 36, 148, 171, 140, 92, 40, 39, 193, 189, 244, 159, 158, 28, 247, 246, 161, 236, 3, 196, 54, 68, 104, 193, 168, 8, 117,\n 228, 31, 189, 193, 55, 98, 97, 99, 126, 47, 100, 166, 79, 218, 155, 154, 26, 209, 49, 131, 135, 136, 150, 47, 126, 217, 223, 52, 53, 45, 51, 134, 211,\n 170, 140, 67, 69, 108, 43, 106, 91, 230, 119, 120, 226, 130, 247, 63, 53, 52, 238, 20, 242, 46, 70, 156, 78, 62, 96, 46, 53, 63, 143, 34, 227, 173,\n 155, 133, 123, 117, 111, 44, 125, 19, 236, 134, 51, 216, 206, 205, 154, 153, 22, 39, 37, 167, 200, 201, 208, 36, 142, 100, 57, 212, 202, 20, 60, 99, 28,\n 158, 157, 35, 226, 113, 160, 159, 27, 204, 202, 210, 113, 225, 46, 43, 202, 204, 62, 76, 77, 137, 123, 116, 41, 38, 72, 203, 129, 142, 64, 98, 240, 49,\n 102, 64, 41, 73, 74, 212, 216, 207, 42, 74, 184, 169, 170, 211, 170, 149, 176, 105, 66, 69, 122, 6, 168, 123, 147, 187, 96, 77, 90, 65, 55, 107, 89,\n 90, 180, 101, 100, 120, 63, 105, 104, 93, 137, 227, 15, 86, 85, 129, 102, 49, 14, 87, 86, 55, 8, 9, 100, 47, 121, 145, 23, 22, 88, 89, 179, 6, 122,\n 196, 88, 95, 96, 138, 172, 136, 215, 58, 172, 115, 48, 219, 42, 80, 81, 195, 3, 51, 43, 146, 61, 171, 175, 199, 81, 82, 38, 53, 46, 225, 144, 163, 110,\n 246, 33, 7, 52, 65, 66, 229, 228, 117, 34, 127, 234, 107, 108, 69, 109, 108, 151, 48, 64, 235, 62, 78, 191, 129, 209, 126, 111, 35, 143, 163, 161, 246,\n 117, 123, 50, 222, 65, 52, 19, 125, 141, 221, 55, 65, 3, 195, 197, 25, 7, 33, 220, 237, 44, 70, 71, 139, 122, 193, 245, 247, 130, 33, 71, 21, 162,\n 153, 158, 159, 170, 169, 150, 188, 174, 196, 216, 186, 92, 144, 160, 161, 2, 97, 167, 141, 125, 241, 164, 167, 37, 72, 38, 12, 145, 159, 160, 38, 82, 13,\n 63, 68, 71, 226, 35, 111, 158, 153, 154, 101, 50, 205, 206, 92, 165, 209, 198, 217, 165, 167, 97, 220, 115, 218, 133, 112, 243, 239, 238, 241, 214,\n 135, 169, 190, 173, 133, 171, 208, 32, 125, 44, 237, 86, 87, 178, 85, 86, 179, 84, 85, 180, 83, 84, 181, 201, 83, 182, 137, 93, 132, 76, 62, 183, 61,\n 76, 184, 57, 61, 185, 212, 57, 186, 214, 207, 187, 34, 143, 156, 79, 239, 237, 123, 137, 177, 44, 1, 4, 201, 194, 32, 64, 102, 129, 213, 215, 138, 59,\n 166, 219, 242, 99, 97, 2, 94, 141, 75, 59, 235, 24, 110, 228, 25, 130, 226, 23, 24, 229, 22, 23, 230, 26, 22, 231, 112, 26, 232, 189, 190, 243, 221, 56,\n 190, 28, 56, 221, 27, 28, 222, 29, 27, 223, 30, 29, 224, 247, 30, 225, 238, 79, 20, 166, 59, 75, 60, 75, 240, 147, 177, 215, 20, 79, 166, 187, 147, 213,\n 112, 233, 244, 233, 128, 245, 128, 114, 188, 114, 217, 174, 131, 115, 220, 217, 198, 236, 198, 131, 134, 177, 132, 58, 143, 35, 124, 110, 163, 7, 228,\n 110, 25, 356, 389, 368, 11, 302, 267, 452, 350, 349, 302, 303, 269, 357, 343, 277, 452, 453, 357, 333, 332, 297, 175, 152, 377, 384, 398, 382, 347,\n 348, 330, 303, 304, 270, 9, 336, 337, 278, 279, 360, 418, 262, 431, 304, 408, 409, 310, 415, 407, 270, 409, 410, 450, 348, 347, 422, 430, 434, 313,\n 314, 17, 306, 307, 375, 387, 388, 260, 286, 414, 398, 335, 406, 418, 364, 367, 416, 423, 358, 327, 251, 284, 298, 281, 5, 4, 373, 374, 253, 307, 320,\n 321, 425, 427, 411, 421, 313, 18, 321, 405, 406, 320, 404, 405, 315, 16, 17, 426, 425, 266, 377, 400, 369, 322, 391, 269, 417, 465, 464, 386, 257, 258,\n 466, 260, 388, 456, 399, 419, 284, 332, 333, 417, 285, 8, 346, 340, 261, 413, 441, 285, 327, 460, 328, 355, 371, 329, 392, 439, 438, 382, 341, 256,\n 429, 420, 360, 364, 394, 379, 277, 343, 437, 443, 444, 283, 275, 440, 363, 431, 262, 369, 297, 338, 337, 273, 375, 321, 450, 451, 349, 446, 342, 467,\n 293, 334, 282, 458, 461, 462, 276, 353, 383, 308, 324, 325, 276, 300, 293, 372, 345, 447, 382, 398, 362, 352, 345, 340, 274, 1, 19, 456, 248, 281, 436,\n 427, 425, 381, 256, 252, 269, 391, 393, 200, 199, 428, 266, 330, 329, 287, 273, 422, 250, 462, 328, 258, 286, 384, 265, 353, 342, 387, 259, 257, 424,\n 431, 430, 342, 353, 276, 273, 335, 424, 292, 325, 307, 366, 447, 345, 271, 303, 302, 423, 266, 371, 294, 455, 460, 279, 278, 294, 271, 272, 304, 432,\n 434, 427, 272, 407, 408, 394, 430, 431, 395, 369, 400, 334, 333, 299, 351, 417, 168, 352, 280, 411, 325, 319, 320, 295, 296, 336, 319, 403, 404, 330,\n 348, 349, 293, 298, 333, 323, 454, 447, 15, 16, 315, 358, 429, 279, 14, 15, 316, 285, 336, 9, 329, 349, 350, 374, 380, 252, 318, 402, 403, 6, 197, 419,\n 318, 319, 325, 367, 364, 365, 435, 367, 397, 344, 438, 439, 272, 271, 311, 195, 5, 281, 273, 287, 291, 396, 428, 199, 311, 271, 268, 283, 444, 445,\n 373, 254, 339, 263, 466, 249, 282, 334, 296, 449, 347, 346, 264, 447, 454, 336, 296, 299, 338, 10, 151, 278, 439, 455, 292, 407, 415, 358, 371, 355,\n 340, 345, 372, 390, 249, 466, 346, 347, 280, 442, 443, 282, 19, 94, 370, 441, 442, 295, 248, 419, 197, 263, 255, 359, 440, 275, 274, 300, 383, 368,\n 351, 412, 465, 263, 467, 466, 301, 368, 389, 380, 374, 386, 395, 378, 379, 412, 351, 419, 436, 426, 322, 373, 390, 388, 2, 164, 393, 370, 462, 461,\n 164, 0, 267, 302, 11, 12, 374, 373, 387, 268, 12, 13, 293, 300, 301, 446, 261, 340, 385, 384, 381, 330, 266, 425, 426, 423, 391, 429, 355, 437, 391,\n 327, 326, 440, 457, 438, 341, 382, 362, 459, 457, 461, 434, 430, 394, 414, 463, 362, 396, 369, 262, 354, 461, 457, 316, 403, 402, 315, 404, 403, 314,\n 405, 404, 313, 406, 405, 421, 418, 406, 366, 401, 361, 306, 408, 407, 291, 409, 408, 287, 410, 409, 432, 436, 410, 434, 416, 411, 264, 368, 383, 309,\n 438, 457, 352, 376, 401, 274, 275, 4, 421, 428, 262, 294, 327, 358, 433, 416, 367, 289, 455, 439, 462, 370, 326, 2, 326, 370, 305, 460, 455, 254,\n 449, 448, 255, 261, 446, 253, 450, 449, 252, 451, 450, 256, 452, 451, 341, 453, 452, 413, 464, 463, 441, 413, 414, 258, 442, 441, 257, 443, 442, 259,\n 444, 443, 260, 445, 444, 467, 342, 445, 459, 458, 250, 289, 392, 290, 290, 328, 460, 376, 433, 435, 250, 290, 392, 411, 416, 433, 341, 463, 464, 453,\n 464, 465, 357, 465, 412, 343, 412, 399, 360, 363, 440, 437, 399, 456, 420, 456, 363, 401, 435, 288, 372, 383, 353, 339, 255, 249, 448, 261, 255, 133,\n 243, 190, 133, 155, 112, 33, 246, 247, 33, 130, 25, 398, 384, 286, 362, 398, 414, 362, 463, 341, 263, 359, 467, 263, 249, 255, 466, 467, 260, 75, 60,\n 166, 238, 239, 79, 162, 127, 139, 72, 11, 37, 121, 232, 120, 73, 72, 39, 114, 128, 47, 233, 232, 128, 103, 104, 67, 152, 175, 148, 173, 157, 155,\n 119, 118, 101, 74, 73, 40, 107, 9, 108, 49, 48, 131, 32, 194, 211, 184, 74, 185, 191, 80, 183, 185, 40, 186, 119, 230, 118, 210, 202, 214, 84, 83, 17,\n 77, 76, 146, 161, 160, 30, 190, 56, 173, 182, 106, 194, 138, 135, 192, 129, 203, 98, 54, 21, 68, 5, 51, 4, 145, 144, 23, 90, 77, 91, 207, 205, 187, 83,\n 201, 18, 181, 91, 182, 180, 90, 181, 16, 85, 17, 205, 206, 36, 176, 148, 140, 165, 92, 39, 245, 193, 244, 27, 159, 28, 30, 247, 161, 174, 236, 196,\n 103, 54, 104, 55, 193, 8, 111, 117, 31, 221, 189, 55, 240, 98, 99, 142, 126, 100, 219, 166, 218, 112, 155, 26, 198, 209, 131, 169, 135, 150, 114, 47,\n 217, 224, 223, 53, 220, 45, 134, 32, 211, 140, 109, 67, 108, 146, 43, 91, 231, 230, 120, 113, 226, 247, 105, 63, 52, 241, 238, 242, 124, 46, 156, 95,\n 78, 96, 70, 46, 63, 116, 143, 227, 116, 123, 111, 1, 44, 19, 3, 236, 51, 207, 216, 205, 26, 154, 22, 165, 39, 167, 199, 200, 208, 101, 36, 100, 43,\n 57, 202, 242, 20, 99, 56, 28, 157, 124, 35, 113, 29, 160, 27, 211, 204, 210, 124, 113, 46, 106, 43, 204, 96, 62, 77, 227, 137, 116, 73, 41, 72, 36, 203,\n 142, 235, 64, 240, 48, 49, 64, 42, 41, 74, 214, 212, 207, 183, 42, 184, 210, 169, 211, 140, 170, 176, 104, 105, 69, 193, 122, 168, 50, 123, 187, 89, 96,\n 90, 66, 65, 107, 179, 89, 180, 119, 101, 120, 68, 63, 104, 234, 93, 227, 16, 15, 85, 209, 129, 49, 15, 14, 86, 107, 55, 9, 120, 100, 121, 153, 145, 22,\n 178, 88, 179, 197, 6, 196, 89, 88, 96, 135, 138, 136, 138, 215, 172, 218, 115, 219, 41, 42, 81, 5, 195, 51, 57, 43, 61, 208, 171, 199, 41, 81, 38,\n 224, 53, 225, 24, 144, 110, 105, 52, 66, 118, 229, 117, 227, 34, 234, 66, 107, 69, 10, 109, 151, 219, 48, 235, 183, 62, 191, 142, 129, 126, 116, 111,\n 143, 7, 163, 246, 118, 117, 50, 223, 222, 52, 94, 19, 141, 222, 221, 65, 196, 3, 197, 45, 220, 44, 156, 70, 139, 188, 122, 245, 139, 71, 162, 145,\n 153, 159, 149, 170, 150, 122, 188, 196, 206, 216, 92, 163, 144, 161, 164, 2, 167, 242, 141, 241, 0, 164, 37, 11, 72, 12, 144, 145, 160, 12, 38, 13, 70,\n 63, 71, 31, 226, 111, 157, 158, 154, 36, 101, 205, 203, 206, 165, 126, 209, 217, 98, 165, 97, 237, 220, 218, 237, 239, 241, 210, 214, 169, 140, 171, 32,\n 241, 125, 237, 179, 86, 178, 180, 85, 179, 181, 84, 180, 182, 83, 181, 194, 201, 182, 177, 137, 132, 184, 76, 183, 185, 61, 184, 186, 57, 185, 216, 212,\n 186, 192, 214, 187, 139, 34, 156, 218, 79, 237, 147, 123, 177, 45, 44, 4, 208, 201, 32, 98, 64, 129, 192, 213, 138, 235, 59, 219, 141, 242, 97, 97, 2,\n 141, 240, 75, 235, 229, 24, 228, 31, 25, 226, 230, 23, 229, 231, 22, 230, 232, 26, 231, 233, 112, 232, 244, 189, 243, 189, 221, 190, 222, 28, 221,\n 223, 27, 222, 224, 29, 223, 225, 30, 224, 113, 247, 225, 99, 60, 240, 213, 147, 215, 60, 20, 166, 192, 187, 213, 243, 112, 244, 244, 233, 245, 245,\n 128, 188, 188, 114, 174, 134, 131, 220, 174, 217, 236, 236, 198, 134, 215, 177, 58, 156, 143, 124, 25, 110, 7, 31, 228, 25, 264, 356, 368, 0, 11, 267,\n 451, 452, 349, 267, 302, 269, 350, 357, 277, 350, 452, 357, 299, 333, 297, 396, 175, 377, 381, 384, 382, 280, 347, 330, 269, 303, 270, 151, 9, 337,\n 344, 278, 360, 424, 418, 431, 270, 304, 409, 272, 310, 407, 322, 270, 410, 449, 450, 347, 432, 422, 434, 18, 313, 17, 291, 306, 375, 259, 387, 260,\n 424, 335, 418, 434, 364, 416, 391, 423, 327, 301, 251, 298, 275, 281, 4, 254, 373, 253, 375, 307, 321, 280, 425, 411, 200, 421, 18, 335, 321, 406,\n 321, 320, 405, 314, 315, 17, 423, 426, 266, 396, 377, 369, 270, 322, 269, 413, 417, 464, 385, 386, 258, 248, 456, 419, 298, 284, 333, 168, 417, 8,\n 448, 346, 261, 417, 413, 285, 326, 327, 328, 277, 355, 329, 309, 392, 438, 381, 382, 256, 279, 429, 360, 365, 364, 379, 355, 277, 437, 282, 443, 283,\n 281, 275, 363, 395, 431, 369, 299, 297, 337, 335, 273, 321, 348, 450, 349, 359, 446, 467, 283, 293, 282, 250, 458, 462, 300, 276, 383, 292, 308, 325,\n 283, 276, 293, 264, 372, 447, 346, 352, 340, 354, 274, 19, 363, 456, 281, 426, 436, 425, 380, 381, 252, 267, 269, 393, 421, 200, 428, 371, 266, 329,\n 432, 287, 422, 290, 250, 328, 385, 258, 384, 446, 265, 342, 386, 387, 257, 422, 424, 430, 445, 342, 276, 422, 273, 424, 306, 292, 307, 352, 366, 345,\n 268, 271, 302, 358, 423, 371, 327, 294, 460, 331, 279, 294, 303, 271, 304, 436, 432, 427, 304, 272, 408, 395, 394, 431, 378, 395, 400, 296, 334, 299,\n 6, 351, 168, 376, 352, 411, 307, 325, 320, 285, 295, 336, 320, 319, 404, 329, 330, 349, 334, 293, 333, 366, 323, 447, 316, 15, 315, 331, 358, 279,\n 317, 14, 316, 8, 285, 9, 277, 329, 350, 253, 374, 252, 319, 318, 403, 351, 6, 419, 324, 318, 325, 397, 367, 365, 288, 435, 397, 278, 344, 439, 310,\n 272, 311, 248, 195, 281, 375, 273, 291, 175, 396, 199, 312, 311, 268, 276, 283, 445, 390, 373, 339, 295, 282, 296, 448, 449, 346, 356, 264, 454, 337,\n 336, 299, 337, 338, 151, 294, 278, 455, 308, 292, 415, 429, 358, 355, 265, 340, 372, 388, 390, 466, 352, 346, 280, 295, 442, 282, 354, 19, 370, 285,\n 441, 295, 195, 248, 197, 457, 440, 274, 301, 300, 368, 417, 351, 465, 251, 301, 389, 385, 380, 386, 394, 395, 379, 399, 412, 419, 410, 436, 322, 387,\n 373, 388, 326, 2, 393, 354, 370, 461, 393, 164, 267, 268, 302, 12, 386, 374, 387, 312, 268, 13, 298, 293, 301, 265, 446, 340, 380, 385, 381, 280, 330,\n 425, 322, 426, 391, 420, 429, 437, 393, 391, 326, 344, 440, 438, 458, 459, 461, 364, 434, 394, 428, 396, 262, 274, 354, 457, 317, 316, 402, 316, 315,\n 403, 315, 314, 404, 314, 313, 405, 313, 421, 406, 323, 366, 361, 292, 306, 407, 306, 291, 408, 291, 287, 409, 287, 432, 410, 427, 434, 411, 372, 264,\n 383, 459, 309, 457, 366, 352, 401, 1, 274, 4, 418, 421, 262, 331, 294, 358, 435, 433, 367, 392, 289, 439, 328, 462, 326, 94, 2, 370, 289, 305, 455, 339,\n 254, 448, 359, 255, 446, 254, 253, 449, 253, 252, 450, 252, 256, 451, 256, 341, 452, 414, 413, 463, 286, 441, 414, 286, 258, 441, 258, 257, 442, 257,\n 259, 443, 259, 260, 444, 260, 467, 445, 309, 459, 250, 305, 289, 290, 305, 290, 460, 401, 376, 435, 309, 250, 392, 376, 411, 433, 453, 341, 464, 357,\n 453, 465, 343, 357, 412, 437, 343, 399, 344, 360, 440, 420, 437, 456, 360, 420, 363, 361, 401, 288, 265, 372, 353, 390, 339, 249, 339, 448, 255];\n\nexport const TRI68 = [0, 1, 36, 0, 36, 17, 1, 2, 41, 1, 41, 36, 2, 3, 31, 2, 31, 41, 3, 4, 48, 3, 48, 31, 4, 5, 48, 5, 6, 48, 6, 7, 59, 6, 59, 48, 7, 8, 58, 7, 58, 59,\n 8, 9, 56, 8, 56, 57, 8, 57, 58, 9, 10, 55, 9, 55, 56, 10, 11, 54, 10, 54, 55, 11, 12, 54, 12, 13, 54, 13, 14, 35, 13, 35, 54, 14, 15, 46, 14, 46, 35, 15, 16,\n 45, 15, 45, 46, 16, 26, 45, 17, 36, 18, 18, 37, 19, 18, 36, 37, 19, 38, 20, 19, 37, 38, 20, 39, 21, 20, 38, 39, 21, 39, 27, 22, 42, 23, 22, 27, 42, 23, 43, 24,\n 23, 42, 43, 24, 44, 25, 24, 43, 44, 25, 45, 26, 25, 44, 45, 27, 39, 28, 27, 28, 42, 28, 39, 29, 28, 29, 42, 29, 31, 30, 29, 30, 35, 29, 40, 31, 29, 35, 47, 29,\n 39, 40, 29, 47, 42, 30, 31, 32, 30, 32, 33, 30, 33, 34, 30, 34, 35, 31, 50, 32, 31, 40, 41, 31, 48, 49, 31, 49, 50, 32, 51, 33, 32, 50, 51, 33, 51, 34, 34, 52,\n 35, 34, 51, 52, 35, 46, 47, 35, 52, 53, 35, 53, 54, 36, 41, 37, 37, 40, 38, 37, 41, 40, 38, 40, 39, 42, 47, 43, 43, 47, 44, 44, 46, 45, 44, 47, 46, 48, 60, 49,\n 48, 59, 60, 49, 61, 50, 49, 60, 61, 50, 62, 51, 50, 61, 62, 51, 62, 52, 52, 63, 53, 52, 62, 63, 53, 64, 54, 53, 63, 64, 54, 64, 55, 55, 65, 56, 55, 64, 65, 56,\n 66, 57, 56, 65, 66, 57, 66, 58, 58, 67, 59, 58, 66, 67, 59, 67, 60, 60, 67, 61, 61, 66, 62, 61, 67, 66, 62, 66, 63, 63, 65, 64, 63, 66, 65, 21, 27, 22];\n\nexport const TRI33 = [\n /* eyes */ 0, 8, 7, 7, 8, 1, 2, 10, 9, 9, 10, 3,\n /* brows */ 17, 0, 18, 18, 0, 7, 18, 7, 19, 19, 7, 1, 19, 1, 11, 19, 11, 20, 21, 3, 22, 21, 9, 3, 20, 9, 21, 20, 2, 9, 20, 11, 2,\n /* 4head */ 23, 17, 18, 25, 21, 22, 24, 19, 20, 24, 18, 19, 24, 20, 21, 24, 23, 18, 24, 21, 25,\n /* nose */ 11, 12, 4, 11, 4, 13, 1, 12, 11, 11, 13, 2, 12, 14, 4, 4, 14, 13,\n /* up-lip */ 14, 5, 15, 14, 15, 6, 12, 5, 14, 14, 6, 13,\n /* cheeks */ 8, 12, 1, 2, 13, 10, 8, 26, 12, 10, 13, 27, 26, 5, 12, 13, 6, 27, 0, 26, 8, 10, 27, 3,\n /* chin */ 5, 32, 16, 16, 32, 6, 5, 30, 32, 6, 32, 31,\n /* cont */ 26, 30, 5, 27, 6, 31, 0, 28, 26, 3, 27, 29, 17, 28, 0, 3, 29, 22, 23, 28, 17, 22, 29, 25, 28, 30, 26, 27, 31, 29,\n];\n\nexport const TRI7 = [0, 4, 1, 2, 4, 3, 4, 5, 6];\n\nexport const VTX68 = [\n /* cont */ 127, 234, 132, 58, 172, 150, 149, 148, 152, 377, 378, 379, 397, 288, 361, 454, 356,\n /* brows */ 70, 63, 105, 66, 107, 336, 296, 334, 293, 300,\n /* nose */ 168, 6, 195, 4, 98, 97, 2, 326, 327,\n /* eyes */ 33, 160, 158, 133, 153, 144, 362, 385, 387, 263, 373, 380,\n /* lip */ 57, 40, 37, 0, 267, 270, 287, 321, 314, 17, 84, 91,\n /* mouth */ 78, 81, 13, 311, 308, 402, 14, 178,\n];\n\nexport const VTX33 = [33, 133, 362, 263, 1, 62, 308, 159, 145, 386, 374, 6, 102, 331, 2, 13, 14, 70, 105, 107, 336, 334, 300, 54, 10, 284, 50, 280, 234, 454, 58, 288, 152];\n\nexport const VTX7 = [33, 133, 362, 263, 1, 78, 308];\n\nexport const UV68 = VTX68.map((x) => UV468[x]);\n\nexport const UV33 = VTX33.map((x) => UV468[x]);\n\nexport const UV7 = VTX7.map((x) => UV468[x]);\n", "/* eslint-disable class-methods-use-this */\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as bounding from './box';\nimport * as util from './util';\nimport * as coords from './coords';\n\nconst leftOutline = coords.MESH_ANNOTATIONS['leftEyeLower0'];\nconst rightOutline = coords.MESH_ANNOTATIONS['rightEyeLower0'];\n\nconst eyeLandmarks = {\n leftBounds: [leftOutline[0], leftOutline[leftOutline.length - 1]],\n rightBounds: [rightOutline[0], rightOutline[rightOutline.length - 1]],\n};\n\nconst meshLandmarks = {\n count: 468,\n mouth: 13,\n symmetryLine: [13, coords.MESH_ANNOTATIONS['midwayBetweenEyes'][0]],\n};\n\nconst blazeFaceLandmarks = {\n leftEye: 0,\n rightEye: 1,\n nose: 2,\n mouth: 3,\n leftEar: 4,\n rightEar: 5,\n symmetryLine: [3, 2],\n};\n\nconst irisLandmarks = {\n upperCenter: 3,\n lowerCenter: 4,\n index: 71,\n numCoordinates: 76,\n};\n\n// Replace the raw coordinates returned by facemesh with refined iris model coordinates\n// Update the z coordinate to be an average of the original and the new.\nfunction replaceRawCoordinates(rawCoords, newCoords, prefix, keys) {\n for (let i = 0; i < coords.MESH_TO_IRIS_INDICES_MAP.length; i++) {\n const { key, indices } = coords.MESH_TO_IRIS_INDICES_MAP[i];\n const originalIndices = coords.MESH_ANNOTATIONS[`${prefix}${key}`];\n if (!keys || keys.includes(key)) {\n for (let j = 0; j < indices.length; j++) {\n const index = indices[j];\n rawCoords[originalIndices[j]] = [\n newCoords[index][0], newCoords[index][1],\n (newCoords[index][2] + rawCoords[originalIndices[j]][2]) / 2,\n ];\n }\n }\n }\n}\n// The Pipeline coordinates between the bounding box and skeleton models.\nexport class Pipeline {\n storedBoxes: any;\n boundingBoxDetector: any;\n meshDetector: any;\n irisModel: any;\n boxSize: number;\n meshSize: number;\n irisSize: number;\n irisEnlarge: number;\n skipped: number;\n detectedFaces: number;\n\n constructor(boundingBoxDetector, meshDetector, irisModel) {\n // An array of facial bounding boxes.\n this.storedBoxes = [];\n this.boundingBoxDetector = boundingBoxDetector;\n this.meshDetector = meshDetector;\n this.irisModel = irisModel;\n this.boxSize = boundingBoxDetector?.model?.inputs[0].shape[2] || 0;\n this.meshSize = meshDetector?.inputs[0].shape[2] || boundingBoxDetector?.model?.inputs[0].shape[2];\n this.irisSize = irisModel?.inputs[0].shape[1] || 0;\n this.irisEnlarge = 2.3;\n this.skipped = 0;\n this.detectedFaces = 0;\n }\n\n transformRawCoords(rawCoords, box, angle, rotationMatrix) {\n const boxSize = bounding.getBoxSize({ startPoint: box.startPoint, endPoint: box.endPoint });\n const coordsScaled = rawCoords.map((coord) => ([\n boxSize[0] / this.meshSize * (coord[0] - this.meshSize / 2),\n boxSize[1] / this.meshSize * (coord[1] - this.meshSize / 2),\n coord[2],\n ]));\n const coordsRotationMatrix = (angle !== 0) ? util.buildRotationMatrix(angle, [0, 0]) : util.IDENTITY_MATRIX;\n const coordsRotated = (angle !== 0) ? coordsScaled.map((coord) => ([...util.rotatePoint(coord, coordsRotationMatrix), coord[2]])) : coordsScaled;\n const inverseRotationMatrix = (angle !== 0) ? util.invertTransformMatrix(rotationMatrix) : util.IDENTITY_MATRIX;\n const boxCenter = [...bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint }), 1];\n return coordsRotated.map((coord) => ([\n coord[0] + util.dot(boxCenter, inverseRotationMatrix[0]),\n coord[1] + util.dot(boxCenter, inverseRotationMatrix[1]),\n coord[2],\n ]));\n }\n\n getLeftToRightEyeDepthDifference(rawCoords) {\n const leftEyeZ = rawCoords[eyeLandmarks.leftBounds[0]][2];\n const rightEyeZ = rawCoords[eyeLandmarks.rightBounds[0]][2];\n return leftEyeZ - rightEyeZ;\n }\n\n // Returns a box describing a cropped region around the eye fit for passing to the iris model.\n getEyeBox(rawCoords, face, eyeInnerCornerIndex, eyeOuterCornerIndex, flip = false) {\n const box = bounding.squarifyBox(bounding.enlargeBox(this.calculateLandmarksBoundingBox([rawCoords[eyeInnerCornerIndex], rawCoords[eyeOuterCornerIndex]]), this.irisEnlarge));\n const boxSize = bounding.getBoxSize(box);\n let crop = tf.image.cropAndResize(face, [[\n box.startPoint[1] / this.meshSize,\n box.startPoint[0] / this.meshSize, box.endPoint[1] / this.meshSize,\n box.endPoint[0] / this.meshSize,\n ]], [0], [this.irisSize, this.irisSize]);\n if (flip && tf.ENV.flags.IS_BROWSER) {\n crop = tf.image.flipLeftRight(crop); // flipLeftRight is not defined for tfjs-node\n }\n return { box, boxSize, crop };\n }\n\n // Given a cropped image of an eye, returns the coordinates of the contours surrounding the eye and the iris.\n getEyeCoords(eyeData, eyeBox, eyeBoxSize, flip = false) {\n const eyeRawCoords: Array = [];\n for (let i = 0; i < irisLandmarks.numCoordinates; i++) {\n const x = eyeData[i * 3];\n const y = eyeData[i * 3 + 1];\n const z = eyeData[i * 3 + 2];\n eyeRawCoords.push([\n (flip ? (1 - (x / this.irisSize)) : (x / this.irisSize)) * eyeBoxSize[0] + eyeBox.startPoint[0],\n (y / this.irisSize) * eyeBoxSize[1] + eyeBox.startPoint[1], z,\n ]);\n }\n return { rawCoords: eyeRawCoords, iris: eyeRawCoords.slice(irisLandmarks.index) };\n }\n\n // The z-coordinates returned for the iris are unreliable, so we take the z values from the surrounding keypoints.\n getAdjustedIrisCoords(rawCoords, irisCoords, direction) {\n const upperCenterZ = rawCoords[coords.MESH_ANNOTATIONS[`${direction}EyeUpper0`][irisLandmarks.upperCenter]][2];\n const lowerCenterZ = rawCoords[coords.MESH_ANNOTATIONS[`${direction}EyeLower0`][irisLandmarks.lowerCenter]][2];\n const averageZ = (upperCenterZ + lowerCenterZ) / 2;\n // Iris indices: 0: center | 1: right | 2: above | 3: left | 4: below\n return irisCoords.map((coord, i) => {\n let z = averageZ;\n if (i === 2) {\n z = upperCenterZ;\n } else if (i === 4) {\n z = lowerCenterZ;\n }\n return [coord[0], coord[1], z];\n });\n }\n\n async predict(input, config) {\n let useFreshBox = false;\n // run new detector every skipFrames unless we only want box to start with\n let detector;\n if ((this.skipped === 0) || (this.skipped > config.face.detector.skipFrames) || !config.face.mesh.enabled || !config.videoOptimized) {\n detector = await this.boundingBoxDetector.getBoundingBoxes(input);\n this.skipped = 0;\n }\n if (config.videoOptimized) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (!config.videoOptimized || (detector && detector.boxes && (!config.face.mesh.enabled || (detector.boxes.length !== this.detectedFaces) && (this.detectedFaces !== config.face.detector.maxFaces)))) {\n this.storedBoxes = [];\n this.detectedFaces = 0;\n for (const possible of detector.boxes) {\n this.storedBoxes.push({ startPoint: possible.box.startPoint.dataSync(), endPoint: possible.box.endPoint.dataSync(), landmarks: possible.landmarks, confidence: possible.confidence });\n }\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n\n if (config.face.detector.skipInitial && this.detectedFaces === 0) this.skipped = 0;\n\n if (useFreshBox) {\n if (!detector || !detector.boxes || (detector.boxes.length === 0)) {\n this.storedBoxes = [];\n this.detectedFaces = 0;\n return null;\n }\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const scaledBox = bounding.scaleBoxCoordinates({ startPoint: this.storedBoxes[i].startPoint, endPoint: this.storedBoxes[i].endPoint }, detector.scaleFactor);\n const enlargedBox = bounding.enlargeBox(scaledBox);\n const squarifiedBox = bounding.squarifyBox(enlargedBox);\n const landmarks = this.storedBoxes[i].landmarks.arraySync();\n const confidence = this.storedBoxes[i].confidence;\n this.storedBoxes[i] = { ...squarifiedBox, confidence, landmarks };\n }\n }\n if (detector && detector.boxes) {\n detector.boxes.forEach((prediction) => {\n prediction.box.startPoint.dispose();\n prediction.box.endPoint.dispose();\n prediction.landmarks.dispose();\n });\n }\n\n let results = tf.tidy(() => this.storedBoxes.map((box, i) => {\n const boxConfidence = box.confidence;\n\n // The facial bounding box landmarks could come either from blazeface (if we are using a fresh box), or from the mesh model (if we are reusing an old box).\n let face;\n let angle = 0;\n let rotationMatrix;\n\n if (config.face.detector.rotation && config.face.mesh.enabled && tf.ENV.flags.IS_BROWSER) {\n const [indexOfMouth, indexOfForehead] = (box.landmarks.length >= meshLandmarks.count) ? meshLandmarks.symmetryLine : blazeFaceLandmarks.symmetryLine;\n angle = util.computeRotation(box.landmarks[indexOfMouth], box.landmarks[indexOfForehead]);\n const faceCenter = bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint });\n const faceCenterNormalized = [faceCenter[0] / input.shape[2], faceCenter[1] / input.shape[1]];\n const rotatedImage = tf.image.rotateWithOffset(input, angle, 0, faceCenterNormalized); // rotateWithOffset is not defined for tfjs-node\n rotationMatrix = util.buildRotationMatrix(-angle, faceCenter);\n if (config.face.mesh.enabled) face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.meshSize, this.meshSize]).div(255);\n else face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.boxSize, this.boxSize]).div(255);\n } else {\n rotationMatrix = util.IDENTITY_MATRIX;\n const clonedImage = input.clone();\n if (config.face.mesh.enabled) face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, clonedImage, [this.meshSize, this.meshSize]).div(255);\n else face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, clonedImage, [this.boxSize, this.boxSize]).div(255);\n }\n\n // if we're not going to produce mesh, don't spend time with further processing\n if (!config.face.mesh.enabled) {\n const prediction = {\n coords: null,\n box,\n faceConfidence: null,\n boxConfidence,\n confidence: box.confidence,\n image: face,\n };\n return prediction;\n }\n\n const [, confidence, contourCoords] = this.meshDetector.predict(face); // The first returned tensor represents facial contours which are already included in the coordinates.\n const faceConfidence = confidence.dataSync()[0];\n if (faceConfidence < config.face.detector.minConfidence) return null; // if below confidence just exit\n const coordsReshaped = tf.reshape(contourCoords, [-1, 3]);\n let rawCoords = coordsReshaped.arraySync();\n\n if (config.face.iris.enabled) {\n const { box: leftEyeBox, boxSize: leftEyeBoxSize, crop: leftEyeCrop } = this.getEyeBox(rawCoords, face, eyeLandmarks.leftBounds[0], eyeLandmarks.leftBounds[1], true);\n const { box: rightEyeBox, boxSize: rightEyeBoxSize, crop: rightEyeCrop } = this.getEyeBox(rawCoords, face, eyeLandmarks.rightBounds[0], eyeLandmarks.rightBounds[1]);\n const eyePredictions = this.irisModel.predict(tf.concat([leftEyeCrop, rightEyeCrop]));\n const eyePredictionsData = eyePredictions.dataSync();\n const leftEyeData = eyePredictionsData.slice(0, irisLandmarks.numCoordinates * 3);\n const { rawCoords: leftEyeRawCoords, iris: leftIrisRawCoords } = this.getEyeCoords(leftEyeData, leftEyeBox, leftEyeBoxSize, true);\n const rightEyeData = eyePredictionsData.slice(irisLandmarks.numCoordinates * 3);\n const { rawCoords: rightEyeRawCoords, iris: rightIrisRawCoords } = this.getEyeCoords(rightEyeData, rightEyeBox, rightEyeBoxSize);\n const leftToRightEyeDepthDifference = this.getLeftToRightEyeDepthDifference(rawCoords);\n if (Math.abs(leftToRightEyeDepthDifference) < 30) { // User is looking straight ahead.\n replaceRawCoordinates(rawCoords, leftEyeRawCoords, 'left', null);\n replaceRawCoordinates(rawCoords, rightEyeRawCoords, 'right', null);\n // If the user is looking to the left or to the right, the iris coordinates tend to diverge too much from the mesh coordinates for them to be merged\n // So we only update a single contour line above and below the eye.\n } else if (leftToRightEyeDepthDifference < 1) { // User is looking towards the right.\n replaceRawCoordinates(rawCoords, leftEyeRawCoords, 'left', ['EyeUpper0', 'EyeLower0']);\n } else { // User is looking towards the left.\n replaceRawCoordinates(rawCoords, rightEyeRawCoords, 'right', ['EyeUpper0', 'EyeLower0']);\n }\n const adjustedLeftIrisCoords = this.getAdjustedIrisCoords(rawCoords, leftIrisRawCoords, 'left');\n const adjustedRightIrisCoords = this.getAdjustedIrisCoords(rawCoords, rightIrisRawCoords, 'right');\n rawCoords = rawCoords.concat(adjustedLeftIrisCoords).concat(adjustedRightIrisCoords);\n }\n\n // override box from detection with one calculated from mesh\n const transformedCoordsData = this.transformRawCoords(rawCoords, box, angle, rotationMatrix);\n box = bounding.enlargeBox(this.calculateLandmarksBoundingBox(transformedCoordsData), 1.5); // redefine box with mesh calculated one\n const transformedCoords = tf.tensor2d(transformedCoordsData);\n\n // do rotation one more time with mesh keypoints if we want to return perfect image\n if (config.face.detector.rotation && config.face.mesh.enabled && (config.face.description.enabled || config.face.embedding.enabled) && tf.ENV.flags.IS_BROWSER) {\n const [indexOfMouth, indexOfForehead] = (box.landmarks.length >= meshLandmarks.count) ? meshLandmarks.symmetryLine : blazeFaceLandmarks.symmetryLine;\n angle = util.computeRotation(box.landmarks[indexOfMouth], box.landmarks[indexOfForehead]);\n const faceCenter = bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint });\n const faceCenterNormalized = [faceCenter[0] / input.shape[2], faceCenter[1] / input.shape[1]];\n const rotatedImage = tf.image.rotateWithOffset(input.toFloat(), angle, 0, faceCenterNormalized); // rotateWithOffset is not defined for tfjs-node\n rotationMatrix = util.buildRotationMatrix(-angle, faceCenter);\n face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.meshSize, this.meshSize]).div(255);\n }\n\n const prediction = {\n coords: transformedCoords,\n box,\n faceConfidence,\n boxConfidence,\n image: face,\n rawCoords,\n };\n\n // updated stored cache values\n const squarifiedLandmarksBox = bounding.squarifyBox(box);\n this.storedBoxes[i] = { ...squarifiedLandmarksBox, landmarks: transformedCoordsData, confidence: box.confidence, faceConfidence };\n\n return prediction;\n }));\n\n results = results.filter((a) => a !== null);\n // remove cache entries for detected boxes on low confidence\n if (config.face.mesh.enabled) this.storedBoxes = this.storedBoxes.filter((a) => a.faceConfidence > config.face.detector.minConfidence);\n this.detectedFaces = results.length;\n\n return results;\n }\n\n calculateLandmarksBoundingBox(landmarks) {\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint, landmarks };\n }\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as posenetModel from './posenetModel';\nimport * as decodeMultiple from './decodeMultiple';\nimport * as decodeSingle from './decodeSingle';\nimport * as util from './utils';\n\nlet model;\n\nasync function estimateMultiple(input, res, config, inputSize) {\n const toTensorBuffers3D = (tensors) => Promise.all(tensors.map((tensor) => tensor.buffer()));\n\n return new Promise(async (resolve) => {\n const allTensorBuffers = await toTensorBuffers3D([res.heatmapScores, res.offsets, res.displacementFwd, res.displacementBwd]);\n const scoresBuffer = allTensorBuffers[0];\n const offsetsBuffer = allTensorBuffers[1];\n const displacementsFwdBuffer = allTensorBuffers[2];\n const displacementsBwdBuffer = allTensorBuffers[3];\n const poses = await decodeMultiple.decodeMultiplePoses(scoresBuffer, offsetsBuffer, displacementsFwdBuffer, displacementsBwdBuffer, config.body.nmsRadius, config.body.maxDetections, config.body.scoreThreshold);\n const scaled = util.scalePoses(poses, [input.shape[1], input.shape[2]], [inputSize, inputSize]);\n resolve(scaled);\n });\n}\n\nasync function estimateSingle(input, res, config, inputSize) {\n return new Promise(async (resolve) => {\n const pose = await decodeSingle.decodeSinglePose(res.heatmapScores, res.offsets, config.body.scoreThreshold);\n const scaled = util.scalePoses([pose], [input.shape[1], input.shape[2]], [inputSize, inputSize]);\n resolve(scaled);\n });\n}\n\nexport class PoseNet {\n baseModel: any;\n inputSize: number\n constructor(baseModel) {\n this.baseModel = baseModel;\n this.inputSize = baseModel.model.inputs[0].shape[1];\n }\n\n async estimatePoses(input, config) {\n const res = this.baseModel.predict(input, config);\n\n const poses = (config.body.maxDetections < 2)\n ? await estimateSingle(input, res, config, this.inputSize)\n : await estimateMultiple(input, res, config, this.inputSize);\n\n res.heatmapScores.dispose();\n res.offsets.dispose();\n res.displacementFwd.dispose();\n res.displacementBwd.dispose();\n\n return poses;\n }\n\n dispose() {\n this.baseModel.dispose();\n }\n}\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n const mobilenet = new posenetModel.BaseModel(model);\n const poseNet = new PoseNet(mobilenet);\n return poseNet;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\n\nconst poseNetOutputs = ['MobilenetV1/offset_2/BiasAdd', 'MobilenetV1/heatmap_2/BiasAdd', 'MobilenetV1/displacement_fwd_2/BiasAdd', 'MobilenetV1/displacement_bwd_2/BiasAdd'];\n\nfunction nameOutputResultsMobileNet(results) {\n const [offsets, heatmap, displacementFwd, displacementBwd] = results;\n return { offsets, heatmap, displacementFwd, displacementBwd };\n}\n\nexport class BaseModel {\n model: any;\n inputSize: number;\n constructor(model) {\n this.model = model;\n this.inputSize = model.inputs[0].shape[1];\n }\n\n predict(input) {\n return tf.tidy(() => {\n const resized = input.resizeBilinear([this.inputSize, this.inputSize]);\n const normalized = resized.toFloat().div(127.5).sub(1.0);\n // const asBatch = asFloat.expandDims(0);\n const results = this.model.execute(normalized, poseNetOutputs);\n const results3d = results.map((y) => y.squeeze([0]));\n const namedResults = nameOutputResultsMobileNet(results3d);\n return {\n heatmapScores: namedResults.heatmap.sigmoid(),\n offsets: namedResults.offsets,\n displacementFwd: namedResults.displacementFwd,\n displacementBwd: namedResults.displacementBwd,\n };\n });\n }\n\n dispose() {\n this.model.dispose();\n }\n}\n", "export const partNames = [\n 'nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder',\n 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist',\n 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle',\n];\n\nexport const count = partNames.length; // 17 keypoints\n\nexport const partIds = partNames.reduce((result, jointName, i) => {\n result[jointName] = i;\n return result;\n}, {});\n\nconst connectedPartNames = [\n ['leftHip', 'leftShoulder'], ['leftElbow', 'leftShoulder'],\n ['leftElbow', 'leftWrist'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['rightHip', 'rightShoulder'],\n ['rightElbow', 'rightShoulder'], ['rightElbow', 'rightWrist'],\n ['rightHip', 'rightKnee'], ['rightKnee', 'rightAnkle'],\n ['leftShoulder', 'rightShoulder'], ['leftHip', 'rightHip'],\n];\nexport const connectedPartIndices = connectedPartNames.map(([jointNameA, jointNameB]) => ([partIds[jointNameA], partIds[jointNameB]]));\n\nexport const poseChain = [\n ['nose', 'leftEye'], ['leftEye', 'leftEar'], ['nose', 'rightEye'],\n ['rightEye', 'rightEar'], ['nose', 'leftShoulder'],\n ['leftShoulder', 'leftElbow'], ['leftElbow', 'leftWrist'],\n ['leftShoulder', 'leftHip'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['nose', 'rightShoulder'],\n ['rightShoulder', 'rightElbow'], ['rightElbow', 'rightWrist'],\n ['rightShoulder', 'rightHip'], ['rightHip', 'rightKnee'],\n ['rightKnee', 'rightAnkle'],\n];\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as keypoints from './keypoints';\n\nexport function getPointsConfidence(heatmapScores, heatMapCoords) {\n const numKeypoints = keypoints.count; // also in heatMapCoords.shape[0];\n const result:Array = [];\n for (let keypoint = 0; keypoint < numKeypoints; keypoint++) {\n const y = heatMapCoords.get(keypoint, 0);\n const x = heatMapCoords.get(keypoint, 1);\n result.push(heatmapScores.get(y, x, keypoint));\n }\n return result;\n}\n\nexport function getOffsetPoints(heatMapCoordsBuffer, outputStride, offsetsBuffer) {\n const getOffsetPoint = (y, x, keypoint) => ([\n offsetsBuffer.get(y, x, keypoint),\n offsetsBuffer.get(y, x, keypoint + keypoints.count),\n ]);\n\n const getOffsetVectors = () => {\n const result: Array = [];\n for (let keypoint = 0; keypoint < keypoints.count; keypoint++) {\n const heatmapY = heatMapCoordsBuffer.get(keypoint, 0);\n const heatmapX = heatMapCoordsBuffer.get(keypoint, 1);\n result.push(getOffsetPoint(heatmapY, heatmapX, keypoint));\n }\n return result;\n };\n\n return tf.tidy(() => heatMapCoordsBuffer.toTensor().mul(tf.scalar(outputStride, 'int32')).toFloat().add(getOffsetVectors()));\n}\n\nexport function argmax2d(inputs) {\n const mod = (a, b) => tf.tidy(() => {\n const floored = a.div(tf.scalar(b, 'int32'));\n return a.sub(floored.mul(tf.scalar(b, 'int32')));\n });\n const [height, width, depth] = inputs.shape;\n\n return tf.tidy(() => {\n const reshaped = inputs.reshape([height * width, depth]);\n const coords = reshaped.argMax(0);\n const yCoords = coords.div(tf.scalar(width, 'int32')).expandDims(1);\n const xCoords = mod(coords, width).expandDims(1);\n return tf.concat([yCoords, xCoords], 1);\n });\n}\n", "import * as kpt from './keypoints';\n\nexport function eitherPointDoesntMeetConfidence(a, b, minConfidence) {\n return (a < minConfidence || b < minConfidence);\n}\n\nexport function getAdjacentKeyPoints(keypoints, minConfidence) {\n return kpt.connectedPartIndices.reduce((result, [leftJoint, rightJoint]) => {\n if (eitherPointDoesntMeetConfidence(keypoints[leftJoint].score, keypoints[rightJoint].score, minConfidence)) {\n return result;\n }\n result.push([keypoints[leftJoint], keypoints[rightJoint]]);\n return result;\n }, []);\n}\n\nexport function getBoundingBox(keypoints) {\n const coord = keypoints.reduce(({ maxX, maxY, minX, minY }, { position: { x, y } }) => ({\n maxX: Math.max(maxX, x),\n maxY: Math.max(maxY, y),\n minX: Math.min(minX, x),\n minY: Math.min(minY, y),\n }), {\n maxX: Number.NEGATIVE_INFINITY,\n maxY: Number.NEGATIVE_INFINITY,\n minX: Number.POSITIVE_INFINITY,\n minY: Number.POSITIVE_INFINITY,\n });\n return [coord.minX, coord.minY, coord.maxX - coord.minX, coord.maxY - coord.minY];\n}\n\nexport function scalePoses(poses, [height, width], [inputResolutionHeight, inputResolutionWidth]) {\n const scalePose = (pose, scaleY, scaleX) => ({\n score: pose.score,\n box: [Math.trunc(pose.box[0] * scaleX), Math.trunc(pose.box[1] * scaleY), Math.trunc(pose.box[2] * scaleX), Math.trunc(pose.box[3] * scaleY)],\n keypoints: pose.keypoints.map(({ score, part, position }) => ({\n score,\n part,\n position: { x: Math.trunc(position.x * scaleX), y: Math.trunc(position.y * scaleY) },\n })),\n });\n\n const scaledPoses = poses.map((pose) => scalePose(pose, height / inputResolutionHeight, width / inputResolutionWidth));\n return scaledPoses;\n}\n\n// algorithm based on Coursera Lecture from Algorithms, Part 1: https://www.coursera.org/learn/algorithms-part1/lecture/ZjoSM/heapsort\nexport class MaxHeap {\n priorityQueue: any;\n numberOfElements: number;\n getElementValue: any;\n\n constructor(maxSize, getElementValue) {\n this.priorityQueue = new Array(maxSize);\n this.numberOfElements = -1;\n this.getElementValue = getElementValue;\n }\n\n enqueue(x) {\n this.priorityQueue[++this.numberOfElements] = x;\n this.swim(this.numberOfElements);\n }\n\n dequeue() {\n const max = this.priorityQueue[0];\n this.exchange(0, this.numberOfElements--);\n this.sink(0);\n this.priorityQueue[this.numberOfElements + 1] = null;\n return max;\n }\n\n empty() { return this.numberOfElements === -1; }\n\n size() { return this.numberOfElements + 1; }\n\n all() { return this.priorityQueue.slice(0, this.numberOfElements + 1); }\n\n max() { return this.priorityQueue[0]; }\n\n swim(k) {\n while (k > 0 && this.less(Math.floor(k / 2), k)) {\n this.exchange(k, Math.floor(k / 2));\n k = Math.floor(k / 2);\n }\n }\n\n sink(k) {\n while (2 * k <= this.numberOfElements) {\n let j = 2 * k;\n if (j < this.numberOfElements && this.less(j, j + 1)) j++;\n if (!this.less(k, j)) break;\n this.exchange(k, j);\n k = j;\n }\n }\n\n getValueAt(i) {\n return this.getElementValue(this.priorityQueue[i]);\n }\n\n less(i, j) {\n return this.getValueAt(i) < this.getValueAt(j);\n }\n\n exchange(i, j) {\n const t = this.priorityQueue[i];\n this.priorityQueue[i] = this.priorityQueue[j];\n this.priorityQueue[j] = t;\n }\n}\n\nexport function getOffsetPoint(y, x, keypoint, offsets) {\n return {\n y: offsets.get(y, x, keypoint),\n x: offsets.get(y, x, keypoint + kpt.count),\n };\n}\n\nexport function getImageCoords(part, outputStride, offsets) {\n const { heatmapY, heatmapX, id: keypoint } = part;\n const { y, x } = getOffsetPoint(heatmapY, heatmapX, keypoint, offsets);\n return {\n x: part.heatmapX * outputStride + x,\n y: part.heatmapY * outputStride + y,\n };\n}\n\nexport function fillArray(element, size) {\n const result = new Array(size);\n for (let i = 0; i < size; i++) {\n result[i] = element;\n }\n return result;\n}\n\nexport function clamp(a, min, max) {\n if (a < min) return min;\n if (a > max) return max;\n return a;\n}\n\nexport function squaredDistance(y1, x1, y2, x2) {\n const dy = y2 - y1;\n const dx = x2 - x1;\n return dy * dy + dx * dx;\n}\n\nexport function addVectors(a, b) {\n return { x: a.x + b.x, y: a.y + b.y };\n}\n\nexport function clampVector(a, min, max) {\n return { y: clamp(a.y, min, max), x: clamp(a.x, min, max) };\n}\n", "import * as keypoints from './keypoints';\nimport * as decoders from './decodeParts';\nimport * as utils from './utils';\n\nconst parentChildrenTuples = keypoints.poseChain.map(([parentJoinName, childJoinName]) => ([keypoints.partIds[parentJoinName], keypoints.partIds[childJoinName]]));\nconst parentToChildEdges = parentChildrenTuples.map(([, childJointId]) => childJointId);\nconst childToParentEdges = parentChildrenTuples.map(([parentJointId]) => parentJointId);\n\nconst defaultOutputStride = 16;\n\nfunction getDisplacement(edgeId, point, displacements) {\n const numEdges = displacements.shape[2] / 2;\n return {\n y: displacements.get(point.y, point.x, edgeId),\n x: displacements.get(point.y, point.x, numEdges + edgeId),\n };\n}\n\nfunction getStridedIndexNearPoint(point, outputStride, height, width) {\n return {\n y: utils.clamp(Math.round(point.y / outputStride), 0, height - 1),\n x: utils.clamp(Math.round(point.x / outputStride), 0, width - 1),\n };\n}\n\nfunction traverseToTargetKeypoint(edgeId, sourceKeypoint, targetKeypointId, scoresBuffer, offsets, outputStride, displacements, offsetRefineStep = 2) {\n const [height, width] = scoresBuffer.shape;\n // Nearest neighbor interpolation for the source->target displacements.\n const sourceKeypointIndices = getStridedIndexNearPoint(sourceKeypoint.position, outputStride, height, width);\n const displacement = getDisplacement(edgeId, sourceKeypointIndices, displacements);\n const displacedPoint = utils.addVectors(sourceKeypoint.position, displacement);\n let targetKeypoint = displacedPoint;\n for (let i = 0; i < offsetRefineStep; i++) {\n const targetKeypointIndices = getStridedIndexNearPoint(targetKeypoint, outputStride, height, width);\n const offsetPoint = utils.getOffsetPoint(targetKeypointIndices.y, targetKeypointIndices.x, targetKeypointId, offsets);\n targetKeypoint = utils.addVectors({\n x: targetKeypointIndices.x * outputStride,\n y: targetKeypointIndices.y * outputStride,\n }, { x: offsetPoint.x, y: offsetPoint.y });\n }\n const targetKeyPointIndices = getStridedIndexNearPoint(targetKeypoint, outputStride, height, width);\n const score = scoresBuffer.get(targetKeyPointIndices.y, targetKeyPointIndices.x, targetKeypointId);\n return { position: targetKeypoint, part: keypoints.partNames[targetKeypointId], score };\n}\n\nexport function decodePose(root, scores, offsets, outputStride, displacementsFwd, displacementsBwd) {\n const numParts = scores.shape[2];\n const numEdges = parentToChildEdges.length;\n const instanceKeypoints = new Array(numParts);\n // Start a new detection instance at the position of the root.\n const { part: rootPart, score: rootScore } = root;\n const rootPoint = utils.getImageCoords(rootPart, outputStride, offsets);\n instanceKeypoints[rootPart.id] = {\n score: rootScore,\n part: keypoints.partNames[rootPart.id],\n position: rootPoint,\n };\n // Decode the part positions upwards in the tree, following the backward displacements.\n for (let edge = numEdges - 1; edge >= 0; --edge) {\n const sourceKeypointId = parentToChildEdges[edge];\n const targetKeypointId = childToParentEdges[edge];\n if (instanceKeypoints[sourceKeypointId] && !instanceKeypoints[targetKeypointId]) {\n instanceKeypoints[targetKeypointId] = traverseToTargetKeypoint(edge, instanceKeypoints[sourceKeypointId], targetKeypointId, scores, offsets, outputStride, displacementsBwd);\n }\n }\n // Decode the part positions downwards in the tree, following the forward displacements.\n for (let edge = 0; edge < numEdges; ++edge) {\n const sourceKeypointId = childToParentEdges[edge];\n const targetKeypointId = parentToChildEdges[edge];\n if (instanceKeypoints[sourceKeypointId] && !instanceKeypoints[targetKeypointId]) {\n instanceKeypoints[targetKeypointId] = traverseToTargetKeypoint(edge, instanceKeypoints[sourceKeypointId], targetKeypointId, scores, offsets, outputStride, displacementsFwd);\n }\n }\n return instanceKeypoints;\n}\n\nexport async function decodeSinglePose(heatmapScores, offsets, minScore) {\n const heatmapValues = decoders.argmax2d(heatmapScores);\n const allTensorBuffers = await Promise.all([heatmapScores.buffer(), offsets.buffer(), heatmapValues.buffer()]);\n const scoresBuffer = allTensorBuffers[0];\n const offsetsBuffer = allTensorBuffers[1];\n const heatmapValuesBuffer = allTensorBuffers[2];\n const offsetPoints = decoders.getOffsetPoints(heatmapValuesBuffer, defaultOutputStride, offsetsBuffer);\n const offsetPointsData = offsetPoints.dataSync();\n const keypointConfidence = decoders.getPointsConfidence(scoresBuffer, heatmapValuesBuffer);\n let avgScore = 0.0;\n const filteredKeypoints = keypointConfidence\n .filter((score) => score > minScore)\n .map((score, i) => {\n avgScore += score;\n return {\n position: {\n y: offsetPointsData[2 * i + 0], // offsetPointsBuffer.get(i, 0),\n x: offsetPointsData[2 * i + 1], // offsetPointsBuffer.get(i, 1),\n },\n part: keypoints.partNames[i],\n score,\n };\n });\n heatmapValues.dispose();\n offsetPoints.dispose();\n const box = utils.getBoundingBox(filteredKeypoints);\n return { keypoints: filteredKeypoints, box, score: Math.round(100 * avgScore / filteredKeypoints.length) / 100 };\n}\n", "import * as decodeSingle from './decodeSingle';\nimport * as utils from './utils';\n\nconst kLocalMaximumRadius = 1;\nconst defaultOutputStride = 16;\n\nfunction scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, localMaximumRadius, scores) {\n const [height, width] = scores.shape;\n let localMaximum = true;\n const yStart = Math.max(heatmapY - localMaximumRadius, 0);\n const yEnd = Math.min(heatmapY + localMaximumRadius + 1, height);\n for (let yCurrent = yStart; yCurrent < yEnd; ++yCurrent) {\n const xStart = Math.max(heatmapX - localMaximumRadius, 0);\n const xEnd = Math.min(heatmapX + localMaximumRadius + 1, width);\n for (let xCurrent = xStart; xCurrent < xEnd; ++xCurrent) {\n if (scores.get(yCurrent, xCurrent, keypointId) > score) {\n localMaximum = false;\n break;\n }\n }\n if (!localMaximum) break;\n }\n return localMaximum;\n}\n\nexport function buildPartWithScoreQueue(scoreThreshold, localMaximumRadius, scores) {\n const [height, width, numKeypoints] = scores.shape;\n const queue = new utils.MaxHeap(height * width * numKeypoints, ({ score }) => score);\n for (let heatmapY = 0; heatmapY < height; ++heatmapY) {\n for (let heatmapX = 0; heatmapX < width; ++heatmapX) {\n for (let keypointId = 0; keypointId < numKeypoints; ++keypointId) {\n const score = scores.get(heatmapY, heatmapX, keypointId);\n // Only consider parts with score greater or equal to threshold as root candidates.\n if (score < scoreThreshold) continue;\n // Only consider keypoints whose score is maximum in a local window.\n if (scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, localMaximumRadius, scores)) {\n queue.enqueue({ score, part: { heatmapY, heatmapX, id: keypointId } });\n }\n }\n }\n }\n return queue;\n}\n\nfunction withinNmsRadiusOfCorrespondingPoint(poses, squaredNmsRadius, { x, y }, keypointId) {\n return poses.some(({ keypoints }) => {\n const correspondingKeypoint = keypoints[keypointId].position;\n return utils.squaredDistance(y, x, correspondingKeypoint.y, correspondingKeypoint.x) <= squaredNmsRadius;\n });\n}\n\nfunction getInstanceScore(existingPoses, squaredNmsRadius, instanceKeypoints) {\n const notOverlappedKeypointScores = instanceKeypoints.reduce((result, { position, score }, keypointId) => {\n if (!withinNmsRadiusOfCorrespondingPoint(existingPoses, squaredNmsRadius, position, keypointId)) result += score;\n return result;\n }, 0.0);\n return notOverlappedKeypointScores / instanceKeypoints.length;\n}\n\nexport function decodeMultiplePoses(scoresBuffer, offsetsBuffer, displacementsFwdBuffer, displacementsBwdBuffer, nmsRadius, maxDetections, scoreThreshold) {\n const poses: Array<{ keypoints: any, box: any, score: number }> = [];\n const queue = buildPartWithScoreQueue(scoreThreshold, kLocalMaximumRadius, scoresBuffer);\n const squaredNmsRadius = nmsRadius ^ 2;\n // Generate at most maxDetections object instances per image in decreasing root part score order.\n while (poses.length < maxDetections && !queue.empty()) {\n // The top element in the queue is the next root candidate.\n const root = queue.dequeue();\n // Part-based non-maximum suppression: We reject a root candidate if it is within a disk of `nmsRadius` pixels from the corresponding part of a previously detected instance.\n const rootImageCoords = utils.getImageCoords(root.part, defaultOutputStride, offsetsBuffer);\n if (withinNmsRadiusOfCorrespondingPoint(poses, squaredNmsRadius, rootImageCoords, root.part.id)) continue;\n // Else start a new detection instance at the position of the root.\n const keypoints = decodeSingle.decodePose(root, scoresBuffer, offsetsBuffer, defaultOutputStride, displacementsFwdBuffer, displacementsBwdBuffer);\n const score = getInstanceScore(poses, squaredNmsRadius, keypoints);\n const box = utils.getBoundingBox(keypoints);\n if (score > scoreThreshold) poses.push({ keypoints, box, score: Math.round(100 * score) / 100 });\n }\n return poses;\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as handdetector from './handdetector';\nimport * as handpipeline from './handpipeline';\nimport * as anchors from './anchors';\n\nconst MESH_ANNOTATIONS = {\n thumb: [1, 2, 3, 4],\n indexFinger: [5, 6, 7, 8],\n middleFinger: [9, 10, 11, 12],\n ringFinger: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n palmBase: [0],\n};\n\nexport class HandPose {\n handPipeline: any;\n\n constructor(handPipeline) {\n this.handPipeline = handPipeline;\n }\n\n static getAnnotations() {\n return MESH_ANNOTATIONS;\n }\n\n async estimateHands(input, config) {\n const predictions = await this.handPipeline.estimateHands(input, config);\n if (!predictions) return [];\n const hands: Array<{ confidence: number, box: any, boxRaw: any, landmarks: any, annotations: any }> = [];\n for (const prediction of predictions) {\n const annotations = {};\n if (prediction.landmarks) {\n for (const key of Object.keys(MESH_ANNOTATIONS)) {\n annotations[key] = MESH_ANNOTATIONS[key].map((index) => prediction.landmarks[index]);\n }\n }\n const box = prediction.box ? [\n Math.max(0, prediction.box.topLeft[0]),\n Math.max(0, prediction.box.topLeft[1]),\n Math.min(input.shape[2], prediction.box.bottomRight[0]) - Math.max(0, prediction.box.topLeft[0]),\n Math.min(input.shape[1], prediction.box.bottomRight[1]) - Math.max(0, prediction.box.topLeft[1]),\n ] : [];\n const boxRaw = [\n (prediction.box.topLeft[0]) / input.shape[2],\n (prediction.box.topLeft[1]) / input.shape[1],\n (prediction.box.bottomRight[0] - prediction.box.topLeft[0]) / input.shape[2],\n (prediction.box.bottomRight[1] - prediction.box.topLeft[1]) / input.shape[1],\n ];\n hands.push({ confidence: Math.round(100 * prediction.confidence) / 100, box, boxRaw, landmarks: prediction.landmarks, annotations });\n }\n return hands;\n }\n}\n\nlet handDetectorModel;\nlet handPoseModel;\nexport async function load(config): Promise {\n if (!handDetectorModel || !handPoseModel) {\n [handDetectorModel, handPoseModel] = await Promise.all([\n config.hand.enabled ? tf.loadGraphModel(join(config.modelBasePath, config.hand.detector.modelPath), { fromTFHub: config.hand.detector.modelPath.includes('tfhub.dev') }) : null,\n config.hand.landmarks ? tf.loadGraphModel(join(config.modelBasePath, config.hand.skeleton.modelPath), { fromTFHub: config.hand.skeleton.modelPath.includes('tfhub.dev') }) : null,\n ]);\n if (config.hand.enabled) {\n if (!handDetectorModel || !handDetectorModel.modelUrl) log('load model failed:', config.hand.detector.modelPath);\n else if (config.debug) log('load model:', handDetectorModel.modelUrl);\n if (!handPoseModel || !handPoseModel.modelUrl) log('load model failed:', config.hand.skeleton.modelPath);\n else if (config.debug) log('load model:', handPoseModel.modelUrl);\n }\n } else {\n if (config.debug) log('cached model:', handDetectorModel.modelUrl);\n if (config.debug) log('cached model:', handPoseModel.modelUrl);\n }\n const handDetector = new handdetector.HandDetector(handDetectorModel, handDetectorModel?.inputs[0].shape[2], anchors.anchors);\n const handPipeline = new handpipeline.HandPipeline(handDetector, handPoseModel, handPoseModel?.inputs[0].shape[2]);\n const handPose = new HandPose(handPipeline);\n return handPose;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n const palmLandmarks = box.palmLandmarks.map((coord) => {\n const scaledCoord = [coord[0] * factor[0], coord[1] * factor[1]];\n return scaledCoord;\n });\n return { startPoint, endPoint, palmLandmarks, confidence: box.confidence };\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]];\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [centers[0] - halfSize, centers[1] - halfSize];\n const endPoint = [centers[0] + halfSize, centers[1] + halfSize];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function shiftBox(box, shiftFactor) {\n const boxSize = [\n box.endPoint[0] - box.startPoint[0],\n box.endPoint[1] - box.startPoint[1],\n ];\n const shiftVector = [boxSize[0] * shiftFactor[0], boxSize[1] * shiftFactor[1]];\n const startPoint = [box.startPoint[0] + shiftVector[0], box.startPoint[1] + shiftVector[1]];\n const endPoint = [box.endPoint[0] + shiftVector[0], box.endPoint[1] + shiftVector[1]];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\n\nexport class HandDetector {\n model: any;\n anchors: any;\n anchorsTensor: any;\n inputSize: number;\n inputSizeTensor: any;\n doubleInputSizeTensor: any;\n\n constructor(model, inputSize, anchorsAnnotated) {\n this.model = model;\n this.anchors = anchorsAnnotated.map((anchor) => [anchor.x_center, anchor.y_center]);\n this.anchorsTensor = tf.tensor2d(this.anchors);\n this.inputSize = inputSize;\n this.inputSizeTensor = tf.tensor1d([inputSize, inputSize]);\n this.doubleInputSizeTensor = tf.tensor1d([inputSize * 2, inputSize * 2]);\n }\n\n normalizeBoxes(boxes) {\n return tf.tidy(() => {\n const boxOffsets = tf.slice(boxes, [0, 0], [-1, 2]);\n const boxSizes = tf.slice(boxes, [0, 2], [-1, 2]);\n const boxCenterPoints = tf.add(tf.div(boxOffsets, this.inputSizeTensor), this.anchorsTensor);\n const halfBoxSizes = tf.div(boxSizes, this.doubleInputSizeTensor);\n const startPoints = tf.mul(tf.sub(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);\n const endPoints = tf.mul(tf.add(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);\n return tf.concat2d([startPoints, endPoints], 1);\n });\n }\n\n normalizeLandmarks(rawPalmLandmarks, index) {\n return tf.tidy(() => {\n const landmarks = tf.add(tf.div(rawPalmLandmarks.reshape([-1, 7, 2]), this.inputSizeTensor), this.anchors[index]);\n return tf.mul(landmarks, this.inputSizeTensor);\n });\n }\n\n async getBoxes(input, config) {\n const batched = this.model.predict(input);\n const predictions = batched.squeeze();\n batched.dispose();\n const scoresT = tf.tidy(() => tf.sigmoid(tf.slice(predictions, [0, 0], [-1, 1])).squeeze());\n const scores = scoresT.dataSync();\n const rawBoxes = tf.slice(predictions, [0, 1], [-1, 4]);\n const boxes = this.normalizeBoxes(rawBoxes);\n rawBoxes.dispose();\n const filteredT = await tf.image.nonMaxSuppressionAsync(boxes, scores, config.hand.maxHands, config.hand.iouThreshold, config.hand.scoreThreshold);\n const filtered = filteredT.arraySync();\n\n scoresT.dispose();\n filteredT.dispose();\n const hands: Array<{ box: any, palmLandmarks: any, confidence: number }> = [];\n for (const index of filtered) {\n if (scores[index] >= config.hand.minConfidence) {\n const matchingBox = tf.slice(boxes, [index, 0], [1, -1]);\n const rawPalmLandmarks = tf.slice(predictions, [index, 5], [1, 14]);\n const palmLandmarks = tf.tidy(() => this.normalizeLandmarks(rawPalmLandmarks, index).reshape([-1, 2]));\n rawPalmLandmarks.dispose();\n hands.push({ box: matchingBox, palmLandmarks, confidence: scores[index] });\n }\n }\n predictions.dispose();\n boxes.dispose();\n return hands;\n }\n\n async estimateHandBounds(input, config) {\n const inputHeight = input.shape[1];\n const inputWidth = input.shape[2];\n const image = tf.tidy(() => input.resizeBilinear([this.inputSize, this.inputSize]).div(127.5).sub(1));\n const predictions = await this.getBoxes(image, config);\n image.dispose();\n const hands: Array<{}> = [];\n if (!predictions || predictions.length === 0) return hands;\n for (const prediction of predictions) {\n const boxes = prediction.box.dataSync();\n const startPoint = boxes.slice(0, 2);\n const endPoint = boxes.slice(2, 4);\n const palmLandmarks = prediction.palmLandmarks.arraySync();\n prediction.box.dispose();\n prediction.palmLandmarks.dispose();\n hands.push(box.scaleBoxCoordinates({ startPoint, endPoint, palmLandmarks, confidence: prediction.confidence }, [inputWidth / this.inputSize, inputHeight / this.inputSize]));\n }\n return hands;\n }\n}\n", "export function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\nimport * as util from './util';\n\n// const PALM_BOX_SHIFT_VECTOR = [0, -0.4];\nconst PALM_BOX_ENLARGE_FACTOR = 5; // default 3\n// const HAND_BOX_SHIFT_VECTOR = [0, -0.1]; // move detected hand box by x,y to ease landmark detection\nconst HAND_BOX_ENLARGE_FACTOR = 1.65; // default 1.65\nconst PALM_LANDMARK_IDS = [0, 5, 9, 13, 17, 1, 2];\nconst PALM_LANDMARKS_INDEX_OF_PALM_BASE = 0;\nconst PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE = 2;\n\nexport class HandPipeline {\n handDetector: any;\n landmarkDetector: any;\n inputSize: number;\n storedBoxes: any;\n skipped: number;\n detectedHands: number;\n\n constructor(handDetector, landmarkDetector, inputSize) {\n this.handDetector = handDetector;\n this.landmarkDetector = landmarkDetector;\n this.inputSize = inputSize;\n this.storedBoxes = [];\n this.skipped = 0;\n this.detectedHands = 0;\n }\n\n getBoxForPalmLandmarks(palmLandmarks, rotationMatrix) {\n const rotatedPalmLandmarks = palmLandmarks.map((coord) => util.rotatePoint([...coord, 1], rotationMatrix));\n const boxAroundPalm = this.calculateLandmarksBoundingBox(rotatedPalmLandmarks);\n // return box.enlargeBox(box.squarifyBox(box.shiftBox(boxAroundPalm, PALM_BOX_SHIFT_VECTOR)), PALM_BOX_ENLARGE_FACTOR);\n return box.enlargeBox(box.squarifyBox(boxAroundPalm), PALM_BOX_ENLARGE_FACTOR);\n }\n\n getBoxForHandLandmarks(landmarks) {\n const boundingBox = this.calculateLandmarksBoundingBox(landmarks);\n // const boxAroundHand = box.enlargeBox(box.squarifyBox(box.shiftBox(boundingBox, HAND_BOX_SHIFT_VECTOR)), HAND_BOX_ENLARGE_FACTOR);\n const boxAroundHand = box.enlargeBox(box.squarifyBox(boundingBox), HAND_BOX_ENLARGE_FACTOR);\n boxAroundHand.palmLandmarks = [];\n for (let i = 0; i < PALM_LANDMARK_IDS.length; i++) {\n boxAroundHand.palmLandmarks.push(landmarks[PALM_LANDMARK_IDS[i]].slice(0, 2));\n }\n return boxAroundHand;\n }\n\n transformRawCoords(rawCoords, box2, angle, rotationMatrix) {\n const boxSize = box.getBoxSize(box2);\n const scaleFactor = [boxSize[0] / this.inputSize, boxSize[1] / this.inputSize, (boxSize[0] + boxSize[1]) / this.inputSize / 2];\n const coordsScaled = rawCoords.map((coord) => [\n scaleFactor[0] * (coord[0] - this.inputSize / 2),\n scaleFactor[1] * (coord[1] - this.inputSize / 2),\n scaleFactor[2] * coord[2],\n ]);\n const coordsRotationMatrix = util.buildRotationMatrix(angle, [0, 0]);\n const coordsRotated = coordsScaled.map((coord) => {\n const rotated = util.rotatePoint(coord, coordsRotationMatrix);\n return [...rotated, coord[2]];\n });\n const inverseRotationMatrix = util.invertTransformMatrix(rotationMatrix);\n const boxCenter = [...box.getBoxCenter(box2), 1];\n const originalBoxCenter = [\n util.dot(boxCenter, inverseRotationMatrix[0]),\n util.dot(boxCenter, inverseRotationMatrix[1]),\n ];\n return coordsRotated.map((coord) => [\n coord[0] + originalBoxCenter[0],\n coord[1] + originalBoxCenter[1],\n coord[2],\n ]);\n }\n\n async estimateHands(image, config) {\n let useFreshBox = false;\n\n // run new detector every skipFrames unless we only want box to start with\n let boxes;\n if ((this.skipped === 0) || (this.skipped > config.hand.skipFrames) || !config.hand.landmarks || !config.videoOptimized) {\n boxes = await this.handDetector.estimateHandBounds(image, config);\n this.skipped = 0;\n }\n if (config.videoOptimized) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (boxes && (boxes.length > 0) && ((boxes.length !== this.detectedHands) && (this.detectedHands !== config.hand.maxHands) || !config.hand.landmarks)) {\n this.detectedHands = 0;\n this.storedBoxes = [...boxes];\n // for (const possible of boxes) this.storedBoxes.push(possible);\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n const hands: Array<{}> = [];\n\n if (config.hand.skipInitial && this.detectedHands === 0) this.skipped = 0;\n\n // go through working set of boxes\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const currentBox = this.storedBoxes[i];\n if (!currentBox) continue;\n if (config.hand.landmarks) {\n const angle = config.hand.rotation ? util.computeRotation(currentBox.palmLandmarks[PALM_LANDMARKS_INDEX_OF_PALM_BASE], currentBox.palmLandmarks[PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE]) : 0;\n const palmCenter = box.getBoxCenter(currentBox);\n const palmCenterNormalized = [palmCenter[0] / image.shape[2], palmCenter[1] / image.shape[1]];\n const rotatedImage = config.hand.rotation ? tf.image.rotateWithOffset(image, angle, 0, palmCenterNormalized) : image.clone();\n const rotationMatrix = util.buildRotationMatrix(-angle, palmCenter);\n const newBox = useFreshBox ? this.getBoxForPalmLandmarks(currentBox.palmLandmarks, rotationMatrix) : currentBox;\n const croppedInput = box.cutBoxFromImageAndResize(newBox, rotatedImage, [this.inputSize, this.inputSize]);\n const handImage = croppedInput.div(255);\n croppedInput.dispose();\n rotatedImage.dispose();\n const [confidenceT, keypoints] = await this.landmarkDetector.predict(handImage);\n handImage.dispose();\n const confidence = confidenceT.dataSync()[0];\n confidenceT.dispose();\n if (confidence >= config.hand.minConfidence) {\n const keypointsReshaped = tf.reshape(keypoints, [-1, 3]);\n const rawCoords = keypointsReshaped.arraySync();\n keypoints.dispose();\n keypointsReshaped.dispose();\n const coords = this.transformRawCoords(rawCoords, newBox, angle, rotationMatrix);\n const nextBoundingBox = this.getBoxForHandLandmarks(coords);\n this.storedBoxes[i] = nextBoundingBox;\n const result = {\n landmarks: coords,\n confidence,\n box: { topLeft: nextBoundingBox.startPoint, bottomRight: nextBoundingBox.endPoint },\n };\n hands.push(result);\n } else {\n this.storedBoxes[i] = null;\n }\n keypoints.dispose();\n } else {\n // const enlarged = box.enlargeBox(box.squarifyBox(box.shiftBox(currentBox, HAND_BOX_SHIFT_VECTOR)), HAND_BOX_ENLARGE_FACTOR);\n const enlarged = box.enlargeBox(box.squarifyBox(currentBox), HAND_BOX_ENLARGE_FACTOR);\n const result = {\n confidence: currentBox.confidence,\n box: { topLeft: enlarged.startPoint, bottomRight: enlarged.endPoint },\n };\n hands.push(result);\n }\n }\n this.storedBoxes = this.storedBoxes.filter((a) => a !== null);\n this.detectedHands = hands.length;\n return hands;\n }\n\n // eslint-disable-next-line class-methods-use-this\n calculateLandmarksBoundingBox(landmarks) {\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint };\n }\n}\n", "export const anchors = [\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n];\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\nimport * as annotations from './annotations';\n\nlet model;\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n model.width = parseInt(model.signature.inputs['input_1:0'].tensorShape.dim[2].size);\n model.height = parseInt(model.signature.inputs['input_1:0'].tensorShape.dim[1].size);\n if (!model || !model.modelUrl) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if (!config.body.enabled) return null;\n const imgSize = { width: image.shape[2], height: image.shape[1] };\n const resize = tf.image.resizeBilinear(image, [model.width, model.height], false);\n const normalize = tf.div(resize, [255.0]);\n resize.dispose();\n let points;\n if (!config.profile) { // run through profiler or just execute\n const resT = await model.predict(normalize);\n // const segmentationT = resT.find((t) => (t.size === 16384))?.squeeze();\n // const segmentation = segmentationT.arraySync(); // array 128 x 128\n // segmentationT.dispose();\n points = resT.find((t) => (t.size === 195 || t.size === 155)).dataSync(); // order of output tensors may change between models, full has 195 and upper has 155 items\n resT.forEach((t) => t.dispose());\n } else {\n const profileData = await tf.profile(() => model.predict(normalize));\n points = profileData.result.find((t) => (t.size === 195 || t.size === 155)).dataSync();\n profileData.result.forEach((t) => t.dispose());\n profile.run('blazepose', profileData);\n }\n normalize.dispose();\n const keypoints: Array<{ id, part, position: { x, y, z }, score, presence }> = [];\n const labels = points.length === 195 ? annotations.full : annotations.upper; // full model has 39 keypoints, upper has 31 keypoints\n const depth = 5; // each points has x,y,z,visibility,presence\n for (let i = 0; i < points.length / depth; i++) {\n keypoints.push({\n id: i,\n part: labels[i],\n position: {\n x: Math.trunc(imgSize.width * points[depth * i + 0] / 255), // return normalized x value istead of 0..255\n y: Math.trunc(imgSize.height * points[depth * i + 1] / 255), // return normalized y value istead of 0..255\n z: Math.trunc(points[depth * i + 2]) + 0, // fix negative zero\n },\n score: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 3])))) / 100, // reverse sigmoid value\n presence: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 4])))) / 100, // reverse sigmoid value\n });\n }\n const score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n return [{ score, keypoints }];\n}\n", "export const full = [\n 'nose',\n 'leftEyeInside',\n 'leftEye',\n 'leftEyeOutside',\n 'rightEyeInside',\n 'rightEye',\n 'rightEyeOutside',\n 'leftEar',\n 'rightEar',\n 'leftMouth',\n 'rightMouth',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'leftWrist',\n 'rightWrist',\n 'leftPalm',\n 'rightPalm',\n 'leftIndex',\n 'rightIndex',\n 'leftPinky',\n 'rightPinky',\n 'leftHip',\n 'rightHip',\n 'leftKnee',\n 'rightKnee',\n 'leftAnkle',\n 'rightAnkle',\n 'leftHeel',\n 'rightHeel',\n 'leftFoot',\n 'rightFoot',\n 'midHip',\n 'forehead',\n 'leftThumb',\n 'leftHand',\n 'rightThumb',\n 'rightHand',\n];\n\nexport const upper = [\n 'nose',\n 'leftEyeInside',\n 'leftEye',\n 'leftEyeOutside',\n 'rightEyeInside',\n 'rightEye',\n 'rightEyeOutside',\n 'leftEar',\n 'rightEar',\n 'leftMouth',\n 'rightMouth',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'left:15',\n 'right:16',\n 'left:17',\n 'right:18',\n 'left:19',\n 'right:20',\n 'left:21',\n 'right:22',\n 'leftChest',\n 'rightChest',\n 'neck',\n 'forehead',\n 'left:27',\n 'right:28',\n 'left:29',\n 'right:30',\n];\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\nlet model;\nlet keypoints: Array = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst bodyParts = ['head', 'neck', 'rightShoulder', 'rightElbow', 'rightWrist', 'chest', 'leftShoulder', 'leftElbow', 'leftWrist', 'pelvis', 'rightHip', 'rightKnee', 'rightAnkle', 'leftHip', 'leftKnee', 'leftAnkle'];\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\n// performs argmax and max functions on a 2d tensor\nfunction max2d(inputs, minScore) {\n const [width, height] = inputs.shape;\n return tf.tidy(() => {\n // modulus op implemented in tf\n const mod = (a, b) => tf.sub(a, tf.mul(tf.div(a, tf.scalar(b, 'int32')), tf.scalar(b, 'int32')));\n // combine all data\n const reshaped = tf.reshape(inputs, [height * width]);\n // get highest score\n const score = tf.max(reshaped, 0).dataSync()[0];\n if (score > minScore) {\n // skip coordinate calculation is score is too low\n const coords = tf.argMax(reshaped, 0);\n const x = mod(coords, width).dataSync()[0];\n const y = tf.div(coords, tf.scalar(width, 'int32')).dataSync()[0];\n return [x, y, score];\n }\n return [0, 0, score];\n });\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if ((skipped < config.body.skipFrames) && config.videoOptimized && Object.keys(keypoints).length > 0) {\n skipped++;\n return keypoints;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const tensor = tf.tidy(() => {\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const enhance = tf.mul(resize, 2);\n const norm = enhance.sub(1);\n return norm;\n });\n\n let resT;\n\n if (!config.profile) {\n if (config.body.enabled) resT = await model.predict(tensor);\n } else {\n const profileT = config.body.enabled ? await tf.profile(() => model.predict(tensor)) : {};\n resT = profileT.result.clone();\n profileT.result.dispose();\n profile.run('body', profileT);\n }\n tensor.dispose();\n\n if (resT) {\n const parts: Array<{ id, score, part, position: { x, y }, positionRaw: { xRaw, yRaw} }> = [];\n const squeeze = resT.squeeze();\n tf.dispose(resT);\n // body parts are basically just a stack of 2d tensors\n const stack = squeeze.unstack(2);\n tf.dispose(squeeze);\n // process each unstacked tensor as a separate body part\n for (let id = 0; id < stack.length; id++) {\n // actual processing to get coordinates and score\n const [x, y, score] = max2d(stack[id], config.body.scoreThreshold);\n if (score > config.body.scoreThreshold) {\n parts.push({\n id,\n score: Math.round(100 * score) / 100,\n part: bodyParts[id],\n positionRaw: {\n xRaw: x / model.inputs[0].shape[2], // x normalized to 0..1\n yRaw: y / model.inputs[0].shape[1], // y normalized to 0..1\n },\n position: {\n x: Math.round(image.shape[2] * x / model.inputs[0].shape[2]), // x normalized to input image size\n y: Math.round(image.shape[1] * y / model.inputs[0].shape[1]), // y normalized to input image size\n },\n });\n }\n }\n stack.forEach((s) => tf.dispose(s));\n keypoints = parts;\n }\n const score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n resolve([{ score, keypoints }]);\n });\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\nimport { labels } from './labels';\n\nlet model;\nlet last: Array<{}> = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst scaleBox = 2.5; // increase box size\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.object.modelPath));\n const inputs = Object.values(model.modelSignature['inputs']);\n model.inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : null;\n if (!model.inputSize) throw new Error(`Human: Cannot determine model inputSize: ${config.object.modelPath}`);\n if (!model || !model.modelUrl) log('load model failed:', config.object.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nasync function process(res, inputSize, outputShape, config) {\n let id = 0;\n let results: Array<{ score: number, strideSize: number, class: number, label: string, center: number[], centerRaw: number[], box: number[], boxRaw: number[] }> = [];\n for (const strideSize of [1, 2, 4]) { // try each stride size as it detects large/medium/small objects\n // find scores, boxes, classes\n tf.tidy(() => { // wrap in tidy to automatically deallocate temp tensors\n const baseSize = strideSize * 13; // 13x13=169, 26x26=676, 52x52=2704\n // find boxes and scores output depending on stride\n const scoresT = res.find((a) => (a.shape[1] === (baseSize ** 2) && a.shape[2] === labels.length))?.squeeze();\n const featuresT = res.find((a) => (a.shape[1] === (baseSize ** 2) && a.shape[2] < labels.length))?.squeeze();\n const boxesMax = featuresT.reshape([-1, 4, featuresT.shape[1] / 4]); // reshape [output] to [4, output / 4] where number is number of different features inside each stride\n const boxIdx = boxesMax.argMax(2).arraySync(); // what we need is indexes of features with highest scores, not values itself\n const scores = scoresT.arraySync(); // optionally use exponential scores or just as-is\n for (let i = 0; i < scoresT.shape[0]; i++) { // total strides (x * y matrix)\n for (let j = 0; j < scoresT.shape[1]; j++) { // one score for each class\n const score = scores[i][j]; // get score for current position\n if (score > config.object.minConfidence && j !== 61) {\n const cx = (0.5 + Math.trunc(i % baseSize)) / baseSize; // center.x normalized to range 0..1\n const cy = (0.5 + Math.trunc(i / baseSize)) / baseSize; // center.y normalized to range 0..1\n const boxOffset = boxIdx[i].map((a) => a * (baseSize / strideSize / inputSize)); // just grab indexes of features with highest scores\n const [x, y] = [\n cx - (scaleBox / strideSize * boxOffset[0]),\n cy - (scaleBox / strideSize * boxOffset[1]),\n ];\n const [w, h] = [\n cx + (scaleBox / strideSize * boxOffset[2]) - x,\n cy + (scaleBox / strideSize * boxOffset[3]) - y,\n ];\n let boxRaw = [x, y, w, h]; // results normalized to range 0..1\n boxRaw = boxRaw.map((a) => Math.max(0, Math.min(a, 1))); // fix out-of-bounds coords\n const box = [ // results normalized to input image pixels\n boxRaw[0] * outputShape[0],\n boxRaw[1] * outputShape[1],\n boxRaw[2] * outputShape[0],\n boxRaw[3] * outputShape[1],\n ];\n const result = {\n id: id++,\n strideSize,\n score: Math.round(100 * score) / 100,\n class: j + 1,\n label: labels[j].label,\n center: [Math.trunc(outputShape[0] * cx), Math.trunc(outputShape[1] * cy)],\n centerRaw: [cx, cy],\n box: box.map((a) => Math.trunc(a)),\n boxRaw,\n };\n results.push(result);\n }\n }\n }\n });\n }\n // deallocate tensors\n res.forEach((t) => tf.dispose(t));\n\n // normally nms is run on raw results, but since boxes need to be calculated this way we skip calulcation of\n // unnecessary boxes and run nms only on good candidates (basically it just does IOU analysis as scores are already filtered)\n const nmsBoxes = results.map((a) => a.boxRaw);\n const nmsScores = results.map((a) => a.score);\n let nmsIdx: any[] = [];\n if (nmsBoxes && nmsBoxes.length > 0) {\n const nms = await tf.image.nonMaxSuppressionAsync(nmsBoxes, nmsScores, config.object.maxResults, config.object.iouThreshold, config.object.minConfidence);\n nmsIdx = nms.dataSync();\n tf.dispose(nms);\n }\n\n // filter & sort results\n results = results\n .filter((a, idx) => nmsIdx.includes(idx))\n .sort((a, b) => (b.score - a.score));\n\n return results;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n // console.log(skipped, config.object.skipFrames, config.videoOptimized, ((skipped < config.object.skipFrames) && config.videoOptimized && (last.length > 0)));\n if ((skipped < config.object.skipFrames) && config.videoOptimized && (last.length > 0)) {\n skipped++;\n return last;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const outputSize = [image.shape[2], image.shape[1]];\n const resize = tf.image.resizeBilinear(image, [model.inputSize, model.inputSize], false);\n const norm = resize.div(255);\n const transpose = norm.transpose([0, 3, 1, 2]);\n norm.dispose();\n resize.dispose();\n\n let objectT;\n if (!config.profile) {\n if (config.object.enabled) objectT = await model.predict(transpose);\n } else {\n const profileObject = config.object.enabled ? await tf.profile(() => model.predict(transpose)) : {};\n objectT = profileObject.result;\n profile.run('object', profileObject);\n }\n transpose.dispose();\n\n const obj = await process(objectT, model.inputSize, outputSize, config);\n last = obj;\n resolve(obj);\n });\n}\n", "export const labels = [\n { class: 1, label: 'person' },\n { class: 2, label: 'bicycle' },\n { class: 3, label: 'car' },\n { class: 4, label: 'motorcycle' },\n { class: 5, label: 'airplane' },\n { class: 6, label: 'bus' },\n { class: 7, label: 'train' },\n { class: 8, label: 'truck' },\n { class: 9, label: 'boat' },\n { class: 10, label: 'traffic light' },\n { class: 11, label: 'fire hydrant' },\n { class: 12, label: 'stop sign' },\n { class: 13, label: 'parking meter' },\n { class: 14, label: 'bench' },\n { class: 15, label: 'bird' },\n { class: 16, label: 'cat' },\n { class: 17, label: 'dog' },\n { class: 18, label: 'horse' },\n { class: 19, label: 'sheep' },\n { class: 20, label: 'cow' },\n { class: 21, label: 'elephant' },\n { class: 22, label: 'bear' },\n { class: 23, label: 'zebra' },\n { class: 24, label: 'giraffe' },\n { class: 25, label: 'backpack' },\n { class: 26, label: 'umbrella' },\n { class: 27, label: 'handbag' },\n { class: 28, label: 'tie' },\n { class: 29, label: 'suitcase' },\n { class: 30, label: 'frisbee' },\n { class: 31, label: 'skis' },\n { class: 32, label: 'snowboard' },\n { class: 33, label: 'sports ball' },\n { class: 34, label: 'kite' },\n { class: 35, label: 'baseball bat' },\n { class: 36, label: 'baseball glove' },\n { class: 37, label: 'skateboard' },\n { class: 38, label: 'surfboard' },\n { class: 39, label: 'tennis racket' },\n { class: 40, label: 'bottle' },\n { class: 41, label: 'wine glass' },\n { class: 42, label: 'cup' },\n { class: 43, label: 'fork' },\n { class: 44, label: 'knife' },\n { class: 45, label: 'spoon' },\n { class: 46, label: 'bowl' },\n { class: 47, label: 'banana' },\n { class: 48, label: 'apple' },\n { class: 49, label: 'sandwich' },\n { class: 50, label: 'orange' },\n { class: 51, label: 'broccoli' },\n { class: 52, label: 'carrot' },\n { class: 53, label: 'hot dog' },\n { class: 54, label: 'pizza' },\n { class: 55, label: 'donut' },\n { class: 56, label: 'cake' },\n { class: 57, label: 'chair' },\n { class: 58, label: 'couch' },\n { class: 59, label: 'potted plant' },\n { class: 60, label: 'bed' },\n { class: 61, label: 'dining table' },\n { class: 62, label: 'toilet' },\n { class: 63, label: 'tv' },\n { class: 64, label: 'laptop' },\n { class: 65, label: 'mouse' },\n { class: 66, label: 'remote' },\n { class: 67, label: 'keyboard' },\n { class: 68, label: 'cell phone' },\n { class: 69, label: 'microwave' },\n { class: 70, label: 'oven' },\n { class: 71, label: 'toaster' },\n { class: 72, label: 'sink' },\n { class: 73, label: 'refrigerator' },\n { class: 74, label: 'book' },\n { class: 75, label: 'clock' },\n { class: 76, label: 'vase' },\n { class: 77, label: 'scissors' },\n { class: 78, label: 'teddy bear' },\n { class: 79, label: 'hair drier' },\n { class: 80, label: 'toothbrush' },\n];\n", "export const body = (res) => {\n if (!res) return [];\n const gestures: Array<{ body: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n // raising hands\n const leftWrist = res[i].keypoints.find((a) => (a.part === 'leftWrist'));\n const rightWrist = res[i].keypoints.find((a) => (a.part === 'rightWrist'));\n const nose = res[i].keypoints.find((a) => (a.part === 'nose'));\n if (nose && leftWrist && rightWrist && (leftWrist.position.y < nose.position.y) && (rightWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'i give up' });\n else if (nose && leftWrist && (leftWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'raise left hand' });\n else if (nose && rightWrist && (rightWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'raise right hand' });\n\n // leaning\n const leftShoulder = res[i].keypoints.find((a) => (a.part === 'leftShoulder'));\n const rightShoulder = res[i].keypoints.find((a) => (a.part === 'rightShoulder'));\n if (leftShoulder && rightShoulder) gestures.push({ body: i, gesture: `leaning ${(leftShoulder.position.y > rightShoulder.position.y) ? 'left' : 'right'}` });\n }\n return gestures;\n};\n\nexport const face = (res) => {\n if (!res) return [];\n const gestures: Array<{ face: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n if (res[i].mesh && res[i].mesh.length > 0) {\n const eyeFacing = res[i].mesh[33][2] - res[i].mesh[263][2];\n if (Math.abs(eyeFacing) < 10) gestures.push({ face: i, gesture: 'facing center' });\n else gestures.push({ face: i, gesture: `facing ${eyeFacing < 0 ? 'left' : 'right'}` });\n const openLeft = Math.abs(res[i].mesh[374][1] - res[i].mesh[386][1]) / Math.abs(res[i].mesh[443][1] - res[i].mesh[450][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openLeft < 0.2) gestures.push({ face: i, gesture: 'blink left eye' });\n const openRight = Math.abs(res[i].mesh[145][1] - res[i].mesh[159][1]) / Math.abs(res[i].mesh[223][1] - res[i].mesh[230][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openRight < 0.2) gestures.push({ face: i, gesture: 'blink right eye' });\n const mouthOpen = Math.min(100, 500 * Math.abs(res[i].mesh[13][1] - res[i].mesh[14][1]) / Math.abs(res[i].mesh[10][1] - res[i].mesh[152][1]));\n if (mouthOpen > 10) gestures.push({ face: i, gesture: `mouth ${Math.trunc(mouthOpen)}% open` });\n const chinDepth = res[i].mesh[152][2];\n if (Math.abs(chinDepth) > 10) gestures.push({ face: i, gesture: `head ${chinDepth < 0 ? 'up' : 'down'}` });\n }\n }\n return gestures;\n};\n\nexport const iris = (res) => {\n if (!res) return [];\n const gestures: Array<{ iris: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n if (!res[i].annotations || !res[i].annotations.leftEyeIris || !res[i].annotations.rightEyeIris) continue;\n const sizeXLeft = res[i].annotations.leftEyeIris[3][0] - res[i].annotations.leftEyeIris[1][0];\n const sizeYLeft = res[i].annotations.leftEyeIris[4][1] - res[i].annotations.leftEyeIris[2][1];\n const areaLeft = Math.abs(sizeXLeft * sizeYLeft);\n\n const sizeXRight = res[i].annotations.rightEyeIris[3][0] - res[i].annotations.rightEyeIris[1][0];\n const sizeYRight = res[i].annotations.rightEyeIris[4][1] - res[i].annotations.rightEyeIris[2][1];\n const areaRight = Math.abs(sizeXRight * sizeYRight);\n\n let center = false;\n const difference = Math.abs(areaLeft - areaRight) / Math.max(areaLeft, areaRight);\n if (difference < 0.25) {\n center = true;\n gestures.push({ iris: i, gesture: 'facing center' });\n }\n\n const rightIrisCenterX = Math.abs(res[i].mesh[33][0] - res[i].annotations.rightEyeIris[0][0]) / res[i].annotations.rightEyeIris[0][0];\n const leftIrisCenterX = Math.abs(res[i].mesh[263][0] - res[i].annotations.leftEyeIris[0][0]) / res[i].annotations.leftEyeIris[0][0];\n if (leftIrisCenterX > 0.033 || rightIrisCenterX > 0.033) center = false;\n if (leftIrisCenterX > 0.033) gestures.push({ iris: i, gesture: 'looking right' });\n if (rightIrisCenterX > 0.033) gestures.push({ iris: i, gesture: 'looking left' });\n\n const rightIrisCenterY = Math.abs(res[i].mesh[145][1] - res[i].annotations.rightEyeIris[0][1]) / res[i].annotations.rightEyeIris[0][1];\n const leftIrisCenterY = Math.abs(res[i].mesh[374][1] - res[i].annotations.leftEyeIris[0][1]) / res[i].annotations.leftEyeIris[0][1];\n if (leftIrisCenterY < 0.015 || rightIrisCenterY < 0.015 || leftIrisCenterY > 0.030 || rightIrisCenterY > 0.030) center = false;\n if (leftIrisCenterY < 0.015 || rightIrisCenterY < 0.015) gestures.push({ iris: i, gesture: 'looking down' });\n if (leftIrisCenterY > 0.030 || rightIrisCenterY > 0.030) gestures.push({ iris: i, gesture: 'looking up' });\n\n // still center;\n if (center) gestures.push({ iris: i, gesture: 'looking center' });\n }\n return gestures;\n};\n\nexport const hand = (res) => {\n if (!res) return [];\n const gestures: Array<{ hand: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n const fingers: Array<{ name: string, position: number }> = [];\n for (const [finger, pos] of Object.entries(res[i]['annotations'])) {\n if (finger !== 'palmBase' && Array.isArray(pos)) fingers.push({ name: finger.toLowerCase(), position: pos[0] }); // get tip of each finger\n }\n if (fingers && fingers.length > 0) {\n const closest = fingers.reduce((best, a) => (best.position[2] < a.position[2] ? best : a));\n const highest = fingers.reduce((best, a) => (best.position[1] < a.position[1] ? best : a));\n gestures.push({ hand: i, gesture: `${closest.name} forward ${highest.name} up` });\n }\n }\n return gestures;\n};\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as fxImage from './imagefx';\n\nconst maxSize = 2048;\n// internal temp canvases\nlet inCanvas;\nlet outCanvas;\n// instance of fximage\nlet fx;\n\n// process input image and return tensor\n// input can be tensor, imagedata, htmlimageelement, htmlvideoelement\n// input is resized and run through imagefx filter\nexport function process(input, config): { tensor: typeof tf.Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement } {\n let tensor;\n if (!input) throw new Error('Human: Input is missing');\n // sanity checks since different browsers do not implement all dom elements\n if (\n !(input instanceof tf.Tensor)\n && !(typeof Image !== 'undefined' && input instanceof Image)\n && !(typeof ImageData !== 'undefined' && input instanceof ImageData)\n && !(typeof ImageBitmap !== 'undefined' && input instanceof ImageBitmap)\n && !(typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n && !(typeof HTMLMediaElement !== 'undefined' && input instanceof HTMLMediaElement)\n && !(typeof HTMLVideoElement !== 'undefined' && input instanceof HTMLVideoElement)\n && !(typeof HTMLCanvasElement !== 'undefined' && input instanceof HTMLCanvasElement)\n && !(typeof OffscreenCanvas !== 'undefined' && input instanceof OffscreenCanvas)\n ) {\n throw new Error('Human: Input type is not recognized');\n }\n if (input instanceof tf.Tensor) {\n // if input is tensor, use as-is\n if (input.shape && input.shape.length === 4 && input.shape[0] === 1 && input.shape[3] === 3) tensor = tf.clone(input);\n else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${input.shape}`);\n } else {\n // check if resizing will be needed\n const originalWidth = input['naturalWidth'] || input['videoWidth'] || input['width'] || (input['shape'] && (input['shape'][1] > 0));\n const originalHeight = input['naturalHeight'] || input['videoHeight'] || input['height'] || (input['shape'] && (input['shape'][2] > 0));\n let targetWidth = originalWidth;\n let targetHeight = originalHeight;\n if (targetWidth > maxSize) {\n targetWidth = maxSize;\n targetHeight = targetWidth * originalHeight / originalWidth;\n }\n if (targetHeight > maxSize) {\n targetHeight = maxSize;\n targetWidth = targetHeight * originalWidth / originalHeight;\n }\n\n // create our canvas and resize it if needed\n if (config.filter.width > 0) targetWidth = config.filter.width;\n else if (config.filter.height > 0) targetWidth = originalWidth * (config.filter.height / originalHeight);\n if (config.filter.height > 0) targetHeight = config.filter.height;\n else if (config.filter.width > 0) targetHeight = originalHeight * (config.filter.width / originalWidth);\n if (!targetWidth || !targetHeight) throw new Error('Human: Input cannot determine dimension');\n if (!inCanvas || (inCanvas?.width !== targetWidth) || (inCanvas?.height !== targetHeight)) {\n inCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n if (inCanvas?.width !== targetWidth) inCanvas.width = targetWidth;\n if (inCanvas?.height !== targetHeight) inCanvas.height = targetHeight;\n }\n\n // draw input to our canvas\n const ctx = inCanvas.getContext('2d');\n if (input instanceof ImageData) {\n ctx.putImageData(input, 0, 0);\n } else {\n if (config.filter.flip && typeof ctx.translate !== 'undefined') {\n ctx.translate(originalWidth, 0);\n ctx.scale(-1, 1);\n ctx.drawImage(input, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n ctx.setTransform(1, 0, 0, 1, 0, 0); // resets transforms to defaults\n } else {\n ctx.drawImage(input, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n }\n }\n\n // imagefx transforms using gl\n if (config.filter.enabled) {\n if (!fx || !outCanvas || (inCanvas.width !== outCanvas.width) || (inCanvas?.height !== outCanvas?.height)) {\n outCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(inCanvas?.width, inCanvas?.height) : document.createElement('canvas');\n if (outCanvas?.width !== inCanvas?.width) outCanvas.width = inCanvas?.width;\n if (outCanvas?.height !== inCanvas?.height) outCanvas.height = inCanvas?.height;\n // log('created FX filter');\n fx = tf.ENV.flags.IS_BROWSER ? new fxImage.GLImageFilter({ canvas: outCanvas }) : null; // && (typeof document !== 'undefined')\n }\n if (!fx) return { tensor: null, canvas: inCanvas };\n fx.reset();\n fx.addFilter('brightness', config.filter.brightness); // must have at least one filter enabled\n if (config.filter.contrast !== 0) fx.addFilter('contrast', config.filter.contrast);\n if (config.filter.sharpness !== 0) fx.addFilter('sharpen', config.filter.sharpness);\n if (config.filter.blur !== 0) fx.addFilter('blur', config.filter.blur);\n if (config.filter.saturation !== 0) fx.addFilter('saturation', config.filter.saturation);\n if (config.filter.hue !== 0) fx.addFilter('hue', config.filter.hue);\n if (config.filter.negative) fx.addFilter('negative');\n if (config.filter.sepia) fx.addFilter('sepia');\n if (config.filter.vintage) fx.addFilter('brownie');\n if (config.filter.sepia) fx.addFilter('sepia');\n if (config.filter.kodachrome) fx.addFilter('kodachrome');\n if (config.filter.technicolor) fx.addFilter('technicolor');\n if (config.filter.polaroid) fx.addFilter('polaroid');\n if (config.filter.pixelate !== 0) fx.addFilter('pixelate', config.filter.pixelate);\n fx.apply(inCanvas);\n // read pixel data\n /*\n const gl = outCanvas.getContext('webgl');\n if (gl) {\n const glBuffer = new Uint8Array(outCanvas.width * outCanvas.height * 4);\n const pixBuffer = new Uint8Array(outCanvas.width * outCanvas.height * 3);\n gl.readPixels(0, 0, outCanvas.width, outCanvas.height, gl.RGBA, gl.UNSIGNED_BYTE, glBuffer);\n // gl returns rbga while we only need rgb, so discarding alpha channel\n // gl returns starting point as lower left, so need to invert vertical\n let i = 0;\n for (let y = outCanvas.height - 1; y >= 0; y--) {\n for (let x = 0; x < outCanvas.width; x++) {\n const index = (x + y * outCanvas.width) * 4;\n pixBuffer[i++] = glBuffer[index + 0];\n pixBuffer[i++] = glBuffer[index + 1];\n pixBuffer[i++] = glBuffer[index + 2];\n }\n }\n outCanvas.data = pixBuffer;\n }\n */\n } else {\n outCanvas = inCanvas;\n if (fx) fx = null;\n }\n\n // create tensor from image\n let pixels;\n if (outCanvas.data) { // if we have data, just convert to tensor\n const shape = [outCanvas.height, outCanvas.width, 3];\n pixels = tf.tensor3d(outCanvas.data, shape, 'int32');\n } else if (outCanvas instanceof ImageData) { // if input is imagedata, just use it\n pixels = tf.browser.fromPixels(outCanvas);\n } else if (config.backend === 'webgl' || config.backend === 'humangl') { // tf kernel-optimized method to get imagedata\n // we can use canvas as-is as it already has a context, so we do a silly one more canvas\n const tempCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n tempCanvas.width = targetWidth;\n tempCanvas.height = targetHeight;\n const tempCtx = tempCanvas.getContext('2d');\n tempCtx?.drawImage(outCanvas, 0, 0);\n pixels = tf.browser.fromPixels(tempCanvas);\n } else { // cpu and wasm kernel does not implement efficient fromPixels method\n // we can use canvas as-is as it already has a context, so we do a silly one more canvas\n const tempCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n tempCanvas.width = targetWidth;\n tempCanvas.height = targetHeight;\n const tempCtx = tempCanvas.getContext('2d');\n tempCtx?.drawImage(outCanvas, 0, 0);\n const data = tempCtx?.getImageData(0, 0, targetWidth, targetHeight);\n pixels = tf.browser.fromPixels(data);\n }\n const casted = pixels.toFloat();\n tensor = casted.expandDims(0);\n pixels.dispose();\n casted.dispose();\n }\n const canvas = config.filter.return ? outCanvas : null;\n return { tensor, canvas };\n}\n", "/*\nWebGLImageFilter - MIT Licensed\n2013, Dominic Szablewski - phoboslab.org\n\n*/\n\nfunction GLProgram(gl, vertexSource, fragmentSource) {\n const _collect = function (source, prefix, collection) {\n const r = new RegExp('\\\\b' + prefix + ' \\\\w+ (\\\\w+)', 'ig');\n source.replace(r, (match, name) => {\n collection[name] = 0;\n return match;\n });\n };\n\n const _compile = function (source, type) {\n const shader = gl.createShader(type);\n gl.shaderSource(shader, source);\n gl.compileShader(shader);\n if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) throw new Error('Filter: GL compile failed', gl.getShaderInfoLog(shader));\n return shader;\n };\n\n this.uniform = {};\n this.attribute = {};\n const _vsh = _compile(vertexSource, gl.VERTEX_SHADER);\n const _fsh = _compile(fragmentSource, gl.FRAGMENT_SHADER);\n this.id = gl.createProgram();\n gl.attachShader(this.id, _vsh);\n gl.attachShader(this.id, _fsh);\n gl.linkProgram(this.id);\n\n if (!gl.getProgramParameter(this.id, gl.LINK_STATUS)) throw new Error('Filter: GL link failed', gl.getProgramInfoLog(this.id));\n\n gl.useProgram(this.id);\n // Collect attributes\n _collect(vertexSource, 'attribute', this.attribute);\n for (const a in this.attribute) this.attribute[a] = gl.getAttribLocation(this.id, a);\n // Collect uniforms\n _collect(vertexSource, 'uniform', this.uniform);\n _collect(fragmentSource, 'uniform', this.uniform);\n for (const u in this.uniform) this.uniform[u] = gl.getUniformLocation(this.id, u);\n}\n\n// export const GLImageFilter = function (params) {\nexport function GLImageFilter(params) {\n if (!params) params = { };\n let _drawCount = 0;\n let _sourceTexture = null;\n let _lastInChain = false;\n let _currentFramebufferIndex = -1;\n let _tempFramebuffers = [null, null];\n let _filterChain = [];\n let _width = -1;\n let _height = -1;\n let _vertexBuffer = null;\n let _currentProgram = null;\n const _filter = {};\n const _canvas = params.canvas || document.createElement('canvas');\n // key is the shader program source, value is the compiled program\n const _shaderProgramCache = { };\n const DRAW = { INTERMEDIATE: 1 };\n const gl = _canvas.getContext('webgl');\n if (!gl) throw new Error('Filter: getContext() failed');\n\n this.addFilter = function (name) {\n // eslint-disable-next-line prefer-rest-params\n const args = Array.prototype.slice.call(arguments, 1);\n const filter = _filter[name];\n _filterChain.push({ func: filter, args });\n };\n\n this.reset = function () {\n _filterChain = [];\n };\n\n const _resize = function (width, height) {\n // Same width/height? Nothing to do here\n if (width === _width && height === _height) { return; }\n _canvas.width = width;\n _width = width;\n _canvas.height = height;\n _height = height;\n // Create the context if we don't have it yet\n if (!_vertexBuffer) {\n // Create the vertex buffer for the two triangles [x, y, u, v] * 6\n const vertices = new Float32Array([\n -1, -1, 0, 1, 1, -1, 1, 1, -1, 1, 0, 0,\n -1, 1, 0, 0, 1, -1, 1, 1, 1, 1, 1, 0,\n ]);\n // eslint-disable-next-line no-unused-expressions\n (_vertexBuffer = gl.createBuffer(), gl.bindBuffer(gl.ARRAY_BUFFER, _vertexBuffer));\n gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);\n gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, true);\n }\n gl.viewport(0, 0, _width, _height);\n // Delete old temp framebuffers\n _tempFramebuffers = [null, null];\n };\n\n const _createFramebufferTexture = function (width, height) {\n const fbo = gl.createFramebuffer();\n gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);\n const renderbuffer = gl.createRenderbuffer();\n gl.bindRenderbuffer(gl.RENDERBUFFER, renderbuffer);\n const texture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, texture);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, width, height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);\n gl.bindTexture(gl.TEXTURE_2D, null);\n gl.bindFramebuffer(gl.FRAMEBUFFER, null);\n return { fbo, texture };\n };\n\n const _getTempFramebuffer = function (index) {\n _tempFramebuffers[index] = _tempFramebuffers[index] || _createFramebufferTexture(_width, _height);\n return _tempFramebuffers[index];\n };\n\n const _draw = function (flags = null) {\n let source = null;\n let target = null;\n let flipY = false;\n // Set up the source\n if (_drawCount === 0) {\n // First draw call - use the source texture\n source = _sourceTexture;\n } else {\n // All following draw calls use the temp buffer last drawn to\n source = _getTempFramebuffer(_currentFramebufferIndex)?.texture;\n }\n _drawCount++;\n // Set up the target\n if (_lastInChain && !(flags & DRAW.INTERMEDIATE)) {\n // Last filter in our chain - draw directly to the WebGL Canvas. We may\n // also have to flip the image vertically now\n target = null;\n flipY = _drawCount % 2 === 0;\n } else {\n // Intermediate draw call - get a temp buffer to draw to\n _currentFramebufferIndex = (_currentFramebufferIndex + 1) % 2;\n target = _getTempFramebuffer(_currentFramebufferIndex)?.fbo;\n }\n // Bind the source and target and draw the two triangles\n gl.bindTexture(gl.TEXTURE_2D, source);\n gl.bindFramebuffer(gl.FRAMEBUFFER, target);\n gl.uniform1f(_currentProgram.uniform.flipY, (flipY ? -1 : 1));\n gl.drawArrays(gl.TRIANGLES, 0, 6);\n };\n\n this.apply = function (image) {\n _resize(image.width, image.height);\n _drawCount = 0;\n // Create the texture for the input image if we haven't yet\n if (!_sourceTexture) _sourceTexture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, _sourceTexture);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);\n // No filters? Just draw\n if (_filterChain.length === 0) {\n // const program = _compileShader(SHADER.FRAGMENT_IDENTITY);\n _draw();\n return _canvas;\n }\n for (let i = 0; i < _filterChain.length; i++) {\n _lastInChain = (i === _filterChain.length - 1);\n const f = _filterChain[i];\n f.func.apply(this, f.args || []);\n }\n return _canvas;\n };\n\n const _compileShader = function (fragmentSource) {\n if (_shaderProgramCache[fragmentSource]) {\n _currentProgram = _shaderProgramCache[fragmentSource];\n gl.useProgram(_currentProgram.id);\n return _currentProgram;\n }\n // Compile shaders\n const SHADER = {};\n SHADER.VERTEX_IDENTITY = [\n 'precision highp float;',\n 'attribute vec2 pos;',\n 'attribute vec2 uv;',\n 'varying vec2 vUv;',\n 'uniform float flipY;',\n 'void main(void) {',\n 'vUv = uv;',\n 'gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);',\n '}',\n ].join('\\n');\n SHADER.FRAGMENT_IDENTITY = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'void main(void) {',\n 'gl_FragColor = texture2D(texture, vUv);',\n '}',\n ].join('\\n');\n _currentProgram = new GLProgram(gl, SHADER.VERTEX_IDENTITY, fragmentSource);\n const floatSize = Float32Array.BYTES_PER_ELEMENT;\n const vertSize = 4 * floatSize;\n gl.enableVertexAttribArray(_currentProgram.attribute.pos);\n gl.vertexAttribPointer(_currentProgram.attribute.pos, 2, gl.FLOAT, false, vertSize, 0 * floatSize);\n gl.enableVertexAttribArray(_currentProgram.attribute.uv);\n gl.vertexAttribPointer(_currentProgram.attribute.uv, 2, gl.FLOAT, false, vertSize, 2 * floatSize);\n _shaderProgramCache[fragmentSource] = _currentProgram;\n return _currentProgram;\n };\n\n // -------------------------------------------------------------------------\n // Color Matrix Filter\n _filter.colorMatrix = function (matrix) {\n // Create a Float32 Array and normalize the offset component to 0-1\n const m = new Float32Array(matrix);\n m[4] /= 255;\n m[9] /= 255;\n m[14] /= 255;\n m[19] /= 255;\n // Can we ignore the alpha value? Makes things a bit faster.\n const shader = (m[18] === 1 && m[3] === 0 && m[8] === 0 && m[13] === 0 && m[15] === 0 && m[16] === 0 && m[17] === 0 && m[19] === 0)\n ? _filter.colorMatrix.SHADER.WITHOUT_ALPHA\n : _filter.colorMatrix.SHADER.WITH_ALPHA;\n const program = _compileShader(shader);\n gl.uniform1fv(program.uniform.m, m);\n _draw();\n };\n _filter.colorMatrix.SHADER = {};\n _filter.colorMatrix.SHADER.WITH_ALPHA = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform float m[20];',\n 'void main(void) {',\n 'vec4 c = texture2D(texture, vUv);',\n 'gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];',\n 'gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];',\n 'gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];',\n 'gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];',\n '}',\n ].join('\\n');\n _filter.colorMatrix.SHADER.WITHOUT_ALPHA = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform float m[20];',\n 'void main(void) {',\n 'vec4 c = texture2D(texture, vUv);',\n 'gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];',\n 'gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];',\n 'gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];',\n 'gl_FragColor.a = c.a;',\n '}',\n ].join('\\n');\n\n _filter.brightness = function (brightness) {\n const b = (brightness || 0) + 1;\n _filter.colorMatrix([\n b, 0, 0, 0, 0,\n 0, b, 0, 0, 0,\n 0, 0, b, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.saturation = function (amount) {\n const x = (amount || 0) * 2 / 3 + 1;\n const y = ((x - 1) * -0.5);\n _filter.colorMatrix([\n x, y, y, 0, 0,\n y, x, y, 0, 0,\n y, y, x, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.desaturate = function () {\n _filter.saturation(-1);\n };\n\n _filter.contrast = function (amount) {\n const v = (amount || 0) + 1;\n const o = -128 * (v - 1);\n\n _filter.colorMatrix([\n v, 0, 0, 0, o,\n 0, v, 0, 0, o,\n 0, 0, v, 0, o,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.negative = function () {\n _filter.contrast(-2);\n };\n\n _filter.hue = function (rotation) {\n rotation = (rotation || 0) / 180 * Math.PI;\n const cos = Math.cos(rotation);\n const sin = Math.sin(rotation);\n const lumR = 0.213;\n const lumG = 0.715;\n const lumB = 0.072;\n\n _filter.colorMatrix([\n lumR + cos * (1 - lumR) + sin * (-lumR), lumG + cos * (-lumG) + sin * (-lumG), lumB + cos * (-lumB) + sin * (1 - lumB), 0, 0,\n lumR + cos * (-lumR) + sin * (0.143), lumG + cos * (1 - lumG) + sin * (0.140), lumB + cos * (-lumB) + sin * (-0.283), 0, 0,\n lumR + cos * (-lumR) + sin * (-(1 - lumR)), lumG + cos * (-lumG) + sin * (lumG), lumB + cos * (1 - lumB) + sin * (lumB), 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.desaturateLuminance = function () {\n _filter.colorMatrix([\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.sepia = function () {\n _filter.colorMatrix([\n 0.393, 0.7689999, 0.18899999, 0, 0,\n 0.349, 0.6859999, 0.16799999, 0, 0,\n 0.272, 0.5339999, 0.13099999, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.brownie = function () {\n _filter.colorMatrix([\n 0.5997023498159715, 0.34553243048391263, -0.2708298674538042, 0, 47.43192855600873,\n -0.037703249837783157, 0.8609577587992641, 0.15059552388459913, 0, -36.96841498319127,\n 0.24113635128153335, -0.07441037908422492, 0.44972182064877153, 0, -7.562075277591283,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.vintagePinhole = function () {\n _filter.colorMatrix([\n 0.6279345635605994, 0.3202183420819367, -0.03965408211312453, 0, 9.651285835294123,\n 0.02578397704808868, 0.6441188644374771, 0.03259127616149294, 0, 7.462829176470591,\n 0.0466055556782719, -0.0851232987247891, 0.5241648018700465, 0, 5.159190588235296,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.kodachrome = function () {\n _filter.colorMatrix([\n 1.1285582396593525, -0.3967382283601348, -0.03992559172921793, 0, 63.72958762196502,\n -0.16404339962244616, 1.0835251566291304, -0.05498805115633132, 0, 24.732407896706203,\n -0.16786010706155763, -0.5603416277695248, 1.6014850761964943, 0, 35.62982807460946,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.technicolor = function () {\n _filter.colorMatrix([\n 1.9125277891456083, -0.8545344976951645, -0.09155508482755585, 0, 11.793603434377337,\n -0.3087833385928097, 1.7658908555458428, -0.10601743074722245, 0, -70.35205161461398,\n -0.231103377548616, -0.7501899197440212, 1.847597816108189, 0, 30.950940869491138,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.polaroid = function () {\n _filter.colorMatrix([\n 1.438, -0.062, -0.062, 0, 0,\n -0.122, 1.378, -0.122, 0, 0,\n -0.016, -0.016, 1.483, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.shiftToBGR = function () {\n _filter.colorMatrix([\n 0, 0, 1, 0, 0,\n 0, 1, 0, 0, 0,\n 1, 0, 0, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n // -------------------------------------------------------------------------\n // Convolution Filter\n _filter.convolution = function (matrix) {\n const m = new Float32Array(matrix);\n const pixelSizeX = 1 / _width;\n const pixelSizeY = 1 / _height;\n const program = _compileShader(_filter.convolution.SHADER);\n gl.uniform1fv(program.uniform.m, m);\n gl.uniform2f(program.uniform.px, pixelSizeX, pixelSizeY);\n _draw();\n };\n\n _filter.convolution.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform vec2 px;',\n 'uniform float m[9];',\n 'void main(void) {',\n 'vec4 c11 = texture2D(texture, vUv - px);', // top left\n 'vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));', // top center\n 'vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));', // top right\n 'vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );', // mid left\n 'vec4 c22 = texture2D(texture, vUv);', // mid center\n 'vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );', // mid right\n 'vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );', // bottom left\n 'vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );', // bottom center\n 'vec4 c33 = texture2D(texture, vUv + px );', // bottom right\n 'gl_FragColor = ',\n 'c11 * m[0] + c12 * m[1] + c22 * m[2] +',\n 'c21 * m[3] + c22 * m[4] + c23 * m[5] +',\n 'c31 * m[6] + c32 * m[7] + c33 * m[8];',\n 'gl_FragColor.a = c22.a;',\n '}',\n ].join('\\n');\n\n _filter.detectEdges = function () {\n _filter.convolution.call(this, [\n 0, 1, 0,\n 1, -4, 1,\n 0, 1, 0,\n ]);\n };\n\n _filter.sobelX = function () {\n _filter.convolution.call(this, [\n -1, 0, 1,\n -2, 0, 2,\n -1, 0, 1,\n ]);\n };\n\n _filter.sobelY = function () {\n _filter.convolution.call(this, [\n -1, -2, -1,\n 0, 0, 0,\n 1, 2, 1,\n ]);\n };\n\n _filter.sharpen = function (amount) {\n const a = amount || 1;\n _filter.convolution.call(this, [\n 0, -1 * a, 0,\n -1 * a, 1 + 4 * a, -1 * a,\n 0, -1 * a, 0,\n ]);\n };\n\n _filter.emboss = function (size) {\n const s = size || 1;\n _filter.convolution.call(this, [\n -2 * s, -1 * s, 0,\n -1 * s, 1, 1 * s,\n 0, 1 * s, 2 * s,\n ]);\n };\n\n // -------------------------------------------------------------------------\n // Blur Filter\n _filter.blur = function (size) {\n const blurSizeX = (size / 7) / _width;\n const blurSizeY = (size / 7) / _height;\n const program = _compileShader(_filter.blur.SHADER);\n // Vertical\n gl.uniform2f(program.uniform.px, 0, blurSizeY);\n _draw(DRAW.INTERMEDIATE);\n // Horizontal\n gl.uniform2f(program.uniform.px, blurSizeX, 0);\n _draw();\n };\n\n _filter.blur.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform vec2 px;',\n 'void main(void) {',\n 'gl_FragColor = vec4(0.0);',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;',\n 'gl_FragColor += texture2D(texture, vUv )*0.159576912161;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;',\n '}',\n ].join('\\n');\n\n // -------------------------------------------------------------------------\n // Pixelate Filter\n _filter.pixelate = function (size) {\n const blurSizeX = (size) / _width;\n const blurSizeY = (size) / _height;\n const program = _compileShader(_filter.pixelate.SHADER);\n // Horizontal\n gl.uniform2f(program.uniform.size, blurSizeX, blurSizeY);\n _draw();\n };\n\n _filter.pixelate.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform vec2 size;',\n 'uniform sampler2D texture;',\n 'vec2 pixelate(vec2 coord, vec2 size) {',\n 'return floor( coord / size ) * size;',\n '}',\n 'void main(void) {',\n 'gl_FragColor = vec4(0.0);',\n 'vec2 coord = pixelate(vUv, size);',\n 'gl_FragColor += texture2D(texture, coord);',\n '}',\n ].join('\\n');\n}\n", "import { defaults } from '../config';\nimport { TRI468 as triangulation } from '../blazeface/coords';\nimport { mergeDeep } from '../helpers';\n\n/**\n * Draw Options\n * Accessed via `human.draw.options` or provided per each draw method as the drawOptions optional parameter\n * -color: draw color\n * -labelColor: color for labels\n * -shadowColor: optional shadow color for labels\n * -font: font for labels\n * -lineHeight: line height for labels, used for multi-line labels,\n * -lineWidth: width of any lines,\n * -pointSize: size of any point,\n * -roundRect: for boxes, round corners by this many pixels,\n * -drawPoints: should points be drawn,\n * -drawLabels: should labels be drawn,\n * -drawBoxes: should boxes be drawn,\n * -drawPolygons: should polygons be drawn,\n * -fillPolygons: should drawn polygons be filled,\n * -useDepth: use z-axis coordinate as color shade,\n * -useCurves: draw polygons as cures or as lines,\n * -bufferedOutput: experimental: allows to call draw methods multiple times for each detection and interpolate results between results thus achieving smoother animations\n * -useRawBoxes: Boolean: internal: use non-normalized coordinates when performing draw methods,\n */\nexport interface DrawOptions {\n color: string,\n labelColor: string,\n shadowColor: string,\n font: string,\n lineHeight: number,\n lineWidth: number,\n pointSize: number,\n roundRect: number,\n drawPoints: Boolean,\n drawLabels: Boolean,\n drawBoxes: Boolean,\n drawPolygons: Boolean,\n fillPolygons: Boolean,\n useDepth: Boolean,\n useCurves: Boolean,\n bufferedOutput: Boolean,\n useRawBoxes: Boolean,\n calculateHandBox: Boolean,\n}\n\nexport const options: DrawOptions = {\n color: 'rgba(173, 216, 230, 0.3)', // 'lightblue' with light alpha channel\n labelColor: 'rgba(173, 216, 230, 1)', // 'lightblue' with dark alpha channel\n shadowColor: 'black',\n font: 'small-caps 16px \"Segoe UI\"',\n lineHeight: 24,\n lineWidth: 6,\n pointSize: 2,\n roundRect: 28,\n drawPoints: false,\n drawLabels: true,\n drawBoxes: false,\n drawPolygons: true,\n fillPolygons: false,\n useDepth: true,\n useCurves: false,\n bufferedOutput: false,\n useRawBoxes: false,\n calculateHandBox: true,\n};\n\nfunction point(ctx, x, y, z = 0, localOptions) {\n ctx.fillStyle = localOptions.useDepth && z ? `rgba(${127.5 + (2 * z)}, ${127.5 - (2 * z)}, 255, 0.3)` : localOptions.color;\n ctx.beginPath();\n ctx.arc(x, y, localOptions.pointSize, 0, 2 * Math.PI);\n ctx.fill();\n}\n\nfunction rect(ctx, x, y, width, height, localOptions) {\n ctx.beginPath();\n if (localOptions.useCurves) {\n const cx = (x + x + width) / 2;\n const cy = (y + y + height) / 2;\n ctx.ellipse(cx, cy, width / 2, height / 2, 0, 0, 2 * Math.PI);\n } else {\n ctx.lineWidth = localOptions.lineWidth;\n ctx.moveTo(x + localOptions.roundRect, y);\n ctx.lineTo(x + width - localOptions.roundRect, y);\n ctx.quadraticCurveTo(x + width, y, x + width, y + localOptions.roundRect);\n ctx.lineTo(x + width, y + height - localOptions.roundRect);\n ctx.quadraticCurveTo(x + width, y + height, x + width - localOptions.roundRect, y + height);\n ctx.lineTo(x + localOptions.roundRect, y + height);\n ctx.quadraticCurveTo(x, y + height, x, y + height - localOptions.roundRect);\n ctx.lineTo(x, y + localOptions.roundRect);\n ctx.quadraticCurveTo(x, y, x + localOptions.roundRect, y);\n ctx.closePath();\n }\n ctx.stroke();\n}\n\nfunction lines(ctx, points: number[] = [], localOptions) {\n if (points === undefined || points.length === 0) return;\n ctx.beginPath();\n ctx.moveTo(points[0][0], points[0][1]);\n for (const pt of points) {\n ctx.strokeStyle = localOptions.useDepth && pt[2] ? `rgba(${127.5 + (2 * pt[2])}, ${127.5 - (2 * pt[2])}, 255, 0.3)` : localOptions.color;\n ctx.fillStyle = localOptions.useDepth && pt[2] ? `rgba(${127.5 + (2 * pt[2])}, ${127.5 - (2 * pt[2])}, 255, 0.3)` : localOptions.color;\n ctx.lineTo(pt[0], parseInt(pt[1]));\n }\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nfunction curves(ctx, points: number[] = [], localOptions) {\n if (points === undefined || points.length === 0) return;\n if (!localOptions.useCurves || points.length <= 2) {\n lines(ctx, points, localOptions);\n return;\n }\n ctx.moveTo(points[0][0], points[0][1]);\n for (let i = 0; i < points.length - 2; i++) {\n const xc = (points[i][0] + points[i + 1][0]) / 2;\n const yc = (points[i][1] + points[i + 1][1]) / 2;\n ctx.quadraticCurveTo(points[i][0], points[i][1], xc, yc);\n }\n ctx.quadraticCurveTo(points[points.length - 2][0], points[points.length - 2][1], points[points.length - 1][0], points[points.length - 1][1]);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport async function gesture(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.font = localOptions.font;\n ctx.fillStyle = localOptions.color;\n let i = 1;\n for (let j = 0; j < result.length; j++) {\n let where:any[] = [];\n let what:any[] = [];\n [where, what] = Object.entries(result[j]);\n if ((what.length > 1) && (what[1].length > 0)) {\n const person = where[1] > 0 ? `#${where[1]}` : '';\n const label = `${where[0]} ${person}: ${what[1]}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, 8, 2 + (i * localOptions.lineHeight));\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, 6, 0 + (i * localOptions.lineHeight));\n i += 1;\n }\n }\n}\n\nexport async function face(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n for (const f of result) {\n ctx.font = localOptions.font;\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n if (localOptions.drawBoxes) {\n if (localOptions.useRawBoxes) rect(ctx, inCanvas.width * f.boxRaw[0], inCanvas.height * f.boxRaw[1], inCanvas.width * f.boxRaw[2], inCanvas.height * f.boxRaw[3], localOptions);\n else rect(ctx, f.box[0], f.box[1], f.box[2], f.box[3], localOptions);\n }\n // silly hack since fillText does not suport new line\n const labels:string[] = [];\n labels.push(`face confidence: ${Math.trunc(100 * f.confidence)}%`);\n if (f.genderConfidence) labels.push(`${f.gender || ''} ${Math.trunc(100 * f.genderConfidence)}% confident`);\n // if (f.genderConfidence) labels.push(f.gender);\n if (f.age) labels.push(`age: ${f.age || ''}`);\n if (f.iris) labels.push(`iris distance: ${f.iris}`);\n if (f.emotion && f.emotion.length > 0) {\n const emotion = f.emotion.map((a) => `${Math.trunc(100 * a.score)}% ${a.emotion}`);\n labels.push(emotion.join(' '));\n }\n if (f.rotation && f.rotation.angle && f.rotation.angle.roll) labels.push(`roll: ${Math.trunc(100 * f.rotation.angle.roll) / 100} yaw:${Math.trunc(100 * f.rotation.angle.yaw) / 100} pitch:${Math.trunc(100 * f.rotation.angle.pitch) / 100}`);\n if (labels.length === 0) labels.push('face');\n ctx.fillStyle = localOptions.color;\n for (let i = labels.length - 1; i >= 0; i--) {\n const x = Math.max(f.box[0], 0);\n const y = i * localOptions.lineHeight + f.box[1];\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(labels[i], x + 5, y + 16);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(labels[i], x + 4, y + 15);\n }\n ctx.lineWidth = 1;\n if (f.mesh && f.mesh.length > 0) {\n if (localOptions.drawPoints) {\n for (const pt of f.mesh) point(ctx, pt[0], pt[1], pt[2], localOptions);\n // for (const pt of f.meshRaw) point(ctx, pt[0] * inCanvas.offsetWidth, pt[1] * inCanvas.offsetHeight, pt[2]);\n }\n if (localOptions.drawPolygons) {\n ctx.lineWidth = 1;\n for (let i = 0; i < triangulation.length / 3; i++) {\n const points = [\n triangulation[i * 3 + 0],\n triangulation[i * 3 + 1],\n triangulation[i * 3 + 2],\n ].map((index) => f.mesh[index]);\n lines(ctx, points, localOptions);\n }\n // iris: array[center, left, top, right, bottom]\n if (f.annotations && f.annotations.leftEyeIris) {\n ctx.strokeStyle = localOptions.useDepth ? 'rgba(255, 200, 255, 0.3)' : localOptions.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations.leftEyeIris[3][0] - f.annotations.leftEyeIris[1][0]) / 2;\n const sizeY = Math.abs(f.annotations.leftEyeIris[4][1] - f.annotations.leftEyeIris[2][1]) / 2;\n ctx.ellipse(f.annotations.leftEyeIris[0][0], f.annotations.leftEyeIris[0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.fillStyle = localOptions.useDepth ? 'rgba(255, 255, 200, 0.3)' : localOptions.color;\n ctx.fill();\n }\n }\n if (f.annotations && f.annotations.rightEyeIris) {\n ctx.strokeStyle = localOptions.useDepth ? 'rgba(255, 200, 255, 0.3)' : localOptions.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations.rightEyeIris[3][0] - f.annotations.rightEyeIris[1][0]) / 2;\n const sizeY = Math.abs(f.annotations.rightEyeIris[4][1] - f.annotations.rightEyeIris[2][1]) / 2;\n ctx.ellipse(f.annotations.rightEyeIris[0][0], f.annotations.rightEyeIris[0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.fillStyle = localOptions.useDepth ? 'rgba(255, 255, 200, 0.3)' : localOptions.color;\n ctx.fill();\n }\n }\n }\n }\n }\n}\n\nconst lastDrawnPose:any[] = [];\nexport async function body(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n for (let i = 0; i < result.length; i++) {\n // result[i].keypoints = result[i].keypoints.filter((a) => a.score > 0.5);\n if (!lastDrawnPose[i] && localOptions.bufferedOutput) lastDrawnPose[i] = { ...result[i] };\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n ctx.lineWidth = localOptions.lineWidth;\n ctx.font = localOptions.font;\n if (localOptions.drawBoxes) {\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n }\n if (localOptions.drawPoints) {\n for (let pt = 0; pt < result[i].keypoints.length; pt++) {\n ctx.fillStyle = localOptions.useDepth && result[i].keypoints[pt].position.z ? `rgba(${127.5 + (2 * result[i].keypoints[pt].position.z)}, ${127.5 - (2 * result[i].keypoints[pt].position.z)}, 255, 0.5)` : localOptions.color;\n if (localOptions.bufferedOutput) {\n lastDrawnPose[i].keypoints[pt][0] = (lastDrawnPose[i].keypoints[pt][0] + result[i].keypoints[pt].position.x) / 2;\n lastDrawnPose[i].keypoints[pt][1] = (lastDrawnPose[i].keypoints[pt][1] + result[i].keypoints[pt].position.y) / 2;\n point(ctx, lastDrawnPose[i].keypoints[pt][0], lastDrawnPose[i].keypoints[pt][1], 0, localOptions);\n } else {\n point(ctx, result[i].keypoints[pt].position.x, result[i].keypoints[pt].position.y, 0, localOptions);\n }\n }\n }\n if (localOptions.drawLabels) {\n ctx.font = localOptions.font;\n if (result[i].keypoints) {\n for (const pt of result[i].keypoints) {\n ctx.fillStyle = localOptions.useDepth && pt.position.z ? `rgba(${127.5 + (2 * pt.position.z)}, ${127.5 - (2 * pt.position.z)}, 255, 0.5)` : localOptions.color;\n ctx.fillText(`${pt.part} ${Math.trunc(100 * pt.score)}%`, pt.position.x + 4, pt.position.y + 4);\n }\n }\n }\n if (localOptions.drawPolygons && result[i].keypoints) {\n let part;\n const points: any[] = [];\n // shoulder line\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // torso main\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightHip');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftHip');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n if (points.length === 4) lines(ctx, points, localOptions); // only draw if we have complete torso\n // leg left\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftHip');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftKnee');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftAnkle');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftHeel');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftFoot');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // leg right\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightHip');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightKnee');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightAnkle');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightHeel');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightFoot');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // arm left\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftElbow');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftWrist');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftPalm');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // arm right\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightElbow');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightWrist');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightPalm');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // draw all\n }\n }\n}\n\nexport async function hand(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n let box;\n if (!localOptions.calculateHandBox) {\n box = localOptions.useRawBoxes ? h.boxRaw : h.box;\n } else {\n box = [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER, 0, 0];\n if (h.landmarks && h.landmarks.length > 0) {\n for (const pt of h.landmarks) {\n if (pt[0] < box[0]) box[0] = pt[0];\n if (pt[1] < box[1]) box[1] = pt[1];\n if (pt[0] > box[2]) box[2] = pt[0];\n if (pt[1] > box[3]) box[3] = pt[1];\n }\n box[2] -= box[0];\n box[3] -= box[1];\n }\n }\n if (localOptions.useRawBoxes) rect(ctx, inCanvas.width * box[0], inCanvas.height * box[1], inCanvas.width * box[2], inCanvas.height * box[3], localOptions);\n else rect(ctx, box[0], box[1], box[2], box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText('hand', box[0] + 3, 1 + box[1] + localOptions.lineHeight, box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText('hand', box[0] + 2, 0 + box[1] + localOptions.lineHeight, box[2]);\n }\n ctx.stroke();\n }\n if (localOptions.drawPoints) {\n if (h.landmarks && h.landmarks.length > 0) {\n for (const pt of h.landmarks) {\n ctx.fillStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * pt[2])}, ${127.5 - (2 * pt[2])}, 255, 0.5)` : localOptions.color;\n point(ctx, pt[0], pt[1], 0, localOptions);\n }\n }\n }\n if (localOptions.drawPolygons) {\n const addPart = (part) => {\n if (!part) return;\n for (let i = 0; i < part.length; i++) {\n ctx.lineWidth = localOptions.lineWidth;\n ctx.beginPath();\n ctx.strokeStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * part[i][2])}, ${127.5 - (2 * part[i][2])}, 255, 0.5)` : localOptions.color;\n ctx.moveTo(part[i > 0 ? i - 1 : 0][0], part[i > 0 ? i - 1 : 0][1]);\n ctx.lineTo(part[i][0], part[i][1]);\n ctx.stroke();\n }\n };\n addPart(h.annotations.indexFinger);\n addPart(h.annotations.middleFinger);\n addPart(h.annotations.ringFinger);\n addPart(h.annotations.pinky);\n addPart(h.annotations.thumb);\n // addPart(hand.annotations.palmBase);\n }\n }\n}\n\nexport async function object(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n if (localOptions.useRawBoxes) rect(ctx, inCanvas.width * h.boxRaw[0], inCanvas.height * h.boxRaw[1], inCanvas.width * h.boxRaw[2], inCanvas.height * h.boxRaw[3], localOptions);\n else rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `${Math.round(100 * h.score)}% ${h.label}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.stroke();\n }\n }\n}\n\nexport async function canvas(inCanvas: HTMLCanvasElement, outCanvas: HTMLCanvasElement) {\n if (!inCanvas || !outCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement) || !(outCanvas instanceof HTMLCanvasElement)) return;\n const outCtx = inCanvas.getContext('2d');\n outCtx?.drawImage(inCanvas, 0, 0);\n}\n\nexport async function all(inCanvas: HTMLCanvasElement, result:any, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n face(inCanvas, result.face, localOptions);\n body(inCanvas, result.body, localOptions);\n hand(inCanvas, result.hand, localOptions);\n gesture(inCanvas, result.gesture, localOptions);\n object(inCanvas, result.object, localOptions);\n}\n", "/* eslint-disable indent */\n/* eslint-disable no-multi-spaces */\n\n/**\n * Configuration interface definition for **Human** library\n *\n * Contains all configurable parameters\n */\nexport interface Config {\n /** Backend used for TFJS operations */\n backend: null | '' | 'cpu' | 'wasm' | 'webgl' | 'humangl' | 'tensorflow',\n /** Path to *.wasm files if backend is set to `wasm` */\n wasmPath: string,\n /** Print debug statements to console */\n debug: boolean,\n /** Perform model loading and inference concurrently or sequentially */\n async: boolean,\n /** Collect and print profiling data during inference operations */\n profile: boolean,\n /** Internal: Use aggressive GPU memory deallocator when backend is set to `webgl` or `humangl` */\n deallocate: boolean,\n /** Internal: Run all inference operations in an explicit local scope run to avoid memory leaks */\n scoped: boolean,\n /** Perform additional optimizations when input is video,\n * - must be disabled for images\n * - automatically disabled for Image, ImageData, ImageBitmap and Tensor inputs\n * - skips boundary detection for every `skipFrames` frames specified for each model\n * - while maintaining in-box detection since objects don't change definition as fast */\n videoOptimized: boolean,\n /** What to use for `human.warmup()`\n * - warmup pre-initializes all models for faster inference but can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n */\n warmup: 'none' | 'face' | 'full' | 'body',\n /** Base model path (typically starting with file://, http:// or https://) for all models\n * - individual modelPath values are joined to this path\n */\n modelBasePath: string,\n /** Run input through image filters before inference\n * - image filters run with near-zero latency as they are executed on the GPU\n */\n filter: {\n enabled: boolean,\n /** Resize input width\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n width: number,\n /** Resize input height\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n height: number,\n /** Return processed canvas imagedata in result */\n return: boolean,\n /** Flip input as mirror image */\n flip: boolean,\n /** Range: -1 (darken) to 1 (lighten) */\n brightness: number,\n /** Range: -1 (reduce contrast) to 1 (increase contrast) */\n contrast: number,\n /** Range: 0 (no sharpening) to 1 (maximum sharpening) */\n sharpness: number,\n /** Range: 0 (no blur) to N (blur radius in pixels) */\n blur: number\n /** Range: -1 (reduce saturation) to 1 (increase saturation) */\n saturation: number,\n /** Range: 0 (no change) to 360 (hue rotation in degrees) */\n hue: number,\n /** Image negative */\n negative: boolean,\n /** Image sepia colors */\n sepia: boolean,\n /** Image vintage colors */\n vintage: boolean,\n /** Image kodachrome colors */\n kodachrome: boolean,\n /** Image technicolor colors */\n technicolor: boolean,\n /** Image polaroid camera effect */\n polaroid: boolean,\n /** Range: 0 (no pixelate) to N (number of pixels to pixelate) */\n pixelate: number,\n },\n // type definition end\n\n /** Controlls gesture detection */\n gesture: {\n enabled: boolean,\n },\n /** Controlls and configures all face-specific options:\n * - face detection, face mesh detection, age, gender, emotion detection and face description\n * Parameters:\n * - enabled: true/false\n * - modelPath: path for individual face model\n * - rotation: use calculated rotated face image or just box with rotation as-is, false means higher performance, but incorrect mesh mapping on higher face angles\n * - maxFaces: maximum number of faces detected in the input, should be set to the minimum number for performance\n * - skipFrames: how many frames to go without re-running the face detector and just run modified face mesh analysis, only valid if videoOptimized is set to true\n * - skipInitial: if previous detection resulted in no faces detected, should skipFrames be reset immediately to force new detection cycle\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: threshold for deciding whether boxes overlap too much in non-maximum suppression\n * - scoreThreshold: threshold for deciding when to remove boxes based on score in non-maximum suppression\n * - return extracted face as tensor for futher user processing\n */\n face: {\n enabled: boolean,\n detector: {\n modelPath: string,\n rotation: boolean,\n maxFaces: number,\n skipFrames: number,\n skipInitial: boolean,\n minConfidence: number,\n iouThreshold: number,\n scoreThreshold: number,\n return: boolean,\n },\n mesh: {\n enabled: boolean,\n modelPath: string,\n },\n iris: {\n enabled: boolean,\n modelPath: string,\n },\n description: {\n enabled: boolean,\n modelPath: string,\n skipFrames: number,\n },\n age: {\n enabled: boolean,\n modelPath: string,\n skipFrames: number,\n },\n gender: {\n enabled: boolean,\n minConfidence: number,\n modelPath: string,\n skipFrames: number,\n },\n emotion: {\n enabled: boolean,\n minConfidence: number,\n skipFrames: number,\n modelPath: string,\n },\n embedding: {\n enabled: boolean,\n modelPath: string,\n },\n },\n /** Controlls and configures all body detection specific options\n * - enabled: true/false\n * - modelPath: paths for both hand detector model and hand skeleton model\n * - maxDetections: maximum number of people detected in the input, should be set to the minimum number for performance\n * - scoreThreshold: threshold for deciding when to remove people based on score in non-maximum suppression\n * - nmsRadius: threshold for deciding whether body parts overlap too much in non-maximum suppression\n */\n body: {\n enabled: boolean,\n modelPath: string,\n maxDetections: number,\n scoreThreshold: number,\n nmsRadius: number,\n },\n /** Controlls and configures all hand detection specific options\n * - enabled: true/false\n * - modelPath: paths for both hand detector model and hand skeleton model\n * - rotation: use best-guess rotated hand image or just box with rotation as-is, false means higher performance, but incorrect finger mapping if hand is inverted\n * - skipFrames: how many frames to go without re-running the hand bounding box detector and just run modified hand skeleton detector, only valid if videoOptimized is set to true\n * - skipInitial: if previous detection resulted in no hands detected, should skipFrames be reset immediately to force new detection cycle\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: threshold for deciding whether boxes overlap too much in non-maximum suppression\n * - scoreThreshold: threshold for deciding when to remove boxes based on score in non-maximum suppression\n * - maxHands: maximum number of hands detected in the input, should be set to the minimum number for performance\n * - landmarks: detect hand landmarks or just hand boundary box\n */\n hand: {\n enabled: boolean,\n rotation: boolean,\n skipFrames: number,\n skipInitial: boolean,\n minConfidence: number,\n iouThreshold: number,\n scoreThreshold: number,\n maxHands: number,\n landmarks: boolean,\n detector: {\n modelPath: string,\n },\n skeleton: {\n modelPath: string,\n },\n },\n /** Controlls and configures all object detection specific options\n * - minConfidence: minimum score that detection must have to return as valid object\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxResults: maximum number of detections to return\n * - skipFrames: run object detection every n input frames, only valid if videoOptimized is set to true\n */\n object: {\n enabled: boolean,\n modelPath: string,\n minConfidence: number,\n iouThreshold: number,\n maxResults: number,\n skipFrames: number,\n },\n}\n\nconst config: Config = {\n backend: 'webgl', // select tfjs backend to use\n // can be 'webgl', 'wasm', 'cpu', or 'humangl' which is a custom version of webgl\n // leave as empty string to continue using default backend\n // when backend is set outside of Human library\n modelBasePath: '../models/', // base path for all models\n wasmPath: '../assets/', // path for wasm binaries\n // only used for backend: wasm\n debug: true, // print additional status messages to console\n async: true, // execute enabled models in parallel\n // this disables per-model performance data but\n // slightly increases performance\n // cannot be used if profiling is enabled\n profile: false, // internal: enable tfjs profiling\n // this has significant performance impact\n // only enable for debugging purposes\n // currently only implemented for age,gender,emotion models\n deallocate: false, // internal: aggresively deallocate gpu memory after each usage\n // only valid for webgl and humangl backend and only during first call\n // cannot be changed unless library is reloaded\n // this has significant performance impact\n // only enable on low-memory devices\n scoped: false, // internal: enable scoped runs\n // some models *may* have memory leaks,\n // this wrapps everything in a local scope at a cost of performance\n // typically not needed\n videoOptimized: true, // perform additional optimizations when input is video,\n // must be disabled for images\n // automatically disabled for Image, ImageData, ImageBitmap and Tensor inputs\n // skips boundary detection for every n frames\n // while maintaining in-box detection since objects cannot move that fast\n warmup: 'face', // what to use for human.warmup(), can be 'none', 'face', 'full'\n // warmup pre-initializes all models for faster inference but can take\n // significant time on startup\n // only used for `webgl` and `humangl` backends\n filter: { // run input through image filters before inference\n // image filters run with near-zero latency as they are executed on the GPU\n enabled: true, // enable image pre-processing filters\n width: 0, // resize input width\n height: 0, // resize input height\n // if both width and height are set to 0, there is no resizing\n // if just one is set, second one is scaled automatically\n // if both are set, values are used as-is\n flip: false, // flip input as mirror image\n return: true, // return processed canvas imagedata in result\n brightness: 0, // range: -1 (darken) to 1 (lighten)\n contrast: 0, // range: -1 (reduce contrast) to 1 (increase contrast)\n sharpness: 0, // range: 0 (no sharpening) to 1 (maximum sharpening)\n blur: 0, // range: 0 (no blur) to N (blur radius in pixels)\n saturation: 0, // range: -1 (reduce saturation) to 1 (increase saturation)\n hue: 0, // range: 0 (no change) to 360 (hue rotation in degrees)\n negative: false, // image negative\n sepia: false, // image sepia colors\n vintage: false, // image vintage colors\n kodachrome: false, // image kodachrome colors\n technicolor: false, // image technicolor colors\n polaroid: false, // image polaroid camera effect\n pixelate: 0, // range: 0 (no pixelate) to N (number of pixels to pixelate)\n },\n\n gesture: {\n enabled: true, // enable simple gesture recognition\n },\n\n face: {\n enabled: true, // controls if specified modul is enabled\n // face.enabled is required for all face models:\n // detector, mesh, iris, age, gender, emotion\n // (note: module is not loaded until it is required)\n detector: {\n modelPath: 'blazeface-back.json', // detector model\n // can be either absolute path or relative to modelBasePath\n rotation: false, // use best-guess rotated face image or just box with rotation as-is\n // false means higher performance, but incorrect mesh mapping if face angle is above 20 degrees\n // this parameter is not valid in nodejs\n maxFaces: 10, // maximum number of faces detected in the input\n // should be set to the minimum number for performance\n skipFrames: 21, // how many frames to go without re-running the face bounding box detector\n // only used for video inputs\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated face analysis as the head probably hasn't moved much\n // in short time (10 * 1/25 = 0.25 sec)\n skipInitial: false, // if previous detection resulted in no faces detected,\n // should skipFrames be reset immediately to force new detection cycle\n minConfidence: 0.2, // threshold for discarding a prediction\n iouThreshold: 0.1, // threshold for deciding whether boxes overlap too much in\n // non-maximum suppression (0.1 means drop if overlap 10%)\n scoreThreshold: 0.2, // threshold for deciding when to remove boxes based on score\n // in non-maximum suppression,\n // this is applied on detection objects only and before minConfidence\n return: false, // return extracted face as tensor\n },\n\n mesh: {\n enabled: true,\n modelPath: 'facemesh.json', // facemesh model\n // can be either absolute path or relative to modelBasePath\n },\n\n iris: {\n enabled: true,\n modelPath: 'iris.json', // face iris model\n // can be either absolute path or relative to modelBasePath\n },\n\n description: {\n enabled: true, // to improve accuracy of face description extraction it is\n // recommended to enable detector.rotation and mesh.enabled\n modelPath: 'faceres.json', // face description model\n // can be either absolute path or relative to modelBasePath\n skipFrames: 31, // how many frames to go without re-running the detector\n // only used for video inputs\n },\n\n emotion: {\n enabled: true,\n minConfidence: 0.1, // threshold for discarding a prediction\n skipFrames: 32, // how many frames to go without re-running the detector\n modelPath: 'emotion.json', // face emotion model\n // can be either absolute path or relative to modelBasePath\n },\n\n age: {\n enabled: false, // obsolete, replaced by description module\n modelPath: 'age.json', // age model\n // can be either absolute path or relative to modelBasePath\n skipFrames: 33, // how many frames to go without re-running the detector\n // only used for video inputs\n },\n\n gender: {\n enabled: false, // obsolete, replaced by description module\n minConfidence: 0.1, // threshold for discarding a prediction\n modelPath: 'gender.json', // gender model\n // can be either absolute path or relative to modelBasePath\n skipFrames: 34, // how many frames to go without re-running the detector\n // only used for video inputs\n },\n\n embedding: {\n enabled: false, // obsolete, replaced by description module\n modelPath: 'mobileface.json', // face descriptor model\n // can be either absolute path or relative to modelBasePath\n },\n },\n\n body: {\n enabled: true,\n modelPath: 'posenet.json', // body model\n // can be either absolute path or relative to modelBasePath\n // can be 'posenet', 'blazepose' or 'efficientpose'\n // 'blazepose' and 'efficientpose' are experimental\n maxDetections: 1, // maximum number of people detected in the input\n // should be set to the minimum number for performance\n // only valid for posenet as blazepose only detects single pose\n scoreThreshold: 0.3, // threshold for deciding when to remove boxes based on score\n // in non-maximum suppression\n // only valid for posenet as blazepose only detects single pose\n nmsRadius: 20, // radius for deciding points are too close in non-maximum suppression\n // only valid for posenet as blazepose only detects single pose\n },\n\n hand: {\n enabled: true,\n rotation: false, // use best-guess rotated hand image or just box with rotation as-is\n // false means higher performance, but incorrect finger mapping if hand is inverted\n skipFrames: 12, // how many frames to go without re-running the hand bounding box detector\n // only used for video inputs\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated hand skeleton analysis as the hand probably\n // hasn't moved much in short time (10 * 1/25 = 0.25 sec)\n skipInitial: false, // if previous detection resulted in no hands detected,\n // should skipFrames be reset immediately to force new detection cycle\n minConfidence: 0.1, // threshold for discarding a prediction\n iouThreshold: 0.1, // threshold for deciding whether boxes overlap too much\n // in non-maximum suppression\n scoreThreshold: 0.5, // threshold for deciding when to remove boxes based on\n // score in non-maximum suppression\n maxHands: 1, // maximum number of hands detected in the input\n // should be set to the minimum number for performance\n landmarks: true, // detect hand landmarks or just hand boundary box\n detector: {\n modelPath: 'handdetect.json', // hand detector model\n // can be either absolute path or relative to modelBasePath\n },\n skeleton: {\n modelPath: 'handskeleton.json', // hand skeleton model\n // can be either absolute path or relative to modelBasePath\n },\n },\n\n object: {\n enabled: false,\n modelPath: 'nanodet.json', // object detection model\n // can be either absolute path or relative to modelBasePath\n // 'nanodet' is experimental\n minConfidence: 0.20, // threshold for discarding a prediction\n iouThreshold: 0.40, // threshold for deciding whether boxes overlap too much\n // in non-maximum suppression\n maxResults: 10, // maximum number of objects detected in the input\n skipFrames: 41, // how many frames to go without re-running the detector\n },\n};\nexport { config as defaults };\n", "// data:image/jpeg;base64,\nexport const face = `\n/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA\nAAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu\nbmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob\nIxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo\nKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E\nAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB\nAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET\nIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla\nY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG\nx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML\nXp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF\nPUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/\nAJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z\n5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9\nzZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO\ntHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6\n8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W\nwA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk\nEtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6\nGhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT\nA7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep\nrBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb\nLCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ\nih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K\nKAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l\npBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x\nUqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4\nHaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr\nxL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS\nNO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD\n1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX\n+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3\nGBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K\nq4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0\nnhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm\nuic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH\nArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV\nwF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8\n87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P\nFQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD\nYNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv\nJmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ\nQmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el\nUJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681\nly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly\nCK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc\nUDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF\n63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x\nXY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2\nZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk\nXb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK\ncBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef\neNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4\n/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5\nrl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru\n/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A\nzviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO\nI4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1\njfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ\nGRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG\ncZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb\nWmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis\nZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH\nckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi\nlbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO\nxuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK\nJtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX\nPaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c\nW0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t\nC6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk\n4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn\nxHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW\nvHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi\nqr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV\nhamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F\nj4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6\nwqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm\noy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ\nk7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg\nnQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP\n1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1\nH1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ\n1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx\nzSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt\nfFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp\nOxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj\nVtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy\nrFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe\n5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D\nd/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69\nMlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ\nFbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ\nMA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP\nByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn\n0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU\nyOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is\npNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz\nTSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu\nuCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem\ngGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk\nHvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy\ns9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu\nm6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb\n0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz\n9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN\nDNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n\nR6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk\nnmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu\n6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd\n9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb\nSms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S\nMSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz\nFEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8\nVSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx\nY0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ\nmupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+\n5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh\n05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd\nua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ\n5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR\nMqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8\n1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4\nB9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag\nBc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA\n3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn\n3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx\n1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU\ntzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6\nf3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA\nbvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ\nzyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup\n6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM\n350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0\n/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a\nYfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ\nagBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO\nmAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl\nmOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR\nnqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo\nEPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt\n4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ\nScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p\niMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj\nPQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l\nc6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1\n8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3\nylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY\neuPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`;\n\n// data:image/jpeg;base64,\nexport const body = `\n/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk\nJyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF\nRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA\nAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA\nAQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA\nAAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA\nAhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj\n+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt\nFh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR\nPLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl\nmZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp\n+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa\nzhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D\nh1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2\nex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67\nd4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y\nRv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP\nLd3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC\nvy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi\neSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/\nMx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+\nr3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO\nO0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s\ntfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN\nTmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc\n0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj\nq83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w\n+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s\nd8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t\ncI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4\nYibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe\nbzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi\nKxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6\nrNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ\n9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf\nJvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V\nbxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q\nVbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM\nlorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/\n/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme\nE4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv\nfauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6\njkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN\n+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk\nRvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK\ncGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop\nyW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn\nE8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX\n12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW\niI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS\nRWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf\n0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx\nDS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL\nG8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK\nxC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ\na9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4\nZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6\ntvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+\nfJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE\nerk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR\nMd5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9\nlcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD\nj8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV\n5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt\nCu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/\n+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c\nvUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p\njrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0\n77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP\nSel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8\n5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe\nY0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R\nHwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV\nrWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU\nz7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8\nto6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X\ny8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt\nstcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/\nw9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT\nDpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l\nXV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t\nydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS\n34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX\ne09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn\n26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf\n3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q\n6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P\nNbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO\nyZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN\n3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8\n2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h\ndqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx\nkr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t\nDHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb\neFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc\n1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka\nc258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE\nxEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu\ns5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK\n0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9\ndM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt\nPXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T\nMd/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T\nadq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b\nSVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt\npdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm\nvfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr\nEejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N\nvwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh\nZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I\ntkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW\nd43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe\nN4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218\n8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG\nPNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY\nV1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw\nw18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT\nEx5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1\naxqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/\ntDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I\nmbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe\nXRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1\nizjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2\ncrFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4\nOadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2\nr8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx\nzc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz\n+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v\nMevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu\nryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095\nYZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE\n9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8\nmNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O\nuSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O\nfft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6\nOlty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT\nuTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3\n6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1\nMb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF\nfeH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq\nxVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v\ned7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ\nmtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz\nmWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP\nB39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0\n5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1\nmkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt\nmxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO\n1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq\nZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q\nky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7\nROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK\nGEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i\ntMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T\n+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+\nO8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO\nesd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es\nvPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz\nXV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1\n+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY\n36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL\nq555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY\n3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz\np7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr\n1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV\nxUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt\npCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS\nfP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH\nmMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z\n1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+\nn3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d\nMRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df\nzXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl\nJ2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs\nzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH\nDpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ\ndHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR\ntER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j\nadmFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC\nb2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X\nqdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh\nydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O\n8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L\nT7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0\nZa1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr\nvNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer\nrWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL\noNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq\nj/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh\nodZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8\n8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1\nlNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+\noza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL\nknU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK\nEtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N\nmtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm\n9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N\nIpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W\nMYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2\n+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql\no+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37\nO99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE\nTE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1\nL7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4\nizsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt\n1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb\nV5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum\nL37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12\nCvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE\nebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo\nGvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu\nL8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh\n5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3\n6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9\nXO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM\nfeKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj\nSZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF\nXaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr\n79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h\nyeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT\nOC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223\n2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt\nadohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y\ncnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX\nDpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p\n7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso\nS24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l\nbPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe\nvVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG\nH6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7\nx3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz\n5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY\nq+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn\nvLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2\nIjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK\nz0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ\nYYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON\nZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW\nekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf\ncjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c\nbiuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO\nCkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw\ny1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi\nQXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E\nbL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r\ntv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t\nLRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP\nRqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm\ns7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el\nXX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1\nvK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq\nqrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v\nVYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0\nZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q\nmT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm\n6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG\nf63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo\ndPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22\ngtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M\nMoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb\nc2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX\n6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn\n1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK\nfOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ\nEqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u\n7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT\nqPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa\nS2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf\nLp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU\nIiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O\n8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c\nvU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx\n5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V\nKTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm\n2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu\nj8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB\nTTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9\nRUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL\nCWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA\nAAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8\ncTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj\nqKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF\n0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK\nZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK\n66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu\nXT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9\nXOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN\nM2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv\nVrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK\n7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI\n3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m\nXY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m\n1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A\nJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC\nEgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9\n8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL\nOrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H\nM+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA\nTsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8\nelpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp\nBjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS\nCRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r\nrcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY\njbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW\nUsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB\nKUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb\nSz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL\n+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v\nT471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM\nsfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj\nFontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl\n5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q\n7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv\n6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa\n0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/\nAOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM\nd8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5\n6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP\nbFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu\nLJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy\nwt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX\n0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK\n3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn\nKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0\nvobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t\nzya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps\nuOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi\nFdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2\nO3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z\naK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz\n0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb\nT/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l\nqMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t\ntrJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn\nmvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa\neq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe\nPwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of\nTdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O\n1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG\nf/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi\n0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY\n5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc\nV2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L\n/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM\nt/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd\nVknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD\nKLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R\nfwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3\nVxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ\nDJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ\n3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv\nx7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD\nweqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI\n6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew\nPnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk\nj3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm\nOqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/\nAKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez\nN9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ\n92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp\n+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue\nV9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv\navHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0\nvQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP\n8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt\nn1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw\nnUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3\n7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P\n0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U\nx8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG\n0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L\nfaQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ\nQKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA\nBAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A\ntLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv\n9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr\njn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm\nb7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB\nACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk\ndEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1\nrMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+\nx+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA\nAAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr\nYvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4\n5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V\nkK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg\nBIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA\nAAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g\nWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx\nOEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2\nH/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF\n+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V\nh6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA\nEgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu\nZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml\nHMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl\nn0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN\n3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi\n/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00\n+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC\nUACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2\nM2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp\n5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn\nN1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS\nOjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL\n/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo\nstLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3\nGyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA\nAAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4\nqmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy\nWEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a\nfJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI\nrTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2\nrz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc\n3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3\nTur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA\nAAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx\nskA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F\no7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx\nNO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h\n2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te\npSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7\ncvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7\nmZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA\nAAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA\nhGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J\nqx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI\nXRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy\nRHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX\nqNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX\nkaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P\nya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC\nExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA\nlAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA\nAAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o\nb9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP\ny6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae\nkzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu\n9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ\nk7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1\n8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp\nDXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh\nnyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ\nAAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA\nAAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO\nyvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5\nPM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii\nIpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r\nO3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE\nyTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX\n6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2\nJgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS\nAAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA\nAAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx\nWa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI\n6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5\nK2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7\nVv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id\nPW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ\n2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4\neF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7\npiVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR\nACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ\nJQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i\nUiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61\nrZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq\nZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2\nf0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO\nIjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts\nbAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA\nAAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA\nBAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2\nSbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T\nlBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/\n2Q==`;\n", "import { log, now, mergeDeep } from './helpers';\nimport * as sysinfo from './sysinfo';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as backend from './tfjs/backend';\nimport * as faceall from './faceall';\nimport * as facemesh from './blazeface/facemesh';\nimport * as age from './age/age';\nimport * as gender from './gender/gender';\nimport * as faceres from './faceres/faceres';\nimport * as emotion from './emotion/emotion';\nimport * as embedding from './embedding/embedding';\nimport * as posenet from './posenet/posenet';\nimport * as handpose from './handpose/handpose';\nimport * as blazepose from './blazepose/blazepose';\nimport * as efficientpose from './efficientpose/efficientpose';\nimport * as nanodet from './nanodet/nanodet';\nimport * as gesture from './gesture/gesture';\nimport * as image from './image/image';\nimport * as draw from './draw/draw';\nimport * as profile from './profile';\nimport { Config, defaults } from './config';\nimport { Result } from './result';\nimport * as sample from './sample';\nimport * as app from '../package.json';\n\n/** Generic Tensor object type */\nexport type Tensor = typeof tf.Tensor;\n\nexport type { Config } from './config';\nexport type { Result } from './result';\nexport type { DrawOptions } from './draw/draw';\n\n/** Defines all possible input types for **Human** detection */\nexport type Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;\n\n/** Error message */\nexport type Error = { error: string };\n\n/** Instance of TensorFlow/JS */\nexport type TensorFlow = typeof tf;\n\n/** Generic Model object type, holds instance of individual models */\ntype Model = Object;\n\n/**\n * **Human** library main class\n *\n * All methods and properties are available only as members of Human class\n *\n * - Configuration object definition: {@link Config}\n * - Results object definition: {@link Result}\n * - Possible inputs: {@link Input}\n */\nexport class Human {\n /** Current version of Human library in semver format */\n version: string;\n /** Current configuration\n * - Details: {@link Config}\n */\n config: Config;\n /** Current state of Human library\n * - Can be polled to determine operations that are currently executed\n */\n state: string;\n /** Internal: Instance of current image being processed */\n image: { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement | null };\n /** Internal: Instance of TensorFlow/JS used by Human\n * - Can be embedded or externally provided\n */\n tf: TensorFlow;\n /** Draw helper classes that can draw detected objects on canvas using specified draw styles\n * - options: global settings for all draw operations, can be overriden for each draw method, for details see {@link DrawOptions}\n * - face: draw detected faces\n * - body: draw detected people and body parts\n * - hand: draw detected hands and hand parts\n * - canvas: draw processed canvas which is a processed copy of the input\n * - all: meta-function that performs: canvas, face, body, hand\n */\n draw: {\n options: draw.DrawOptions,\n gesture: typeof draw.gesture,\n face: typeof draw.face,\n body: typeof draw.body,\n hand: typeof draw.hand,\n canvas: typeof draw.canvas,\n all: typeof draw.all,\n };\n /** Internal: Currently loaded models */\n models: {\n face: facemesh.MediaPipeFaceMesh | Model | null,\n posenet: posenet.PoseNet | null,\n blazepose: Model | null,\n efficientpose: Model | null,\n handpose: handpose.HandPose | null,\n iris: Model | null,\n age: Model | null,\n gender: Model | null,\n emotion: Model | null,\n embedding: Model | null,\n nanodet: Model | null,\n faceres: Model | null,\n };\n /** Internal: Currently loaded classes */\n classes: {\n facemesh: typeof facemesh;\n age: typeof age;\n gender: typeof gender;\n emotion: typeof emotion;\n body: typeof posenet | typeof blazepose;\n hand: typeof handpose;\n nanodet: typeof nanodet;\n faceres: typeof faceres;\n };\n /** Face triangualtion array of 468 points, used for triangle references between points */\n faceTriangulation: typeof facemesh.triangulation;\n /** UV map of 468 values, used for 3D mapping of the face mesh */\n faceUVMap: typeof facemesh.uvmap;\n /** Platform and agent information detected by Human */\n sysinfo: { platform: string, agent: string };\n /** Performance object that contains values for all recently performed operations */\n perf: any;\n #numTensors: number;\n #analyzeMemoryLeaks: boolean;\n #checkSanity: boolean;\n #firstRun: boolean;\n\n // definition end\n\n /**\n * Creates instance of Human library that is futher used for all operations\n * - @param userConfig: {@link Config}\n */\n constructor(userConfig: Config | Object = {}) {\n this.tf = tf;\n this.draw = draw;\n this.version = app.version;\n this.config = mergeDeep(defaults, userConfig);\n this.state = 'idle';\n this.#numTensors = 0;\n this.#analyzeMemoryLeaks = false;\n this.#checkSanity = false;\n this.#firstRun = true;\n this.perf = {};\n // object that contains all initialized models\n this.models = {\n face: null,\n posenet: null,\n blazepose: null,\n efficientpose: null,\n handpose: null,\n iris: null,\n age: null,\n gender: null,\n emotion: null,\n embedding: null,\n nanodet: null,\n faceres: null,\n };\n // export access to image processing\n // @ts-ignore eslint-typescript cannot correctly infer type in anonymous function\n this.image = (input: Input) => image.process(input, this.config);\n // export raw access to underlying models\n this.classes = {\n facemesh,\n age,\n gender,\n emotion,\n faceres,\n body: this.config.body.modelPath.includes('posenet') ? posenet : blazepose,\n hand: handpose,\n nanodet,\n };\n this.faceTriangulation = facemesh.triangulation;\n this.faceUVMap = facemesh.uvmap;\n // include platform info\n this.sysinfo = sysinfo.info();\n }\n\n /** Internal: ProfileData method returns last known profiling information\n * - Requires human.config.profile set to true\n */\n profileData(): { newBytes, newTensors, peakBytes, numKernelOps, timeKernelOps, slowestKernelOps, largestKernelOps } | {} {\n if (this.config.profile) return profile.data;\n return {};\n }\n\n // helper function: measure tensor leak\n /** @hidden */\n analyze = (...msg) => {\n if (!this.#analyzeMemoryLeaks) return;\n const current = this.tf.engine().state.numTensors;\n const previous = this.#numTensors;\n this.#numTensors = current;\n const leaked = current - previous;\n if (leaked !== 0) log(...msg, leaked);\n }\n\n // quick sanity check on inputs\n /** @hidden */\n #sanity = (input): null | string => {\n if (!this.#checkSanity) return null;\n if (!input) return 'input is not defined';\n if (this.tf.ENV.flags.IS_NODE && !(input instanceof tf.Tensor)) return 'input must be a tensor';\n try {\n this.tf.getBackend();\n } catch {\n return 'backend not loaded';\n }\n return null;\n }\n\n /** Simmilarity method calculates simmilarity between two provided face descriptors (face embeddings)\n * - Calculation is based on normalized Minkowski distance between\n */\n similarity(embedding1: Array, embedding2: Array): number {\n if (this.config.face.description.enabled) return faceres.similarity(embedding1, embedding2);\n if (this.config.face.embedding.enabled) return embedding.similarity(embedding1, embedding2);\n return 0;\n }\n\n /** Enhance method performs additional enhacements to face image previously detected for futher processing\n * @param input Tensor as provided in human.result.face[n].tensor\n * @returns Tensor\n */\n // eslint-disable-next-line class-methods-use-this\n enhance(input: Tensor): Tensor | null {\n return faceres.enhance(input);\n }\n\n /**\n * Math method find best match between provided face descriptor and predefined database of known descriptors\n * @param faceEmbedding: face descriptor previsouly calculated on any face\n * @param db: array of mapping of face descriptors to known values\n * @param threshold: minimum score for matching to be considered in the result\n * @returns best match\n */\n // eslint-disable-next-line class-methods-use-this\n match(faceEmbedding: Array, db: Array<{ name: string, source: string, embedding: number[] }>, threshold = 0): { name: string, source: string, similarity: number, embedding: number[] } {\n return faceres.match(faceEmbedding, db, threshold);\n }\n\n /** Load method preloads all configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n */\n async load(userConfig: Config | Object = {}) {\n this.state = 'load';\n const timeStamp = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig);\n\n if (this.#firstRun) {\n if (this.config.debug) log(`version: ${this.version}`);\n if (this.config.debug) log(`tfjs version: ${this.tf.version_core}`);\n if (this.config.debug) log('platform:', this.sysinfo.platform);\n if (this.config.debug) log('agent:', this.sysinfo.agent);\n\n await this.#checkBackend(true);\n if (this.tf.ENV.flags.IS_BROWSER) {\n if (this.config.debug) log('configuration:', this.config);\n if (this.config.debug) log('tf flags:', this.tf.ENV.flags);\n }\n }\n if (this.config.async) {\n [\n this.models.face,\n this.models.age,\n this.models.gender,\n this.models.emotion,\n this.models.embedding,\n this.models.handpose,\n this.models.posenet,\n this.models.blazepose,\n this.models.efficientpose,\n this.models.nanodet,\n this.models.faceres,\n ] = await Promise.all([\n this.models.face || (this.config.face.enabled ? facemesh.load(this.config) : null),\n this.models.age || ((this.config.face.enabled && this.config.face.age.enabled) ? age.load(this.config) : null),\n this.models.gender || ((this.config.face.enabled && this.config.face.gender.enabled) ? gender.load(this.config) : null),\n this.models.emotion || ((this.config.face.enabled && this.config.face.emotion.enabled) ? emotion.load(this.config) : null),\n this.models.embedding || ((this.config.face.enabled && this.config.face.embedding.enabled) ? embedding.load(this.config) : null),\n this.models.handpose || (this.config.hand.enabled ? handpose.load(this.config) : null),\n this.models.posenet || (this.config.body.enabled && this.config.body.modelPath.includes('posenet') ? posenet.load(this.config) : null),\n this.models.blazepose || (this.config.body.enabled && this.config.body.modelPath.includes('blazepose') ? blazepose.load(this.config) : null),\n this.models.efficientpose || (this.config.body.enabled && this.config.body.modelPath.includes('efficientpose') ? efficientpose.load(this.config) : null),\n this.models.nanodet || (this.config.object.enabled ? nanodet.load(this.config) : null),\n this.models.faceres || ((this.config.face.enabled && this.config.face.description.enabled) ? faceres.load(this.config) : null),\n ]);\n } else {\n if (this.config.face.enabled && !this.models.face) this.models.face = await facemesh.load(this.config);\n if (this.config.face.enabled && this.config.face.age.enabled && !this.models.age) this.models.age = await age.load(this.config);\n if (this.config.face.enabled && this.config.face.gender.enabled && !this.models.gender) this.models.gender = await gender.load(this.config);\n if (this.config.face.enabled && this.config.face.emotion.enabled && !this.models.emotion) this.models.emotion = await emotion.load(this.config);\n if (this.config.face.enabled && this.config.face.embedding.enabled && !this.models.embedding) this.models.embedding = await embedding.load(this.config);\n if (this.config.hand.enabled && !this.models.handpose) this.models.handpose = await handpose.load(this.config);\n if (this.config.body.enabled && !this.models.posenet && this.config.body.modelPath.includes('posenet')) this.models.posenet = await posenet.load(this.config);\n if (this.config.body.enabled && !this.models.blazepose && this.config.body.modelPath.includes('blazepose')) this.models.blazepose = await blazepose.load(this.config);\n if (this.config.body.enabled && !this.models.efficientpose && this.config.body.modelPath.includes('efficientpose')) this.models.efficientpose = await efficientpose.load(this.config);\n if (this.config.object.enabled && !this.models.nanodet) this.models.nanodet = await nanodet.load(this.config);\n if (this.config.face.enabled && this.config.face.description.enabled && !this.models.faceres) this.models.faceres = await faceres.load(this.config);\n }\n\n if (this.#firstRun) {\n if (this.config.debug) log('tf engine state:', this.tf.engine().state.numBytes, 'bytes', this.tf.engine().state.numTensors, 'tensors');\n this.#firstRun = false;\n }\n\n const current = Math.trunc(now() - timeStamp);\n if (current > (this.perf.load || 0)) this.perf.load = current;\n }\n\n // check if backend needs initialization if it changed\n /** @hidden */\n #checkBackend = async (force = false) => {\n if (this.config.backend && (this.config.backend.length > 0) && force || (this.tf.getBackend() !== this.config.backend)) {\n const timeStamp = now();\n this.state = 'backend';\n /* force backend reload\n if (this.config.backend in tf.engine().registry) {\n const backendFactory = tf.findBackendFactory(this.config.backend);\n tf.removeBackend(this.config.backend);\n tf.registerBackend(this.config.backend, backendFactory);\n } else {\n log('Backend not registred:', this.config.backend);\n }\n */\n\n if (this.config.backend && this.config.backend.length > 0) {\n // force browser vs node backend\n if (this.tf.ENV.flags.IS_BROWSER && this.config.backend === 'tensorflow') this.config.backend = 'webgl';\n if (this.tf.ENV.flags.IS_NODE && (this.config.backend === 'webgl' || this.config.backend === 'humangl')) this.config.backend = 'tensorflow';\n\n if (this.config.debug) log('setting backend:', this.config.backend);\n\n if (this.config.backend === 'wasm') {\n if (this.config.debug) log('wasm path:', this.config.wasmPath);\n if (typeof this.tf?.setWasmPaths !== 'undefined') this.tf.setWasmPaths(this.config.wasmPath);\n else throw new Error('Human: WASM backend is not loaded');\n const simd = await this.tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');\n const mt = await this.tf.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT');\n if (this.config.debug) log(`wasm execution: ${simd ? 'SIMD' : 'no SIMD'} ${mt ? 'multithreaded' : 'singlethreaded'}`);\n if (this.config.debug && !simd) log('warning: wasm simd support is not enabled');\n }\n\n if (this.config.backend === 'humangl') backend.register();\n try {\n await this.tf.setBackend(this.config.backend);\n } catch (err) {\n log('error: cannot set backend:', this.config.backend, err);\n }\n }\n this.tf.enableProdMode();\n // this.tf.enableDebugMode();\n if (this.tf.getBackend() === 'webgl' || this.tf.getBackend() === 'humangl') {\n this.tf.ENV.set('CHECK_COMPUTATION_FOR_ERRORS', false);\n this.tf.ENV.set('WEBGL_PACK_DEPTHWISECONV', true);\n if (this.config.deallocate) {\n log('changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:', this.config.deallocate);\n this.tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', this.config.deallocate ? 0 : -1);\n }\n const gl = await this.tf.backend().getGPGPUContext().gl;\n if (this.config.debug) log(`gl version:${gl.getParameter(gl.VERSION)} renderer:${gl.getParameter(gl.RENDERER)}`);\n }\n await this.tf.ready();\n this.perf.backend = Math.trunc(now() - timeStamp);\n }\n }\n\n /** Main detection method\n * - Analyze configuration: {@link Config}\n * - Pre-process input: {@link Input}\n * - Run inference for all configured models\n * - Process and return result: {@link Result}\n */\n async detect(input: Input, userConfig: Config | Object = {}): Promise {\n // detection happens inside a promise\n return new Promise(async (resolve) => {\n this.state = 'config';\n let timeStamp;\n\n // update configuration\n this.config = mergeDeep(this.config, userConfig);\n\n // sanity checks\n this.state = 'check';\n const error = this.#sanity(input);\n if (error) {\n log(error, input);\n resolve({ error });\n }\n\n const timeStart = now();\n\n // configure backend\n await this.#checkBackend();\n\n // load models if enabled\n await this.load();\n\n if (this.config.scoped) this.tf.engine().startScope();\n this.analyze('Start Scope:');\n\n // disable video optimization for inputs of type image\n let previousVideoOptimized;\n if (input && this.config.videoOptimized && (\n (typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n || (typeof Image !== 'undefined' && input instanceof Image)\n || (typeof ImageData !== 'undefined' && input instanceof ImageData)\n || (typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap))\n ) {\n log('disabling video optimization');\n previousVideoOptimized = this.config.videoOptimized;\n this.config.videoOptimized = false;\n }\n\n timeStamp = now();\n const process = image.process(input, this.config);\n if (!process || !process.tensor) {\n log('could not convert input to tensor');\n resolve({ error: 'could not convert input to tensor' });\n return;\n }\n this.perf.image = Math.trunc(now() - timeStamp);\n this.analyze('Get Image:');\n\n // prepare where to store model results\n let bodyRes;\n let handRes;\n let faceRes;\n let objectRes;\n let current;\n\n // run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion\n if (this.config.async) {\n faceRes = this.config.face.enabled ? faceall.detectFace(this, process.tensor) : [];\n if (this.perf.face) delete this.perf.face;\n } else {\n this.state = 'run:face';\n timeStamp = now();\n faceRes = this.config.face.enabled ? await faceall.detectFace(this, process.tensor) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.face = current;\n }\n\n // run body: can be posenet or blazepose\n this.analyze('Start Body:');\n if (this.config.async) {\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? this.models.posenet?.estimatePoses(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? efficientpose.predict(process.tensor, this.config) : [];\n if (this.perf.body) delete this.perf.body;\n } else {\n this.state = 'run:body';\n timeStamp = now();\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? await this.models.posenet?.estimatePoses(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? await efficientpose.predict(process.tensor, this.config) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.body = current;\n }\n this.analyze('End Body:');\n\n // run handpose\n this.analyze('Start Hand:');\n if (this.config.async) {\n handRes = this.config.hand.enabled ? this.models.handpose?.estimateHands(process.tensor, this.config) : [];\n if (this.perf.hand) delete this.perf.hand;\n } else {\n this.state = 'run:hand';\n timeStamp = now();\n handRes = this.config.hand.enabled ? await this.models.handpose?.estimateHands(process.tensor, this.config) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.hand = current;\n }\n this.analyze('End Hand:');\n\n // run nanodet\n this.analyze('Start Object:');\n if (this.config.async) {\n objectRes = this.config.object.enabled ? nanodet.predict(process.tensor, this.config) : [];\n if (this.perf.object) delete this.perf.object;\n } else {\n this.state = 'run:object';\n timeStamp = now();\n objectRes = this.config.object.enabled ? await nanodet.predict(process.tensor, this.config) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.object = current;\n }\n this.analyze('End Object:');\n\n // if async wait for results\n if (this.config.async) {\n [faceRes, bodyRes, handRes, objectRes] = await Promise.all([faceRes, bodyRes, handRes, objectRes]);\n }\n tf.dispose(process.tensor);\n\n if (this.config.scoped) this.tf.engine().endScope();\n this.analyze('End Scope:');\n\n // run gesture analysis last\n let gestureRes: any[] = [];\n if (this.config.gesture.enabled) {\n timeStamp = now();\n gestureRes = [...gesture.face(faceRes), ...gesture.body(bodyRes), ...gesture.hand(handRes), ...gesture.iris(faceRes)];\n if (!this.config.async) this.perf.gesture = Math.trunc(now() - timeStamp);\n else if (this.perf.gesture) delete this.perf.gesture;\n }\n\n // restore video optimizations if previously disabled\n if (previousVideoOptimized) this.config.videoOptimized = previousVideoOptimized;\n\n this.perf.total = Math.trunc(now() - timeStart);\n this.state = 'idle';\n const result = {\n face: faceRes,\n body: bodyRes,\n hand: handRes,\n gesture: gestureRes,\n object: objectRes,\n performance: this.perf,\n canvas: process.canvas,\n };\n // log('Result:', result);\n resolve(result);\n });\n }\n\n /** @hidden */\n #warmupBitmap = async () => {\n const b64toBlob = (base64, type = 'application/octet-stream') => fetch(`data:${type};base64,${base64}`).then((res) => res.blob());\n let blob;\n let res;\n switch (this.config.warmup) {\n case 'face': blob = await b64toBlob(sample.face); break;\n case 'full': blob = await b64toBlob(sample.body); break;\n default: blob = null;\n }\n if (blob) {\n const bitmap = await createImageBitmap(blob);\n res = await this.detect(bitmap, this.config);\n bitmap.close();\n }\n return res;\n }\n\n /** @hidden */\n #warmupCanvas = async () => new Promise((resolve) => {\n let src;\n let size = 0;\n switch (this.config.warmup) {\n case 'face':\n size = 256;\n src = 'data:image/jpeg;base64,' + sample.face;\n break;\n case 'full':\n case 'body':\n size = 1200;\n src = 'data:image/jpeg;base64,' + sample.body;\n break;\n default:\n src = null;\n }\n // src = encodeURI('../assets/human-sample-upper.jpg');\n const img = new Image();\n img.onload = async () => {\n const canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(size, size) : document.createElement('canvas');\n canvas.width = img.naturalWidth;\n canvas.height = img.naturalHeight;\n const ctx = canvas.getContext('2d');\n ctx?.drawImage(img, 0, 0);\n // const data = ctx?.getImageData(0, 0, canvas.height, canvas.width);\n const res = await this.detect(canvas, this.config);\n resolve(res);\n };\n if (src) img.src = src;\n else resolve(null);\n });\n\n /** @hidden */\n #warmupNode = async () => {\n const atob = (str) => Buffer.from(str, 'base64');\n let img;\n if (this.config.warmup === 'face') img = atob(sample.face);\n if (this.config.warmup === 'body' || this.config.warmup === 'full') img = atob(sample.body);\n if (!img) return null;\n let res;\n if (typeof tf['node'] !== 'undefined') {\n const data = tf['node'].decodeJpeg(img);\n const expanded = data.expandDims(0);\n this.tf.dispose(data);\n // log('Input:', expanded);\n res = await this.detect(expanded, this.config);\n this.tf.dispose(expanded);\n } else {\n if (this.config.debug) log('Warmup tfjs-node not loaded');\n /*\n const input = await canvasJS.loadImage(img);\n const canvas = canvasJS.createCanvas(input.width, input.height);\n const ctx = canvas.getContext('2d');\n ctx.drawImage(img, 0, 0, input.width, input.height);\n res = await this.detect(input, this.config);\n */\n }\n return res;\n }\n\n /** Warmup metho pre-initializes all models for faster inference\n * - can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n */\n async warmup(userConfig: Config | Object = {}): Promise {\n const t0 = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig);\n if (!this.config.warmup || this.config.warmup === 'none') return { error: 'null' };\n const save = this.config.videoOptimized;\n this.config.videoOptimized = false;\n let res;\n if (typeof createImageBitmap === 'function') res = await this.#warmupBitmap();\n else if (typeof Image !== 'undefined') res = await this.#warmupCanvas();\n else res = await this.#warmupNode();\n this.config.videoOptimized = save;\n const t1 = now();\n if (this.config.debug) log('Warmup', this.config.warmup, Math.round(t1 - t0), 'ms', res);\n return res;\n }\n}\n\n/**\n * Class Human is also available as default export\n */\nexport { Human as default };\n"], - "mappings": ";;;;;;;ukBACO,WAAc,EAAgB,EAAsB,CACzD,GAAM,GAAY,EAAO,SAAS,KAAO,GAAK,IAExC,EAAO,AADI,EAAK,WAAW,MAAQ,EAAK,WAAW,MAAQ,EAAK,WAAW,UAAY,EAAK,WAAW,WAAa,EAAK,WAAW,SAClH,GAAG,IAAS,GAAG,IAAS,IAAY,IAC5D,GAAI,CAAC,EAAK,oBAAoB,SAAS,SAAU,KAAM,IAAI,OAAM,2BAA2B,yBAC5F,MAAO,GAIF,cAAgB,EAAK,CAC1B,GAAM,GAAK,GAAI,MACT,EAAK,GAAG,EAAG,WAAW,WAAW,SAAS,EAAG,QAAQ,EAAG,aAAa,WAAW,SAAS,EAAG,QAAQ,EAAG,aAAa,WAAW,SAAS,EAAG,QAAQ,EAAG,kBAAkB,WAAW,SAAS,EAAG,OAErM,AAAI,GAAK,QAAQ,IAAI,EAAI,SAAU,GAAG,GAIjC,GAAM,GAAM,IACb,MAAO,cAAgB,YAAoB,YAAY,MACpD,SAAU,QAAO,QAAQ,OAAO,UAAY,IAAO,KAAM,YAI3D,cAAsB,EAAS,CACpC,GAAM,GAAW,AAAC,GAAQ,GAAO,MAAO,IAAQ,SAChD,MAAO,GAAQ,OAAO,CAAC,EAAM,IAC3B,QAAO,KAAK,GAAO,IAAI,QAAQ,AAAC,GAAQ,CACtC,GAAM,GAAO,EAAK,GACZ,EAAO,EAAI,GACjB,AAAI,MAAM,QAAQ,IAAS,MAAM,QAAQ,GAAO,EAAK,GAAO,EAAK,OAAO,GAAG,GACtE,AAAI,EAAS,IAAS,EAAS,GAAO,EAAK,GAAO,EAAU,EAAM,GAClE,EAAK,GAAO,IAEZ,GACN,ICnCE,aAAqD,CAC1D,GAAI,GACA,EACJ,GAAI,MAAO,YAAc,YAAa,CACpC,GAAM,GAAM,UAAU,UAAU,MAAM,iBACtC,GAAI,GAAO,EAAI,GAAI,CACjB,GAAM,GAAgB,EAAI,GAAG,MAAM,iBACnC,EAAW,EAAgB,EAAc,GAAG,QAAQ,SAAU,IAAM,GACpE,EAAQ,UAAU,UAAU,QAAQ,EAAI,GAAI,IACxC,EAAS,IAAI,GAAQ,EAAM,QAAQ,EAAI,GAAI,KAC/C,EAAQ,EAAM,QAAQ,MAAO,UAE1B,AAAI,OAAO,UAAY,aAC5B,GAAW,GAAG,QAAQ,YAAY,QAAQ,OAC1C,EAAQ,UAAU,QAAQ,WAE5B,MAAO,CAAE,WAAU,oDCMrB,QACA,QACA,QAEA,QACA,QACA,QAjBA,iDACA,sDACA,sDACA,wDACA,2DAEA,0EACA,8EACA,4EAGA,uDACA,yDACA,4DACA,uDACA,8DACA,gEACA,+DAcO,GAAM,IAAU,CACrB,KAAM,KAAA,KAAA,OAAe,aAAW,OAChC,YAAa,KAAA,KAAA,OAAa,aAAW,OACrC,YAAa,KAAA,KAAA,OAAa,aAAW,OACrC,cAAe,KAAA,KAAA,OAAe,aAAW,OACzC,iBAAkB,KAAA,KAAA,OAAkB,aAAW,OAC/C,mBAAoB,IAAe,OACnC,qBAAsB,IAAiB,OACvC,oBAAqB,IAAgB,QC/ChC,GAAM,GAAS,CACpB,KAAM,UACN,SAAU,GACV,OAAoD,KACpD,GAAS,KACT,MAAO,KACP,OAAQ,KACR,UAAW,CACT,MAAO,GACP,UAAW,GACX,mBAAoB,GACpB,sBAAuB,GACvB,MAAO,GACP,QAAS,GACT,6BAA8B,GAC9B,eAAgB,KAIb,aAA0B,CAC/B,GAAI,CAAC,AAAG,cAAY,EAAO,MAAO,CAChC,EAAI,wBAAyB,EAAO,MACpC,GAAI,CACF,EAAO,OAAU,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,MAAO,EAAO,QAAU,SAAS,cAAc,gBAC9H,EAAP,CACA,EAAI,+BAAgC,GACpC,OAEF,GAAI,CACF,EAAO,GAAK,EAAO,OAAO,WAAW,SAAU,EAAO,iBAC/C,EAAP,CACA,EAAI,oCAAqC,GACzC,OAEF,GAAI,CACF,AAAG,kBAAgB,EAAG,EAAO,UACtB,EAAP,CACA,EAAI,oCAAqC,GACzC,OAEF,GAAI,CACF,GAAM,GAAM,GAAO,gBAAa,EAAO,IACvC,AAAG,kBAAgB,EAAO,KAAM,IAAM,GAAO,oBAAiB,GAAM,EAAO,gBACpE,EAAP,CACA,EAAI,wCAAyC,GAC7C,OAEF,GAAI,CAEF,AADgB,AAAG,uBAAqB,SAChC,QAAQ,AAAC,GAAiB,CAChC,GAAM,GAAkB,IAAK,EAAc,YAAa,EAAO,MAC/D,AAAG,iBAAe,WAEb,EAAP,CACA,EAAI,mDAAoD,GACxD,OAEF,GAAI,CACF,AAAG,MAAI,IAAI,gBAAiB,SAIrB,EAAP,CACA,EAAI,yCAA0C,GAC9C,OAEF,EAAI,sBAAuB,EAAO,OCrEtC,6CCEO,GAAM,IAAO,GAEb,WAAa,EAAmB,EAAwB,CAC7D,GAAI,CAAC,GAAe,CAAC,EAAY,QAAS,OAC1C,GAAM,GAAa,EACb,EAAO,EAAY,QACtB,OAAO,AAAC,GAAM,EAAE,aAAe,GAC/B,OAAO,CAAC,EAAG,IAAM,GAAK,EAAE,aAAc,GACnC,EAAU,EAAY,QACzB,IAAI,CAAC,EAAG,IAAQ,GAAE,GAAK,EAAU,IACjC,OAAO,AAAC,GAAM,EAAE,aAAe,GAC/B,KAAK,CAAC,EAAG,IAAM,EAAE,aAAe,EAAE,cAC/B,EAAU,EAAY,QACzB,IAAI,CAAC,EAAG,IAAQ,GAAE,GAAK,EAAU,IACjC,OAAO,AAAC,GAAM,EAAE,mBAAqB,GACrC,KAAK,CAAC,EAAG,IAAM,EAAE,mBAAqB,EAAE,oBAC3C,AAAI,EAAQ,OAAS,GAAY,GAAQ,OAAS,GAC9C,EAAQ,OAAS,GAAY,GAAQ,OAAS,GAClD,GAAK,GAAa,CAChB,MAAO,EACP,SAAU,EAAY,SACtB,WAAY,EAAY,WACxB,UAAW,EAAY,UACvB,aAAc,EAAY,QAAQ,OAClC,cAAe,EACf,iBAAkB,EAClB,iBAAkB,GAEpB,EAAI,WAAY,EAAW,GAAK,ID1BlC,GAAI,GACA,GAAO,CAAE,IAAK,GACd,GAAU,OAAO,iBAErB,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,IAAI,YAC3E,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,IAAI,WAChE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GACA,GAAU,EAAO,KAAK,IAAI,YAAe,EAAO,gBAAkB,GAAK,KAAQ,GAAK,IAAM,EAC7F,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAC9F,EAAU,AAAG,MAAI,EAAQ,CAAC,MAChC,AAAG,UAAQ,GAEX,GAAI,GACE,EAAM,CAAE,IAAK,GAEnB,GAAI,CAAC,EAAO,QACV,AAAI,EAAO,KAAK,IAAI,SAAS,GAAO,KAAM,GAAM,QAAQ,QACnD,CACL,GAAM,GAAa,EAAO,KAAK,IAAI,QAAU,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IAAY,GAC9F,EAAO,EAAW,OAAO,QACzB,EAAW,OAAO,UAClB,AAAQ,EAAI,MAAO,GAIrB,GAFA,EAAQ,UAEJ,EAAM,CACR,GAAM,GAAO,EAAK,WAClB,EAAI,IAAM,KAAK,MAAM,GAAK,EAAK,IAAM,GAEvC,EAAK,UAEL,GAAO,EACP,EAAQ,MAhCS,KElBrB,6CAIA,GAAI,GACA,GAAO,CAAE,OAAQ,IACjB,GAAU,OAAO,iBACjB,GAAc,GAGZ,GAAM,CAAC,MAAQ,KAAQ,MAE7B,kBAA2B,EAAQ,CACjC,MAAK,GAKM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAJlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,OAAO,YAC9E,GAAc,EAAM,OAAO,GAAG,MAAM,KAAO,EAC3C,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,OAAO,WACnE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GACA,GAAU,EAAO,KAAK,OAAO,YAAe,EAAO,gBAAkB,GAAK,SAAW,GACxF,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAChG,EACJ,AAAI,GACF,EAAU,AAAG,OAAK,IAAM,CACtB,GAAM,CAAC,EAAK,EAAO,GAAQ,AAAG,QAAM,EAAQ,EAAG,GACzC,EAAU,AAAG,MAAI,EAAK,GAAI,IAC1B,EAAY,AAAG,MAAI,EAAO,GAAI,IAC9B,EAAW,AAAG,MAAI,EAAM,GAAI,IAGlC,MADkB,AADA,AAAG,QAAK,CAAC,EAAS,EAAW,IACnB,IAAI,IAAK,IAAI,KAI3C,EAAU,AAAG,MAAI,EAAQ,CAAC,MAE5B,AAAG,UAAQ,GAEX,GAAI,GACE,EAAM,CAAE,OAAQ,GAAI,WAAY,GAEtC,GAAI,CAAC,EAAO,QACV,AAAI,EAAO,KAAK,OAAO,SAAS,GAAU,KAAM,GAAM,QAAQ,QACzD,CACL,GAAM,GAAgB,EAAO,KAAK,OAAO,QAAU,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IAAY,GACpG,EAAU,EAAc,OAAO,QAC/B,EAAc,OAAO,UACrB,AAAQ,EAAI,SAAU,GAIxB,GAFA,EAAQ,UAEJ,EACF,GAAK,MAAM,QAAQ,GAiBZ,CACL,GAAM,GAAS,EAAQ,GAAG,WACpB,EAAa,KAAK,MAAM,IAAM,KAAK,IAAK,EAAO,GAAK,KAAS,IACnE,AAAI,EAAa,EAAO,KAAK,OAAO,eAClC,GAAI,OAAS,EAAO,IAAM,GAAM,SAAW,OAC3C,EAAI,WAAa,KAAK,IAAI,IAAM,IAQlC,EAAQ,QAAQ,AAAC,GAAM,AAAG,UAAQ,QA9BP,CAC3B,GAAM,GAAO,EAAQ,WACrB,GAAI,GAEF,AAAI,GAAK,GAAK,EAAO,KAAK,OAAO,eAAiB,EAAK,GAAK,EAAO,KAAK,OAAO,gBAC7E,GAAI,OAAS,EAAK,GAAK,EAAK,GAAK,SAAW,OAC5C,EAAI,WAAa,EAAK,GAAK,EAAK,GAAM,KAAK,MAAM,IAAM,EAAK,IAAM,IAAQ,KAAK,MAAM,IAAM,EAAK,IAAM,SAEnG,CAEL,GAAM,GAAa,KAAK,MAAM,IAAM,KAAK,IAAK,EAAK,GAAK,KAAS,IACjE,AAAI,EAAa,EAAO,KAAK,OAAO,eAClC,GAAI,OAAS,EAAK,IAAM,GAAM,SAAW,OACzC,EAAI,WAAa,KAAK,IAAI,IAAM,IAGpC,EAAQ,UAiBZ,GAAO,EACP,EAAQ,MAzES,KCvBrB,6CAIA,GAAM,IAAc,CAAC,QAAS,UAAW,OAAQ,QAAS,MAAO,WAAY,WACzE,EACA,GAAkD,GAClD,GAAU,OAAO,iBAGf,GAAM,CAAC,MAAQ,KAAQ,MAE7B,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,QAAQ,YAC/E,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,QAAQ,WACpE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GACA,GAAU,EAAO,KAAK,QAAQ,YAAe,EAAO,gBAAmB,GAAK,OAAS,EACxF,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAC9F,CAAC,EAAK,EAAO,GAAQ,AAAG,QAAM,EAAQ,EAAG,GAC/C,EAAO,UAEP,GAAM,GAAU,AAAG,MAAI,EAAK,GAAI,IAC1B,EAAY,AAAG,MAAI,EAAO,GAAI,IAC9B,EAAW,AAAG,MAAI,EAAM,GAAI,IAClC,EAAI,UACJ,EAAM,UACN,EAAK,UACL,GAAM,GAAY,AAAG,OAAK,CAAC,EAAS,EAAW,IAC/C,EAAQ,UACR,EAAU,UACV,EAAS,UACT,GAAM,GAAY,AAAG,OAAK,IAAM,EAAU,IAAI,IAAK,IAAI,IACvD,EAAU,UACV,GAAM,GAAiD,GACvD,GAAI,EAAO,KAAK,QAAQ,QAAS,CAC/B,GAAI,GACJ,GAAK,EAAO,QAIL,CACL,GAAM,GAAc,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IACzD,EAAO,EAAY,OAAO,WAC1B,EAAY,OAAO,UACnB,AAAQ,EAAI,UAAW,OARJ,CACnB,GAAM,GAAW,KAAM,GAAM,QAAQ,GACrC,EAAO,EAAS,WAChB,AAAG,UAAQ,GAOb,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAC/B,AAAI,EAAK,GAAK,EAAO,KAAK,QAAQ,eAAe,EAAI,KAAK,CAAE,MAAO,KAAK,IAAI,IAAM,KAAK,MAAM,IAAM,EAAK,IAAM,KAAM,QAAS,GAAY,KAE3I,EAAI,KAAK,CAAC,EAAG,IAAM,EAAE,MAAQ,EAAE,OAEjC,EAAU,UACV,GAAO,EACP,EAAQ,MA5CS,KChBrB,GAAI,GAEJ,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,UAAU,YACjF,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,UAAU,WACtE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGF,YAAoB,EAAY,EAAY,EAAQ,EAAW,CAGpE,GAFI,CAAC,GAAc,CAAC,GAChB,kBAAY,UAAW,GAAK,kBAAY,UAAW,GACnD,kBAAY,UAAW,kBAAY,QAAQ,MAAO,GAEtD,GAAM,GAAW,EACd,IAAI,CAAC,EAAK,IAAO,KAAK,IAAI,EAAW,GAAK,EAAW,KAAO,GAC5D,OAAO,CAAC,EAAK,IAAS,EAAM,EAAM,IAC/B,GAAI,GAEV,MADY,MAAK,IAAI,KAAK,MAAM,IAAQ,GAAI,IAAa,IAAM,GAgB1D,YAAiB,EAAe,CAqCrC,MApCc,AAAG,QAAK,IAAM,CAK1B,GAAM,GAAM,CAAC,CAAC,IAAM,IAAM,IAAM,MAC1B,EAAS,EAAM,OAAS,EAAM,OACpC,GAAI,CAAE,aAAqB,WAAS,MAAO,MAC3C,GAAM,GAAQ,EAAO,MAAM,SAAW,EAClC,AAAG,QAAM,cAAc,AAAG,aAAW,EAAQ,GAAI,EAAK,CAAC,GAAI,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAC5G,AAAG,QAAM,cAAc,EAAQ,EAAK,CAAC,GAAI,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAGxF,EAAM,CAAC,MAAQ,KAAQ,MACvB,CAAC,EAAK,EAAO,GAAQ,AAAG,QAAM,EAAM,EAAG,GACvC,EAAU,AAAG,MAAI,EAAK,EAAI,IAC1B,EAAY,AAAG,MAAI,EAAO,EAAI,IAC9B,EAAW,AAAG,MAAI,EAAM,EAAI,IAC5B,EAAY,AAAG,OAAK,CAAC,EAAS,EAAW,IACzC,EAAQ,AAAG,QAAM,CAAC,EAAW,EAAW,GAAY,GAAG,QAAQ,GAY/D,EAAS,EAAM,IAAI,EAAM,OAG/B,MAFgB,GAAO,IAAI,EAAO,SAOtC,kBAA8B,EAAO,EAA2B,CAC9D,MAAK,GACE,GAAI,SAAQ,KAAO,IAAY,CAEpC,GAAI,GAAsB,GAC1B,GAAI,EAAO,KAAK,UAAU,QAAS,CACjC,GAAM,GAAQ,GAAQ,GACtB,GAAI,CAAC,EAAO,QACV,EAAO,AAAG,OAAK,IA+BN,CAAC,GADsB,AAFf,AADC,AArBJ,EAAM,QAAQ,GAqBN,QAAQ,CAAC,IAAK,IACX,UAAU,GAEI,iBAGlC,CACL,GAAM,GAAc,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,CAAE,WAAY,KACvE,EAAO,CAAC,GAAG,EAAY,OAAO,YAC9B,EAAY,OAAO,UACnB,AAAQ,EAAI,UAAW,GAEzB,AAAG,UAAQ,GAEb,EAAQ,KAhDS,GCnFrB,2FAIA,GAAI,GACA,GAAO,CAAE,IAAK,GACd,GAAU,OAAO,iBAKrB,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YAAY,YACnF,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,YAAY,WACxE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGF,YAAoB,EAAY,EAAY,EAAQ,EAAW,CAGpE,GAFI,CAAC,GAAc,CAAC,GAChB,kBAAY,UAAW,GAAK,kBAAY,UAAW,GACnD,kBAAY,UAAW,kBAAY,QAAQ,MAAO,GAEtD,GAAM,GAAW,EAAM,EACpB,IAAI,CAAC,EAAK,IAAO,KAAK,IAAI,EAAW,GAAK,EAAW,KAAO,GAC5D,OAAO,CAAC,EAAK,IAAS,EAAM,EAAM,IAC/B,GAAI,GAEV,MADY,MAAK,IAAI,EAAG,IAAM,GAAY,IAIrC,YAAe,EAA0B,EAAQ,EAAY,EAAG,CACrE,GAAI,GAAO,CAAE,WAAY,EAAG,KAAM,GAAI,OAAQ,GAAI,UAAW,IAC7D,GAAI,CAAC,GAAa,CAAC,GAAM,CAAC,MAAM,QAAQ,IAAc,CAAC,MAAM,QAAQ,GAAK,MAAO,GACjF,OAAW,KAAK,GACd,GAAI,EAAE,WAAa,EAAE,KAAM,CACzB,GAAM,GAAO,GAAW,EAAW,EAAE,WACrC,AAAI,EAAO,GAAa,EAAO,EAAK,YAAY,GAAO,IAAK,EAAG,WAAY,IAG/E,MAAO,GAGF,YAAiB,EAAe,CA4CrC,MA3Cc,AAAG,QAAK,IAAM,CAG1B,GAAM,GAAS,EAAM,OAAS,EAAM,QAAU,EAC9C,GAAI,CAAE,aAAqB,WAAS,MAAO,MAE3C,GAAM,GAAM,CAAC,CAAC,IAAM,IAAM,IAAM,MAmChC,MAFa,AA/BC,GAAO,MAAM,SAAW,EAClC,AAAG,QAAM,cAAc,AAAG,aAAW,EAAQ,GAAI,EAAK,CAAC,GAAI,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAC5G,AAAG,QAAM,cAAc,EAAQ,EAAK,CAAC,GAAI,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,MA6B5E,IAAI,OAO1B,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GACA,GAAU,EAAO,KAAK,YAAY,YAAe,EAAO,gBAAkB,GAAK,KAAQ,GAAK,IAAM,EACrG,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAW,GAAQ,GAErB,EACE,EAAM,CACV,IAAa,EACb,OAAgB,UAChB,iBAA0B,EAC1B,WAAsB,IAExB,GAAI,CAAC,EAAO,QACV,AAAI,EAAO,KAAK,YAAY,SAAS,GAAO,KAAM,GAAM,QAAQ,QAC3D,CACL,GAAM,GAAc,EAAO,KAAK,YAAY,QAAU,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IAAa,GACxG,EAAO,EAAY,OACnB,AAAQ,EAAI,UAAW,GAEzB,AAAG,UAAQ,GAEP,GACF,CAAG,OAAK,IAAM,CACZ,GAAM,GAAS,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,GAAG,WAC5C,EAAa,KAAK,MAAM,IAAM,KAAK,IAAK,EAAO,GAAK,KAAS,IACnE,AAAI,EAAa,EAAO,KAAK,OAAO,eAClC,GAAI,OAAS,EAAO,IAAM,GAAM,SAAW,OAC3C,EAAI,iBAAmB,KAAK,IAAI,IAAM,IAExC,GAAM,GAAM,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,KAAK,OAAO,GAAG,WAAW,GAChE,EAAM,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,KAAK,WACjD,EAAI,IAAM,KAAK,MAAM,EAAI,EAAM,GAAK,EAAI,EAAM,GAAK,GAAK,EAAM,IAAM,EAAI,EAAM,GAAK,GAAK,EAAM,IAAM,EAAI,EAAM,IAAM,GAEpH,GAAM,GAAO,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,MAI7C,EAAI,WAAa,CAAC,GAAG,EAAK,cAE5B,EAAK,QAAQ,AAAC,GAAM,AAAG,UAAQ,KAGjC,GAAO,EACP,EAAQ,MAhDS,KCnFrB,GAAM,IAAqB,CAAC,EAAM,IAA0J,CAE1L,GAAM,GAAU,AAAC,GAAW,EAAQ,IAAO,KAAK,GAE1C,EAAY,AAAC,GAAM,CACvB,GAAM,GAAS,KAAK,KAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,IAC9D,SAAE,IAAM,EACR,EAAE,IAAM,EACR,EAAE,IAAM,EACD,GAEH,EAAa,CAAC,EAAG,IAAM,CAC3B,GAAM,GAAI,EAAE,GAAK,EAAE,GACb,EAAI,EAAE,GAAK,EAAE,GACb,EAAI,EAAE,GAAK,EAAE,GACnB,MAAO,CAAC,EAAG,EAAG,IAEV,EAAe,CAAC,EAAG,IAAM,CAC7B,GAAM,GAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAC3B,EAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAC3B,EAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GACjC,MAAO,CAAC,EAAG,EAAG,IAGV,EAA6B,AAAC,GAAM,CAExC,GAAM,CAAC,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,GAAO,EAClD,EAAY,GAAY,EAC5B,MAAI,GAAM,EACR,AAAI,EAAM,GACR,GAAS,KAAK,KAAK,GACnB,GAAS,KAAK,MAAM,CAAC,EAAK,GAC1B,EAAS,KAAK,MAAM,CAAC,EAAK,IAE1B,GAAS,CAAC,KAAK,GAAK,EACpB,GAAS,CAAC,KAAK,MAAM,EAAK,GAC1B,EAAS,GAGX,GAAS,KAAK,GAAK,EACnB,GAAS,KAAK,MAAM,EAAK,GACzB,EAAS,GAEJ,CAAE,MAAO,EAAI,CAAC,EAAQ,IAAK,EAAI,CAAC,GAAQ,KAAM,EAAI,CAAC,IAItD,EAAmB,AAAC,GAAS,CACjC,GAAM,GAAU,CAAC,EAAI,EAAI,EAAI,IAAO,KAAK,MAAM,EAAK,EAAI,EAAK,GAY7D,MAVc,CAIZ,MAAO,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,IAEjE,IAAK,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,IAE/D,KAAM,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,MAK9D,EAAO,EAAK,QAClB,GAAI,CAAC,GAAQ,EAAK,OAAS,IAAK,MAAO,CAAE,MAAO,CAAE,MAAO,EAAG,IAAK,EAAG,KAAM,GAAK,OAAQ,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,IAEhH,GAAM,GAAO,KAAK,IAAI,EAAK,OAAO,GAAK,EAAW,GAAI,EAAK,OAAO,GAAK,EAAW,IAAM,IAElF,EAAM,CAAC,EAAK,IAAK,EAAK,KAAM,EAAK,KAAM,EAAK,MAAM,IAAI,AAAC,GAAO,CAElE,EAAG,GAAK,EAAW,GAAK,EACxB,EAAG,GAAK,EAAW,GAAK,EACxB,EAAG,KAGC,EAAS,EAAU,EAAW,EAAI,GAAI,EAAI,KAC5C,EAAS,EAAU,EAAW,EAAI,GAAI,EAAI,KACxC,EAAS,EAAU,EAAa,EAAQ,IAE9C,EAAS,EAAa,EAAQ,GAI9B,GAAM,GAAmF,CACvF,EAAO,GAAI,EAAO,GAAI,EAAO,GAC7B,EAAO,GAAI,EAAO,GAAI,EAAO,GAC7B,EAAO,GAAI,EAAO,GAAI,EAAO,IAI/B,MAAO,CAAE,MAFK,EAA2B,GAEzB,WAGL,GAAa,MAAO,EAAQ,IAAwB,CAvGjE,kBA0GE,GAAI,GACA,EACA,EACA,EACA,EACA,EACE,EAoBC,GACP,EAAO,MAAQ,WACf,EAAY,IACZ,GAAM,GAAQ,KAAM,MAAO,OAAO,OAAd,cAAoB,cAAc,EAAO,EAAO,SAEpE,GADA,EAAO,KAAK,KAAO,KAAK,MAAM,IAAQ,GAClC,CAAC,EAAO,MAAO,GACnB,OAAW,KAAQ,GAAO,CAIxB,GAHA,EAAO,QAAQ,YAGX,CAAC,EAAK,OAAS,EAAK,MAAM,mBAAoB,CAChD,EAAI,2BAA4B,EAAK,OACrC,SAGF,GAAM,GAAW,GAAmB,EAAM,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,KAGvE,EAAO,QAAQ,cACf,AAAI,EAAO,OAAO,MAChB,EAAS,EAAO,OAAO,KAAK,IAAI,QAAU,AAAI,GAAQ,EAAK,MAAO,EAAO,QAAU,GAEnF,GAAO,MAAQ,UACf,EAAY,IACZ,EAAS,EAAO,OAAO,KAAK,IAAI,QAAU,KAAM,AAAI,IAAQ,EAAK,MAAO,EAAO,QAAU,GACzF,EAAO,KAAK,IAAM,KAAK,MAAM,IAAQ,IAIvC,EAAO,QAAQ,iBACf,AAAI,EAAO,OAAO,MAChB,EAAY,EAAO,OAAO,KAAK,OAAO,QAAU,AAAO,GAAQ,EAAK,MAAO,EAAO,QAAU,GAE5F,GAAO,MAAQ,aACf,EAAY,IACZ,EAAY,EAAO,OAAO,KAAK,OAAO,QAAU,KAAM,AAAO,IAAQ,EAAK,MAAO,EAAO,QAAU,GAClG,EAAO,KAAK,OAAS,KAAK,MAAM,IAAQ,IAI1C,EAAO,QAAQ,kBACf,AAAI,EAAO,OAAO,MAChB,EAAa,EAAO,OAAO,KAAK,QAAQ,QAAU,AAAQ,GAAQ,EAAK,MAAO,EAAO,QAAU,GAE/F,GAAO,MAAQ,cACf,EAAY,IACZ,EAAa,EAAO,OAAO,KAAK,QAAQ,QAAU,KAAM,AAAQ,IAAQ,EAAK,MAAO,EAAO,QAAU,GACrG,EAAO,KAAK,QAAU,KAAK,MAAM,IAAQ,IAE3C,EAAO,QAAQ,gBAGf,EAAO,QAAQ,oBACf,AAAI,EAAO,OAAO,MAChB,EAAe,EAAO,OAAO,KAAK,UAAU,QAAU,AAAU,GAAQ,EAAM,EAAO,QAAU,GAE/F,GAAO,MAAQ,gBACf,EAAY,IACZ,EAAe,EAAO,OAAO,KAAK,UAAU,QAAU,KAAM,AAAU,IAAQ,EAAM,EAAO,QAAU,GACrG,EAAO,KAAK,UAAY,KAAK,MAAM,IAAQ,IAE7C,EAAO,QAAQ,kBAGf,EAAO,QAAQ,sBACf,AAAI,EAAO,OAAO,MAChB,EAAU,EAAO,OAAO,KAAK,YAAY,QAAU,AAAQ,GAAQ,EAAM,EAAO,QAAU,GAE1F,GAAO,MAAQ,kBACf,EAAY,IACZ,EAAU,EAAO,OAAO,KAAK,YAAY,QAAU,KAAM,AAAQ,IAAQ,EAAK,MAAO,EAAO,QAAU,GACtG,EAAO,KAAK,UAAY,KAAK,MAAM,IAAQ,IAE7C,EAAO,QAAQ,oBAGX,EAAO,OAAO,OAChB,EAAC,EAAQ,EAAW,EAAY,EAAc,GAAW,KAAM,SAAQ,IAAI,CAAC,EAAQ,EAAW,EAAY,EAAc,KAG3H,EAAO,QAAQ,gBAIX,CAAC,EAAO,OAAO,KAAK,KAAK,SAAW,qBAAM,cAAN,cAAmB,cAAe,qBAAM,cAAN,cAAmB,eAC3F,OAAO,GAAK,YAAY,YACxB,MAAO,GAAK,YAAY,cAE1B,GAAM,GAAY,MAAK,cAAL,cAAkB,cAAe,MAAK,cAAL,cAAkB,cAEjE,KAAO,KAAK,IAAI,KAAK,IAAI,EAAK,YAAY,YAAY,GAAG,GAAK,EAAK,YAAY,YAAY,GAAG,IAAK,KAAK,IAAI,EAAK,YAAY,aAAa,GAAG,GAAK,EAAK,YAAY,aAAa,GAAG,KACnL,EAGJ,EAAQ,KAAK,IACR,EACH,IAAK,EAAQ,KAAO,EAAO,IAC3B,OAAQ,EAAQ,QAAU,EAAU,OACpC,iBAAkB,EAAQ,kBAAoB,EAAU,WACxD,UAAW,EAAQ,YAAc,EACjC,QAAS,EACT,KAAO,IAAa,EAAK,KAAK,MAAM,GAAY,IAAM,EACtD,WACA,OAAQ,EAAO,OAAO,KAAK,SAAS,OAAS,KAAK,QAAL,cAAY,UAAY,OAGvE,KAAK,QAAL,QAAY,UAEZ,EAAO,QAAQ,YAEjB,SAAO,QAAQ,iBACX,EAAO,OAAO,OACZ,GAAO,KAAK,MAAM,MAAO,GAAO,KAAK,KACrC,EAAO,KAAK,KAAK,MAAO,GAAO,KAAK,IACpC,EAAO,KAAK,QAAQ,MAAO,GAAO,KAAK,OACvC,EAAO,KAAK,SAAS,MAAO,GAAO,KAAK,SAEvC,GCzPT,yFCGA,GAAM,IAAgB,EAEtB,YAAyB,EAAW,CAClC,GAAM,GAAO,CAAE,QAAS,CAAC,EAAY,GAAI,EAAY,GAAI,QAAS,CAAC,EAAG,IAChE,EAAmC,GACzC,OAAS,GAAI,EAAG,EAAI,EAAK,QAAQ,OAAQ,IAAK,CAC5C,GAAM,GAAS,EAAK,QAAQ,GACtB,EAAW,KAAK,MAAO,GAAY,EAAS,GAAK,GACjD,EAAW,KAAK,MAAO,GAAY,EAAS,GAAK,GACjD,EAAa,EAAK,QAAQ,GAChC,OAAS,GAAQ,EAAG,EAAQ,EAAU,IAAS,CAC7C,GAAM,GAAU,EAAU,GAAQ,IAClC,OAAS,GAAQ,EAAG,EAAQ,EAAU,IAAS,CAC7C,GAAM,GAAU,EAAU,GAAQ,IAClC,OAAS,GAAI,EAAG,EAAI,EAAY,IAC9B,EAAQ,KAAK,CAAC,EAAS,MAK/B,MAAO,GAST,GAAM,IAAY,AAAC,GAAoB,EACrC,iBACA,WAAY,AAAG,QAAM,EAAgB,CAAC,EAAG,GAAI,CAAC,GAAI,IAClD,SAAU,AAAG,QAAM,EAAgB,CAAC,EAAG,GAAI,CAAC,GAAI,MAGlD,YAAsB,EAAY,EAAS,EAAW,CACpD,GAAM,GAAY,AAAG,QAAM,EAAY,CAAC,EAAG,GAAI,CAAC,GAAI,IAC9C,EAAU,AAAG,MAAI,EAAW,GAC5B,EAAW,AAAG,QAAM,EAAY,CAAC,EAAG,GAAI,CAAC,GAAI,IAC7C,EAAqB,AAAG,MAAI,EAAU,GACtC,EAAoB,AAAG,MAAI,EAAS,GACpC,EAAc,AAAG,MAAI,EAAoB,GACzC,EAAS,AAAG,MAAI,EAAmB,GACnC,EAAO,AAAG,MAAI,EAAmB,GACjC,EAAkB,AAAG,MAAI,EAAQ,GACjC,EAAgB,AAAG,MAAI,EAAM,GAEnC,MAAO,AAAG,YAAS,CAAC,EAAiB,GADlB,GAId,YAAqB,CAO1B,YAAY,EAAO,EAAQ,CACzB,KAAK,MAAQ,EACb,KAAK,YAAc,GAAgB,EAAM,OAAO,GAAG,MAAM,IACzD,KAAK,QAAU,AAAG,WAAS,KAAK,aAChC,KAAK,UAAY,EAAM,OAAO,GAAG,MAAM,GACvC,KAAK,OAAS,OAGV,kBAAiB,EAAY,CAEjC,GAAK,CAAC,GAAgB,EAAW,oBAAwB,EAAW,MAAM,SAAW,GAAO,EAAW,MAAM,GAAK,GAAO,EAAW,MAAM,GAAK,EAAI,MAAO,MAC1J,GAAM,CAAC,EAAO,EAAO,GAAU,AAAG,OAAK,IAAM,CAG3C,GAAM,GAAkB,AAFH,EAAW,eAAe,CAAC,KAAK,UAAW,KAAK,YAEhC,IAAI,OAAO,IAAI,IAC9C,EAAoB,KAAK,MAAM,QAAQ,GACzC,EAEJ,GAAI,MAAM,QAAQ,GAAoB,CACpC,GAAM,GAAS,EAAkB,KAAK,CAAC,EAAG,IAAM,EAAE,KAAO,EAAE,MACrD,EAAY,AAAG,SAAO,CAAC,EAAO,GAAI,EAAO,IAAK,GAC9C,EAAY,AAAG,SAAO,CAAC,EAAO,GAAI,EAAO,IAAK,GAEpD,EAAW,AADI,AAAG,SAAO,CAAC,EAAW,GAAY,GAC/B,QAAQ,OAE1B,GAAW,EAAkB,UAE/B,GAAM,GAAW,GAAa,EAAU,KAAK,QAAS,CAAC,KAAK,UAAW,KAAK,YACtE,EAAS,AAAG,QAAM,EAAU,CAAC,EAAG,GAAI,CAAC,GAAI,IACzC,EAAY,AAAG,UAAQ,GAAQ,UACrC,MAAO,CAAC,EAAU,EAAU,KAExB,EAAmB,KAAM,AAAG,SAAM,uBAAuB,EAAO,EAAQ,KAAK,OAAO,KAAK,SAAS,SAAU,KAAK,OAAO,KAAK,SAAS,aAAc,KAAK,OAAO,KAAK,SAAS,gBAC9K,EAAa,EAAiB,YACpC,EAAiB,UAEjB,GAAM,GAAgB,AADG,EAAW,IAAI,AAAC,GAAa,AAAG,QAAM,EAAO,CAAC,EAAU,GAAI,CAAC,EAAG,MAClD,IAAI,AAAC,GAAgB,CAC1D,GAAM,GAAO,EAAY,YACzB,SAAY,UACL,IAGH,EAAY,EAAO,WACnB,EAAuF,GAC7F,OAAS,GAAI,EAAG,EAAI,EAAc,OAAQ,IAAK,CAC7C,GAAM,GAAW,EAAW,GACtB,EAAa,EAAU,GAC7B,GAAI,EAAa,KAAK,OAAO,KAAK,SAAS,cAAe,CACxD,GAAM,GAAM,GAAU,EAAc,IAC9B,EAAS,KAAK,YAAY,GAC1B,EAAY,AAAG,OAAK,IAAM,AAAG,QAAM,EAAO,CAAC,EAAU,GAAgB,GAAI,CAAC,EAAG,KAAK,UAAU,QAAQ,CAAC,GAAe,MAC1H,EAAe,KAAK,CAAE,MAAK,YAAW,SAAQ,gBAGlD,SAAM,UACN,EAAM,UACN,EAAO,UACA,CACL,MAAO,EACP,YAAa,CAAC,EAAW,MAAM,GAAK,KAAK,UAAW,EAAW,MAAM,GAAK,KAAK,cAKrF,kBAA2B,EAAQ,CACjC,GAAM,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eACjJ,EAAY,GAAI,IAAe,EAAO,GAC5C,MAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,SAAS,WACrE,EAAO,OAAO,EAAI,cAAe,EAAM,UACzC,EC/HF,YAA6B,EAAK,EAAQ,CAC/C,GAAM,GAAa,CAAC,EAAI,WAAW,GAAK,EAAO,GAAI,EAAI,WAAW,GAAK,EAAO,IACxE,EAAW,CAAC,EAAI,SAAS,GAAK,EAAO,GAAI,EAAI,SAAS,GAAK,EAAO,IACxE,MAAO,CAAE,aAAY,YAGhB,YAAoB,EAAK,CAC9B,MAAO,CACL,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,IAC1C,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,KAIvC,YAAsB,EAAK,CAChC,MAAO,CACL,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAC5D,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,GAIzD,YAAkC,EAAK,EAAO,EAAU,CAC7D,GAAM,GAAI,EAAM,MAAM,GAChB,EAAI,EAAM,MAAM,GAChB,EAAQ,CAAC,CACb,EAAI,WAAW,GAAK,EACpB,EAAI,WAAW,GAAK,EACpB,EAAI,SAAS,GAAK,EAClB,EAAI,SAAS,GAAK,IAEpB,MAAO,AAAG,SAAM,cAAc,EAAO,EAAO,CAAC,GAAI,GAG5C,YAAoB,EAAK,EAAS,IAAK,CAC5C,GAAM,GAAS,GAAa,GACtB,EAAO,GAAW,GAClB,EAAc,CAAC,EAAS,EAAK,GAAK,EAAG,EAAS,EAAK,GAAK,GACxD,EAAa,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IAClE,EAAW,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IACtE,MAAO,CAAE,aAAY,WAAU,UAAW,EAAI,WAGzC,YAAqB,EAAK,CAC/B,GAAM,GAAU,GAAa,GACvB,EAAO,GAAW,GAElB,EAAW,AADD,KAAK,IAAI,GAAG,GACD,EACrB,EAAa,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GAClD,EAAW,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GACtD,MAAO,CAAE,aAAY,WAAU,UAAW,EAAI,WClDzC,GAAM,IAAkB,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAKtD,YAA0B,EAAO,CACtC,MAAO,GAAQ,EAAI,KAAK,GAAK,KAAK,MAAO,GAAQ,KAAK,IAAO,GAAI,KAAK,KAQjE,YAAyB,EAAQ,EAAQ,CAC9C,GAAM,GAAU,KAAK,GAAK,EAAI,KAAK,MAAM,CAAE,GAAO,GAAK,EAAO,IAAK,EAAO,GAAK,EAAO,IACtF,MAAO,IAAiB,GAOnB,YAAgC,EAAG,EAAG,CAC3C,MAAO,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAGhC,YAAa,EAAI,EAAI,CAC1B,GAAI,GAAU,EACd,OAAS,GAAI,EAAG,EAAI,EAAG,OAAQ,IAC7B,GAAW,EAAG,GAAK,EAAG,GAExB,MAAO,GAGF,YAA4B,EAAK,EAAa,CACnD,GAAM,GAAwB,GAC9B,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,EAAO,KAAK,EAAI,GAAG,IAErB,MAAO,GAGF,YAAmC,EAAM,EAAM,CACpD,GAAM,GAA2B,GAC3B,EAAO,EAAK,OAClB,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,CACnC,EAAQ,KAAK,IACb,OAAS,GAAM,EAAG,EAAM,EAAM,IAC5B,EAAQ,GAAK,KAAK,GAAI,EAAK,GAAM,GAAmB,EAAM,KAG9D,MAAO,GAGF,YAA6B,EAAU,EAAQ,CACpD,GAAM,GAAO,KAAK,IAAI,GAChB,EAAO,KAAK,IAAI,GAChB,EAAiB,CAAC,CAAC,EAAM,CAAC,EAAM,GAAI,CAAC,EAAM,EAAM,GAAI,CAAC,EAAG,EAAG,IAC5D,EAAoB,GAAuB,EAAO,GAAI,EAAO,IAC7D,EAA2B,GAA0B,EAAmB,GACxE,EAA4B,GAAuB,CAAC,EAAO,GAAI,CAAC,EAAO,IAC7E,MAAO,IAA0B,EAA0B,GAGtD,YAA+B,EAAQ,CAC5C,GAAM,GAAoB,CAAC,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAAK,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,KAC5E,EAAuB,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAChD,EAAsB,CAC1B,CAAC,GAAI,EAAkB,GAAI,GAC3B,CAAC,GAAI,EAAkB,GAAI,IAE7B,MAAO,CACL,EAAkB,GAAG,OAAO,EAAoB,IAChD,EAAkB,GAAG,OAAO,EAAoB,IAChD,CAAC,EAAG,EAAG,IAIJ,YAAqB,EAAuB,EAAgB,CACjE,MAAO,CACL,GAAI,EAAuB,EAAe,IAC1C,GAAI,EAAuB,EAAe,KClFvC,GAAM,GAAmB,CAC9B,WAAY,CACV,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACvD,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,KAEpD,eAAgB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,KAC7D,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC3D,eAAgB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC9D,eAAgB,CAAC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC9D,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC/C,eAAgB,CAAC,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACtD,eAAgB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,KAC1C,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,KACpD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC/C,eAAgB,CAAC,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACzD,kBAAmB,CAAC,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,KACnD,kBAAmB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,IACzC,aAAc,CAAC,IAAK,IAAK,IAAK,IAAK,KACnC,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACtD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,KAC5C,YAAa,CAAC,IAAK,IAAK,IAAK,IAAK,KAClC,kBAAmB,CAAC,KACpB,QAAS,CAAC,GACV,WAAY,CAAC,GACb,gBAAiB,CAAC,IAClB,eAAgB,CAAC,KACjB,WAAY,CAAC,KACb,UAAW,CAAC,MAGD,GAA2B,CACtC,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,GAAI,GAAI,GAAI,GAAI,GAAI,KACrD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KACtD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KACtD,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,IACtD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KAC9D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KAC9D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,MAKnD,GAAQ,CACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,iBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,iBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,cAAgB,kBACjB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,mBAGT,GAAS,CACpB,IAAK,GAAI,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,EACtJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GACrJ,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAC7I,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAClJ,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GACrJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GACpJ,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GACjJ,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,EAAG,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,EAAG,IAC/I,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,GAAI,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GACtJ,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAClJ,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACnJ,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,IAClJ,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,EAAG,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GACnJ,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,EAAG,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,EAAG,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAClJ,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAChJ,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IACpJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GACrJ,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GACpJ,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EACpJ,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAC9I,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAC9I,IAAK,GAAI,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAwBvI,GAAM,IAAQ,CACP,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/E,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC1C,IAAK,EAAG,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,IAChC,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAChD,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,KAGhC,GAAQ,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,KAE1J,GAAO,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,KAElC,GAAO,GAAM,IAAI,AAAC,GAAM,GAAM,IAE9B,GAAO,GAAM,IAAI,AAAC,GAAM,GAAM,IAE9B,GAAM,GAAK,IAAI,AAAC,GAAM,GAAM,ICjoBzC,GAAM,IAAc,AAAO,EAAiB,cACtC,GAAe,AAAO,EAAiB,eAEvC,GAAe,CACnB,WAAY,CAAC,GAAY,GAAI,GAAY,GAAY,OAAS,IAC9D,YAAa,CAAC,GAAa,GAAI,GAAa,GAAa,OAAS,KAG9D,GAAgB,CACpB,MAAO,IACP,MAAO,GACP,aAAc,CAAC,GAAI,AAAO,EAAiB,kBAAqB,KAG5D,GAAqB,CACzB,QAAS,EACT,SAAU,EACV,KAAM,EACN,MAAO,EACP,QAAS,EACT,SAAU,EACV,aAAc,CAAC,EAAG,IAGd,GAAgB,CACpB,YAAa,EACb,YAAa,EACb,MAAO,GACP,eAAgB,IAKlB,YAA+B,EAAW,EAAW,EAAQ,EAAM,CACjE,OAAS,GAAI,EAAG,EAAI,AAAO,GAAyB,OAAQ,IAAK,CAC/D,GAAM,CAAE,MAAK,WAAY,AAAO,GAAyB,GACnD,EAAkB,AAAO,EAAiB,GAAG,IAAS,KAC5D,GAAI,CAAC,GAAQ,EAAK,SAAS,GACzB,OAAS,GAAI,EAAG,EAAI,EAAQ,OAAQ,IAAK,CACvC,GAAM,GAAQ,EAAQ,GACtB,EAAU,EAAgB,IAAM,CAC9B,EAAU,GAAO,GAAI,EAAU,GAAO,GACrC,GAAU,GAAO,GAAK,EAAU,EAAgB,IAAI,IAAM,KAO9D,YAAe,CAYpB,YAAY,EAAqB,EAAc,EAAW,CAnE5D,QAqEI,KAAK,YAAc,GACnB,KAAK,oBAAsB,EAC3B,KAAK,aAAe,EACpB,KAAK,UAAY,EACjB,KAAK,QAAU,qBAAqB,QAArB,cAA4B,OAAO,GAAG,MAAM,KAAM,EACjE,KAAK,SAAW,kBAAc,OAAO,GAAG,MAAM,KAAM,qBAAqB,QAArB,cAA4B,OAAO,GAAG,MAAM,IAChG,KAAK,SAAW,kBAAW,OAAO,GAAG,MAAM,KAAM,EACjD,KAAK,YAAc,IACnB,KAAK,QAAU,EACf,KAAK,cAAgB,EAGvB,mBAAmB,EAAW,EAAK,EAAO,EAAgB,CACxD,GAAM,GAAU,AAAS,GAAW,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC1E,EAAe,EAAU,IAAI,AAAC,GAAW,CAC7C,EAAQ,GAAK,KAAK,SAAY,GAAM,GAAK,KAAK,SAAW,GACzD,EAAQ,GAAK,KAAK,SAAY,GAAM,GAAK,KAAK,SAAW,GACzD,EAAM,KAEF,EAAwB,IAAU,EAAK,AAAK,GAAoB,EAAO,CAAC,EAAG,IAAW,GACtF,EAAiB,IAAU,EAAK,EAAa,IAAI,AAAC,GAAW,CAAC,GAAG,AAAK,GAAY,EAAO,GAAuB,EAAM,KAAQ,EAC9H,EAAyB,IAAU,EAAK,AAAK,GAAsB,GAAuB,GAC1F,EAAY,CAAC,GAAG,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAAa,GACrG,MAAO,GAAc,IAAI,AAAC,GAAW,CACnC,EAAM,GAAK,AAAK,GAAI,EAAW,EAAsB,IACrD,EAAM,GAAK,AAAK,GAAI,EAAW,EAAsB,IACrD,EAAM,KAIV,iCAAiC,EAAW,CAC1C,GAAM,GAAW,EAAU,GAAa,WAAW,IAAI,GACjD,EAAY,EAAU,GAAa,YAAY,IAAI,GACzD,MAAO,GAAW,EAIpB,UAAU,EAAW,EAAM,EAAqB,EAAqB,EAAO,GAAO,CACjF,GAAM,GAAM,AAAS,GAAY,AAAS,GAAW,KAAK,8BAA8B,CAAC,EAAU,GAAsB,EAAU,KAAwB,KAAK,cAC1J,EAAU,AAAS,GAAW,GAChC,EAAO,AAAG,QAAM,cAAc,EAAM,CAAC,CACvC,EAAI,WAAW,GAAK,KAAK,SACzB,EAAI,WAAW,GAAK,KAAK,SAAU,EAAI,SAAS,GAAK,KAAK,SAC1D,EAAI,SAAS,GAAK,KAAK,WACrB,CAAC,GAAI,CAAC,KAAK,SAAU,KAAK,WAC9B,MAAI,IAAQ,AAAG,MAAI,MAAM,YACvB,GAAO,AAAG,QAAM,cAAc,IAEzB,CAAE,MAAK,UAAS,QAIzB,aAAa,EAAS,EAAQ,EAAY,EAAO,GAAO,CACtD,GAAM,GAA6B,GACnC,OAAS,GAAI,EAAG,EAAI,GAAc,eAAgB,IAAK,CACrD,GAAM,GAAI,EAAQ,EAAI,GAChB,EAAI,EAAQ,EAAI,EAAI,GACpB,EAAI,EAAQ,EAAI,EAAI,GAC1B,EAAa,KAAK,CACf,GAAQ,EAAK,EAAI,KAAK,SAAc,EAAI,KAAK,UAAa,EAAW,GAAK,EAAO,WAAW,GAC5F,EAAI,KAAK,SAAY,EAAW,GAAK,EAAO,WAAW,GAAI,IAGhE,MAAO,CAAE,UAAW,EAAc,KAAM,EAAa,MAAM,GAAc,QAI3E,sBAAsB,EAAW,EAAY,EAAW,CACtD,GAAM,GAAe,EAAU,AAAO,EAAiB,GAAG,cAAsB,GAAc,cAAc,GACtG,EAAe,EAAU,AAAO,EAAiB,GAAG,cAAsB,GAAc,cAAc,GACtG,EAAY,GAAe,GAAgB,EAEjD,MAAO,GAAW,IAAI,CAAC,EAAO,IAAM,CAClC,GAAI,GAAI,EACR,MAAI,KAAM,EACR,EAAI,EACK,IAAM,GACf,GAAI,GAEC,CAAC,EAAM,GAAI,EAAM,GAAI,UAI1B,SAAQ,EAAO,EAAQ,CAC3B,GAAI,GAAc,GAEd,EAQJ,GAPK,MAAK,UAAY,GAAO,KAAK,QAAU,EAAO,KAAK,SAAS,YAAe,CAAC,EAAO,KAAK,KAAK,SAAW,CAAC,EAAO,iBACnH,GAAW,KAAM,MAAK,oBAAoB,iBAAiB,GAC3D,KAAK,QAAU,GAEb,EAAO,gBAAgB,KAAK,UAG5B,CAAC,EAAO,gBAAmB,GAAY,EAAS,OAAU,EAAC,EAAO,KAAK,KAAK,SAAY,EAAS,MAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkB,EAAO,KAAK,SAAS,UAAa,CACrM,KAAK,YAAc,GACnB,KAAK,cAAgB,EACrB,OAAW,KAAY,GAAS,MAC9B,KAAK,YAAY,KAAK,CAAE,WAAY,EAAS,IAAI,WAAW,WAAY,SAAU,EAAS,IAAI,SAAS,WAAY,UAAW,EAAS,UAAW,WAAY,EAAS,aAE1K,AAAI,KAAK,YAAY,OAAS,GAAG,GAAc,IAKjD,GAFI,EAAO,KAAK,SAAS,aAAe,KAAK,gBAAkB,GAAG,MAAK,QAAU,GAE7E,EAAa,CACf,GAAI,CAAC,GAAY,CAAC,EAAS,OAAU,EAAS,MAAM,SAAW,EAC7D,YAAK,YAAc,GACnB,KAAK,cAAgB,EACd,KAET,OAAS,GAAI,EAAG,EAAI,KAAK,YAAY,OAAQ,IAAK,CAChD,GAAM,GAAY,AAAS,GAAoB,CAAE,WAAY,KAAK,YAAY,GAAG,WAAY,SAAU,KAAK,YAAY,GAAG,UAAY,EAAS,aAC1I,EAAc,AAAS,GAAW,GAClC,EAAgB,AAAS,GAAY,GACrC,EAAY,KAAK,YAAY,GAAG,UAAU,YAC1C,EAAa,KAAK,YAAY,GAAG,WACvC,KAAK,YAAY,GAAK,IAAK,EAAe,aAAY,cAG1D,AAAI,GAAY,EAAS,OACvB,EAAS,MAAM,QAAQ,AAAC,GAAe,CACrC,EAAW,IAAI,WAAW,UAC1B,EAAW,IAAI,SAAS,UACxB,EAAW,UAAU,YAIzB,GAAI,GAAU,AAAG,OAAK,IAAM,KAAK,YAAY,IAAI,CAAC,EAAK,IAAM,CAC3D,GAAM,GAAgB,EAAI,WAGtB,EACA,EAAQ,EACR,EAEJ,GAAI,EAAO,KAAK,SAAS,UAAY,EAAO,KAAK,KAAK,SAAW,AAAG,MAAI,MAAM,WAAY,CACxF,GAAM,CAAC,EAAc,GAAoB,EAAI,UAAU,QAAU,GAAc,MAAS,GAAc,aAAe,GAAmB,aACxI,EAAQ,AAAK,GAAgB,EAAI,UAAU,GAAe,EAAI,UAAU,IACxE,GAAM,GAAa,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC/E,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,AAAG,QAAM,iBAAiB,EAAO,EAAO,EAAG,GAChE,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,AAAI,EAAO,KAAK,KAAK,QAAS,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,SAAU,KAAK,WAAW,IAAI,KAC5K,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,QAAS,KAAK,UAAU,IAAI,SACjJ,CACL,EAAsB,GACtB,GAAM,GAAc,EAAM,QAC1B,AAAI,EAAO,KAAK,KAAK,QAAS,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAa,CAAC,KAAK,SAAU,KAAK,WAAW,IAAI,KAC3K,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAa,CAAC,KAAK,QAAS,KAAK,UAAU,IAAI,KAIvJ,GAAI,CAAC,EAAO,KAAK,KAAK,QASpB,MARmB,CACjB,OAAQ,KACR,MACA,eAAgB,KAChB,gBACA,WAAY,EAAI,WAChB,MAAO,GAKX,GAAM,CAAC,CAAE,EAAY,GAAiB,KAAK,aAAa,QAAQ,GAC1D,EAAiB,EAAW,WAAW,GAC7C,GAAI,EAAiB,EAAO,KAAK,SAAS,cAAe,MAAO,MAEhE,GAAI,GAAY,AADO,AAAG,UAAQ,EAAe,CAAC,GAAI,IACvB,YAE/B,GAAI,EAAO,KAAK,KAAK,QAAS,CAC5B,GAAM,CAAE,IAAK,EAAY,QAAS,EAAgB,KAAM,GAAgB,KAAK,UAAU,EAAW,EAAM,GAAa,WAAW,GAAI,GAAa,WAAW,GAAI,IAC1J,CAAE,IAAK,EAAa,QAAS,EAAiB,KAAM,GAAiB,KAAK,UAAU,EAAW,EAAM,GAAa,YAAY,GAAI,GAAa,YAAY,IAE3J,EAAqB,AADJ,KAAK,UAAU,QAAQ,AAAG,SAAO,CAAC,EAAa,KAC5B,WACpC,GAAc,EAAmB,MAAM,EAAG,GAAc,eAAiB,GACzE,CAAE,UAAW,GAAkB,KAAM,IAAsB,KAAK,aAAa,GAAa,EAAY,EAAgB,IACtH,GAAe,EAAmB,MAAM,GAAc,eAAiB,GACvE,CAAE,UAAW,GAAmB,KAAM,IAAuB,KAAK,aAAa,GAAc,EAAa,GAC1G,GAAgC,KAAK,iCAAiC,GAC5E,AAAI,KAAK,IAAI,IAAiC,GAC5C,IAAsB,EAAW,GAAkB,OAAQ,MAC3D,GAAsB,EAAW,GAAmB,QAAS,OAGxD,AAAI,GAAgC,EACzC,GAAsB,EAAW,GAAkB,OAAQ,CAAC,YAAa,cAEzE,GAAsB,EAAW,GAAmB,QAAS,CAAC,YAAa,cAE7E,GAAM,IAAyB,KAAK,sBAAsB,EAAW,GAAmB,QAClF,GAA0B,KAAK,sBAAsB,EAAW,GAAoB,SAC1F,EAAY,EAAU,OAAO,IAAwB,OAAO,IAI9D,GAAM,GAAwB,KAAK,mBAAmB,EAAW,EAAK,EAAO,GAC7E,EAAM,AAAS,GAAW,KAAK,8BAA8B,GAAwB,KACrF,GAAM,GAAoB,AAAG,WAAS,GAGtC,GAAI,EAAO,KAAK,SAAS,UAAY,EAAO,KAAK,KAAK,SAAY,GAAO,KAAK,YAAY,SAAW,EAAO,KAAK,UAAU,UAAY,AAAG,MAAI,MAAM,WAAY,CAC9J,GAAM,CAAC,EAAc,GAAoB,EAAI,UAAU,QAAU,GAAc,MAAS,GAAc,aAAe,GAAmB,aACxI,EAAQ,AAAK,GAAgB,EAAI,UAAU,GAAe,EAAI,UAAU,IACxE,GAAM,GAAa,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC/E,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,AAAG,QAAM,iBAAiB,EAAM,UAAW,EAAO,EAAG,GAC1E,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,SAAU,KAAK,WAAW,IAAI,KAGrJ,GAAM,GAAa,CACjB,OAAQ,EACR,MACA,iBACA,gBACA,MAAO,EACP,aAII,EAAyB,AAAS,GAAY,GACpD,YAAK,YAAY,GAAK,IAAK,EAAwB,UAAW,EAAuB,WAAY,EAAI,WAAY,kBAE1G,KAGT,SAAU,EAAQ,OAAO,AAAC,GAAM,IAAM,MAElC,EAAO,KAAK,KAAK,SAAS,MAAK,YAAc,KAAK,YAAY,OAAO,AAAC,GAAM,EAAE,eAAiB,EAAO,KAAK,SAAS,gBACxH,KAAK,cAAgB,EAAQ,OAEtB,EAGT,8BAA8B,EAAW,CACvC,GAAM,GAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAa,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC3C,EAAW,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC/C,MAAO,CAAE,aAAY,WAAU,eLhT5B,YAAwB,CAI7B,YAAY,EAAW,EAAgB,EAAW,EAAQ,CACxD,KAAK,aAAe,GAAiB,IAAS,EAAW,EAAgB,GACzE,KAAK,OAAS,OAGV,eAAc,EAAO,EAAkH,CAC3I,GAAM,GAAc,KAAM,MAAK,aAAa,QAAQ,EAAO,GACrD,EAAgH,GACtH,OAAW,KAAe,IAAe,GAAK,CAC5C,GAAI,EAAW,mBAAoB,SACnC,GAAM,GAAO,EAAW,OAAS,EAAW,OAAO,YAAc,GAC3D,EAAU,EAAK,IAAI,AAAC,GAAO,CAC/B,EAAG,GAAK,EAAM,MAAM,GACpB,EAAG,GAAK,EAAM,MAAM,GACpB,EAAG,GAAK,KAAK,aAAa,WAEtB,EAAc,GACpB,GAAI,GAAQ,EAAK,OAAS,EACxB,OAAW,KAAO,QAAO,KAAY,GAAmB,EAAY,GAAO,AAAO,EAAiB,GAAK,IAAI,AAAC,GAAU,EAAK,IAE9H,GAAM,GAAM,EAAW,IAAM,CAC3B,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,IACtC,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,IACtC,KAAK,IAAI,EAAM,MAAM,GAAI,EAAW,IAAI,SAAS,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,IAC7F,KAAK,IAAI,EAAM,MAAM,GAAI,EAAW,IAAI,SAAS,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,KAC3F,EACE,EAAS,EAAW,IAAM,CAC9B,EAAW,IAAI,WAAW,GAAK,EAAM,MAAM,GAC3C,EAAW,IAAI,WAAW,GAAK,EAAM,MAAM,GAC1C,GAAW,IAAI,SAAS,GAAK,EAAW,IAAI,WAAW,IAAM,EAAM,MAAM,GACzE,GAAW,IAAI,SAAS,GAAK,EAAW,IAAI,WAAW,IAAM,EAAM,MAAM,IACxE,GACJ,EAAQ,KAAK,CACX,WAAY,KAAK,MAAM,IAAM,EAAW,gBAAkB,IAAM,EAAW,eAAiB,GAAK,IACjG,cAAe,KAAK,MAAM,IAAM,EAAW,eAAiB,IAC5D,eAAgB,KAAK,MAAM,IAAM,EAAW,gBAAkB,IAC9D,MACA,SACA,OACA,UACA,cACA,MAAO,EAAW,MAAQ,EAAW,MAAM,QAAU,OAEnD,EAAW,QAAQ,EAAW,OAAO,UACrC,EAAW,OAAO,EAAW,MAAM,UAEzC,MAAO,KAIP,EAA6B,CAAC,KAAM,KAAM,MAC9C,kBAA2B,EAAoC,CAC7D,MAAK,CAAC,EAAW,IAAM,EAAO,KAAK,SAAa,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,SAAa,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QACjI,GAAa,KAAM,SAAQ,IAAI,CAC5B,CAAC,EAAW,IAAM,EAAO,KAAK,QAAW,AAAU,GAAK,GAAU,KAClE,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QAAW,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,KAAK,WAAY,CAAE,UAAW,EAAO,KAAK,KAAK,UAAU,SAAS,eAAkB,KAC3L,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QAAW,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,KAAK,WAAY,CAAE,UAAW,EAAO,KAAK,KAAK,UAAU,SAAS,eAAkB,OAE1L,EAAO,KAAK,KAAK,SACnB,CAAI,CAAC,EAAW,IAAM,CAAC,EAAW,GAAG,SAAU,EAAI,qBAAsB,EAAO,KAAK,KAAK,WACjF,EAAO,OAAO,EAAI,cAAe,EAAW,GAAG,WAEtD,EAAO,KAAK,KAAK,SACnB,CAAI,CAAC,EAAW,IAAM,CAAC,EAAW,GAAG,SAAU,EAAI,qBAAsB,EAAO,KAAK,KAAK,WACjF,EAAO,OAAO,EAAI,cAAe,EAAW,GAAG,YAEjD,EAAO,OAChB,GAAI,gBAAiB,EAAW,GAAG,MAAM,UACzC,EAAI,gBAAiB,EAAW,GAAG,UACnC,EAAI,gBAAiB,EAAW,GAAG,WAEpB,GAAI,IAAkB,EAAW,GAAI,EAAW,GAAI,EAAW,GAAI,GAI/E,GAAM,IAAuB,GACvB,GAAe,GMtF5B,6CCEA,GAAM,IAAiB,CAAC,+BAAgC,gCAAiC,yCAA0C,0CAEnI,YAAoC,EAAS,CAC3C,GAAM,CAAC,EAAS,EAAS,EAAiB,GAAmB,EAC7D,MAAO,CAAE,UAAS,UAAS,kBAAiB,mBAGvC,YAAgB,CAGrB,YAAY,EAAO,CACjB,KAAK,MAAQ,EACb,KAAK,UAAY,EAAM,OAAO,GAAG,MAAM,GAGzC,QAAQ,EAAO,CACb,MAAO,AAAG,QAAK,IAAM,CAEnB,GAAM,GAAa,AADH,EAAM,eAAe,CAAC,KAAK,UAAW,KAAK,YAChC,UAAU,IAAI,OAAO,IAAI,GAG9C,EAAY,AADF,KAAK,MAAM,QAAQ,EAAY,IACrB,IAAI,AAAC,GAAM,EAAE,QAAQ,CAAC,KAC1C,EAAe,GAA2B,GAChD,MAAO,CACL,cAAe,EAAa,QAAQ,UACpC,QAAS,EAAa,QACtB,gBAAiB,EAAa,gBAC9B,gBAAiB,EAAa,mBAKpC,SAAU,CACR,KAAK,MAAM,YCnCR,GAAM,IAAY,CACvB,OAAQ,UAAW,WAAY,UAAW,WAAY,eACtD,gBAAiB,YAAa,aAAc,YAAa,aACzD,UAAW,WAAY,WAAY,YAAa,YAAa,cAGlD,GAAQ,GAAU,OAElB,GAAU,GAAU,OAAO,CAAC,EAAQ,EAAW,IAC1D,GAAO,GAAa,EACb,GACN,IAEG,GAAqB,CACzB,CAAC,UAAW,gBAAiB,CAAC,YAAa,gBAC3C,CAAC,YAAa,aAAc,CAAC,UAAW,YACxC,CAAC,WAAY,aAAc,CAAC,WAAY,iBACxC,CAAC,aAAc,iBAAkB,CAAC,aAAc,cAChD,CAAC,WAAY,aAAc,CAAC,YAAa,cACzC,CAAC,eAAgB,iBAAkB,CAAC,UAAW,aAEpC,GAAuB,GAAmB,IAAI,CAAC,CAAC,EAAY,KAAiB,CAAC,GAAQ,GAAa,GAAQ,KAE3G,GAAY,CACvB,CAAC,OAAQ,WAAY,CAAC,UAAW,WAAY,CAAC,OAAQ,YACtD,CAAC,WAAY,YAAa,CAAC,OAAQ,gBACnC,CAAC,eAAgB,aAAc,CAAC,YAAa,aAC7C,CAAC,eAAgB,WAAY,CAAC,UAAW,YACzC,CAAC,WAAY,aAAc,CAAC,OAAQ,iBACpC,CAAC,gBAAiB,cAAe,CAAC,aAAc,cAChD,CAAC,gBAAiB,YAAa,CAAC,WAAY,aAC5C,CAAC,YAAa,eC5BT,YAA6B,EAAe,EAAe,CAChE,GAAM,GAAyB,GACzB,EAAuB,GAC7B,OAAS,GAAW,EAAG,EAAW,EAAc,IAAY,CAC1D,GAAM,GAAI,EAAc,IAAI,EAAU,GAChC,EAAI,EAAc,IAAI,EAAU,GACtC,EAAO,KAAK,EAAc,IAAI,EAAG,EAAG,IAEtC,MAAO,GAGF,YAAyB,EAAqB,EAAc,EAAe,CAChF,GAAM,GAAiB,CAAC,EAAG,EAAG,IAAc,CAC1C,EAAc,IAAI,EAAG,EAAG,GACxB,EAAc,IAAI,EAAG,EAAG,EAAqB,KAGzC,EAAmB,IAAM,CAC7B,GAAM,GAA0B,GAChC,OAAS,GAAW,EAAG,EAAqB,GAAO,IAAY,CAC7D,GAAM,GAAW,EAAoB,IAAI,EAAU,GAC7C,EAAW,EAAoB,IAAI,EAAU,GACnD,EAAO,KAAK,EAAe,EAAU,EAAU,IAEjD,MAAO,IAGT,MAAO,AAAG,QAAK,IAAM,EAAoB,WAAW,IAAI,AAAG,SAAO,EAAc,UAAU,UAAU,IAAI,MAGnG,YAAkB,EAAQ,CAC/B,GAAM,GAAM,CAAC,EAAG,IAAM,AAAG,OAAK,IAAM,CAClC,GAAM,GAAU,EAAE,IAAI,AAAG,SAAO,EAAG,UACnC,MAAO,GAAE,IAAI,EAAQ,IAAI,AAAG,SAAO,EAAG,aAElC,CAAC,EAAQ,EAAO,GAAS,EAAO,MAEtC,MAAO,AAAG,QAAK,IAAM,CAEnB,GAAM,GAAS,AADE,EAAO,QAAQ,CAAC,EAAS,EAAO,IACzB,OAAO,GACzB,EAAU,EAAO,IAAI,AAAG,SAAO,EAAO,UAAU,WAAW,GAC3D,EAAU,EAAI,EAAQ,GAAO,WAAW,GAC9C,MAAO,AAAG,UAAO,CAAC,EAAS,GAAU,KC7BlC,YAAwB,EAAW,CACxC,GAAM,GAAQ,EAAU,OAAO,CAAC,CAAE,OAAM,OAAM,OAAM,QAAQ,CAAE,SAAU,CAAE,IAAG,QAAW,EACtF,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,KACnB,CACF,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,oBAEf,MAAO,CAAC,EAAM,KAAM,EAAM,KAAM,EAAM,KAAO,EAAM,KAAM,EAAM,KAAO,EAAM,MAGvE,YAAoB,EAAO,CAAC,EAAQ,GAAQ,CAAC,EAAuB,GAAuB,CAChG,GAAM,GAAY,CAAC,EAAM,EAAQ,IAAY,EAC3C,MAAO,EAAK,MACZ,IAAK,CAAC,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,IACrI,UAAW,EAAK,UAAU,IAAI,CAAC,CAAE,QAAO,OAAM,cAAgB,EAC5D,QACA,OACA,SAAU,CAAE,EAAG,KAAK,MAAM,EAAS,EAAI,GAAS,EAAG,KAAK,MAAM,EAAS,EAAI,SAK/E,MADoB,GAAM,IAAI,AAAC,GAAS,EAAU,EAAM,EAAS,EAAuB,EAAQ,IAK3F,YAAc,CAKnB,YAAY,EAAS,EAAiB,CACpC,KAAK,cAAgB,GAAI,OAAM,GAC/B,KAAK,iBAAmB,GACxB,KAAK,gBAAkB,EAGzB,QAAQ,EAAG,CACT,KAAK,cAAc,EAAE,KAAK,kBAAoB,EAC9C,KAAK,KAAK,KAAK,kBAGjB,SAAU,CACR,GAAM,GAAM,KAAK,cAAc,GAC/B,YAAK,SAAS,EAAG,KAAK,oBACtB,KAAK,KAAK,GACV,KAAK,cAAc,KAAK,iBAAmB,GAAK,KACzC,EAGT,OAAQ,CAAE,MAAO,MAAK,mBAAqB,GAE3C,MAAO,CAAE,MAAO,MAAK,iBAAmB,EAExC,KAAM,CAAE,MAAO,MAAK,cAAc,MAAM,EAAG,KAAK,iBAAmB,GAEnE,KAAM,CAAE,MAAO,MAAK,cAAc,GAElC,KAAK,EAAG,CACN,KAAO,EAAI,GAAK,KAAK,KAAK,KAAK,MAAM,EAAI,GAAI,IAC3C,KAAK,SAAS,EAAG,KAAK,MAAM,EAAI,IAChC,EAAI,KAAK,MAAM,EAAI,GAIvB,KAAK,EAAG,CACN,KAAO,EAAI,GAAK,KAAK,kBAAkB,CACrC,GAAI,GAAI,EAAI,EAEZ,GADI,EAAI,KAAK,kBAAoB,KAAK,KAAK,EAAG,EAAI,IAAI,IAClD,CAAC,KAAK,KAAK,EAAG,GAAI,MACtB,KAAK,SAAS,EAAG,GACjB,EAAI,GAIR,WAAW,EAAG,CACZ,MAAO,MAAK,gBAAgB,KAAK,cAAc,IAGjD,KAAK,EAAG,EAAG,CACT,MAAO,MAAK,WAAW,GAAK,KAAK,WAAW,GAG9C,SAAS,EAAG,EAAG,CACb,GAAM,GAAI,KAAK,cAAc,GAC7B,KAAK,cAAc,GAAK,KAAK,cAAc,GAC3C,KAAK,cAAc,GAAK,IAIrB,YAAwB,EAAG,EAAG,EAAU,EAAS,CACtD,MAAO,CACL,EAAG,EAAQ,IAAI,EAAG,EAAG,GACrB,EAAG,EAAQ,IAAI,EAAG,EAAG,EAAe,KAIjC,YAAwB,EAAM,EAAc,EAAS,CAC1D,GAAM,CAAE,WAAU,WAAU,GAAI,GAAa,EACvC,CAAE,IAAG,KAAM,GAAe,EAAU,EAAU,EAAU,GAC9D,MAAO,CACL,EAAG,EAAK,SAAW,EAAe,EAClC,EAAG,EAAK,SAAW,EAAe,GAY/B,YAAe,EAAG,EAAK,EAAK,CACjC,MAAI,GAAI,EAAY,EAChB,EAAI,EAAY,EACb,EAGF,YAAyB,EAAI,EAAI,EAAI,EAAI,CAC9C,GAAM,GAAK,EAAK,EACV,EAAK,EAAK,EAChB,MAAO,GAAK,EAAK,EAAK,EAGjB,YAAoB,EAAG,EAAG,CAC/B,MAAO,CAAE,EAAG,EAAE,EAAI,EAAE,EAAG,EAAG,EAAE,EAAI,EAAE,GChJpC,GAAM,IAAuB,AAAU,GAAU,IAAI,CAAC,CAAC,EAAgB,KAAoB,CAAC,AAAU,GAAQ,GAAiB,AAAU,GAAQ,KAC3I,GAAqB,GAAqB,IAAI,CAAC,CAAC,CAAE,KAAkB,GACpE,GAAqB,GAAqB,IAAI,CAAC,CAAC,KAAmB,GAEnE,GAAsB,GAE5B,YAAyB,EAAQ,EAAO,EAAe,CACrD,GAAM,GAAW,EAAc,MAAM,GAAK,EAC1C,MAAO,CACL,EAAG,EAAc,IAAI,EAAM,EAAG,EAAM,EAAG,GACvC,EAAG,EAAc,IAAI,EAAM,EAAG,EAAM,EAAG,EAAW,IAItD,YAAkC,EAAO,EAAc,EAAQ,EAAO,CACpE,MAAO,CACL,EAAG,AAAM,GAAM,KAAK,MAAM,EAAM,EAAI,GAAe,EAAG,EAAS,GAC/D,EAAG,AAAM,GAAM,KAAK,MAAM,EAAM,EAAI,GAAe,EAAG,EAAQ,IAIlE,YAAkC,EAAQ,EAAgB,EAAkB,EAAc,EAAS,EAAc,EAAe,EAAmB,EAAG,CACpJ,GAAM,CAAC,EAAQ,GAAS,EAAa,MAE/B,EAAwB,GAAyB,EAAe,SAAU,EAAc,EAAQ,GAChG,EAAe,GAAgB,EAAQ,EAAuB,GAEhE,EADmB,AAAM,GAAW,EAAe,SAAU,GAEjE,OAAS,GAAI,EAAG,EAAI,EAAkB,IAAK,CACzC,GAAM,GAAwB,GAAyB,EAAgB,EAAc,EAAQ,GACvF,EAAc,AAAM,GAAe,EAAsB,EAAG,EAAsB,EAAG,EAAkB,GAC7G,EAAiB,AAAM,GAAW,CAChC,EAAG,EAAsB,EAAI,EAC7B,EAAG,EAAsB,EAAI,GAC5B,CAAE,EAAG,EAAY,EAAG,EAAG,EAAY,IAExC,GAAM,GAAwB,GAAyB,EAAgB,EAAc,EAAQ,GACvF,EAAQ,EAAa,IAAI,EAAsB,EAAG,EAAsB,EAAG,GACjF,MAAO,CAAE,SAAU,EAAgB,KAAM,AAAU,GAAU,GAAmB,SAG3E,YAAoB,EAAM,EAAQ,EAAS,EAAc,EAAkB,EAAkB,CAClG,GAAM,GAAW,EAAO,MAAM,GACxB,EAAW,GAAmB,OAC9B,EAAoB,GAAI,OAAM,GAE9B,CAAE,KAAM,EAAU,MAAO,GAAc,EACvC,EAAY,AAAM,GAAe,EAAU,EAAc,GAC/D,EAAkB,EAAS,IAAM,CAC/B,MAAO,EACP,KAAM,AAAU,GAAU,EAAS,IACnC,SAAU,GAGZ,OAAS,GAAO,EAAW,EAAG,GAAQ,EAAG,EAAE,EAAM,CAC/C,GAAM,GAAmB,GAAmB,GACtC,EAAmB,GAAmB,GAC5C,AAAI,EAAkB,IAAqB,CAAC,EAAkB,IAC5D,GAAkB,GAAoB,GAAyB,EAAM,EAAkB,GAAmB,EAAkB,EAAQ,EAAS,EAAc,IAI/J,OAAS,GAAO,EAAG,EAAO,EAAU,EAAE,EAAM,CAC1C,GAAM,GAAmB,GAAmB,GACtC,EAAmB,GAAmB,GAC5C,AAAI,EAAkB,IAAqB,CAAC,EAAkB,IAC5D,GAAkB,GAAoB,GAAyB,EAAM,EAAkB,GAAmB,EAAkB,EAAQ,EAAS,EAAc,IAG/J,MAAO,GAGT,kBAAuC,EAAe,EAAS,EAAU,CACvE,GAAM,GAAgB,AAAS,GAAS,GAClC,EAAmB,KAAM,SAAQ,IAAI,CAAC,EAAc,SAAU,EAAQ,SAAU,EAAc,WAC9F,EAAe,EAAiB,GAChC,EAAgB,EAAiB,GACjC,EAAsB,EAAiB,GACvC,EAAe,AAAS,GAAgB,EAAqB,GAAqB,GAClF,EAAmB,EAAa,WAChC,EAAqB,AAAS,GAAoB,EAAc,GAClE,EAAW,EACT,EAAoB,EACvB,OAAO,AAAC,GAAU,EAAQ,GAC1B,IAAI,CAAC,EAAO,IACX,IAAY,EACL,CACL,SAAU,CACR,EAAG,EAAiB,EAAI,EAAI,GAC5B,EAAG,EAAiB,EAAI,EAAI,IAE9B,KAAM,AAAU,GAAU,GAC1B,WAGN,EAAc,UACd,EAAa,UACb,GAAM,GAAM,AAAM,GAAe,GACjC,MAAO,CAAE,UAAW,EAAmB,MAAK,MAAO,KAAK,MAAM,IAAM,EAAW,EAAkB,QAAU,KCnG7G,GAAM,IAAsB,EACtB,GAAsB,GAE5B,YAAqC,EAAY,EAAO,EAAU,EAAU,EAAoB,EAAQ,CACtG,GAAM,CAAC,EAAQ,GAAS,EAAO,MAC3B,EAAe,GACb,EAAS,KAAK,IAAI,EAAW,EAAoB,GACjD,EAAO,KAAK,IAAI,EAAW,EAAqB,EAAG,GACzD,OAAS,GAAW,EAAQ,EAAW,EAAM,EAAE,EAAU,CACvD,GAAM,GAAS,KAAK,IAAI,EAAW,EAAoB,GACjD,EAAO,KAAK,IAAI,EAAW,EAAqB,EAAG,GACzD,OAAS,GAAW,EAAQ,EAAW,EAAM,EAAE,EAC7C,GAAI,EAAO,IAAI,EAAU,EAAU,GAAc,EAAO,CACtD,EAAe,GACf,MAGJ,GAAI,CAAC,EAAc,MAErB,MAAO,GAGF,YAAiC,EAAgB,EAAoB,EAAQ,CAClF,GAAM,CAAC,EAAQ,EAAO,GAAgB,EAAO,MACvC,EAAQ,GAAU,IAAQ,EAAS,EAAQ,EAAc,CAAC,CAAE,WAAY,GAC9E,OAAS,GAAW,EAAG,EAAW,EAAQ,EAAE,EAC1C,OAAS,GAAW,EAAG,EAAW,EAAO,EAAE,EACzC,OAAS,GAAa,EAAG,EAAa,EAAc,EAAE,EAAY,CAChE,GAAM,GAAQ,EAAO,IAAI,EAAU,EAAU,GAE7C,AAAI,EAAQ,GAER,GAA4B,EAAY,EAAO,EAAU,EAAU,EAAoB,IACzF,EAAM,QAAQ,CAAE,QAAO,KAAM,CAAE,WAAU,WAAU,GAAI,KAK/D,MAAO,GAGT,YAA6C,EAAO,EAAkB,CAAE,IAAG,KAAK,EAAY,CAC1F,MAAO,GAAM,KAAK,CAAC,CAAE,eAAgB,CACnC,GAAM,GAAwB,EAAU,GAAY,SACpD,MAAO,AAAM,IAAgB,EAAG,EAAG,EAAsB,EAAG,EAAsB,IAAM,IAI5F,YAA0B,EAAe,EAAkB,EAAmB,CAK5E,MAAO,AAJ6B,GAAkB,OAAO,CAAC,EAAQ,CAAE,WAAU,SAAS,IACpF,IAAoC,EAAe,EAAkB,EAAU,IAAa,IAAU,GACpG,GACN,GACkC,EAAkB,OAGlD,YAA6B,EAAc,EAAe,EAAwB,EAAwB,EAAW,EAAe,EAAgB,CACzJ,GAAM,GAA4D,GAC5D,EAAQ,GAAwB,EAAgB,GAAqB,GACrE,EAAmB,EAAY,EAErC,KAAO,EAAM,OAAS,GAAiB,CAAC,EAAM,SAAS,CAErD,GAAM,GAAO,EAAM,UAEb,EAAkB,AAAM,GAAe,EAAK,KAAM,GAAqB,GAC7E,GAAI,GAAoC,EAAO,EAAkB,EAAiB,EAAK,KAAK,IAAK,SAEjG,GAAM,GAAY,AAAa,GAAW,EAAM,EAAc,EAAe,GAAqB,EAAwB,GACpH,EAAQ,GAAiB,EAAO,EAAkB,GAClD,EAAM,AAAM,GAAe,GACjC,AAAI,EAAQ,GAAgB,EAAM,KAAK,CAAE,YAAW,MAAK,MAAO,KAAK,MAAM,IAAM,GAAS,MAE5F,MAAO,GNrET,GAAI,IAEJ,kBAAgC,EAAO,EAAK,EAAQ,EAAW,CAC7D,GAAM,GAAoB,AAAC,GAAY,QAAQ,IAAI,EAAQ,IAAI,AAAC,GAAW,EAAO,WAElF,MAAO,IAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAmB,KAAM,GAAkB,CAAC,EAAI,cAAe,EAAI,QAAS,EAAI,gBAAiB,EAAI,kBACrG,EAAe,EAAiB,GAChC,EAAgB,EAAiB,GACjC,EAAyB,EAAiB,GAC1C,EAAyB,EAAiB,GAC1C,EAAQ,KAAM,AAAe,IAAoB,EAAc,EAAe,EAAwB,EAAwB,EAAO,KAAK,UAAW,EAAO,KAAK,cAAe,EAAO,KAAK,gBAC5L,EAAS,AAAK,GAAW,EAAO,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAAK,CAAC,EAAW,IACpF,EAAQ,KAIZ,kBAA8B,EAAO,EAAK,EAAQ,EAAW,CAC3D,MAAO,IAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAO,KAAM,AAAa,IAAiB,EAAI,cAAe,EAAI,QAAS,EAAO,KAAK,gBACvF,EAAS,AAAK,GAAW,CAAC,GAAO,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAAK,CAAC,EAAW,IACrF,EAAQ,KAIL,YAAc,CAGnB,YAAY,EAAW,CACrB,KAAK,UAAY,EACjB,KAAK,UAAY,EAAU,MAAM,OAAO,GAAG,MAAM,QAG7C,eAAc,EAAO,EAAQ,CACjC,GAAM,GAAM,KAAK,UAAU,QAAQ,EAAO,GAEpC,EAAS,EAAO,KAAK,cAAgB,EACvC,KAAM,IAAe,EAAO,EAAK,EAAQ,KAAK,WAC9C,KAAM,IAAiB,EAAO,EAAK,EAAQ,KAAK,WAEpD,SAAI,cAAc,UAClB,EAAI,QAAQ,UACZ,EAAI,gBAAgB,UACpB,EAAI,gBAAgB,UAEb,EAGT,SAAU,CACR,KAAK,UAAU,YAInB,kBAA2B,EAAQ,CACjC,AAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,GAAM,UAHlD,IAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,IAAS,CAAC,GAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,WAC5D,EAAO,OAAO,EAAI,cAAe,GAAM,WAElD,GAAM,GAAY,GAAiB,IAAU,IAE7C,MADgB,IAAI,IAAQ,GOnE9B,8CCEO,YAAoB,EAAK,CAC9B,MAAO,CACL,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,IAC1C,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,KAIvC,YAAsB,EAAK,CAChC,MAAO,CACL,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAC5D,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,GAIzD,YAAkC,EAAK,EAAO,EAAU,CAC7D,GAAM,GAAI,EAAM,MAAM,GAChB,EAAI,EAAM,MAAM,GAChB,EAAQ,CAAC,CACb,EAAI,WAAW,GAAK,EACpB,EAAI,WAAW,GAAK,EACpB,EAAI,SAAS,GAAK,EAClB,EAAI,SAAS,GAAK,IAEpB,MAAO,AAAG,SAAM,cAAc,EAAO,EAAO,CAAC,GAAI,GAG5C,YAA6B,EAAK,EAAQ,CAC/C,GAAM,GAAa,CAAC,EAAI,WAAW,GAAK,EAAO,GAAI,EAAI,WAAW,GAAK,EAAO,IACxE,EAAW,CAAC,EAAI,SAAS,GAAK,EAAO,GAAI,EAAI,SAAS,GAAK,EAAO,IAClE,EAAgB,EAAI,cAAc,IAAI,AAAC,GACvB,CAAC,EAAM,GAAK,EAAO,GAAI,EAAM,GAAK,EAAO,KAG/D,MAAO,CAAE,aAAY,WAAU,gBAAe,WAAY,EAAI,YAGzD,YAAoB,EAAK,EAAS,IAAK,CAC5C,GAAM,GAAS,GAAa,GACtB,EAAO,GAAW,GAClB,EAAc,CAAC,EAAS,EAAK,GAAK,EAAG,EAAS,EAAK,GAAK,GACxD,EAAa,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IAClE,EAAW,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IACtE,MAAO,CAAE,aAAY,WAAU,cAAe,EAAI,eAG7C,YAAqB,EAAK,CAC/B,GAAM,GAAU,GAAa,GACvB,EAAO,GAAW,GAElB,EAAW,AADD,KAAK,IAAI,GAAG,GACD,EACrB,EAAa,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GAClD,EAAW,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GACtD,MAAO,CAAE,aAAY,WAAU,cAAe,EAAI,eCnD7C,YAAmB,CAQxB,YAAY,EAAO,EAAW,EAAkB,CAC9C,KAAK,MAAQ,EACb,KAAK,QAAU,EAAiB,IAAI,AAAC,GAAW,CAAC,EAAO,SAAU,EAAO,WACzE,KAAK,cAAgB,AAAG,WAAS,KAAK,SACtC,KAAK,UAAY,EACjB,KAAK,gBAAkB,AAAG,WAAS,CAAC,EAAW,IAC/C,KAAK,sBAAwB,AAAG,WAAS,CAAC,EAAY,EAAG,EAAY,IAGvE,eAAe,EAAO,CACpB,MAAO,AAAG,QAAK,IAAM,CACnB,GAAM,GAAa,AAAG,QAAM,EAAO,CAAC,EAAG,GAAI,CAAC,GAAI,IAC1C,EAAW,AAAG,QAAM,EAAO,CAAC,EAAG,GAAI,CAAC,GAAI,IACxC,EAAkB,AAAG,MAAI,AAAG,MAAI,EAAY,KAAK,iBAAkB,KAAK,eACxE,EAAe,AAAG,MAAI,EAAU,KAAK,uBACrC,EAAc,AAAG,MAAI,AAAG,MAAI,EAAiB,GAAe,KAAK,iBACjE,EAAY,AAAG,MAAI,AAAG,MAAI,EAAiB,GAAe,KAAK,iBACrE,MAAO,AAAG,YAAS,CAAC,EAAa,GAAY,KAIjD,mBAAmB,EAAkB,EAAO,CAC1C,MAAO,AAAG,QAAK,IAAM,CACnB,GAAM,GAAY,AAAG,MAAI,AAAG,MAAI,EAAiB,QAAQ,CAAC,GAAI,EAAG,IAAK,KAAK,iBAAkB,KAAK,QAAQ,IAC1G,MAAO,AAAG,OAAI,EAAW,KAAK,wBAI5B,UAAS,EAAO,EAAQ,CAC5B,GAAM,GAAU,KAAK,MAAM,QAAQ,GAC7B,EAAc,EAAQ,UAC5B,EAAQ,UACR,GAAM,GAAU,AAAG,OAAK,IAAM,AAAG,UAAQ,AAAG,QAAM,EAAa,CAAC,EAAG,GAAI,CAAC,GAAI,KAAK,WAC3E,EAAS,EAAQ,WACjB,EAAW,AAAG,QAAM,EAAa,CAAC,EAAG,GAAI,CAAC,GAAI,IAC9C,EAAQ,KAAK,eAAe,GAClC,EAAS,UACT,GAAM,GAAY,KAAM,AAAG,SAAM,uBAAuB,EAAO,EAAQ,EAAO,KAAK,SAAU,EAAO,KAAK,aAAc,EAAO,KAAK,gBAC7H,EAAW,EAAU,YAE3B,EAAQ,UACR,EAAU,UACV,GAAM,GAAqE,GAC3E,OAAW,KAAS,GAClB,GAAI,EAAO,IAAU,EAAO,KAAK,cAAe,CAC9C,GAAM,GAAc,AAAG,QAAM,EAAO,CAAC,EAAO,GAAI,CAAC,EAAG,KAC9C,EAAmB,AAAG,QAAM,EAAa,CAAC,EAAO,GAAI,CAAC,EAAG,KACzD,EAAgB,AAAG,OAAK,IAAM,KAAK,mBAAmB,EAAkB,GAAO,QAAQ,CAAC,GAAI,KAClG,EAAiB,UACjB,EAAM,KAAK,CAAE,IAAK,EAAa,gBAAe,WAAY,EAAO,KAGrE,SAAY,UACZ,EAAM,UACC,OAGH,oBAAmB,EAAO,EAAQ,CACtC,GAAM,GAAc,EAAM,MAAM,GAC1B,EAAa,EAAM,MAAM,GACzB,EAAQ,AAAG,OAAK,IAAM,EAAM,eAAe,CAAC,KAAK,UAAW,KAAK,YAAY,IAAI,OAAO,IAAI,IAC5F,EAAc,KAAM,MAAK,SAAS,EAAO,GAC/C,EAAM,UACN,GAAM,GAAmB,GACzB,GAAI,CAAC,GAAe,EAAY,SAAW,EAAG,MAAO,GACrD,OAAW,KAAc,GAAa,CACpC,GAAM,GAAQ,EAAW,IAAI,WACvB,EAAa,EAAM,MAAM,EAAG,GAC5B,EAAW,EAAM,MAAM,EAAG,GAC1B,EAAgB,EAAW,cAAc,YAC/C,EAAW,IAAI,UACf,EAAW,cAAc,UACzB,EAAM,KAAK,AAAI,GAAoB,CAAE,aAAY,WAAU,gBAAe,WAAY,EAAW,YAAc,CAAC,EAAa,KAAK,UAAW,EAAc,KAAK,aAElK,MAAO,KCrFJ,YAA0B,EAAO,CACtC,MAAO,GAAQ,EAAI,KAAK,GAAK,KAAK,MAAO,GAAQ,KAAK,IAAO,GAAI,KAAK,KAGjE,YAAyB,EAAQ,EAAQ,CAC9C,GAAM,GAAU,KAAK,GAAK,EAAI,KAAK,MAAM,CAAE,GAAO,GAAK,EAAO,IAAK,EAAO,GAAK,EAAO,IACtF,MAAO,IAAiB,GAGnB,GAAM,IAAyB,CAAC,EAAG,IAAM,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAEvE,YAAa,EAAI,EAAI,CAC1B,GAAI,GAAU,EACd,OAAS,GAAI,EAAG,EAAI,EAAG,OAAQ,IAC7B,GAAW,EAAG,GAAK,EAAG,GAExB,MAAO,GAGF,YAA4B,EAAK,EAAa,CACnD,GAAM,GAAwB,GAC9B,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,EAAO,KAAK,EAAI,GAAG,IAErB,MAAO,GAGF,YAAmC,EAAM,EAAM,CACpD,GAAM,GAA2B,GAC3B,EAAO,EAAK,OAClB,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,CACnC,EAAQ,KAAK,IACb,OAAS,GAAM,EAAG,EAAM,EAAM,IAC5B,EAAQ,GAAK,KAAK,GAAI,EAAK,GAAM,GAAmB,EAAM,KAG9D,MAAO,GAGF,YAA6B,EAAU,EAAQ,CACpD,GAAM,GAAO,KAAK,IAAI,GAChB,EAAO,KAAK,IAAI,GAChB,EAAiB,CAAC,CAAC,EAAM,CAAC,EAAM,GAAI,CAAC,EAAM,EAAM,GAAI,CAAC,EAAG,EAAG,IAC5D,EAAoB,GAAuB,EAAO,GAAI,EAAO,IAC7D,EAA2B,GAA0B,EAAmB,GACxE,EAA4B,GAAuB,CAAC,EAAO,GAAI,CAAC,EAAO,IAC7E,MAAO,IAA0B,EAA0B,GAGtD,YAA+B,EAAQ,CAC5C,GAAM,GAAoB,CAAC,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAAK,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,KAC5E,EAAuB,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAChD,EAAsB,CAC1B,CAAC,GAAI,EAAkB,GAAI,GAC3B,CAAC,GAAI,EAAkB,GAAI,IAE7B,MAAO,CACL,EAAkB,GAAG,OAAO,EAAoB,IAChD,EAAkB,GAAG,OAAO,EAAoB,IAChD,CAAC,EAAG,EAAG,IAIJ,YAAqB,EAAuB,EAAgB,CACjE,MAAO,CACL,GAAI,EAAuB,EAAe,IAC1C,GAAI,EAAuB,EAAe,KC7D9C,GAAM,IAA0B,EAE1B,GAA0B,KAC1B,GAAoB,CAAC,EAAG,EAAG,EAAG,GAAI,GAAI,EAAG,GACzC,GAAoC,EACpC,GAA6C,EAE5C,QAAmB,CAQxB,YAAY,EAAc,EAAkB,EAAW,CACrD,KAAK,aAAe,EACpB,KAAK,iBAAmB,EACxB,KAAK,UAAY,EACjB,KAAK,YAAc,GACnB,KAAK,QAAU,EACf,KAAK,cAAgB,EAGvB,uBAAuB,EAAe,EAAgB,CACpD,GAAM,GAAuB,EAAc,IAAI,AAAC,GAAU,AAAK,GAAY,CAAC,GAAG,EAAO,GAAI,IACpF,EAAgB,KAAK,8BAA8B,GAEzD,MAAO,AAAI,IAAW,AAAI,GAAY,GAAgB,IAGxD,uBAAuB,EAAW,CAChC,GAAM,GAAc,KAAK,8BAA8B,GAEjD,EAAgB,AAAI,GAAW,AAAI,GAAY,GAAc,IACnE,EAAc,cAAgB,GAC9B,OAAS,GAAI,EAAG,EAAI,GAAkB,OAAQ,IAC5C,EAAc,cAAc,KAAK,EAAU,GAAkB,IAAI,MAAM,EAAG,IAE5E,MAAO,GAGT,mBAAmB,EAAW,EAAM,EAAO,EAAgB,CACzD,GAAM,GAAU,AAAI,GAAW,GACzB,EAAc,CAAC,EAAQ,GAAK,KAAK,UAAW,EAAQ,GAAK,KAAK,UAAY,GAAQ,GAAK,EAAQ,IAAM,KAAK,UAAY,GACtH,EAAe,EAAU,IAAI,AAAC,GAAU,CAC5C,EAAY,GAAM,GAAM,GAAK,KAAK,UAAY,GAC9C,EAAY,GAAM,GAAM,GAAK,KAAK,UAAY,GAC9C,EAAY,GAAK,EAAM,KAEnB,EAAuB,AAAK,GAAoB,EAAO,CAAC,EAAG,IAC3D,EAAgB,EAAa,IAAI,AAAC,GAE/B,CAAC,GADQ,AAAK,GAAY,EAAO,GACpB,EAAM,KAEtB,EAAwB,AAAK,GAAsB,GACnD,EAAY,CAAC,GAAG,AAAI,GAAa,GAAO,GACxC,EAAoB,CACxB,AAAK,GAAI,EAAW,EAAsB,IAC1C,AAAK,GAAI,EAAW,EAAsB,KAE5C,MAAO,GAAc,IAAI,AAAC,GAAU,CAClC,EAAM,GAAK,EAAkB,GAC7B,EAAM,GAAK,EAAkB,GAC7B,EAAM,UAIJ,eAAc,EAAO,EAAQ,CACjC,GAAI,GAAc,GAGd,EACJ,AAAK,MAAK,UAAY,GAAO,KAAK,QAAU,EAAO,KAAK,YAAe,CAAC,EAAO,KAAK,WAAa,CAAC,EAAO,iBACvG,GAAQ,KAAM,MAAK,aAAa,mBAAmB,EAAO,GAC1D,KAAK,QAAU,GAEb,EAAO,gBAAgB,KAAK,UAG5B,GAAU,EAAM,OAAS,GAAQ,GAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkB,EAAO,KAAK,UAAa,CAAC,EAAO,KAAK,YACzI,MAAK,cAAgB,EACrB,KAAK,YAAc,CAAC,GAAG,GAEnB,KAAK,YAAY,OAAS,GAAG,GAAc,KAEjD,GAAM,GAAmB,GAEzB,AAAI,EAAO,KAAK,aAAe,KAAK,gBAAkB,GAAG,MAAK,QAAU,GAGxE,OAAS,GAAI,EAAG,EAAI,KAAK,YAAY,OAAQ,IAAK,CAChD,GAAM,GAAa,KAAK,YAAY,GACpC,GAAI,EAAC,EACL,GAAI,EAAO,KAAK,UAAW,CACzB,GAAM,GAAQ,EAAO,KAAK,SAAW,AAAK,GAAgB,EAAW,cAAc,IAAoC,EAAW,cAAc,KAA+C,EACzL,EAAa,AAAI,GAAa,GAC9B,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,EAAO,KAAK,SAAW,AAAG,QAAM,iBAAiB,EAAO,EAAO,EAAG,GAAwB,EAAM,QAC/G,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,EAAS,EAAc,KAAK,uBAAuB,EAAW,cAAe,GAAkB,EAC/F,EAAe,AAAI,GAAyB,EAAQ,EAAc,CAAC,KAAK,UAAW,KAAK,YACxF,EAAY,EAAa,IAAI,KACnC,EAAa,UACb,EAAa,UACb,GAAM,CAAC,EAAa,GAAa,KAAM,MAAK,iBAAiB,QAAQ,GACrE,EAAU,UACV,GAAM,GAAa,EAAY,WAAW,GAE1C,GADA,EAAY,UACR,GAAc,EAAO,KAAK,cAAe,CAC3C,GAAM,GAAoB,AAAG,UAAQ,EAAW,CAAC,GAAI,IAC/C,EAAY,EAAkB,YACpC,EAAU,UACV,EAAkB,UAClB,GAAM,GAAS,KAAK,mBAAmB,EAAW,EAAQ,EAAO,GAC3D,EAAkB,KAAK,uBAAuB,GACpD,KAAK,YAAY,GAAK,EACtB,GAAM,GAAS,CACb,UAAW,EACX,aACA,IAAK,CAAE,QAAS,EAAgB,WAAY,YAAa,EAAgB,WAE3E,EAAM,KAAK,OAEX,MAAK,YAAY,GAAK,KAExB,EAAU,cACL,CAEL,GAAM,GAAW,AAAI,GAAW,AAAI,GAAY,GAAa,IACvD,EAAS,CACb,WAAY,EAAW,WACvB,IAAK,CAAE,QAAS,EAAS,WAAY,YAAa,EAAS,WAE7D,EAAM,KAAK,IAGf,YAAK,YAAc,KAAK,YAAY,OAAO,AAAC,GAAM,IAAM,MACxD,KAAK,cAAgB,EAAM,OACpB,EAIT,8BAA8B,EAAW,CACvC,GAAM,GAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAa,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC3C,EAAW,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC/C,MAAO,CAAE,aAAY,cCzJlB,GAAM,IAAU,CACrB,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,QLzviBd,GAAM,IAAmB,CACvB,MAAO,CAAC,EAAG,EAAG,EAAG,GACjB,YAAa,CAAC,EAAG,EAAG,EAAG,GACvB,aAAc,CAAC,EAAG,GAAI,GAAI,IAC1B,WAAY,CAAC,GAAI,GAAI,GAAI,IACzB,MAAO,CAAC,GAAI,GAAI,GAAI,IACpB,SAAU,CAAC,IAGN,QAAe,CAGpB,YAAY,EAAc,CACxB,KAAK,aAAe,QAGf,iBAAiB,CACtB,MAAO,SAGH,eAAc,EAAO,EAAQ,CACjC,GAAM,GAAc,KAAM,MAAK,aAAa,cAAc,EAAO,GACjE,GAAI,CAAC,EAAa,MAAO,GACzB,GAAM,GAAgG,GACtG,OAAW,KAAc,GAAa,CACpC,GAAM,GAAc,GACpB,GAAI,EAAW,UACb,OAAW,KAAO,QAAO,KAAK,IAC5B,EAAY,GAAO,GAAiB,GAAK,IAAI,AAAC,GAAU,EAAW,UAAU,IAGjF,GAAM,GAAM,EAAW,IAAM,CAC3B,KAAK,IAAI,EAAG,EAAW,IAAI,QAAQ,IACnC,KAAK,IAAI,EAAG,EAAW,IAAI,QAAQ,IACnC,KAAK,IAAI,EAAM,MAAM,GAAI,EAAW,IAAI,YAAY,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,QAAQ,IAC7F,KAAK,IAAI,EAAM,MAAM,GAAI,EAAW,IAAI,YAAY,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,QAAQ,KAC3F,GACE,EAAS,CACZ,EAAW,IAAI,QAAQ,GAAM,EAAM,MAAM,GACzC,EAAW,IAAI,QAAQ,GAAM,EAAM,MAAM,GACzC,GAAW,IAAI,YAAY,GAAK,EAAW,IAAI,QAAQ,IAAM,EAAM,MAAM,GACzE,GAAW,IAAI,YAAY,GAAK,EAAW,IAAI,QAAQ,IAAM,EAAM,MAAM,IAE5E,EAAM,KAAK,CAAE,WAAY,KAAK,MAAM,IAAM,EAAW,YAAc,IAAK,MAAK,SAAQ,UAAW,EAAW,UAAW,gBAExH,MAAO,KAIP,EACA,EACJ,kBAA2B,EAA2B,CACpD,AAAI,CAAC,GAAqB,CAAC,EACzB,EAAC,EAAmB,GAAiB,KAAM,SAAQ,IAAI,CACrD,EAAO,KAAK,QAAU,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eAAkB,KAC3K,EAAO,KAAK,UAAY,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eAAkB,OAE3K,EAAO,KAAK,SACd,CAAI,CAAC,GAAqB,CAAC,EAAkB,SAAU,EAAI,qBAAsB,EAAO,KAAK,SAAS,WAC7F,EAAO,OAAO,EAAI,cAAe,EAAkB,UAC5D,AAAI,CAAC,GAAiB,CAAC,EAAc,SAAU,EAAI,qBAAsB,EAAO,KAAK,SAAS,WACrF,EAAO,OAAO,EAAI,cAAe,EAAc,YAGtD,GAAO,OAAO,EAAI,gBAAiB,EAAkB,UACrD,EAAO,OAAO,EAAI,gBAAiB,EAAc,WAEvD,GAAM,GAAe,GAAiB,IAAa,EAAmB,iBAAmB,OAAO,GAAG,MAAM,GAAY,IAC/G,EAAe,GAAiB,IAAa,EAAc,EAAe,iBAAe,OAAO,GAAG,MAAM,IAE/G,MADiB,IAAI,IAAS,GM3EhC,6CCAO,GAAM,IAAO,CAClB,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,YACA,aACA,WACA,YACA,YACA,aACA,YACA,aACA,UACA,WACA,WACA,YACA,YACA,aACA,WACA,YACA,WACA,YACA,SACA,WACA,YACA,WACA,aACA,aAGW,GAAQ,CACnB,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,UACA,WACA,UACA,WACA,UACA,WACA,UACA,WACA,YACA,aACA,OACA,WACA,UACA,WACA,UACA,YDpEF,GAAI,GAEJ,kBAA2B,EAAQ,CACjC,MAAK,GAMM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UALlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,EAAM,MAAQ,SAAS,EAAM,UAAU,OAAO,aAAa,YAAY,IAAI,GAAG,MAC9E,EAAM,OAAS,SAAS,EAAM,UAAU,OAAO,aAAa,YAAY,IAAI,GAAG,MAC/E,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,WAC5D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAO,EAAQ,CAE3C,GADI,CAAC,GACD,CAAC,EAAO,KAAK,QAAS,MAAO,MACjC,GAAM,GAAU,CAAE,MAAO,EAAM,MAAM,GAAI,OAAQ,EAAM,MAAM,IACvD,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,MAAO,EAAM,QAAS,IACrE,EAAY,AAAG,MAAI,EAAQ,CAAC,MAClC,EAAO,UACP,GAAI,GACJ,GAAK,EAAO,QAOL,CACL,GAAM,GAAc,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IACzD,EAAS,EAAY,OAAO,KAAK,AAAC,GAAO,EAAE,OAAS,KAAO,EAAE,OAAS,KAAM,WAC5E,EAAY,OAAO,QAAQ,AAAC,GAAM,EAAE,WACpC,AAAQ,EAAI,YAAa,OAXN,CACnB,GAAM,GAAO,KAAM,GAAM,QAAQ,GAIjC,EAAS,EAAK,KAAK,AAAC,GAAO,EAAE,OAAS,KAAO,EAAE,OAAS,KAAM,WAC9D,EAAK,QAAQ,AAAC,GAAM,EAAE,WAOxB,EAAU,UACV,GAAM,GAAyE,GACzE,EAAS,EAAO,SAAW,IAAkB,GAAmB,GAChE,EAAQ,EACd,OAAS,GAAI,EAAG,EAAI,EAAO,OAAS,EAAO,IACzC,EAAU,KAAK,CACb,GAAI,EACJ,KAAM,EAAO,GACb,SAAU,CACR,EAAG,KAAK,MAAM,EAAQ,MAAQ,EAAO,EAAQ,EAAI,GAAK,KACtD,EAAG,KAAK,MAAM,EAAQ,OAAS,EAAO,EAAQ,EAAI,GAAK,KACvD,EAAG,KAAK,MAAM,EAAO,EAAQ,EAAI,IAAM,GAEzC,MAAQ,KAAM,KAAK,MAAM,IAAO,GAAI,KAAK,IAAI,EAAO,EAAQ,EAAI,OAAS,IACzE,SAAW,KAAM,KAAK,MAAM,IAAO,GAAI,KAAK,IAAI,EAAO,EAAQ,EAAI,OAAS,MAIhF,MAAO,CAAC,CAAE,MADI,EAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GACvE,cErDnB,GAAI,GACA,GAAwB,GACxB,GAAU,OAAO,iBAEf,GAAY,CAAC,OAAQ,OAAQ,gBAAiB,aAAc,aAAc,QAAS,eAAgB,YAAa,YAAa,SAAU,WAAY,YAAa,aAAc,UAAW,WAAY,aAE3M,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,WAC5D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAIT,YAAe,EAAQ,EAAU,CAC/B,GAAM,CAAC,EAAO,GAAU,EAAO,MAC/B,MAAO,AAAG,QAAK,IAAM,CAEnB,GAAM,GAAM,CAAC,EAAG,IAAM,AAAG,MAAI,EAAG,AAAG,MAAI,AAAG,MAAI,EAAG,AAAG,SAAO,EAAG,UAAW,AAAG,SAAO,EAAG,WAEhF,EAAW,AAAG,UAAQ,EAAQ,CAAC,EAAS,IAExC,EAAQ,AAAG,MAAI,EAAU,GAAG,WAAW,GAC7C,GAAI,EAAQ,EAAU,CAEpB,GAAM,GAAS,AAAG,SAAO,EAAU,GAC7B,EAAI,EAAI,EAAQ,GAAO,WAAW,GAClC,EAAI,AAAG,MAAI,EAAQ,AAAG,SAAO,EAAO,UAAU,WAAW,GAC/D,MAAO,CAAC,EAAG,EAAG,GAEhB,MAAO,CAAC,EAAG,EAAG,KAIlB,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GACA,GAAU,EAAO,KAAK,YAAe,EAAO,gBAAkB,OAAO,KAAK,IAAW,OAAS,EACjG,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,OAAK,IAAM,CAC3B,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAGpG,MADa,AADG,AAAG,OAAI,EAAQ,GACV,IAAI,KAIvB,EAEJ,GAAI,CAAC,EAAO,QACV,AAAI,EAAO,KAAK,SAAS,GAAO,KAAM,GAAM,QAAQ,QAC/C,CACL,GAAM,GAAW,EAAO,KAAK,QAAU,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IAAW,GACvF,EAAO,EAAS,OAAO,QACvB,EAAS,OAAO,UAChB,AAAQ,EAAI,OAAQ,GAItB,GAFA,EAAO,UAEH,EAAM,CACR,GAAM,GAAoF,GACpF,EAAU,EAAK,UACrB,AAAG,UAAQ,GAEX,GAAM,GAAQ,EAAQ,QAAQ,GAC9B,AAAG,UAAQ,GAEX,OAAS,GAAK,EAAG,EAAK,EAAM,OAAQ,IAAM,CAExC,GAAM,CAAC,EAAG,EAAG,GAAS,GAAM,EAAM,GAAK,EAAO,KAAK,gBACnD,AAAI,EAAQ,EAAO,KAAK,gBACtB,EAAM,KAAK,CACT,KACA,MAAO,KAAK,MAAM,IAAM,GAAS,IACjC,KAAM,GAAU,GAChB,YAAa,CACX,KAAM,EAAI,EAAM,OAAO,GAAG,MAAM,GAChC,KAAM,EAAI,EAAM,OAAO,GAAG,MAAM,IAElC,SAAU,CACR,EAAG,KAAK,MAAM,EAAM,MAAM,GAAK,EAAI,EAAM,OAAO,GAAG,MAAM,IACzD,EAAG,KAAK,MAAM,EAAM,MAAM,GAAK,EAAI,EAAM,OAAO,GAAG,MAAM,OAKjE,EAAM,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAChC,GAAY,EAEd,GAAM,GAAQ,GAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GACxF,EAAQ,CAAC,CAAE,QAAO,mBA1DD,KCzCrB,6CCAO,GAAM,IAAS,CACpB,CAAE,MAAO,EAAG,MAAO,UACnB,CAAE,MAAO,EAAG,MAAO,WACnB,CAAE,MAAO,EAAG,MAAO,OACnB,CAAE,MAAO,EAAG,MAAO,cACnB,CAAE,MAAO,EAAG,MAAO,YACnB,CAAE,MAAO,EAAG,MAAO,OACnB,CAAE,MAAO,EAAG,MAAO,SACnB,CAAE,MAAO,EAAG,MAAO,SACnB,CAAE,MAAO,EAAG,MAAO,QACnB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,eACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,kBACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,MACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,eD3EtB,GAAI,GACA,GAAkB,GAClB,GAAU,OAAO,iBAEf,GAAW,IAEjB,kBAA2B,EAAQ,CACjC,GAAK,EAOE,AAAI,EAAO,OAAO,EAAI,gBAAiB,EAAM,cAPxC,CACV,EAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,OAAO,YACzE,GAAM,GAAS,OAAO,OAAO,EAAM,eAAe,QAElD,GADA,EAAM,UAAY,MAAM,QAAQ,GAAU,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,MAAQ,KACpF,CAAC,EAAM,UAAW,KAAM,IAAI,OAAM,4CAA4C,EAAO,OAAO,aAChG,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,OAAO,WAC9D,EAAO,OAAO,EAAI,cAAe,EAAM,UAElD,MAAO,GAGT,kBAAuB,EAAK,EAAW,EAAa,EAAQ,CAC1D,GAAI,GAAK,EACL,EAA8J,GAClK,OAAW,KAAc,CAAC,EAAG,EAAG,GAE9B,AAAG,OAAK,IAAM,CA5BlB,QA6BM,GAAM,GAAW,EAAa,GAExB,EAAU,KAAI,KAAK,AAAC,GAAO,EAAE,MAAM,KAAQ,GAAY,GAAM,EAAE,MAAM,KAAO,GAAO,UAAzE,cAAmF,UAC7F,EAAY,KAAI,KAAK,AAAC,GAAO,EAAE,MAAM,KAAQ,GAAY,GAAM,EAAE,MAAM,GAAK,GAAO,UAAvE,cAAiF,UAE7F,EAAS,AADE,EAAU,QAAQ,CAAC,GAAI,EAAG,EAAU,MAAM,GAAK,IACxC,OAAO,GAAG,YAC5B,EAAS,EAAQ,YACvB,OAAS,GAAI,EAAG,EAAI,EAAQ,MAAM,GAAI,IACpC,OAAS,GAAI,EAAG,EAAI,EAAQ,MAAM,GAAI,IAAK,CACzC,GAAM,GAAQ,EAAO,GAAG,GACxB,GAAI,EAAQ,EAAO,OAAO,eAAiB,IAAM,GAAI,CACnD,GAAM,GAAM,IAAM,KAAK,MAAM,EAAI,IAAa,EACxC,EAAM,IAAM,KAAK,MAAM,EAAI,IAAa,EACxC,EAAY,EAAO,GAAG,IAAI,AAAC,IAAM,GAAK,GAAW,EAAa,IAC9D,CAAC,EAAG,GAAK,CACb,EAAM,GAAW,EAAa,EAAU,GACxC,EAAM,GAAW,EAAa,EAAU,IAEpC,CAAC,EAAG,IAAK,CACb,EAAM,GAAW,EAAa,EAAU,GAAM,EAC9C,EAAM,GAAW,EAAa,EAAU,GAAM,GAE5C,EAAS,CAAC,EAAG,EAAG,EAAG,IACvB,EAAS,EAAO,IAAI,AAAC,IAAM,KAAK,IAAI,EAAG,KAAK,IAAI,GAAG,KACnD,GAAM,IAAM,CACV,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,IAEpB,GAAS,CACb,GAAI,IACJ,aACA,MAAO,KAAK,MAAM,IAAM,GAAS,IACjC,MAAO,EAAI,EACX,MAAO,GAAO,GAAG,MACjB,OAAQ,CAAC,KAAK,MAAM,EAAY,GAAK,GAAK,KAAK,MAAM,EAAY,GAAK,IACtE,UAAW,CAAC,EAAI,GAChB,IAAK,GAAI,IAAI,AAAC,IAAM,KAAK,MAAM,KAC/B,UAEF,EAAQ,KAAK,QAOvB,EAAI,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAI9B,GAAM,GAAW,EAAQ,IAAI,AAAC,GAAM,EAAE,QAChC,EAAY,EAAQ,IAAI,AAAC,GAAM,EAAE,OACnC,EAAgB,GACpB,GAAI,GAAY,EAAS,OAAS,EAAG,CACnC,GAAM,GAAM,KAAM,AAAG,SAAM,uBAAuB,EAAU,EAAW,EAAO,OAAO,WAAY,EAAO,OAAO,aAAc,EAAO,OAAO,eAC3I,EAAS,EAAI,WACb,AAAG,UAAQ,GAIb,SAAU,EACP,OAAO,CAAC,EAAG,IAAQ,EAAO,SAAS,IACnC,KAAK,CAAC,EAAG,IAAO,EAAE,MAAQ,EAAE,OAExB,EAGT,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GAEA,GAAU,EAAO,OAAO,YAAe,EAAO,gBAAmB,GAAK,OAAS,EAClF,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAa,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAC1C,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,UAAW,EAAM,WAAY,IAC5E,EAAO,EAAO,IAAI,KAClB,EAAY,EAAK,UAAU,CAAC,EAAG,EAAG,EAAG,IAC3C,EAAK,UACL,EAAO,UAEP,GAAI,GACJ,GAAI,CAAC,EAAO,QACV,AAAI,EAAO,OAAO,SAAS,GAAU,KAAM,GAAM,QAAQ,QACpD,CACL,GAAM,GAAgB,EAAO,OAAO,QAAU,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IAAc,GACjG,EAAU,EAAc,OACxB,AAAQ,EAAI,SAAU,GAExB,EAAU,UAEV,GAAM,GAAM,KAAM,IAAQ,EAAS,EAAM,UAAW,EAAY,GAChE,GAAO,EACP,EAAQ,MA5BS,KEnGd,GAAM,IAAO,AAAC,GAAQ,CAC3B,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CAEnC,GAAM,GAAY,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,aACrD,EAAa,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,cACtD,EAAO,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,QACtD,AAAI,GAAQ,GAAa,GAAe,EAAU,SAAS,EAAI,EAAK,SAAS,GAAO,EAAW,SAAS,EAAI,EAAK,SAAS,EAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,cAC3J,AAAI,GAAQ,GAAc,EAAU,SAAS,EAAI,EAAK,SAAS,EAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,oBACjG,GAAQ,GAAe,EAAW,SAAS,EAAI,EAAK,SAAS,GAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,qBAG5G,GAAM,GAAe,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,gBACxD,EAAgB,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,iBAC/D,AAAI,GAAgB,GAAe,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,WAAY,EAAa,SAAS,EAAI,EAAc,SAAS,EAAK,OAAS,YAElJ,MAAO,IAGI,GAAO,AAAC,GAAQ,CAC3B,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,GAAI,EAAI,GAAG,MAAQ,EAAI,GAAG,KAAK,OAAS,EAAG,CACzC,GAAM,GAAY,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,KAAK,GACxD,AAAI,KAAK,IAAI,GAAa,GAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,kBAC3D,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,UAAU,EAAY,EAAI,OAAS,YAEtE,AADa,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IACxG,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAElD,AADc,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IACxG,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,oBACvD,GAAM,GAAY,KAAK,IAAI,IAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,IAAI,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,KAAK,KACzI,AAAI,EAAY,IAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,SAAS,KAAK,MAAM,aAC1E,GAAM,GAAY,EAAI,GAAG,KAAK,KAAK,GACnC,AAAI,KAAK,IAAI,GAAa,IAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,QAAQ,EAAY,EAAI,KAAO,WAGnG,MAAO,IAGI,GAAO,AAAC,GAAQ,CAC3B,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAI,CAAC,EAAI,GAAG,aAAe,CAAC,EAAI,GAAG,YAAY,aAAe,CAAC,EAAI,GAAG,YAAY,aAAc,SAChG,GAAM,GAAY,EAAI,GAAG,YAAY,YAAY,GAAG,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,GACrF,EAAY,EAAI,GAAG,YAAY,YAAY,GAAG,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,GACrF,EAAW,KAAK,IAAI,EAAY,GAEhC,EAAa,EAAI,GAAG,YAAY,aAAa,GAAG,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,GACxF,EAAa,EAAI,GAAG,YAAY,aAAa,GAAG,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,GACxF,EAAY,KAAK,IAAI,EAAa,GAEpC,EAAS,GAEb,AAAI,AADe,KAAK,IAAI,EAAW,GAAa,KAAK,IAAI,EAAU,GACtD,KACf,GAAS,GACT,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAGpC,GAAM,GAAmB,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,IAAM,EAAI,GAAG,YAAY,aAAa,GAAG,GAC7H,EAAkB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,IAAM,EAAI,GAAG,YAAY,YAAY,GAAG,GACjI,AAAI,GAAkB,MAAS,EAAmB,OAAO,GAAS,IAC9D,EAAkB,MAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,kBAC3D,EAAmB,MAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,iBAEhE,GAAM,GAAmB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,IAAM,EAAI,GAAG,YAAY,aAAa,GAAG,GAC9H,EAAkB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,IAAM,EAAI,GAAG,YAAY,YAAY,GAAG,GACjI,AAAI,GAAkB,MAAS,EAAmB,MAAS,EAAkB,KAAS,EAAmB,MAAO,GAAS,IACrH,GAAkB,MAAS,EAAmB,OAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,iBACvF,GAAkB,KAAS,EAAmB,MAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,eAGvF,GAAQ,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAEhD,MAAO,IAGI,GAAO,AAAC,GAAQ,CAC3B,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAM,GAAqD,GAC3D,OAAW,CAAC,EAAQ,IAAQ,QAAO,QAAQ,EAAI,GAAG,aAChD,AAAI,IAAW,YAAc,MAAM,QAAQ,IAAM,EAAQ,KAAK,CAAE,KAAM,EAAO,cAAe,SAAU,EAAI,KAE5G,GAAI,GAAW,EAAQ,OAAS,EAAG,CACjC,GAAM,GAAU,EAAQ,OAAO,CAAC,EAAM,IAAO,EAAK,SAAS,GAAK,EAAE,SAAS,GAAK,EAAO,GACjF,EAAU,EAAQ,OAAO,CAAC,EAAM,IAAO,EAAK,SAAS,GAAK,EAAE,SAAS,GAAK,EAAO,GACvF,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,GAAG,EAAQ,gBAAgB,EAAQ,aAGzE,MAAO,IC7FT,iCCMA,YAAmB,EAAI,EAAc,EAAgB,CACnD,GAAM,GAAW,SAAU,EAAQ,EAAQ,EAAY,CACrD,GAAM,GAAI,GAAI,QAAO,MAAQ,EAAS,eAAgB,MACtD,EAAO,QAAQ,EAAG,CAAC,EAAO,IACxB,GAAW,GAAQ,EACZ,KAIL,EAAW,SAAU,EAAQ,EAAM,CACvC,GAAM,GAAS,EAAG,aAAa,GAG/B,GAFA,EAAG,aAAa,EAAQ,GACxB,EAAG,cAAc,GACb,CAAC,EAAG,mBAAmB,EAAQ,EAAG,gBAAiB,KAAM,IAAI,OAAM,4BAA6B,EAAG,iBAAiB,IACxH,MAAO,IAGT,KAAK,QAAU,GACf,KAAK,UAAY,GACjB,GAAM,GAAO,EAAS,EAAc,EAAG,eACjC,EAAO,EAAS,EAAgB,EAAG,iBAMzC,GALA,KAAK,GAAK,EAAG,gBACb,EAAG,aAAa,KAAK,GAAI,GACzB,EAAG,aAAa,KAAK,GAAI,GACzB,EAAG,YAAY,KAAK,IAEhB,CAAC,EAAG,oBAAoB,KAAK,GAAI,EAAG,aAAc,KAAM,IAAI,OAAM,yBAA0B,EAAG,kBAAkB,KAAK,KAE1H,EAAG,WAAW,KAAK,IAEnB,EAAS,EAAc,YAAa,KAAK,WACzC,OAAW,KAAK,MAAK,UAAW,KAAK,UAAU,GAAK,EAAG,kBAAkB,KAAK,GAAI,GAElF,EAAS,EAAc,UAAW,KAAK,SACvC,EAAS,EAAgB,UAAW,KAAK,SACzC,OAAW,KAAK,MAAK,QAAS,KAAK,QAAQ,GAAK,EAAG,mBAAmB,KAAK,GAAI,GAI1E,YAAuB,EAAQ,CACpC,AAAK,GAAQ,GAAS,IACtB,GAAI,GAAa,EACb,EAAiB,KACjB,EAAe,GACf,EAA2B,GAC3B,EAAoB,CAAC,KAAM,MAC3B,EAAe,GACf,EAAS,GACT,EAAU,GACV,EAAgB,KAChB,EAAkB,KAChB,EAAU,GACV,EAAU,EAAO,QAAU,SAAS,cAAc,UAElD,EAAsB,GACtB,EAAO,CAAE,aAAc,GACvB,EAAK,EAAQ,WAAW,SAC9B,GAAI,CAAC,EAAI,KAAM,IAAI,OAAM,+BAEzB,KAAK,UAAY,SAAU,EAAM,CAE/B,GAAM,GAAO,MAAM,UAAU,MAAM,KAAK,UAAW,GAC7C,EAAS,EAAQ,GACvB,EAAa,KAAK,CAAE,KAAM,EAAQ,UAGpC,KAAK,MAAQ,UAAY,CACvB,EAAe,IAGjB,GAAM,GAAU,SAAU,EAAO,EAAQ,CAEvC,GAAI,MAAU,GAAU,IAAW,GAMnC,IALA,EAAQ,MAAQ,EAChB,EAAS,EACT,EAAQ,OAAS,EACjB,EAAU,EAEN,CAAC,EAAe,CAElB,GAAM,GAAW,GAAI,cAAa,CAChC,GAAI,GAAI,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,GAAI,EAAG,EAAG,EACrC,GAAI,EAAG,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,EAAG,EAAG,EAAG,IAGrC,AAAC,EAAgB,EAAG,eAAgB,EAAG,WAAW,EAAG,aAAc,GACnE,EAAG,WAAW,EAAG,aAAc,EAAU,EAAG,aAC5C,EAAG,YAAY,EAAG,+BAAgC,IAEpD,EAAG,SAAS,EAAG,EAAG,EAAQ,GAE1B,EAAoB,CAAC,KAAM,QAGvB,EAA4B,SAAU,EAAO,EAAQ,CACzD,GAAM,GAAM,EAAG,oBACf,EAAG,gBAAgB,EAAG,YAAa,GACnC,GAAM,GAAe,EAAG,qBACxB,EAAG,iBAAiB,EAAG,aAAc,GACrC,GAAM,GAAU,EAAG,gBACnB,SAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,WAAW,EAAG,WAAY,EAAG,EAAG,KAAM,EAAO,EAAQ,EAAG,EAAG,KAAM,EAAG,cAAe,MACtF,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,QAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,QAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,qBAAqB,EAAG,YAAa,EAAG,kBAAmB,EAAG,WAAY,EAAS,GACtF,EAAG,YAAY,EAAG,WAAY,MAC9B,EAAG,gBAAgB,EAAG,YAAa,MAC5B,CAAE,MAAK,YAGV,EAAsB,SAAU,EAAO,CAC3C,SAAkB,GAAS,EAAkB,IAAU,EAA0B,EAAQ,GAClF,EAAkB,IAGrB,EAAQ,SAAU,EAAQ,KAAM,CA3HxC,QA4HI,GAAI,GAAS,KACT,EAAS,KACT,EAAQ,GAEZ,AAAI,IAAe,EAEjB,EAAS,EAGT,EAAS,KAAoB,KAApB,cAA+C,QAE1D,IAEA,AAAI,GAAgB,CAAE,GAAQ,EAAK,cAGjC,GAAS,KACT,EAAQ,EAAa,GAAM,GAG3B,GAA4B,GAA2B,GAAK,EAC5D,EAAS,KAAoB,KAApB,cAA+C,KAG1D,EAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,gBAAgB,EAAG,YAAa,GACnC,EAAG,UAAU,EAAgB,QAAQ,MAAQ,EAAQ,GAAK,GAC1D,EAAG,WAAW,EAAG,UAAW,EAAG,IAGjC,KAAK,MAAQ,SAAU,EAAO,CAY5B,GAXA,EAAQ,EAAM,MAAO,EAAM,QAC3B,EAAa,EAER,GAAgB,GAAiB,EAAG,iBACzC,EAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,SAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,SAC1D,EAAG,WAAW,EAAG,WAAY,EAAG,EAAG,KAAM,EAAG,KAAM,EAAG,cAAe,GAEhE,EAAa,SAAW,EAE1B,WACO,EAET,OAAS,GAAI,EAAG,EAAI,EAAa,OAAQ,IAAK,CAC5C,EAAgB,IAAM,EAAa,OAAS,EAC5C,GAAM,GAAI,EAAa,GACvB,EAAE,KAAK,MAAM,KAAM,EAAE,MAAQ,IAE/B,MAAO,IAGT,GAAM,GAAiB,SAAU,EAAgB,CAC/C,GAAI,EAAoB,GACtB,SAAkB,EAAoB,GACtC,EAAG,WAAW,EAAgB,IACvB,EAGT,GAAM,GAAS,GACf,EAAO,gBAAkB,CACvB,yBACA,sBACA,qBACA,oBACA,uBACA,oBACA,YACA,mDACA,KACA,KAAK;AAAA,GACP,EAAO,kBAAoB,CACzB,yBACA,oBACA,6BACA,oBACA,0CACA,KACA,KAAK;AAAA,GACP,EAAkB,GAAI,IAAU,EAAI,EAAO,gBAAiB,GAC5D,GAAM,GAAY,aAAa,kBACzB,EAAW,EAAI,EACrB,SAAG,wBAAwB,EAAgB,UAAU,KACrD,EAAG,oBAAoB,EAAgB,UAAU,IAAK,EAAG,EAAG,MAAO,GAAO,EAAU,EAAI,GACxF,EAAG,wBAAwB,EAAgB,UAAU,IACrD,EAAG,oBAAoB,EAAgB,UAAU,GAAI,EAAG,EAAG,MAAO,GAAO,EAAU,EAAI,GACvF,EAAoB,GAAkB,EAC/B,GAKT,EAAQ,YAAc,SAAU,EAAQ,CAEtC,GAAM,GAAI,GAAI,cAAa,GAC3B,EAAE,IAAM,IACR,EAAE,IAAM,IACR,EAAE,KAAO,IACT,EAAE,KAAO,IAET,GAAM,GAAU,EAAE,MAAQ,GAAK,EAAE,KAAO,GAAK,EAAE,KAAO,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,EAC7H,EAAQ,YAAY,OAAO,cAC3B,EAAQ,YAAY,OAAO,WACzB,EAAU,EAAe,GAC/B,EAAG,WAAW,EAAQ,QAAQ,EAAG,GACjC,KAEF,EAAQ,YAAY,OAAS,GAC7B,EAAQ,YAAY,OAAO,WAAa,CACtC,yBACA,oBACA,6BACA,uBACA,oBACA,oCACA,6EACA,6EACA,kFACA,kFACA,KACA,KAAK;AAAA,GACP,EAAQ,YAAY,OAAO,cAAgB,CACzC,yBACA,oBACA,6BACA,uBACA,oBACA,oCACA,gEACA,gEACA,oEACA,wBACA,KACA,KAAK;AAAA,GAEP,EAAQ,WAAa,SAAU,EAAY,CACzC,GAAM,GAAK,IAAc,GAAK,EAC9B,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,SAAU,EAAQ,CACrC,GAAM,GAAK,IAAU,GAAK,EAAI,EAAI,EAC5B,EAAM,GAAI,GAAK,IACrB,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,WAAW,KAGrB,EAAQ,SAAW,SAAU,EAAQ,CACnC,GAAM,GAAK,IAAU,GAAK,EACpB,EAAI,KAAQ,GAAI,GAEtB,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,SAAW,UAAY,CAC7B,EAAQ,SAAS,KAGnB,EAAQ,IAAM,SAAU,EAAU,CAChC,EAAY,IAAY,GAAK,IAAM,KAAK,GACxC,GAAM,GAAM,KAAK,IAAI,GACf,EAAM,KAAK,IAAI,GACf,EAAO,KACP,EAAO,KACP,EAAO,KAEb,EAAQ,YAAY,CAClB,EAAO,EAAO,GAAI,GAAQ,EAAO,CAAC,EAAO,EAAO,EAAO,CAAC,EAAQ,EAAO,CAAC,EAAO,EAAO,EAAO,CAAC,EAAQ,EAAO,GAAI,GAAO,EAAG,EAC3H,EAAO,EAAO,CAAC,EAAQ,EAAO,KAAQ,EAAO,EAAO,GAAI,GAAQ,EAAO,IAAQ,EAAO,EAAO,CAAC,EAAQ,EAAO,MAAS,EAAG,EACzH,EAAO,EAAO,CAAC,EAAQ,EAAO,CAAE,GAAI,GAAQ,EAAO,EAAO,CAAC,EAAQ,EAAO,EAAO,EAAO,EAAO,GAAI,GAAQ,EAAO,EAAO,EAAG,EAC5H,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,oBAAsB,UAAY,CACxC,EAAQ,YAAY,CAClB,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,MAAQ,UAAY,CAC1B,EAAQ,YAAY,CAClB,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,QAAU,UAAY,CAC5B,EAAQ,YAAY,CAClB,kBAAoB,mBAAqB,mBAAqB,EAAG,kBACjE,qBAAuB,kBAAoB,mBAAqB,EAAG,mBACnE,mBAAqB,oBAAsB,mBAAqB,EAAG,mBACnE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,eAAiB,UAAY,CACnC,EAAQ,YAAY,CAClB,kBAAoB,kBAAoB,oBAAsB,EAAG,kBACjE,mBAAqB,kBAAoB,mBAAqB,EAAG,kBACjE,kBAAoB,mBAAqB,kBAAoB,EAAG,kBAChE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,YAAY,CAClB,mBAAoB,mBAAqB,oBAAsB,EAAG,kBAClE,oBAAsB,mBAAoB,oBAAsB,EAAG,mBACnE,oBAAsB,mBAAqB,mBAAoB,EAAG,kBAClE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,YAAc,UAAY,CAChC,EAAQ,YAAY,CAClB,mBAAoB,mBAAqB,oBAAsB,EAAG,mBAClE,mBAAqB,mBAAoB,oBAAsB,EAAG,mBAClE,kBAAoB,mBAAqB,kBAAmB,EAAG,mBAC/D,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,SAAW,UAAY,CAC7B,EAAQ,YAAY,CAClB,MAAO,MAAQ,MAAQ,EAAG,EAC1B,MAAQ,MAAO,MAAQ,EAAG,EAC1B,MAAQ,MAAQ,MAAO,EAAG,EAC1B,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAMhB,EAAQ,YAAc,SAAU,EAAQ,CACtC,GAAM,GAAI,GAAI,cAAa,GACrB,EAAa,EAAI,EACjB,EAAa,EAAI,EACjB,EAAU,EAAe,EAAQ,YAAY,QACnD,EAAG,WAAW,EAAQ,QAAQ,EAAG,GACjC,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAY,GAC7C,KAGF,EAAQ,YAAY,OAAS,CAC3B,yBACA,oBACA,6BACA,mBACA,sBACA,oBACA,2CACA,4DACA,mEACA,6DACA,sCACA,6DACA,oEACA,6DACA,4CACA,kBACA,yCACA,yCACA,wCACA,0BACA,KACA,KAAK;AAAA,GAEP,EAAQ,YAAc,UAAY,CAChC,EAAQ,YAAY,KAAK,KAAM,CAC7B,EAAG,EAAG,EACN,EAAG,GAAI,EACP,EAAG,EAAG,KAIV,EAAQ,OAAS,UAAY,CAC3B,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAI,EAAG,EACP,GAAI,EAAG,EACP,GAAI,EAAG,KAIX,EAAQ,OAAS,UAAY,CAC3B,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAI,GAAI,GACR,EAAG,EAAG,EACN,EAAG,EAAG,KAIV,EAAQ,QAAU,SAAU,EAAQ,CAClC,GAAM,GAAI,GAAU,EACpB,EAAQ,YAAY,KAAK,KAAM,CAC7B,EAAG,GAAK,EAAG,EACX,GAAK,EAAG,EAAI,EAAI,EAAG,GAAK,EACxB,EAAG,GAAK,EAAG,KAIf,EAAQ,OAAS,SAAU,EAAM,CAC/B,GAAM,GAAI,GAAQ,EAClB,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAK,EAAG,GAAK,EAAG,EAChB,GAAK,EAAG,EAAG,EAAI,EACf,EAAG,EAAI,EAAG,EAAI,KAMlB,EAAQ,KAAO,SAAU,EAAM,CAC7B,GAAM,GAAa,EAAO,EAAK,EACzB,EAAa,EAAO,EAAK,EACzB,EAAU,EAAe,EAAQ,KAAK,QAE5C,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAG,GACpC,EAAM,EAAK,cAEX,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAW,GAC5C,KAGF,EAAQ,KAAK,OAAS,CACpB,yBACA,oBACA,6BACA,mBACA,oBACA,4BACA,8FACA,yFACA,wFACA,wFACA,wFACA,uFACA,uFACA,uFACA,uFACA,uFACA,wFACA,wFACA,wFACA,yFACA,8FACA,KACA,KAAK;AAAA,GAIP,EAAQ,SAAW,SAAU,EAAM,CACjC,GAAM,GAAa,EAAQ,EACrB,EAAa,EAAQ,EACrB,EAAU,EAAe,EAAQ,SAAS,QAEhD,EAAG,UAAU,EAAQ,QAAQ,KAAM,EAAW,GAC9C,KAGF,EAAQ,SAAS,OAAS,CACxB,yBACA,oBACA,qBACA,6BACA,yCACA,uCACA,IACA,oBACA,4BACA,oCACA,6CACA,KACA,KAAK;GDjhBT,GAAM,IAAU,KAEZ,EACA,EAEA,EAKG,YAAiB,EAAO,EAA0F,CACvH,GAAI,GACJ,GAAI,CAAC,EAAO,KAAM,IAAI,OAAM,2BAE5B,GACE,CAAE,aAAoB,YACnB,CAAE,OAAO,QAAU,aAAe,YAAiB,SACnD,CAAE,OAAO,YAAc,aAAe,YAAiB,aACvD,CAAE,OAAO,cAAgB,aAAe,YAAiB,eACzD,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,oBAAsB,aAAe,YAAiB,qBAC/D,CAAE,OAAO,kBAAoB,aAAe,YAAiB,kBAEhE,KAAM,IAAI,OAAM,uCAElB,GAAI,YAAoB,UAEtB,GAAI,EAAM,OAAS,EAAM,MAAM,SAAW,GAAK,EAAM,MAAM,KAAO,GAAK,EAAM,MAAM,KAAO,EAAG,EAAS,AAAG,QAAM,OAC1G,MAAM,IAAI,OAAM,2EAA2E,EAAM,aACjG,CAEL,GAAM,GAAgB,EAAM,cAAmB,EAAM,YAAiB,EAAM,OAAa,EAAM,OAAa,EAAM,MAAS,GAAK,EAC1H,EAAiB,EAAM,eAAoB,EAAM,aAAkB,EAAM,QAAc,EAAM,OAAa,EAAM,MAAS,GAAK,EAChI,EAAc,EACd,EAAe,EAenB,GAdI,EAAc,IAChB,GAAc,GACd,EAAe,EAAc,EAAiB,GAE5C,EAAe,IACjB,GAAe,GACf,EAAc,EAAe,EAAgB,GAI/C,AAAI,EAAO,OAAO,MAAQ,EAAG,EAAc,EAAO,OAAO,MAChD,EAAO,OAAO,OAAS,GAAG,GAAc,EAAiB,GAAO,OAAO,OAAS,IACzF,AAAI,EAAO,OAAO,OAAS,EAAG,EAAe,EAAO,OAAO,OAClD,EAAO,OAAO,MAAQ,GAAG,GAAe,EAAkB,GAAO,OAAO,MAAQ,IACrF,CAAC,GAAe,CAAC,EAAc,KAAM,IAAI,OAAM,2CACnD,AAAI,EAAC,GAAa,kBAAU,SAAU,GAAiB,kBAAU,UAAW,IAC1E,GAAY,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UAC1H,kBAAU,SAAU,GAAa,GAAS,MAAQ,GAClD,kBAAU,UAAW,GAAc,GAAS,OAAS,IAI3D,GAAM,GAAM,EAAS,WAAW,MAehC,GAdA,AAAI,YAAiB,WACnB,EAAI,aAAa,EAAO,EAAG,GAE3B,AAAI,EAAO,OAAO,MAAQ,MAAO,GAAI,WAAc,YACjD,GAAI,UAAU,EAAe,GAC7B,EAAI,MAAM,GAAI,GACd,EAAI,UAAU,EAAO,EAAG,EAAG,EAAe,EAAgB,EAAG,EAAG,iBAAU,MAAO,iBAAU,QAC3F,EAAI,aAAa,EAAG,EAAG,EAAG,EAAG,EAAG,IAEhC,EAAI,UAAU,EAAO,EAAG,EAAG,EAAe,EAAgB,EAAG,EAAG,iBAAU,MAAO,iBAAU,QAK3F,EAAO,OAAO,QAAS,CAQzB,GAPI,EAAC,GAAM,CAAC,GAAc,EAAS,QAAU,EAAU,OAAW,kBAAU,UAAW,kBAAW,UAChG,GAAa,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,iBAAU,MAAO,iBAAU,QAAU,SAAS,cAAc,UACnI,kBAAW,SAAU,kBAAU,QAAO,GAAU,MAAQ,iBAAU,OAClE,kBAAW,UAAW,kBAAU,SAAQ,GAAU,OAAS,iBAAU,QAEzE,EAAK,AAAG,MAAI,MAAM,WAAa,GAAY,IAAc,CAAE,OAAQ,IAAe,MAEhF,CAAC,EAAI,MAAO,CAAE,OAAQ,KAAM,OAAQ,GACxC,EAAG,QACH,EAAG,UAAU,aAAc,EAAO,OAAO,YACrC,EAAO,OAAO,WAAa,GAAG,EAAG,UAAU,WAAY,EAAO,OAAO,UACrE,EAAO,OAAO,YAAc,GAAG,EAAG,UAAU,UAAW,EAAO,OAAO,WACrE,EAAO,OAAO,OAAS,GAAG,EAAG,UAAU,OAAQ,EAAO,OAAO,MAC7D,EAAO,OAAO,aAAe,GAAG,EAAG,UAAU,aAAc,EAAO,OAAO,YACzE,EAAO,OAAO,MAAQ,GAAG,EAAG,UAAU,MAAO,EAAO,OAAO,KAC3D,EAAO,OAAO,UAAU,EAAG,UAAU,YACrC,EAAO,OAAO,OAAO,EAAG,UAAU,SAClC,EAAO,OAAO,SAAS,EAAG,UAAU,WACpC,EAAO,OAAO,OAAO,EAAG,UAAU,SAClC,EAAO,OAAO,YAAY,EAAG,UAAU,cACvC,EAAO,OAAO,aAAa,EAAG,UAAU,eACxC,EAAO,OAAO,UAAU,EAAG,UAAU,YACrC,EAAO,OAAO,WAAa,GAAG,EAAG,UAAU,WAAY,EAAO,OAAO,UACzE,EAAG,MAAM,OAuBT,GAAY,EACR,GAAI,GAAK,MAIf,GAAI,GACJ,GAAI,EAAU,KAAM,CAClB,GAAM,GAAQ,CAAC,EAAU,OAAQ,EAAU,MAAO,GAClD,EAAS,AAAG,WAAS,EAAU,KAAM,EAAO,iBACnC,YAAqB,WAC9B,EAAS,AAAG,UAAQ,WAAW,WACtB,EAAO,UAAY,SAAW,EAAO,UAAY,UAAW,CAErE,GAAM,GAAc,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UACtI,EAAW,MAAQ,EACnB,EAAW,OAAS,EACpB,GAAM,GAAU,EAAW,WAAW,MACtC,WAAS,UAAU,EAAW,EAAG,GACjC,EAAS,AAAG,UAAQ,WAAW,OAC1B,CAEL,GAAM,GAAc,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UACtI,EAAW,MAAQ,EACnB,EAAW,OAAS,EACpB,GAAM,GAAU,EAAW,WAAW,MACtC,WAAS,UAAU,EAAW,EAAG,GACjC,GAAM,GAAO,iBAAS,aAAa,EAAG,EAAG,EAAa,GACtD,EAAS,AAAG,UAAQ,WAAW,GAEjC,GAAM,GAAS,EAAO,UACtB,EAAS,EAAO,WAAW,GAC3B,EAAO,UACP,EAAO,UAET,GAAM,GAAS,EAAO,OAAO,OAAS,EAAY,KAClD,MAAO,CAAE,SAAQ,UE/JnB,2HCqNA,GAAM,GAAiB,CACrB,QAAS,QAIT,cAAe,aACf,SAAU,aAEV,MAAO,GACP,MAAO,GAIP,QAAS,GAIT,WAAY,GAKZ,OAAQ,GAIR,eAAgB,GAKhB,OAAQ,OAIR,OAAQ,CAEN,QAAS,GACT,MAAO,EACP,OAAQ,EAIR,KAAM,GACN,OAAQ,GACR,WAAY,EACZ,SAAU,EACV,UAAW,EACX,KAAM,EACN,WAAY,EACZ,IAAK,EACL,SAAU,GACV,MAAO,GACP,QAAS,GACT,WAAY,GACZ,YAAa,GACb,SAAU,GACV,SAAU,GAGZ,QAAS,CACP,QAAS,IAGX,KAAM,CACJ,QAAS,GAIT,SAAU,CACR,UAAW,sBAEX,SAAU,GAGV,SAAU,GAEV,WAAY,GAKZ,YAAa,GAEb,cAAe,GACf,aAAc,GAEd,eAAgB,GAGhB,OAAQ,IAGV,KAAM,CACJ,QAAS,GACT,UAAW,iBAIb,KAAM,CACJ,QAAS,GACT,UAAW,aAIb,YAAa,CACX,QAAS,GAET,UAAW,eAEX,WAAY,IAId,QAAS,CACP,QAAS,GACT,cAAe,GACf,WAAY,GACZ,UAAW,gBAIb,IAAK,CACH,QAAS,GACT,UAAW,WAEX,WAAY,IAId,OAAQ,CACN,QAAS,GACT,cAAe,GACf,UAAW,cAEX,WAAY,IAId,UAAW,CACT,QAAS,GACT,UAAW,oBAKf,KAAM,CACJ,QAAS,GACT,UAAW,eAIX,cAAe,EAGf,eAAgB,GAGhB,UAAW,IAIb,KAAM,CACJ,QAAS,GACT,SAAU,GAEV,WAAY,GAKZ,YAAa,GAEb,cAAe,GACf,aAAc,GAEd,eAAgB,GAEhB,SAAU,EAEV,UAAW,GACX,SAAU,CACR,UAAW,mBAGb,SAAU,CACR,UAAW,sBAKf,OAAQ,CACN,QAAS,GACT,UAAW,eAGX,cAAe,GACf,aAAc,GAEd,WAAY,GACZ,WAAY,KD/WT,GAAM,IAAuB,CAClC,MAAe,2BACf,WAAoB,yBACpB,YAAqB,QACrB,KAAc,6BACd,WAAoB,GACpB,UAAmB,EACnB,UAAmB,EACnB,UAAmB,GACnB,WAAqB,GACrB,WAAqB,GACrB,UAAoB,GACpB,aAAuB,GACvB,aAAuB,GACvB,SAAmB,GACnB,UAAoB,GACpB,eAAyB,GACzB,YAAsB,GACtB,iBAA2B,IAG7B,YAAe,EAAK,EAAG,EAAG,EAAI,EAAG,EAAc,CAC7C,EAAI,UAAY,EAAa,UAAY,EAAI,QAAQ,MAAS,EAAI,MAAO,MAAS,EAAI,eAAkB,EAAa,MACrH,EAAI,YACJ,EAAI,IAAI,EAAG,EAAG,EAAa,UAAW,EAAG,EAAI,KAAK,IAClD,EAAI,OAGN,YAAc,EAAK,EAAG,EAAG,EAAO,EAAQ,EAAc,CAEpD,GADA,EAAI,YACA,EAAa,UAAW,CAC1B,GAAM,GAAM,GAAI,EAAI,GAAS,EACvB,EAAM,GAAI,EAAI,GAAU,EAC9B,EAAI,QAAQ,EAAI,EAAI,EAAQ,EAAG,EAAS,EAAG,EAAG,EAAG,EAAI,KAAK,QAE1D,GAAI,UAAY,EAAa,UAC7B,EAAI,OAAO,EAAI,EAAa,UAAW,GACvC,EAAI,OAAO,EAAI,EAAQ,EAAa,UAAW,GAC/C,EAAI,iBAAiB,EAAI,EAAO,EAAG,EAAI,EAAO,EAAI,EAAa,WAC/D,EAAI,OAAO,EAAI,EAAO,EAAI,EAAS,EAAa,WAChD,EAAI,iBAAiB,EAAI,EAAO,EAAI,EAAQ,EAAI,EAAQ,EAAa,UAAW,EAAI,GACpF,EAAI,OAAO,EAAI,EAAa,UAAW,EAAI,GAC3C,EAAI,iBAAiB,EAAG,EAAI,EAAQ,EAAG,EAAI,EAAS,EAAa,WACjE,EAAI,OAAO,EAAG,EAAI,EAAa,WAC/B,EAAI,iBAAiB,EAAG,EAAG,EAAI,EAAa,UAAW,GACvD,EAAI,YAEN,EAAI,SAGN,YAAe,EAAK,EAAmB,GAAI,EAAc,CACvD,GAAI,MAAW,QAAa,EAAO,SAAW,GAC9C,GAAI,YACJ,EAAI,OAAO,EAAO,GAAG,GAAI,EAAO,GAAG,IACnC,OAAW,KAAM,GACf,EAAI,YAAc,EAAa,UAAY,EAAG,GAAK,QAAQ,MAAS,EAAI,EAAG,OAAQ,MAAS,EAAI,EAAG,gBAAmB,EAAa,MACnI,EAAI,UAAY,EAAa,UAAY,EAAG,GAAK,QAAQ,MAAS,EAAI,EAAG,OAAQ,MAAS,EAAI,EAAG,gBAAmB,EAAa,MACjI,EAAI,OAAO,EAAG,GAAI,SAAS,EAAG,KAEhC,EAAI,SACA,EAAa,cACf,GAAI,YACJ,EAAI,SAIR,YAAgB,EAAK,EAAmB,GAAI,EAAc,CACxD,GAAI,MAAW,QAAa,EAAO,SAAW,GAC9C,IAAI,CAAC,EAAa,WAAa,EAAO,QAAU,EAAG,CACjD,GAAM,EAAK,EAAQ,GACnB,OAEF,EAAI,OAAO,EAAO,GAAG,GAAI,EAAO,GAAG,IACnC,OAAS,GAAI,EAAG,EAAI,EAAO,OAAS,EAAG,IAAK,CAC1C,GAAM,GAAM,GAAO,GAAG,GAAK,EAAO,EAAI,GAAG,IAAM,EACzC,EAAM,GAAO,GAAG,GAAK,EAAO,EAAI,GAAG,IAAM,EAC/C,EAAI,iBAAiB,EAAO,GAAG,GAAI,EAAO,GAAG,GAAI,EAAI,GAEvD,EAAI,iBAAiB,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,IACzI,EAAI,SACA,EAAa,cACf,GAAI,YACJ,EAAI,SAIR,kBAA8B,EAA6B,EAAoB,EAA2B,CACxG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,CAAC,EAAK,OACV,EAAI,KAAO,EAAa,KACxB,EAAI,UAAY,EAAa,MAC7B,GAAI,GAAI,EACR,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IAAK,CACtC,GAAI,GAAc,GACd,EAAa,GAEjB,GADA,CAAC,EAAO,GAAQ,OAAO,QAAQ,EAAO,IACjC,EAAK,OAAS,GAAO,EAAK,GAAG,OAAS,EAAI,CAC7C,GAAM,GAAS,EAAM,GAAK,EAAI,IAAI,EAAM,KAAO,GACzC,EAAQ,GAAG,EAAM,MAAM,MAAW,EAAK,KAC7C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAG,EAAK,EAAI,EAAa,aAE/C,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAG,EAAK,EAAI,EAAa,YAC7C,GAAK,IAKX,kBAA2B,EAA6B,EAAoB,EAA2B,CACrG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,OAAW,KAAK,GAAQ,CACtB,EAAI,KAAO,EAAa,KACxB,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MACzB,EAAa,WACf,CAAI,EAAa,YAAa,GAAK,EAAK,EAAS,MAAQ,EAAE,OAAO,GAAI,EAAS,OAAS,EAAE,OAAO,GAAI,EAAS,MAAQ,EAAE,OAAO,GAAI,EAAS,OAAS,EAAE,OAAO,GAAI,GAC7J,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,IAGzD,GAAM,GAAkB,GAMxB,GALA,EAAO,KAAK,oBAAoB,KAAK,MAAM,IAAM,EAAE,gBAC/C,EAAE,kBAAkB,EAAO,KAAK,GAAG,EAAE,QAAU,MAAM,KAAK,MAAM,IAAM,EAAE,gCAExE,EAAE,KAAK,EAAO,KAAK,QAAQ,EAAE,KAAO,MACpC,EAAE,MAAM,EAAO,KAAK,kBAAkB,EAAE,QACxC,EAAE,SAAW,EAAE,QAAQ,OAAS,EAAG,CACrC,GAAM,GAAU,EAAE,QAAQ,IAAI,AAAC,GAAM,GAAG,KAAK,MAAM,IAAM,EAAE,WAAW,EAAE,WACxE,EAAO,KAAK,EAAQ,KAAK,MAE3B,AAAI,EAAE,UAAY,EAAE,SAAS,OAAS,EAAE,SAAS,MAAM,MAAM,EAAO,KAAK,SAAS,KAAK,MAAM,IAAM,EAAE,SAAS,MAAM,MAAQ,WAAW,KAAK,MAAM,IAAM,EAAE,SAAS,MAAM,KAAO,aAAa,KAAK,MAAM,IAAM,EAAE,SAAS,MAAM,OAAS,OACpO,EAAO,SAAW,GAAG,EAAO,KAAK,QACrC,EAAI,UAAY,EAAa,MAC7B,OAAS,GAAI,EAAO,OAAS,EAAG,GAAK,EAAG,IAAK,CAC3C,GAAM,GAAI,KAAK,IAAI,EAAE,IAAI,GAAI,GACvB,EAAI,EAAI,EAAa,WAAa,EAAE,IAAI,GAC9C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,GAAI,EAAI,EAAG,EAAI,KAErC,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,GAAI,EAAI,EAAG,EAAI,IAGrC,GADA,EAAI,UAAY,EACZ,EAAE,MAAQ,EAAE,KAAK,OAAS,EAAG,CAC/B,GAAI,EAAa,WACf,OAAW,KAAM,GAAE,KAAM,GAAM,EAAK,EAAG,GAAI,EAAG,GAAI,EAAG,GAAI,GAG3D,GAAI,EAAa,aAAc,CAC7B,EAAI,UAAY,EAChB,OAAS,GAAI,EAAG,EAAI,GAAc,OAAS,EAAG,IAAK,CACjD,GAAM,GAAS,CACb,GAAc,EAAI,EAAI,GACtB,GAAc,EAAI,EAAI,GACtB,GAAc,EAAI,EAAI,IACtB,IAAI,AAAC,GAAU,EAAE,KAAK,IACxB,GAAM,EAAK,EAAQ,GAGrB,GAAI,EAAE,aAAe,EAAE,YAAY,YAAa,CAC9C,EAAI,YAAc,EAAa,SAAW,2BAA6B,EAAa,MACpF,EAAI,YACJ,GAAM,GAAQ,KAAK,IAAI,EAAE,YAAY,YAAY,GAAG,GAAK,EAAE,YAAY,YAAY,GAAG,IAAM,EACtF,EAAQ,KAAK,IAAI,EAAE,YAAY,YAAY,GAAG,GAAK,EAAE,YAAY,YAAY,GAAG,IAAM,EAC5F,EAAI,QAAQ,EAAE,YAAY,YAAY,GAAG,GAAI,EAAE,YAAY,YAAY,GAAG,GAAI,EAAO,EAAO,EAAG,EAAG,EAAI,KAAK,IAC3G,EAAI,SACA,EAAa,cACf,GAAI,UAAY,EAAa,SAAW,2BAA6B,EAAa,MAClF,EAAI,QAGR,GAAI,EAAE,aAAe,EAAE,YAAY,aAAc,CAC/C,EAAI,YAAc,EAAa,SAAW,2BAA6B,EAAa,MACpF,EAAI,YACJ,GAAM,GAAQ,KAAK,IAAI,EAAE,YAAY,aAAa,GAAG,GAAK,EAAE,YAAY,aAAa,GAAG,IAAM,EACxF,EAAQ,KAAK,IAAI,EAAE,YAAY,aAAa,GAAG,GAAK,EAAE,YAAY,aAAa,GAAG,IAAM,EAC9F,EAAI,QAAQ,EAAE,YAAY,aAAa,GAAG,GAAI,EAAE,YAAY,aAAa,GAAG,GAAI,EAAO,EAAO,EAAG,EAAG,EAAI,KAAK,IAC7G,EAAI,SACA,EAAa,cACf,GAAI,UAAY,EAAa,SAAW,2BAA6B,EAAa,MAClF,EAAI,YAQhB,GAAM,IAAsB,GAC5B,kBAA2B,EAA6B,EAAoB,EAA2B,CACrG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IAAK,CAkBtC,GAhBI,CAAC,GAAc,IAAM,EAAa,gBAAgB,IAAc,GAAK,IAAK,EAAO,KACrF,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,EAAI,UAAY,EAAa,UAC7B,EAAI,KAAO,EAAa,KACpB,EAAa,WACf,IAAK,EAAK,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,GAC9E,EAAa,YACX,GAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,QAAQ,IAAM,EAAO,GAAG,SAAU,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,KAErI,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,QAAQ,IAAM,EAAO,GAAG,SAAU,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,MAGnI,EAAa,WACf,OAAS,GAAK,EAAG,EAAK,EAAO,GAAG,UAAU,OAAQ,IAChD,EAAI,UAAY,EAAa,UAAY,EAAO,GAAG,UAAU,GAAI,SAAS,EAAI,QAAQ,MAAS,EAAI,EAAO,GAAG,UAAU,GAAI,SAAS,MAAO,MAAS,EAAI,EAAO,GAAG,UAAU,GAAI,SAAS,eAAkB,EAAa,MACxN,AAAI,EAAa,eACf,IAAc,GAAG,UAAU,GAAI,GAAM,IAAc,GAAG,UAAU,GAAI,GAAK,EAAO,GAAG,UAAU,GAAI,SAAS,GAAK,EAC/G,GAAc,GAAG,UAAU,GAAI,GAAM,IAAc,GAAG,UAAU,GAAI,GAAK,EAAO,GAAG,UAAU,GAAI,SAAS,GAAK,EAC/G,GAAM,EAAK,GAAc,GAAG,UAAU,GAAI,GAAI,GAAc,GAAG,UAAU,GAAI,GAAI,EAAG,IAEpF,GAAM,EAAK,EAAO,GAAG,UAAU,GAAI,SAAS,EAAG,EAAO,GAAG,UAAU,GAAI,SAAS,EAAG,EAAG,GAI5F,GAAI,EAAa,YACf,GAAI,KAAO,EAAa,KACpB,EAAO,GAAG,WACZ,OAAW,KAAM,GAAO,GAAG,UACzB,EAAI,UAAY,EAAa,UAAY,EAAG,SAAS,EAAI,QAAQ,MAAS,EAAI,EAAG,SAAS,MAAO,MAAS,EAAI,EAAG,SAAS,eAAkB,EAAa,MACzJ,EAAI,SAAS,GAAG,EAAG,QAAQ,KAAK,MAAM,IAAM,EAAG,UAAW,EAAG,SAAS,EAAI,EAAG,EAAG,SAAS,EAAI,GAInG,GAAI,EAAa,cAAgB,EAAO,GAAG,UAAW,CACpD,GAAI,GACE,EAAgB,GAEtB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IAC/F,EAAO,SAAW,GAAG,GAAM,EAAK,EAAQ,GAE5C,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,MAM1B,kBAA2B,EAA6B,EAAoB,EAA2B,CACrG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KACxB,OAAW,KAAK,GAAQ,CACtB,GAAI,EAAa,UAAW,CAC1B,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAI,GACJ,GAAI,CAAC,EAAa,iBAChB,EAAM,EAAa,YAAc,EAAE,OAAS,EAAE,YAE9C,EAAM,CAAC,OAAO,iBAAkB,OAAO,iBAAkB,EAAG,GACxD,EAAE,WAAa,EAAE,UAAU,OAAS,EAAG,CACzC,OAAW,KAAM,GAAE,UACjB,AAAI,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAElC,EAAI,IAAM,EAAI,GACd,EAAI,IAAM,EAAI,GAGlB,AAAI,EAAa,YAAa,GAAK,EAAK,EAAS,MAAQ,EAAI,GAAI,EAAS,OAAS,EAAI,GAAI,EAAS,MAAQ,EAAI,GAAI,EAAS,OAAS,EAAI,GAAI,GACzI,GAAK,EAAK,EAAI,GAAI,EAAI,GAAI,EAAI,GAAI,EAAI,GAAI,GAC3C,EAAa,YACX,GAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,OAAQ,EAAI,GAAK,EAAG,EAAI,EAAI,GAAK,EAAa,WAAY,EAAI,KAE7E,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,OAAQ,EAAI,GAAK,EAAG,EAAI,EAAI,GAAK,EAAa,WAAY,EAAI,KAE7E,EAAI,SAEN,GAAI,EAAa,YACX,EAAE,WAAa,EAAE,UAAU,OAAS,EACtC,OAAW,KAAM,GAAE,UACjB,EAAI,UAAY,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAG,OAAQ,MAAS,EAAI,EAAG,gBAAmB,EAAa,MACxH,GAAM,EAAK,EAAG,GAAI,EAAG,GAAI,EAAG,GAIlC,GAAI,EAAa,aAAc,CAC7B,GAAM,GAAU,AAAC,GAAS,CACxB,GAAI,EAAC,EACL,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAC/B,EAAI,UAAY,EAAa,UAC7B,EAAI,YACJ,EAAI,YAAc,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAK,GAAG,OAAQ,MAAS,EAAI,EAAK,GAAG,gBAAmB,EAAa,MACpI,EAAI,OAAO,EAAK,EAAI,EAAI,EAAI,EAAI,GAAG,GAAI,EAAK,EAAI,EAAI,EAAI,EAAI,GAAG,IAC/D,EAAI,OAAO,EAAK,GAAG,GAAI,EAAK,GAAG,IAC/B,EAAI,UAGR,EAAQ,EAAE,YAAY,aACtB,EAAQ,EAAE,YAAY,cACtB,EAAQ,EAAE,YAAY,YACtB,EAAQ,EAAE,YAAY,OACtB,EAAQ,EAAE,YAAY,UAM5B,kBAA6B,EAA6B,EAAoB,EAA2B,CACvG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KACxB,OAAW,KAAK,GACd,GAAI,EAAa,UAAW,CAK1B,GAJA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,AAAI,EAAa,YAAa,GAAK,EAAK,EAAS,MAAQ,EAAE,OAAO,GAAI,EAAS,OAAS,EAAE,OAAO,GAAI,EAAS,MAAQ,EAAE,OAAO,GAAI,EAAS,OAAS,EAAE,OAAO,GAAI,GAC7J,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,GACnD,EAAa,WAAY,CAC3B,GAAM,GAAQ,GAAG,KAAK,MAAM,IAAM,EAAE,WAAW,EAAE,QACjD,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,KAElF,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,IAElF,EAAI,WAKV,kBAA6B,EAA6B,EAA8B,CAEtF,GADI,CAAC,GAAY,CAAC,GACd,CAAE,aAAoB,qBAAsB,CAAE,aAAqB,oBAAoB,OAC3F,GAAM,GAAS,EAAS,WAAW,MACnC,WAAQ,UAAU,EAAU,EAAG,GAGjC,kBAA0B,EAA6B,EAAY,EAA2B,CAC5F,GAAM,GAAe,EAAU,GAAS,GACxC,AAAI,CAAC,GAAU,CAAC,GACV,YAAoB,oBAC1B,IAAK,EAAU,EAAO,KAAM,GAC5B,GAAK,EAAU,EAAO,KAAM,GAC5B,GAAK,EAAU,EAAO,KAAM,GAC5B,GAAQ,EAAU,EAAO,QAAS,GAClC,GAAO,EAAU,EAAO,OAAQ,IE5d3B,GAAM,IAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kEA0JP,GAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;qBC3JpB,+BAqDO,QAAY,CA+EjB,YAAY,EAA8B,GAAI,CAX9C,oBACA,oBACA,oBACA,oBAgEA,aAAU,IAAI,IAAQ,CACpB,GAAI,CAAC,OAAK,IAAqB,OAC/B,GAAM,GAAU,KAAK,GAAG,SAAS,MAAM,WACjC,EAAW,OAAK,IACtB,QAAK,GAAc,GACnB,GAAM,GAAS,EAAU,EACzB,AAAI,IAAW,GAAG,EAAI,GAAG,EAAK,IAKhC,YAAU,AAAC,GAAyB,CAClC,GAAI,CAAC,OAAK,IAAc,MAAO,MAC/B,GAAI,CAAC,EAAO,MAAO,uBACnB,GAAI,KAAK,GAAG,IAAI,MAAM,SAAW,CAAE,aAAoB,WAAS,MAAO,yBACvE,GAAI,CACF,KAAK,GAAG,mBACF,EAAN,CACA,MAAO,qBAET,MAAO,QAwGT,YAAgB,MAAO,EAAQ,KAAU,CAxT3C,MAyTI,GAAI,KAAK,OAAO,SAAY,KAAK,OAAO,QAAQ,OAAS,GAAM,GAAU,KAAK,GAAG,eAAiB,KAAK,OAAO,QAAU,CACtH,GAAM,GAAY,IAYlB,GAXA,KAAK,MAAQ,UAWT,KAAK,OAAO,SAAW,KAAK,OAAO,QAAQ,OAAS,EAAG,CAOzD,GALI,KAAK,GAAG,IAAI,MAAM,YAAc,KAAK,OAAO,UAAY,cAAc,MAAK,OAAO,QAAU,SAC5F,KAAK,GAAG,IAAI,MAAM,SAAY,MAAK,OAAO,UAAY,SAAW,KAAK,OAAO,UAAY,YAAY,MAAK,OAAO,QAAU,cAE3H,KAAK,OAAO,OAAO,EAAI,mBAAoB,KAAK,OAAO,SAEvD,KAAK,OAAO,UAAY,OAAQ,CAElC,GADI,KAAK,OAAO,OAAO,EAAI,aAAc,KAAK,OAAO,UACjD,MAAO,SAAK,KAAL,cAAS,eAAiB,YAAa,KAAK,GAAG,aAAa,KAAK,OAAO,cAC9E,MAAM,IAAI,OAAM,qCACrB,GAAM,GAAO,KAAM,MAAK,GAAG,MAAM,SAAS,yBACpC,EAAK,KAAM,MAAK,GAAG,MAAM,SAAS,gCACxC,AAAI,KAAK,OAAO,OAAO,EAAI,mBAAmB,EAAO,OAAS,aAAa,EAAK,gBAAkB,oBAC9F,KAAK,OAAO,OAAS,CAAC,GAAM,EAAI,6CAGtC,AAAI,KAAK,OAAO,UAAY,WAAW,AAAQ,KAC/C,GAAI,CACF,KAAM,MAAK,GAAG,WAAW,KAAK,OAAO,eAC9B,EAAP,CACA,EAAI,6BAA8B,KAAK,OAAO,QAAS,IAK3D,GAFA,KAAK,GAAG,iBAEJ,KAAK,GAAG,eAAiB,SAAW,KAAK,GAAG,eAAiB,UAAW,CAC1E,KAAK,GAAG,IAAI,IAAI,+BAAgC,IAChD,KAAK,GAAG,IAAI,IAAI,2BAA4B,IACxC,KAAK,OAAO,YACd,GAAI,kDAAmD,KAAK,OAAO,YACnE,KAAK,GAAG,IAAI,IAAI,iCAAkC,KAAK,OAAO,WAAa,EAAI,KAEjF,GAAM,GAAK,KAAM,MAAK,GAAG,UAAU,kBAAkB,GACrD,AAAI,KAAK,OAAO,OAAO,EAAI,cAAc,EAAG,aAAa,EAAG,qBAAqB,EAAG,aAAa,EAAG,aAEtG,KAAM,MAAK,GAAG,QACd,KAAK,KAAK,QAAU,KAAK,MAAM,IAAQ,MAoK3C,YAAgB,SAAY,CAC1B,GAAM,GAAY,CAAC,EAAQ,EAAO,6BAA+B,MAAM,QAAQ,YAAe,KAAU,KAAK,AAAC,GAAQ,EAAI,QACtH,EACA,EACJ,OAAQ,KAAK,OAAO,YACb,OAAQ,EAAO,KAAM,GAAiB,IAAO,UAC7C,OAAQ,EAAO,KAAM,GAAiB,IAAO,cACzC,EAAO,KAElB,GAAI,EAAM,CACR,GAAM,GAAS,KAAM,mBAAkB,GACvC,EAAM,KAAM,MAAK,OAAO,EAAQ,KAAK,QACrC,EAAO,QAET,MAAO,KAIT,YAAgB,SAAY,GAAI,SAAQ,AAAC,GAAY,CACnD,GAAI,GACA,EAAO,EACX,OAAQ,KAAK,OAAO,YACb,OACH,EAAO,IACP,EAAM,0BAAmC,GACzC,UACG,WACA,OACH,EAAO,KACP,EAAM,0BAAmC,GACzC,cAEA,EAAM,KAGV,GAAM,GAAM,GAAI,OAChB,EAAI,OAAS,SAAY,CACvB,GAAM,GAAU,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAM,GAAQ,SAAS,cAAc,UACnH,EAAO,MAAQ,EAAI,aACnB,EAAO,OAAS,EAAI,cACpB,GAAM,GAAM,EAAO,WAAW,MAC9B,WAAK,UAAU,EAAK,EAAG,GAEvB,GAAM,GAAM,KAAM,MAAK,OAAO,EAAQ,KAAK,QAC3C,EAAQ,IAEV,AAAI,EAAK,EAAI,IAAM,EACd,EAAQ,SAIf,YAAc,SAAY,CACxB,GAAM,GAAO,AAAC,GAAQ,OAAO,KAAK,EAAK,UACnC,EAGJ,GAFI,KAAK,OAAO,SAAW,QAAQ,GAAM,EAAY,KACjD,MAAK,OAAO,SAAW,QAAU,KAAK,OAAO,SAAW,SAAQ,GAAM,EAAY,KAClF,CAAC,EAAK,MAAO,MACjB,GAAI,GACJ,GAAI,MAAU,SAAY,YAAa,CACrC,GAAM,GAAO,AAAG,OAAQ,WAAW,GAC7B,EAAW,EAAK,WAAW,GACjC,KAAK,GAAG,QAAQ,GAEhB,EAAM,KAAM,MAAK,OAAO,EAAU,KAAK,QACvC,KAAK,GAAG,QAAQ,OAEhB,AAAI,MAAK,OAAO,OAAO,EAAI,+BAS7B,MAAO,KArdP,KAAK,GAAK,EACV,KAAK,KAAO,GACZ,KAAK,QAAc,GACnB,KAAK,OAAS,EAAU,EAAU,GAClC,KAAK,MAAQ,OACb,QAAK,GAAc,GACnB,QAAK,GAAsB,IAC3B,QAAK,GAAe,IACpB,QAAK,GAAY,IACjB,KAAK,KAAO,GAEZ,KAAK,OAAS,CACZ,KAAM,KACN,QAAS,KACT,UAAW,KACX,cAAe,KACf,SAAU,KACV,KAAM,KACN,IAAK,KACL,OAAQ,KACR,QAAS,KACT,UAAW,KACX,QAAS,KACT,QAAS,MAIX,KAAK,MAAQ,AAAC,GAAiB,AAAM,GAAQ,EAAO,KAAK,QAEzD,KAAK,QAAU,CACb,YACA,OACA,UACA,WACA,WACA,KAAM,KAAK,OAAO,KAAK,UAAU,SAAS,WAAa,GAAU,GACjE,KAAM,GACN,YAEF,KAAK,kBAA6B,GAClC,KAAK,UAAqB,GAE1B,KAAK,QAAU,AAAQ,KAMzB,aAAyH,CACvH,MAAI,MAAK,OAAO,QAAwB,GACjC,GA+BT,WAAW,EAA2B,EAAmC,CACvE,MAAI,MAAK,OAAO,KAAK,YAAY,QAAgB,AAAQ,GAAW,EAAY,GAC5E,KAAK,OAAO,KAAK,UAAU,QAAgB,AAAU,GAAW,EAAY,GACzE,EAQT,QAAQ,EAA8B,CACpC,MAAO,AAAQ,IAAQ,GAWzB,MAAM,EAA8B,EAAkE,EAAY,EAA8E,CAC9L,MAAO,AAAQ,IAAM,EAAe,EAAI,QAMpC,MAAK,EAA8B,GAAI,CAC3C,KAAK,MAAQ,OACb,GAAM,GAAY,IAClB,AAAI,GAAY,MAAK,OAAS,EAAU,KAAK,OAAQ,IAEjD,OAAK,KACH,MAAK,OAAO,OAAO,EAAI,YAAY,KAAK,WACxC,KAAK,OAAO,OAAO,EAAI,iBAAiB,KAAK,GAAG,gBAChD,KAAK,OAAO,OAAO,EAAI,YAAa,KAAK,QAAQ,UACjD,KAAK,OAAO,OAAO,EAAI,SAAU,KAAK,QAAQ,OAElD,KAAM,QAAK,IAAL,UAAmB,IACrB,KAAK,GAAG,IAAI,MAAM,YAChB,MAAK,OAAO,OAAO,EAAI,iBAAkB,KAAK,QAC9C,KAAK,OAAO,OAAO,EAAI,YAAa,KAAK,GAAG,IAAI,SAGxD,AAAI,KAAK,OAAO,MACd,CACE,KAAK,OAAO,KACZ,KAAK,OAAO,IACZ,KAAK,OAAO,OACZ,KAAK,OAAO,QACZ,KAAK,OAAO,UACZ,KAAK,OAAO,SACZ,KAAK,OAAO,QACZ,KAAK,OAAO,UACZ,KAAK,OAAO,cACZ,KAAK,OAAO,QACZ,KAAK,OAAO,SACV,KAAM,SAAQ,IAAI,CACpB,KAAK,OAAO,MAAS,MAAK,OAAO,KAAK,QAAU,AAAS,GAAK,KAAK,QAAU,MAC7E,KAAK,OAAO,KAAS,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,IAAI,QAAW,AAAI,GAAK,KAAK,QAAU,MACzG,KAAK,OAAO,QAAY,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,OAAO,QAAW,AAAO,GAAK,KAAK,QAAU,MAClH,KAAK,OAAO,SAAa,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,QAAQ,QAAW,AAAQ,GAAK,KAAK,QAAU,MACrH,KAAK,OAAO,WAAe,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,UAAU,QAAW,AAAU,GAAK,KAAK,QAAU,MAC3H,KAAK,OAAO,UAAa,MAAK,OAAO,KAAK,QAAU,AAAS,GAAK,KAAK,QAAU,MACjF,KAAK,OAAO,SAAY,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,UAAU,SAAS,WAAkB,AAAQ,GAAK,KAAK,QAAU,MACtI,KAAK,OAAO,WAAc,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,UAAU,SAAS,aAAe,AAAU,GAAK,KAAK,QAAU,MACvI,KAAK,OAAO,eAAkB,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,UAAU,SAAS,iBAAmB,AAAc,GAAK,KAAK,QAAU,MACnJ,KAAK,OAAO,SAAY,MAAK,OAAO,OAAO,QAAU,AAAQ,GAAK,KAAK,QAAU,MACjF,KAAK,OAAO,SAAa,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,YAAY,QAAW,AAAQ,GAAK,KAAK,QAAU,QAGvH,MAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,MAAM,MAAK,OAAO,KAAO,KAAM,AAAS,IAAK,KAAK,SAC3F,KAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,IAAI,SAAW,CAAC,KAAK,OAAO,KAAK,MAAK,OAAO,IAAM,KAAM,AAAI,IAAK,KAAK,SACpH,KAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,OAAO,SAAW,CAAC,KAAK,OAAO,QAAQ,MAAK,OAAO,OAAS,KAAM,AAAO,IAAK,KAAK,SAChI,KAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,QAAQ,SAAW,CAAC,KAAK,OAAO,SAAS,MAAK,OAAO,QAAU,KAAM,AAAQ,IAAK,KAAK,SACpI,KAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,UAAU,SAAW,CAAC,KAAK,OAAO,WAAW,MAAK,OAAO,UAAY,KAAM,AAAU,IAAK,KAAK,SAC5I,KAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,UAAU,MAAK,OAAO,SAAW,KAAM,AAAS,IAAK,KAAK,SACnG,KAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,SAAW,KAAK,OAAO,KAAK,UAAU,SAAS,YAAY,MAAK,OAAO,QAAU,KAAM,AAAQ,IAAK,KAAK,SAClJ,KAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,WAAa,KAAK,OAAO,KAAK,UAAU,SAAS,cAAc,MAAK,OAAO,UAAY,KAAM,AAAU,IAAK,KAAK,SAC1J,KAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,eAAiB,KAAK,OAAO,KAAK,UAAU,SAAS,kBAAkB,MAAK,OAAO,cAAgB,KAAM,AAAc,IAAK,KAAK,SAC1K,KAAK,OAAO,OAAO,SAAW,CAAC,KAAK,OAAO,SAAS,MAAK,OAAO,QAAU,KAAM,AAAQ,IAAK,KAAK,SAClG,KAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,YAAY,SAAW,CAAC,KAAK,OAAO,SAAS,MAAK,OAAO,QAAU,KAAM,AAAQ,IAAK,KAAK,UAG1I,OAAK,KACH,MAAK,OAAO,OAAO,EAAI,mBAAoB,KAAK,GAAG,SAAS,MAAM,SAAU,QAAS,KAAK,GAAG,SAAS,MAAM,WAAY,WAC5H,QAAK,GAAY,KAGnB,GAAM,GAAU,KAAK,MAAM,IAAQ,GACnC,AAAI,EAAW,MAAK,KAAK,MAAQ,IAAI,MAAK,KAAK,KAAO,QAkElD,QAAO,EAAc,EAA8B,GAA6B,CAEpF,MAAO,IAAI,SAAQ,KAAO,IAAY,CAvX1C,YAwXM,KAAK,MAAQ,SACb,GAAI,GAGJ,KAAK,OAAS,EAAU,KAAK,OAAQ,GAGrC,KAAK,MAAQ,QACb,GAAM,GAAQ,OAAK,IAAL,UAAa,GAC3B,AAAI,GACF,GAAI,EAAO,GACX,EAAQ,CAAE,WAGZ,GAAM,GAAY,IAGlB,KAAM,QAAK,IAAL,WAGN,KAAM,MAAK,OAEP,KAAK,OAAO,QAAQ,KAAK,GAAG,SAAS,aACzC,KAAK,QAAQ,gBAGb,GAAI,GACJ,AAAI,GAAS,KAAK,OAAO,gBACtB,OAAO,mBAAqB,aAAe,YAAiB,mBACzD,MAAO,QAAU,aAAe,YAAiB,QACjD,MAAO,YAAc,aAAe,YAAiB,YACrD,MAAO,cAAgB,aAAe,aAAiB,eAE3D,GAAI,gCACJ,EAAyB,KAAK,OAAO,eACrC,KAAK,OAAO,eAAiB,IAG/B,EAAY,IACZ,GAAM,GAAU,AAAM,GAAQ,EAAO,KAAK,QAC1C,GAAI,CAAC,GAAW,CAAC,EAAQ,OAAQ,CAC/B,EAAI,qCACJ,EAAQ,CAAE,MAAO,sCACjB,OAEF,KAAK,KAAK,MAAQ,KAAK,MAAM,IAAQ,GACrC,KAAK,QAAQ,cAGb,GAAI,GACA,EACA,EACA,EACA,EAGJ,AAAI,KAAK,OAAO,MACd,GAAU,KAAK,OAAO,KAAK,QAAU,AAAQ,GAAW,KAAM,EAAQ,QAAU,GAC5E,KAAK,KAAK,MAAM,MAAO,MAAK,KAAK,MAErC,MAAK,MAAQ,WACb,EAAY,IACZ,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAQ,IAAW,KAAM,EAAQ,QAAU,GACtF,EAAU,KAAK,MAAM,IAAQ,GACzB,EAAU,GAAG,MAAK,KAAK,KAAO,IAIpC,KAAK,QAAQ,eACb,AAAI,KAAK,OAAO,MACd,CAAI,KAAK,OAAO,KAAK,UAAU,SAAS,WAAY,EAAU,KAAK,OAAO,KAAK,QAAU,QAAK,OAAO,UAAZ,cAAqB,cAAc,EAAQ,OAAQ,KAAK,QAAU,GACtJ,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,aAAc,EAAU,KAAK,OAAO,KAAK,QAAU,AAAU,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACxI,KAAK,OAAO,KAAK,UAAU,SAAS,kBAAkB,GAAU,KAAK,OAAO,KAAK,QAAU,AAAc,GAAQ,EAAQ,OAAQ,KAAK,QAAU,IACrJ,KAAK,KAAK,MAAM,MAAO,MAAK,KAAK,MAErC,MAAK,MAAQ,WACb,EAAY,IACZ,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,WAAY,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,SAAK,OAAO,UAAZ,cAAqB,cAAc,EAAQ,OAAQ,KAAK,SAAU,GAC5J,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,aAAc,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAU,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC9I,KAAK,OAAO,KAAK,UAAU,SAAS,kBAAkB,GAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAc,IAAQ,EAAQ,OAAQ,KAAK,QAAU,IAC/J,EAAU,KAAK,MAAM,IAAQ,GACzB,EAAU,GAAG,MAAK,KAAK,KAAO,IAEpC,KAAK,QAAQ,aAGb,KAAK,QAAQ,eACb,AAAI,KAAK,OAAO,MACd,GAAU,KAAK,OAAO,KAAK,QAAU,QAAK,OAAO,WAAZ,cAAsB,cAAc,EAAQ,OAAQ,KAAK,QAAU,GACpG,KAAK,KAAK,MAAM,MAAO,MAAK,KAAK,MAErC,MAAK,MAAQ,WACb,EAAY,IACZ,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,SAAK,OAAO,WAAZ,cAAsB,cAAc,EAAQ,OAAQ,KAAK,SAAU,GAC9G,EAAU,KAAK,MAAM,IAAQ,GACzB,EAAU,GAAG,MAAK,KAAK,KAAO,IAEpC,KAAK,QAAQ,aAGb,KAAK,QAAQ,iBACb,AAAI,KAAK,OAAO,MACd,GAAY,KAAK,OAAO,OAAO,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACpF,KAAK,KAAK,QAAQ,MAAO,MAAK,KAAK,QAEvC,MAAK,MAAQ,aACb,EAAY,IACZ,EAAY,KAAK,OAAO,OAAO,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC9F,EAAU,KAAK,MAAM,IAAQ,GACzB,EAAU,GAAG,MAAK,KAAK,OAAS,IAEtC,KAAK,QAAQ,eAGT,KAAK,OAAO,OACd,EAAC,EAAS,EAAS,EAAS,GAAa,KAAM,SAAQ,IAAI,CAAC,EAAS,EAAS,EAAS,KAEzF,AAAG,UAAQ,EAAQ,QAEf,KAAK,OAAO,QAAQ,KAAK,GAAG,SAAS,WACzC,KAAK,QAAQ,cAGb,GAAI,GAAoB,GACxB,AAAI,KAAK,OAAO,QAAQ,SACtB,GAAY,IACZ,EAAa,CAAC,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,IAC5G,AAAK,KAAK,OAAO,MACR,KAAK,KAAK,SAAS,MAAO,MAAK,KAAK,QADrB,KAAK,KAAK,QAAU,KAAK,MAAM,IAAQ,IAK7D,GAAwB,MAAK,OAAO,eAAiB,GAEzD,KAAK,KAAK,MAAQ,KAAK,MAAM,IAAQ,GACrC,KAAK,MAAQ,OACb,GAAM,GAAS,CACb,KAAM,EACN,KAAM,EACN,KAAM,EACN,QAAS,EACT,OAAQ,EACR,YAAa,KAAK,KAClB,OAAQ,EAAQ,QAGlB,EAAQ,UAuFN,QAAO,EAA8B,GAAiC,CAC1E,GAAM,GAAK,IAEX,GADI,GAAY,MAAK,OAAS,EAAU,KAAK,OAAQ,IACjD,CAAC,KAAK,OAAO,QAAU,KAAK,OAAO,SAAW,OAAQ,MAAO,CAAE,MAAO,QAC1E,GAAM,GAAO,KAAK,OAAO,eACzB,KAAK,OAAO,eAAiB,GAC7B,GAAI,GACJ,AAAI,MAAO,oBAAsB,WAAY,EAAM,KAAM,QAAK,IAAL,WACpD,AAAI,MAAO,QAAU,YAAa,EAAM,KAAM,QAAK,IAAL,WAC9C,EAAM,KAAM,QAAK,IAAL,WACjB,KAAK,OAAO,eAAiB,EAC7B,GAAM,GAAK,IACX,MAAI,MAAK,OAAO,OAAO,EAAI,SAAU,KAAK,OAAO,OAAQ,KAAK,MAAM,EAAK,GAAK,KAAM,GAC7E,IArfT,eACA,eACA,eACA,eA2EA,eAiHA,eAuNA,eAkBA,eAiCA", + "sources": ["../src/helpers.ts", "../src/sysinfo.ts", "../src/tfjs/tf-browser.ts", "../src/tfjs/backend.ts", "../src/age/age.ts", "../src/profile.ts", "../src/gender/gender.ts", "../src/emotion/emotion.ts", "../src/embedding/embedding.ts", "../src/faceres/faceres.ts", "../src/faceall.ts", "../src/blazeface/facemesh.ts", "../src/blazeface/blazeface.ts", "../src/blazeface/box.ts", "../src/blazeface/util.ts", "../src/blazeface/coords.ts", "../src/blazeface/facepipeline.ts", "../src/posenet/posenet.ts", "../src/posenet/keypoints.ts", "../src/posenet/utils.ts", "../src/posenet/poses.ts", "../src/handpose/handpose.ts", "../src/handpose/box.ts", "../src/handpose/handdetector.ts", "../src/handpose/util.ts", "../src/handpose/handpipeline.ts", "../src/handpose/anchors.ts", "../src/blazepose/blazepose.ts", "../src/blazepose/annotations.ts", "../src/efficientpose/efficientpose.ts", "../src/nanodet/nanodet.ts", "../src/nanodet/labels.ts", "../src/gesture/gesture.ts", "../src/image/image.ts", "../src/image/imagefx.js", "../src/draw/draw.ts", "../src/config.ts", "../src/sample.ts", "../src/human.ts"], + "sourcesContent": ["// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`Human: ModelPath Error: ${path} Expecting JSON file`);\n return path;\n}\n\n// helper function: wrapper around console output\nexport function log(...msg) {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n // eslint-disable-next-line no-console\n if (msg) console.log(ts, 'Human:', ...msg);\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: perform deep merge of multiple objects so it allows full inheriance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n", "export function info(): { platform: string, agent: string } {\n let platform;\n let agent;\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw && raw[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n platform = platformMatch ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n agent = navigator.userAgent.replace(raw[0], '');\n if (platform[1]) agent = agent.replace(raw[1], '');\n agent = agent.replace(/ /g, ' ');\n }\n } else if (typeof process !== 'undefined') {\n platform = `${process.platform} ${process.arch}`;\n agent = `NodeJS ${process.version}`;\n }\n return { platform, agent };\n}\n", "// wrapper to load tfjs in a single place so version can be changed quickly\n\n// simplified\n// { modules: 1250, moduleBytes: 4013323, imports: 7, importBytes: 2255, outputBytes: 2991826, outputFiles: 'dist/tfjs.esm.js' }\n// export * from '@tensorflow/tfjs/dist/index.js';\n// export * from '@tensorflow/tfjs-backend-wasm';\n\n// modular\n// { modules: 1253, moduleBytes: 4029357, imports: 7, importBytes: 2285, outputBytes: 2998298, outputFiles: 'dist/tfjs.esm.js' }\n\n// get versions of all packages.\nimport * as packageBundle from '@tensorflow/tfjs/package.json';\nimport * as packageCore from '@tensorflow/tfjs-core/package.json';\nimport * as packageData from '@tensorflow/tfjs-data/package.json';\nimport * as packageLayers from '@tensorflow/tfjs-layers/package.json';\nimport * as packageConverter from '@tensorflow/tfjs-converter/package.json';\n// for backends, get version from source so it can register backend during import\nimport { version_cpu } from '@tensorflow/tfjs-backend-cpu/dist/index.js';\nimport { version_webgl } from '@tensorflow/tfjs-backend-webgl/dist/index.js';\nimport { version_wasm } from '@tensorflow/tfjs-backend-wasm/dist/index.js';\n\n// export all - compiled\nexport * from '@tensorflow/tfjs-core/dist/index.js';\nexport * from '@tensorflow/tfjs-layers/dist/index.js';\nexport * from '@tensorflow/tfjs-converter/dist/index.js';\nexport * as data from '@tensorflow/tfjs-data/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-cpu/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-webgl/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-wasm/dist/index.js';\n\n// export all - sources\n/*\nexport * from '@tensorflow/tfjs-core/src/index';\nexport * from '@tensorflow/tfjs-layers/src/index';\nexport * from '@tensorflow/tfjs-converter/src/index';\nexport * as data from '@tensorflow/tfjs-data/src/index';\nexport * from '@tensorflow/tfjs-backend-cpu/src/index';\nexport * from '@tensorflow/tfjs-backend-webgl/src/index';\nexport * from '@tensorflow/tfjs-backend-wasm/src/index';\n*/\n\n// export versions\nexport const version = {\n tfjs: packageBundle?.version || undefined,\n 'tfjs-core': packageCore?.version || undefined,\n 'tfjs-data': packageData?.version || undefined,\n 'tfjs-layers': packageLayers?.version || undefined,\n 'tfjs-converter': packageConverter?.version || undefined,\n 'tfjs-backend-cpu': version_cpu || undefined,\n 'tfjs-backend-webgl': version_webgl || undefined,\n 'tfjs-backend-wasm': version_wasm || undefined,\n};\n// export const version = {};\n", "import { log } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\n\nexport const config = {\n name: 'humangl',\n priority: 99,\n canvas: null,\n gl: null,\n width: 1024,\n height: 1024,\n webGLattr: { // https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.2\n alpha: false,\n antialias: false,\n premultipliedAlpha: false,\n preserveDrawingBuffer: false,\n depth: false,\n stencil: false,\n failIfMajorPerformanceCaveat: false,\n desynchronized: true,\n },\n};\n\nexport function register(): void {\n if (!tf.findBackend(config.name)) {\n log('backend registration:', config.name);\n try {\n config.canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(config.width, config.height) : document.createElement('canvas');\n } catch (err) {\n log('error: cannot create canvas:', err);\n return;\n }\n try {\n config.gl = config.canvas.getContext('webgl2', config.webGLattr);\n } catch (err) {\n log('error: cannot get WebGL2 context:', err);\n return;\n }\n try {\n tf.setWebGLContext(2, config.gl);\n } catch (err) {\n log('error: cannot set WebGL2 context:', err);\n return;\n }\n try {\n const ctx = new tf.GPGPUContext(config.gl);\n tf.registerBackend(config.name, () => new tf.MathBackendWebGL(ctx), config.priority);\n } catch (err) {\n log('error: cannot register WebGL backend:', err);\n return;\n }\n try {\n const kernels = tf.getKernelsForBackend('webgl');\n kernels.forEach((kernelConfig) => {\n const newKernelConfig = { ...kernelConfig, backendName: config.name };\n tf.registerKernel(newKernelConfig);\n });\n } catch (err) {\n log('error: cannot update WebGL backend registration:', err);\n return;\n }\n try {\n tf.ENV.set('WEBGL_VERSION', 2);\n // tf.ENV.set('WEBGL_MAX_TEXTURE_SIZE', config.gl.getParameter(config.gl.MAX_TEXTURE_SIZE));\n // tf.ENV.set('WEBGL_FORCE_F16_TEXTURES', true);\n // tf.ENV.set('WEBGL_PACK_DEPTHWISECONV', true);\n } catch (err) {\n log('error: cannot set WebGL backend flags:', err);\n return;\n }\n log('backend registered:', config.name);\n }\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\nlet model;\nlet last = { age: 0 };\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.age.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.face.age.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if ((skipped < config.face.age.skipFrames) && config.videoOptimized && last.age && (last.age > 0)) {\n skipped++;\n return last;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const enhance = tf.mul(resize, [255.0]);\n tf.dispose(resize);\n\n let ageT;\n const obj = { age: 0 };\n\n if (!config.profile) {\n if (config.face.age.enabled) ageT = await model.predict(enhance);\n } else {\n const profileAge = config.face.age.enabled ? await tf.profile(() => model.predict(enhance)) : {};\n ageT = profileAge.result.clone();\n profileAge.result.dispose();\n profile.run('age', profileAge);\n }\n enhance.dispose();\n\n if (ageT) {\n const data = ageT.dataSync();\n obj.age = Math.trunc(10 * data[0]) / 10;\n }\n ageT.dispose();\n\n last = obj;\n resolve(obj);\n });\n}\n", "import { log } from './helpers';\n\nexport const data = {};\n\nexport function run(modelName: string, profileData: any): void {\n if (!profileData || !profileData.kernels) return;\n const maxResults = 5;\n const time = profileData.kernels\n .filter((a) => a.kernelTimeMs > 0)\n .reduce((a, b) => a += b.kernelTimeMs, 0);\n const slowest = profileData.kernels\n .map((a, i) => { a.id = i; return a; })\n .filter((a) => a.kernelTimeMs > 0)\n .sort((a, b) => b.kernelTimeMs - a.kernelTimeMs);\n const largest = profileData.kernels\n .map((a, i) => { a.id = i; return a; })\n .filter((a) => a.totalBytesSnapshot > 0)\n .sort((a, b) => b.totalBytesSnapshot - a.totalBytesSnapshot);\n if (slowest.length > maxResults) slowest.length = maxResults;\n if (largest.length > maxResults) largest.length = maxResults;\n data[modelName] = {\n model: modelName,\n newBytes: profileData.newBytes,\n newTensors: profileData.newTensors,\n peakBytes: profileData.peakBytes,\n numKernelOps: profileData.kernels.length,\n timeKernelOps: time,\n slowestKernelOps: slowest,\n largestKernelOps: largest,\n };\n log('profiler', modelName, data[modelName]);\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\nlet model;\nlet last = { gender: '' };\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet alternative = false;\n\n// tuning values\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.gender.modelPath));\n alternative = model.inputs[0].shape[3] === 1;\n if (!model || !model.modelUrl) log('load model failed:', config.face.gender.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if ((skipped < config.face.gender.skipFrames) && config.videoOptimized && last.gender !== '') {\n skipped++;\n return last;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n let enhance;\n if (alternative) {\n enhance = tf.tidy(() => {\n const [red, green, blue] = tf.split(resize, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const normalize = grayscale.sub(0.5).mul(2); // range grayscale:-1..1\n return normalize;\n });\n } else {\n enhance = tf.mul(resize, [255.0]); // range RGB:0..255\n }\n tf.dispose(resize);\n\n let genderT;\n const obj = { gender: '', confidence: 0 };\n\n if (!config.profile) {\n if (config.face.gender.enabled) genderT = await model.predict(enhance);\n } else {\n const profileGender = config.face.gender.enabled ? await tf.profile(() => model.predict(enhance)) : {};\n genderT = profileGender.result.clone();\n profileGender.result.dispose();\n profile.run('gender', profileGender);\n }\n enhance.dispose();\n\n if (genderT) {\n if (!Array.isArray(genderT)) {\n const data = genderT.dataSync();\n if (alternative) {\n // returns two values 0..1, bigger one is prediction\n if (data[0] > config.face.gender.minConfidence || data[1] > config.face.gender.minConfidence) {\n obj.gender = data[0] > data[1] ? 'female' : 'male';\n obj.confidence = data[0] > data[1] ? (Math.trunc(100 * data[0]) / 100) : (Math.trunc(100 * data[1]) / 100);\n }\n } else {\n // returns one value 0..1, .5 is prediction threshold\n const confidence = Math.trunc(200 * Math.abs((data[0] - 0.5))) / 100;\n if (confidence > config.face.gender.minConfidence) {\n obj.gender = data[0] <= 0.5 ? 'female' : 'male';\n obj.confidence = Math.min(0.99, confidence);\n }\n }\n genderT.dispose();\n } else {\n const gender = genderT[0].dataSync();\n const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;\n if (confidence > config.face.gender.minConfidence) {\n obj.gender = gender[0] <= 0.5 ? 'female' : 'male';\n obj.confidence = Math.min(0.99, confidence);\n }\n /*\n let age = genderT[1].argMax(1).dataSync()[0];\n const all = genderT[1].dataSync();\n age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;\n const descriptor = genderT[1].dataSync();\n */\n genderT.forEach((t) => tf.dispose(t));\n }\n }\n last = obj;\n resolve(obj);\n });\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\nconst annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'];\nlet model;\nlet last: Array<{ score: number, emotion: string }> = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\n// tuning values\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.emotion.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.face.emotion.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if ((skipped < config.face.emotion.skipFrames) && config.videoOptimized && (last.length > 0)) {\n skipped++;\n return last;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const [red, green, blue] = tf.split(resize, 3, 3);\n resize.dispose();\n // weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n red.dispose();\n green.dispose();\n blue.dispose();\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n redNorm.dispose();\n greenNorm.dispose();\n blueNorm.dispose();\n const normalize = tf.tidy(() => grayscale.sub(0.5).mul(2));\n grayscale.dispose();\n const obj: Array<{ score: number, emotion: string }> = [];\n if (config.face.emotion.enabled) {\n let data;\n if (!config.profile) {\n const emotionT = await model.predict(normalize); // result is already in range 0..1, no need for additional activation\n data = emotionT.dataSync();\n tf.dispose(emotionT);\n } else {\n const profileData = await tf.profile(() => model.predict(normalize));\n data = profileData.result.dataSync();\n profileData.result.dispose();\n profile.run('emotion', profileData);\n }\n for (let i = 0; i < data.length; i++) {\n if (data[i] > config.face.emotion.minConfidence) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] });\n }\n obj.sort((a, b) => b.score - a.score);\n }\n normalize.dispose();\n last = obj;\n resolve(obj);\n });\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\ntype Tensor = typeof tf.Tensor;\ntype DB = Array<{ name: string, source: string, embedding: number[] }>;\nlet model;\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.embedding.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.face.embedding.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport function similarity(embedding1, embedding2, order = 2): number {\n if (!embedding1 || !embedding2) return 0;\n if (embedding1?.length === 0 || embedding2?.length === 0) return 0;\n if (embedding1?.length !== embedding2?.length) return 0;\n // general minkowski distance, euclidean distance is limited case where order is 2\n const distance = embedding1\n .map((val, i) => (Math.abs(embedding1[i] - embedding2[i]) ** order)) // distance squared\n .reduce((sum, now) => (sum + now), 0) // sum all distances\n ** (1 / order); // get root of\n const res = Math.max(Math.trunc(1000 * (1 - distance)) / 1000, 0);\n return res;\n}\n\nexport function match(embedding: Array, db: DB, threshold = 0) {\n let best = { similarity: 0, name: '', source: '', embedding: [] as number[] };\n if (!embedding || !db || !Array.isArray(embedding) || !Array.isArray(db)) return best;\n for (const f of db) {\n if (f.embedding && f.name) {\n const perc = similarity(embedding, f.embedding);\n if (perc > threshold && perc > best.similarity) best = { ...f, similarity: perc };\n }\n }\n return best;\n}\n\nexport function enhance(input): Tensor {\n const image = tf.tidy(() => {\n // input received from detector is already normalized to 0..1\n // input is also assumed to be straightened\n // const data = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model\n // do a tight crop of image and resize it to fit the model\n const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n const tensor = input.image || input.tensor;\n if (!(tensor instanceof tf.Tensor)) return null;\n const crop = (tensor.shape.length === 3)\n ? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing\n : tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n\n // convert to black&white to avoid colorization impact\n const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const [red, green, blue] = tf.split(crop, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n\n /*\n // optional increase image contrast\n // or do it per-channel so mean is done on each channel\n // or do it based on histogram\n const mean = merge.mean();\n const factor = 5;\n const contrast = merge.sub(mean).mul(factor).add(mean);\n */\n\n // normalize brightness from 0..1\n const darken = merge.sub(merge.min());\n const lighten = darken.div(darken.max());\n\n return lighten;\n });\n return image;\n}\n\nexport async function predict(input, config): Promise {\n if (!model) return [];\n return new Promise(async (resolve) => {\n // let data: Array<[]> = [];\n let data: Array = [];\n if (config.face.embedding.enabled) {\n const image = enhance(input);\n if (!config.profile) {\n data = tf.tidy(() => {\n /*\n // if needed convert from NHWC to NCHW\n const nchw = image.transpose([3, 0, 1, 2]);\n */\n\n const res = model.predict(image);\n\n /*\n // optionally do it twice with flipped image and average results\n const res1 = model.predict(image);\n const flipped = tf.image.flipLeftRight(image);\n const res2 = model.predict(flipped);\n const merge = tf.stack([res1, res2], 2).squeeze();\n const res = reshape.logSumExp(1);\n */\n\n /*\n // optional normalize outputs with l2 normalization\n const scaled = tf.tidy(() => {\n const l2 = res.norm('euclidean');\n const scale = res.div(l2);\n return scale;\n });\n */\n\n // optional reduce feature vector complexity\n const reshape = res.reshape([128, 2]); // split 256 vectors into 128 x 2\n const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it\n\n const output: Array = reduce.dataSync();\n return [...output]; // convert typed array to simple array\n });\n } else {\n const profileData = await tf.profile(() => model.predict({ img_inputs: image }));\n data = [...profileData.result.dataSync()];\n profileData.result.dispose();\n profile.run('emotion', profileData);\n }\n tf.dispose(image);\n }\n resolve(data);\n });\n}\n\n/*\ngit clone https://github.com/becauseofAI/MobileFace\ncd MobileFace/MobileFace_Identification\nmmconvert --srcFramework mxnet --inputWeight MobileFace_Identification_V3-0000.params --inputNetwork MobileFace_Identification_V3-symbol.json --inputShape 3,112,112 --dstFramework tensorflow --outputModel saved\nsaved_model_cli show --dir saved/\ntensorflowjs_converter --input_format tf_saved_model --output_format tfjs_graph_model --saved_model_tags train saved/ graph/\n~/dev/detector/signature.js graph/\n2021-03-12 08:25:12 DATA: created on: 2021-03-12T13:17:11.960Z\n2021-03-12 08:25:12 INFO: graph model: /home/vlado/dev/face/MobileFace/MobileFace_Identification/graph/model.json\n2021-03-12 08:25:12 INFO: size: { unreliable: true, numTensors: 75, numDataBuffers: 75, numBytes: 2183192 }\n2021-03-12 08:25:12 INFO: model inputs based on signature\n2021-03-12 08:25:12 INFO: model outputs based on signature\n2021-03-12 08:25:12 DATA: inputs: [ { name: 'data:0', dtype: 'DT_FLOAT', shape: [ -1, 112, 112, 3, [length]: 4 ] }, [length]: 1 ]\n2021-03-12 08:25:12 DATA: outputs: [ { id: 0, name: 'batchnorm0/add_1:0', dytpe: 'DT_FLOAT', shape: [ -1, 256, [length]: 2 ] }, [length]: 1 ]\n*/\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\nlet model;\nlet last = { age: 0 };\nlet skipped = Number.MAX_SAFE_INTEGER;\n\ntype Tensor = typeof tf.Tensor;\ntype DB = Array<{ name: string, source: string, embedding: number[] }>;\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.description.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.face.description.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport function similarity(embedding1, embedding2, order = 2): number {\n if (!embedding1 || !embedding2) return 0;\n if (embedding1?.length === 0 || embedding2?.length === 0) return 0;\n if (embedding1?.length !== embedding2?.length) return 0;\n // general minkowski distance, euclidean distance is limited case where order is 2\n const distance = 5.0 * embedding1\n .map((val, i) => (Math.abs(embedding1[i] - embedding2[i]) ** order)) // distance squared\n .reduce((sum, now) => (sum + now), 0) // sum all distances\n ** (1 / order); // get root of\n const res = Math.max(0, 100 - distance) / 100.0;\n return res;\n}\n\nexport function match(embedding: Array, db: DB, threshold = 0) {\n let best = { similarity: 0, name: '', source: '', embedding: [] as number[] };\n if (!embedding || !db || !Array.isArray(embedding) || !Array.isArray(db)) return best;\n for (const f of db) {\n if (f.embedding && f.name) {\n const perc = similarity(embedding, f.embedding);\n if (perc > threshold && perc > best.similarity) best = { ...f, similarity: perc };\n }\n }\n return best;\n}\n\nexport function enhance(input): Tensor {\n const image = tf.tidy(() => {\n // input received from detector is already normalized to 0..1\n // input is also assumed to be straightened\n const tensor = input.image || input.tensor || input;\n if (!(tensor instanceof tf.Tensor)) return null;\n // do a tight crop of image and resize it to fit the model\n const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // const box = [[0.0, 0.0, 1.0, 1.0]]; // basically no crop for test\n const crop = (tensor.shape.length === 3)\n ? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing\n : tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n // const crop = tf.image.resizeBilinear(tensor, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model\n\n /*\n // convert to black&white to avoid colorization impact\n const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const [red, green, blue] = tf.split(crop, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n */\n\n /*\n // optional increase image contrast\n // or do it per-channel so mean is done on each channel\n // or do it based on histogram\n const mean = merge.mean();\n const factor = 5;\n const contrast = merge.sub(mean).mul(factor).add(mean);\n */\n\n /*\n // normalize brightness from 0..1\n const darken = crop.sub(crop.min());\n const lighten = darken.div(darken.max());\n */\n\n const norm = crop.mul(255);\n\n return norm;\n });\n return image;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if ((skipped < config.face.description.skipFrames) && config.videoOptimized && last.age && (last.age > 0)) {\n skipped++;\n return last;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const enhanced = enhance(image);\n\n let resT;\n const obj = {\n age: 0,\n gender: 'unknown',\n genderConfidence: 0,\n descriptor: [] };\n\n if (!config.profile) {\n if (config.face.description.enabled) resT = await model.predict(enhanced);\n } else {\n const profileDesc = config.face.description.enabled ? await tf.profile(() => model.predict(enhanced)) : {};\n resT = profileDesc.result;\n profile.run('faceres', profileDesc);\n }\n tf.dispose(enhanced);\n\n if (resT) {\n tf.tidy(() => {\n const gender = resT.find((t) => t.shape[1] === 1).dataSync();\n const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;\n if (confidence > config.face.gender.minConfidence) {\n obj.gender = gender[0] <= 0.5 ? 'female' : 'male';\n obj.genderConfidence = Math.min(0.99, confidence);\n }\n const age = resT.find((t) => t.shape[1] === 100).argMax(1).dataSync()[0];\n const all = resT.find((t) => t.shape[1] === 100).dataSync();\n obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;\n\n const desc = resT.find((t) => t.shape[1] === 1024);\n // const reshape = desc.reshape([128, 8]);\n // const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it\n\n obj.descriptor = [...desc.dataSync()];\n });\n resT.forEach((t) => tf.dispose(t));\n }\n\n last = obj;\n resolve(obj);\n });\n}\n", "import { log, now } from './helpers';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as age from './age/age';\nimport * as gender from './gender/gender';\nimport * as emotion from './emotion/emotion';\nimport * as embedding from './embedding/embedding';\nimport * as faceres from './faceres/faceres';\n\ntype Tensor = typeof tf.Tensor;\n\nconst calculateFaceAngle = (face, image_size): { angle: { pitch: number, yaw: number, roll: number }, matrix: [number, number, number, number, number, number, number, number, number] } => {\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const degrees = (theta) => (theta * 180) / Math.PI;\n // const degrees = (theta) => Math.abs(((theta * 180) / Math.PI) % 360);\n const normalize = (v) => { // normalize vector\n const length = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);\n v[0] /= length;\n v[1] /= length;\n v[2] /= length;\n return v;\n };\n const subVectors = (a, b) => { // vector subtraction (a - b)\n const x = a[0] - b[0];\n const y = a[1] - b[1];\n const z = a[2] - b[2];\n return [x, y, z];\n };\n const crossVectors = (a, b) => { // vector cross product (a x b)\n const x = a[1] * b[2] - a[2] * b[1];\n const y = a[2] * b[0] - a[0] * b[2];\n const z = a[0] * b[1] - a[1] * b[0];\n return [x, y, z];\n };\n // 3x3 rotation matrix to Euler angles based on https://www.geometrictools.com/Documentation/EulerAngles.pdf\n const rotationMatrixToEulerAngle = (r) => {\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const [r00, r01, r02, r10, r11, r12, r20, r21, r22] = r;\n let thetaX; let thetaY; let thetaZ;\n if (r10 < 1) { // YZX calculation\n if (r10 > -1) {\n thetaZ = Math.asin(r10);\n thetaY = Math.atan2(-r20, r00);\n thetaX = Math.atan2(-r12, r11);\n } else {\n thetaZ = -Math.PI / 2;\n thetaY = -Math.atan2(r21, r22);\n thetaX = 0;\n }\n } else {\n thetaZ = Math.PI / 2;\n thetaY = Math.atan2(r21, r22);\n thetaX = 0;\n }\n return { pitch: 2 * -thetaX, yaw: 2 * -thetaY, roll: 2 * -thetaZ };\n };\n // simple Euler angle calculation based existing 3D mesh\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const meshToEulerAngle = (mesh) => {\n const radians = (a1, a2, b1, b2) => Math.atan2(b2 - a2, b1 - a1);\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const angle = {\n // values are in radians in range of -pi/2 to pi/2 which is -90 to +90 degrees\n // value of 0 means center\n // pitch is face move up/down\n pitch: radians(mesh[10][1], mesh[10][2], mesh[152][1], mesh[152][2]), // looking at y,z of top and bottom points of the face\n // yaw is face turn left/right\n yaw: radians(mesh[33][0], mesh[33][2], mesh[263][0], mesh[263][2]), // looking at x,z of outside corners of leftEye and rightEye\n // roll is face lean left/right\n roll: radians(mesh[33][0], mesh[33][1], mesh[263][0], mesh[263][1]), // looking at x,y of outside corners of leftEye and rightEye\n };\n return angle;\n };\n\n const mesh = face.meshRaw;\n if (!mesh || mesh.length < 300) return { angle: { pitch: 0, yaw: 0, roll: 0 }, matrix: [1, 0, 0, 0, 1, 0, 0, 0, 1] };\n\n const size = Math.max(face.boxRaw[2] * image_size[0], face.boxRaw[3] * image_size[1]) / 1.5;\n // top, bottom, left, right\n const pts = [mesh[10], mesh[152], mesh[234], mesh[454]].map((pt) => [\n // make the xyz coordinates proportional, independent of the image/box size\n pt[0] * image_size[0] / size,\n pt[1] * image_size[1] / size,\n pt[2],\n ]);\n\n const y_axis = normalize(subVectors(pts[1], pts[0]));\n let x_axis = normalize(subVectors(pts[3], pts[2]));\n const z_axis = normalize(crossVectors(x_axis, y_axis));\n // adjust x_axis to make sure that all axes are perpendicular to each other\n x_axis = crossVectors(y_axis, z_axis);\n\n // Rotation Matrix from Axis Vectors - http://renderdan.blogspot.com/2006/05/rotation-matrix-from-axis-vectors.html\n // 3x3 rotation matrix is flatten to array in row-major order. Note that the rotation represented by this matrix is inverted.\n const matrix: [number, number, number, number, number, number, number, number, number] = [\n x_axis[0], x_axis[1], x_axis[2],\n y_axis[0], y_axis[1], y_axis[2],\n z_axis[0], z_axis[1], z_axis[2],\n ];\n const angle = rotationMatrixToEulerAngle(matrix);\n // const angle = meshToEulerAngle(mesh);\n return { angle, matrix };\n};\n\nexport const detectFace = async (parent, input): Promise => {\n // run facemesh, includes blazeface and iris\n // eslint-disable-next-line no-async-promise-executor\n let timeStamp;\n let ageRes;\n let genderRes;\n let emotionRes;\n let embeddingRes;\n let descRes;\n const faceRes: Array<{\n confidence: number,\n boxConfidence: number,\n faceConfidence: number,\n box: [number, number, number, number],\n mesh: Array<[number, number, number]>\n meshRaw: Array<[number, number, number]>\n boxRaw: [number, number, number, number],\n annotations: Array<{ part: string, points: Array<[number, number, number]>[] }>,\n age: number,\n gender: string,\n genderConfidence: number,\n emotion: string,\n embedding: number[],\n iris: number,\n rotation: {\n angle: { pitch: number, yaw: number, roll: number },\n matrix: [number, number, number, number, number, number, number, number, number]\n },\n tensor: Tensor,\n }> = [];\n parent.state = 'run:face';\n timeStamp = now();\n const faces = await parent.models.face?.estimateFaces(input, parent.config);\n parent.perf.face = Math.trunc(now() - timeStamp);\n if (!faces) return [];\n for (const face of faces) {\n parent.analyze('Get Face');\n\n // is something went wrong, skip the face\n if (!face.image || face.image.isDisposedInternal) {\n log('Face object is disposed:', face.image);\n continue;\n }\n\n const rotation = calculateFaceAngle(face, [input.shape[2], input.shape[1]]);\n\n // run age, inherits face from blazeface\n parent.analyze('Start Age:');\n if (parent.config.async) {\n ageRes = parent.config.face.age.enabled ? age.predict(face.image, parent.config) : {};\n } else {\n parent.state = 'run:age';\n timeStamp = now();\n ageRes = parent.config.face.age.enabled ? await age.predict(face.image, parent.config) : {};\n parent.perf.age = Math.trunc(now() - timeStamp);\n }\n\n // run gender, inherits face from blazeface\n parent.analyze('Start Gender:');\n if (parent.config.async) {\n genderRes = parent.config.face.gender.enabled ? gender.predict(face.image, parent.config) : {};\n } else {\n parent.state = 'run:gender';\n timeStamp = now();\n genderRes = parent.config.face.gender.enabled ? await gender.predict(face.image, parent.config) : {};\n parent.perf.gender = Math.trunc(now() - timeStamp);\n }\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Emotion:');\n if (parent.config.async) {\n emotionRes = parent.config.face.emotion.enabled ? emotion.predict(face.image, parent.config) : {};\n } else {\n parent.state = 'run:emotion';\n timeStamp = now();\n emotionRes = parent.config.face.emotion.enabled ? await emotion.predict(face.image, parent.config) : {};\n parent.perf.emotion = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Emotion:');\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Embedding:');\n if (parent.config.async) {\n embeddingRes = parent.config.face.embedding.enabled ? embedding.predict(face, parent.config) : [];\n } else {\n parent.state = 'run:embedding';\n timeStamp = now();\n embeddingRes = parent.config.face.embedding.enabled ? await embedding.predict(face, parent.config) : [];\n parent.perf.embedding = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Embedding:');\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Description:');\n if (parent.config.async) {\n descRes = parent.config.face.description.enabled ? faceres.predict(face, parent.config) : [];\n } else {\n parent.state = 'run:description';\n timeStamp = now();\n descRes = parent.config.face.description.enabled ? await faceres.predict(face.image, parent.config) : [];\n parent.perf.embedding = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Description:');\n\n // if async wait for results\n if (parent.config.async) {\n [ageRes, genderRes, emotionRes, embeddingRes, descRes] = await Promise.all([ageRes, genderRes, emotionRes, embeddingRes, descRes]);\n }\n\n parent.analyze('Finish Face:');\n\n // calculate iris distance\n // iris: array[ center, left, top, right, bottom]\n if (!parent.config.face.iris.enabled && face?.annotations?.leftEyeIris && face?.annotations?.rightEyeIris) {\n delete face.annotations.leftEyeIris;\n delete face.annotations.rightEyeIris;\n }\n const irisSize = (face.annotations?.leftEyeIris && face.annotations?.rightEyeIris)\n /* average human iris size is 11.7mm */\n ? 11.7 * Math.max(Math.abs(face.annotations.leftEyeIris[3][0] - face.annotations.leftEyeIris[1][0]), Math.abs(face.annotations.rightEyeIris[4][1] - face.annotations.rightEyeIris[2][1]))\n : 0;\n\n // combine results\n faceRes.push({\n ...face,\n age: descRes.age || ageRes.age,\n gender: descRes.gender || genderRes.gender,\n genderConfidence: descRes.genderConfidence || genderRes.confidence,\n embedding: descRes.descriptor || embeddingRes,\n emotion: emotionRes,\n iris: (irisSize !== 0) ? Math.trunc(irisSize) / 100 : 0,\n rotation,\n tensor: parent.config.face.detector.return ? face.image?.squeeze() : null,\n });\n // dispose original face tensor\n face.image?.dispose();\n\n parent.analyze('End Face');\n }\n parent.analyze('End FaceMesh:');\n if (parent.config.async) {\n if (parent.perf.face) delete parent.perf.face;\n if (parent.perf.age) delete parent.perf.age;\n if (parent.perf.gender) delete parent.perf.gender;\n if (parent.perf.emotion) delete parent.perf.emotion;\n }\n return faceRes;\n};\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as blazeface from './blazeface';\nimport * as facepipeline from './facepipeline';\nimport * as coords from './coords';\n\nexport class MediaPipeFaceMesh {\n facePipeline: any;\n config: any;\n\n constructor(blazeFace, blazeMeshModel, irisModel, config) {\n this.facePipeline = new facepipeline.Pipeline(blazeFace, blazeMeshModel, irisModel);\n this.config = config;\n }\n\n async estimateFaces(input, config): Promise<{ confidence, boxConfidence, faceConfidence, box, mesh, boxRaw, meshRaw, annotations, image }[]> {\n const predictions = await this.facePipeline.predict(input, config);\n const results: Array<{ confidence, boxConfidence, faceConfidence, box, mesh, boxRaw, meshRaw, annotations, image }> = [];\n for (const prediction of (predictions || [])) {\n if (prediction.isDisposedInternal) continue; // guard against disposed tensors on long running operations such as pause in middle of processing\n const mesh = prediction.coords ? prediction.coords.arraySync() : [];\n const meshRaw = mesh.map((pt) => [\n pt[0] / input.shape[2],\n pt[1] / input.shape[1],\n pt[2] / this.facePipeline.meshSize,\n ]);\n const annotations = {};\n if (mesh && mesh.length > 0) {\n for (const key of Object.keys(coords.MESH_ANNOTATIONS)) annotations[key] = coords.MESH_ANNOTATIONS[key].map((index) => mesh[index]);\n }\n const box = prediction.box ? [\n Math.max(0, prediction.box.startPoint[0]),\n Math.max(0, prediction.box.startPoint[1]),\n Math.min(input.shape[2], prediction.box.endPoint[0]) - Math.max(0, prediction.box.startPoint[0]),\n Math.min(input.shape[1], prediction.box.endPoint[1]) - Math.max(0, prediction.box.startPoint[1]),\n ] : 0;\n const boxRaw = prediction.box ? [\n prediction.box.startPoint[0] / input.shape[2],\n prediction.box.startPoint[1] / input.shape[1],\n (prediction.box.endPoint[0] - prediction.box.startPoint[0]) / input.shape[2],\n (prediction.box.endPoint[1] - prediction.box.startPoint[1]) / input.shape[1],\n ] : [];\n results.push({\n confidence: Math.round(100 * prediction.faceConfidence || 100 * prediction.boxConfidence || 0) / 100,\n boxConfidence: Math.round(100 * prediction.boxConfidence) / 100,\n faceConfidence: Math.round(100 * prediction.faceConfidence) / 100,\n box,\n boxRaw,\n mesh,\n meshRaw,\n annotations,\n image: prediction.image ? prediction.image.clone() : null,\n });\n if (prediction.coords) prediction.coords.dispose();\n if (prediction.image) prediction.image.dispose();\n }\n return results;\n }\n}\n\nlet faceModels:[any, any, any] = [null, null, null];\nexport async function load(config): Promise {\n if ((!faceModels[0] && config.face.enabled) || (!faceModels[1] && config.face.mesh.enabled) || (!faceModels[2] && config.face.iris.enabled)) {\n faceModels = await Promise.all([\n (!faceModels[0] && config.face.enabled) ? blazeface.load(config) : null,\n (!faceModels[1] && config.face.mesh.enabled) ? tf.loadGraphModel(join(config.modelBasePath, config.face.mesh.modelPath), { fromTFHub: config.face.mesh.modelPath.includes('tfhub.dev') }) : null,\n (!faceModels[2] && config.face.iris.enabled) ? tf.loadGraphModel(join(config.modelBasePath, config.face.iris.modelPath), { fromTFHub: config.face.iris.modelPath.includes('tfhub.dev') }) : null,\n ]);\n if (config.face.mesh.enabled) {\n if (!faceModels[1] || !faceModels[1].modelUrl) log('load model failed:', config.face.mesh.modelPath);\n else if (config.debug) log('load model:', faceModels[1].modelUrl);\n }\n if (config.face.iris.enabled) {\n if (!faceModels[2] || !faceModels[1].modelUrl) log('load model failed:', config.face.iris.modelPath);\n else if (config.debug) log('load model:', faceModels[2].modelUrl);\n }\n } else if (config.debug) {\n log('cached model:', faceModels[0].model.modelUrl);\n log('cached model:', faceModels[1].modelUrl);\n log('cached model:', faceModels[2].modelUrl);\n }\n const faceMesh = new MediaPipeFaceMesh(faceModels[0], faceModels[1], faceModels[2], config);\n return faceMesh;\n}\n\nexport const triangulation = coords.TRI468;\nexport const uvmap = coords.UV468;\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\n\nconst NUM_LANDMARKS = 6;\n\nfunction generateAnchors(inputSize) {\n const spec = { strides: [inputSize / 16, inputSize / 8], anchors: [2, 6] };\n const anchors: Array<[number, number]> = [];\n for (let i = 0; i < spec.strides.length; i++) {\n const stride = spec.strides[i];\n const gridRows = Math.floor((inputSize + stride - 1) / stride);\n const gridCols = Math.floor((inputSize + stride - 1) / stride);\n const anchorsNum = spec.anchors[i];\n for (let gridY = 0; gridY < gridRows; gridY++) {\n const anchorY = stride * (gridY + 0.5);\n for (let gridX = 0; gridX < gridCols; gridX++) {\n const anchorX = stride * (gridX + 0.5);\n for (let n = 0; n < anchorsNum; n++) {\n anchors.push([anchorX, anchorY]);\n }\n }\n }\n }\n return anchors;\n}\n\nexport const disposeBox = (box) => {\n box.startEndTensor.dispose();\n box.startPoint.dispose();\n box.endPoint.dispose();\n};\n\nconst createBox = (startEndTensor) => ({\n startEndTensor,\n startPoint: tf.slice(startEndTensor, [0, 0], [-1, 2]),\n endPoint: tf.slice(startEndTensor, [0, 2], [-1, 2]),\n});\n\nfunction decodeBounds(boxOutputs, anchors, inputSize) {\n const boxStarts = tf.slice(boxOutputs, [0, 1], [-1, 2]);\n const centers = tf.add(boxStarts, anchors);\n const boxSizes = tf.slice(boxOutputs, [0, 3], [-1, 2]);\n const boxSizesNormalized = tf.div(boxSizes, inputSize);\n const centersNormalized = tf.div(centers, inputSize);\n const halfBoxSize = tf.div(boxSizesNormalized, 2);\n const starts = tf.sub(centersNormalized, halfBoxSize);\n const ends = tf.add(centersNormalized, halfBoxSize);\n const startNormalized = tf.mul(starts, inputSize);\n const endNormalized = tf.mul(ends, inputSize);\n const concatAxis = 1;\n return tf.concat2d([startNormalized, endNormalized], concatAxis);\n}\n\nexport class BlazeFaceModel {\n model: any;\n anchorsData: any;\n anchors: any;\n inputSize: number;\n config: any;\n\n constructor(model, config) {\n this.model = model;\n this.anchorsData = generateAnchors(model.inputs[0].shape[1]);\n this.anchors = tf.tensor2d(this.anchorsData);\n this.inputSize = model.inputs[0].shape[2];\n this.config = config;\n }\n\n async getBoundingBoxes(inputImage) {\n // sanity check on input\n if ((!inputImage) || (inputImage.isDisposedInternal) || (inputImage.shape.length !== 4) || (inputImage.shape[1] < 1) || (inputImage.shape[2] < 1)) return null;\n const [batch, boxes, scores] = tf.tidy(() => {\n const resizedImage = inputImage.resizeBilinear([this.inputSize, this.inputSize]);\n // const normalizedImage = tf.mul(tf.sub(resizedImage.div(255), 0.5), 2);\n const normalizedImage = resizedImage.div(127.5).sub(0.5);\n const batchedPrediction = this.model.predict(normalizedImage);\n let batchOut;\n // are we using tfhub or pinto converted model?\n if (Array.isArray(batchedPrediction)) {\n const sorted = batchedPrediction.sort((a, b) => a.size - b.size);\n const concat384 = tf.concat([sorted[0], sorted[2]], 2); // dim: 384, 1 + 16\n const concat512 = tf.concat([sorted[1], sorted[3]], 2); // dim: 512, 1 + 16\n const concat = tf.concat([concat512, concat384], 1);\n batchOut = concat.squeeze(0);\n } else {\n batchOut = batchedPrediction.squeeze(); // when using tfhub model\n }\n const boxesOut = decodeBounds(batchOut, this.anchors, [this.inputSize, this.inputSize]);\n const logits = tf.slice(batchOut, [0, 0], [-1, 1]);\n const scoresOut = tf.sigmoid(logits).squeeze();\n return [batchOut, boxesOut, scoresOut];\n });\n const boxIndicesTensor = await tf.image.nonMaxSuppressionAsync(boxes, scores, this.config.face.detector.maxFaces, this.config.face.detector.iouThreshold, this.config.face.detector.scoreThreshold);\n const boxIndices = boxIndicesTensor.arraySync();\n boxIndicesTensor.dispose();\n const boundingBoxesMap = boxIndices.map((boxIndex) => tf.slice(boxes, [boxIndex, 0], [1, -1]));\n const boundingBoxes = boundingBoxesMap.map((boundingBox) => {\n const vals = boundingBox.arraySync();\n boundingBox.dispose();\n return vals;\n });\n\n const scoresVal = scores.dataSync();\n const annotatedBoxes: Array<{ box: any, landmarks: any, anchor: any, confidence: number }> = [];\n for (let i = 0; i < boundingBoxes.length; i++) {\n const boxIndex = boxIndices[i];\n const confidence = scoresVal[boxIndex];\n if (confidence > this.config.face.detector.minConfidence) {\n const box = createBox(boundingBoxes[i]);\n const anchor = this.anchorsData[boxIndex];\n const landmarks = tf.tidy(() => tf.slice(batch, [boxIndex, NUM_LANDMARKS - 1], [1, -1]).squeeze().reshape([NUM_LANDMARKS, -1]));\n annotatedBoxes.push({ box, landmarks, anchor, confidence });\n }\n }\n batch.dispose();\n boxes.dispose();\n scores.dispose();\n return {\n boxes: annotatedBoxes,\n scaleFactor: [inputImage.shape[2] / this.inputSize, inputImage.shape[1] / this.inputSize],\n };\n }\n}\n\nexport async function load(config) {\n const model = await tf.loadGraphModel(join(config.modelBasePath, config.face.detector.modelPath), { fromTFHub: config.face.detector.modelPath.includes('tfhub.dev') });\n const blazeFace = new BlazeFaceModel(model, config);\n if (!model || !model.modelUrl) log('load model failed:', config.face.detector.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n return blazeFace;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n return { startPoint, endPoint };\n}\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]];\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]];\n return { startPoint, endPoint, landmarks: box.landmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [centers[0] - halfSize, centers[1] - halfSize];\n const endPoint = [centers[0] + halfSize, centers[1] + halfSize];\n return { startPoint, endPoint, landmarks: box.landmarks };\n}\n", "export const IDENTITY_MATRIX = [[1, 0, 0], [0, 1, 0], [0, 0, 1]];\n/**\n * Normalizes the provided angle to the range -pi to pi.\n * @param angle The angle in radians to be normalized.\n */\nexport function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\n/**\n * Computes the angle of rotation between two anchor points.\n * @param point1 First anchor point\n * @param point2 Second anchor point\n */\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport function radToDegrees(rad) {\n return rad * 180 / Math.PI;\n}\n\nexport function buildTranslationMatrix(x, y) {\n return [[1, 0, x], [0, 1, y], [0, 0, 1]];\n}\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n\nexport function xyDistanceBetweenPoints(a, b) {\n return Math.sqrt(((a[0] - b[0]) ** 2) + ((a[1] - b[1]) ** 2));\n}\n", "export const MESH_ANNOTATIONS = {\n silhouette: [\n 10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288,\n 397, 365, 379, 378, 400, 377, 152, 148, 176, 149, 150, 136,\n 172, 58, 132, 93, 234, 127, 162, 21, 54, 103, 67, 109,\n ],\n lipsUpperOuter: [61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291],\n lipsLowerOuter: [146, 91, 181, 84, 17, 314, 405, 321, 375, 291],\n lipsUpperInner: [78, 191, 80, 81, 82, 13, 312, 311, 310, 415, 308],\n lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308],\n rightEyeUpper0: [246, 161, 160, 159, 158, 157, 173],\n rightEyeLower0: [33, 7, 163, 144, 145, 153, 154, 155, 133],\n rightEyeUpper1: [247, 30, 29, 27, 28, 56, 190],\n rightEyeLower1: [130, 25, 110, 24, 23, 22, 26, 112, 243],\n rightEyeUpper2: [113, 225, 224, 223, 222, 221, 189],\n rightEyeLower2: [226, 31, 228, 229, 230, 231, 232, 233, 244],\n rightEyeLower3: [143, 111, 117, 118, 119, 120, 121, 128, 245],\n rightEyebrowUpper: [156, 70, 63, 105, 66, 107, 55, 193],\n rightEyebrowLower: [35, 124, 46, 53, 52, 65],\n rightEyeIris: [473, 474, 475, 476, 477],\n leftEyeUpper0: [466, 388, 387, 386, 385, 384, 398],\n leftEyeLower0: [263, 249, 390, 373, 374, 380, 381, 382, 362],\n leftEyeUpper1: [467, 260, 259, 257, 258, 286, 414],\n leftEyeLower1: [359, 255, 339, 254, 253, 252, 256, 341, 463],\n leftEyeUpper2: [342, 445, 444, 443, 442, 441, 413],\n leftEyeLower2: [446, 261, 448, 449, 450, 451, 452, 453, 464],\n leftEyeLower3: [372, 340, 346, 347, 348, 349, 350, 357, 465],\n leftEyebrowUpper: [383, 300, 293, 334, 296, 336, 285, 417],\n leftEyebrowLower: [265, 353, 276, 283, 282, 295],\n leftEyeIris: [468, 469, 470, 471, 472],\n midwayBetweenEyes: [168],\n noseTip: [1],\n noseBottom: [2],\n noseRightCorner: [98],\n noseLeftCorner: [327],\n rightCheek: [205],\n leftCheek: [425],\n};\n\nexport const MESH_TO_IRIS_INDICES_MAP = [ // A mapping from facemesh model keypoints to iris model keypoints.\n { key: 'EyeUpper0', indices: [9, 10, 11, 12, 13, 14, 15] },\n { key: 'EyeUpper1', indices: [25, 26, 27, 28, 29, 30, 31] },\n { key: 'EyeUpper2', indices: [41, 42, 43, 44, 45, 46, 47] },\n { key: 'EyeLower0', indices: [0, 1, 2, 3, 4, 5, 6, 7, 8] },\n { key: 'EyeLower1', indices: [16, 17, 18, 19, 20, 21, 22, 23, 24] },\n { key: 'EyeLower2', indices: [32, 33, 34, 35, 36, 37, 38, 39, 40] },\n { key: 'EyeLower3', indices: [54, 55, 56, 57, 58, 59, 60, 61, 62] },\n // { key: 'EyebrowUpper', indices: [63, 64, 65, 66, 67, 68, 69, 70] },\n // { key: 'EyebrowLower', indices: [48, 49, 50, 51, 52, 53] },\n];\n\nexport const UV468 = [\n [0.499976992607117, 0.652534008026123],\n [0.500025987625122, 0.547487020492554],\n [0.499974012374878, 0.602371990680695],\n [0.482113003730774, 0.471979022026062],\n [0.500150978565216, 0.527155995368958],\n [0.499909996986389, 0.498252987861633],\n [0.499523013830185, 0.40106201171875],\n [0.289712011814117, 0.380764007568359],\n [0.499954998493195, 0.312398016452789],\n [0.499987006187439, 0.269918978214264],\n [0.500023007392883, 0.107050001621246],\n [0.500023007392883, 0.666234016418457],\n [0.5000159740448, 0.679224014282227],\n [0.500023007392883, 0.692348003387451],\n [0.499976992607117, 0.695277988910675],\n [0.499976992607117, 0.70593398809433],\n [0.499976992607117, 0.719385027885437],\n [0.499976992607117, 0.737019002437592],\n [0.499967992305756, 0.781370997428894],\n [0.499816000461578, 0.562981009483337],\n [0.473773002624512, 0.573909997940063],\n [0.104906998574734, 0.254140973091125],\n [0.365929991006851, 0.409575998783112],\n [0.338757991790771, 0.41302502155304],\n [0.311120003461838, 0.409460008144379],\n [0.274657994508743, 0.389131009578705],\n [0.393361985683441, 0.403706014156342],\n [0.345234006643295, 0.344011008739471],\n [0.370094001293182, 0.346076011657715],\n [0.319321990013123, 0.347265005111694],\n [0.297903001308441, 0.353591024875641],\n [0.24779200553894, 0.410809993743896],\n [0.396889001131058, 0.842755019664764],\n [0.280097991228104, 0.375599980354309],\n [0.106310002505779, 0.399955987930298],\n [0.2099249958992, 0.391353011131287],\n [0.355807989835739, 0.534406006336212],\n [0.471751004457474, 0.65040397644043],\n [0.474155008792877, 0.680191993713379],\n [0.439785003662109, 0.657229006290436],\n [0.414617002010345, 0.66654098033905],\n [0.450374007225037, 0.680860996246338],\n [0.428770989179611, 0.682690978050232],\n [0.374971002340317, 0.727805018424988],\n [0.486716985702515, 0.547628998756409],\n [0.485300987958908, 0.527395009994507],\n [0.257764995098114, 0.314490020275116],\n [0.401223003864288, 0.455172002315521],\n [0.429818987846375, 0.548614978790283],\n [0.421351999044418, 0.533740997314453],\n [0.276895999908447, 0.532056987285614],\n [0.483370006084442, 0.499586999416351],\n [0.33721199631691, 0.282882988452911],\n [0.296391993761063, 0.293242990970612],\n [0.169294998049736, 0.193813979625702],\n [0.447580009698868, 0.302609980106354],\n [0.392390012741089, 0.353887975215912],\n [0.354490011930466, 0.696784019470215],\n [0.067304998636246, 0.730105042457581],\n [0.442739009857178, 0.572826027870178],\n [0.457098007202148, 0.584792017936707],\n [0.381974011659622, 0.694710969924927],\n [0.392388999462128, 0.694203019142151],\n [0.277076005935669, 0.271932005882263],\n [0.422551989555359, 0.563233017921448],\n [0.385919004678726, 0.281364023685455],\n [0.383103013038635, 0.255840003490448],\n [0.331431001424789, 0.119714021682739],\n [0.229923993349075, 0.232002973556519],\n [0.364500999450684, 0.189113974571228],\n [0.229622006416321, 0.299540996551514],\n [0.173287004232407, 0.278747975826263],\n [0.472878992557526, 0.666198015213013],\n [0.446828007698059, 0.668527007102966],\n [0.422762006521225, 0.673889994621277],\n [0.445307999849319, 0.580065965652466],\n [0.388103008270264, 0.693961024284363],\n [0.403039008378983, 0.706539988517761],\n [0.403629004955292, 0.693953037261963],\n [0.460041999816895, 0.557139039039612],\n [0.431158006191254, 0.692366003990173],\n [0.452181994915009, 0.692366003990173],\n [0.475387006998062, 0.692366003990173],\n [0.465828001499176, 0.779190003871918],\n [0.472328990697861, 0.736225962638855],\n [0.473087012767792, 0.717857003211975],\n [0.473122000694275, 0.704625964164734],\n [0.473033010959625, 0.695277988910675],\n [0.427942007780075, 0.695277988910675],\n [0.426479011774063, 0.703539967536926],\n [0.423162013292313, 0.711845993995667],\n [0.4183090031147, 0.720062971115112],\n [0.390094995498657, 0.639572978019714],\n [0.013953999616206, 0.560034036636353],\n [0.499913990497589, 0.58014702796936],\n [0.413199990987778, 0.69539999961853],\n [0.409626007080078, 0.701822996139526],\n [0.468080013990402, 0.601534962654114],\n [0.422728985548019, 0.585985004901886],\n [0.463079988956451, 0.593783974647522],\n [0.37211999297142, 0.47341400384903],\n [0.334562003612518, 0.496073007583618],\n [0.411671012639999, 0.546965003013611],\n [0.242175996303558, 0.14767599105835],\n [0.290776997804642, 0.201445996761322],\n [0.327338010072708, 0.256527006626129],\n [0.399509996175766, 0.748921036720276],\n [0.441727995872498, 0.261676013469696],\n [0.429764986038208, 0.187834024429321],\n [0.412198007106781, 0.108901023864746],\n [0.288955003023148, 0.398952007293701],\n [0.218936994671822, 0.435410976409912],\n [0.41278201341629, 0.398970007896423],\n [0.257135003805161, 0.355440020561218],\n [0.427684992551804, 0.437960982322693],\n [0.448339998722076, 0.536936044692993],\n [0.178560003638268, 0.45755398273468],\n [0.247308000922203, 0.457193970680237],\n [0.286267012357712, 0.467674970626831],\n [0.332827985286713, 0.460712015628815],\n [0.368755996227264, 0.447206974029541],\n [0.398963987827301, 0.432654976844788],\n [0.476410001516342, 0.405806005001068],\n [0.189241006970406, 0.523923993110657],\n [0.228962004184723, 0.348950982093811],\n [0.490725994110107, 0.562400996685028],\n [0.404670000076294, 0.485132992267609],\n [0.019469000399113, 0.401564002037048],\n [0.426243007183075, 0.420431017875671],\n [0.396993011236191, 0.548797011375427],\n [0.266469985246658, 0.376977026462555],\n [0.439121007919312, 0.51895797252655],\n [0.032313998788595, 0.644356966018677],\n [0.419054001569748, 0.387154996395111],\n [0.462783008813858, 0.505746960639954],\n [0.238978996872902, 0.779744982719421],\n [0.198220998048782, 0.831938028335571],\n [0.107550002634525, 0.540755033493042],\n [0.183610007166862, 0.740257024765015],\n [0.134409993886948, 0.333683013916016],\n [0.385764002799988, 0.883153975009918],\n [0.490967005491257, 0.579378008842468],\n [0.382384985685349, 0.508572995662689],\n [0.174399003386497, 0.397670984268188],\n [0.318785011768341, 0.39623498916626],\n [0.343364000320435, 0.400596976280212],\n [0.396100014448166, 0.710216999053955],\n [0.187885001301765, 0.588537991046906],\n [0.430987000465393, 0.944064974784851],\n [0.318993002176285, 0.898285031318665],\n [0.266247987747192, 0.869701027870178],\n [0.500023007392883, 0.190576016902924],\n [0.499976992607117, 0.954452991485596],\n [0.366169989109039, 0.398822009563446],\n [0.393207013607025, 0.39553701877594],\n [0.410373002290726, 0.391080021858215],\n [0.194993004202843, 0.342101991176605],\n [0.388664990663528, 0.362284004688263],\n [0.365961998701096, 0.355970978736877],\n [0.343364000320435, 0.355356991291046],\n [0.318785011768341, 0.35834002494812],\n [0.301414996385574, 0.363156020641327],\n [0.058132998645306, 0.319076001644135],\n [0.301414996385574, 0.387449026107788],\n [0.499987989664078, 0.618434011936188],\n [0.415838003158569, 0.624195992946625],\n [0.445681989192963, 0.566076993942261],\n [0.465844005346298, 0.620640993118286],\n [0.49992299079895, 0.351523995399475],\n [0.288718998432159, 0.819945991039276],\n [0.335278987884521, 0.852819979190826],\n [0.440512001514435, 0.902418971061707],\n [0.128294005990028, 0.791940987110138],\n [0.408771991729736, 0.373893976211548],\n [0.455606997013092, 0.451801002025604],\n [0.499877005815506, 0.908990025520325],\n [0.375436991453171, 0.924192011356354],\n [0.11421000212431, 0.615022003650665],\n [0.448662012815475, 0.695277988910675],\n [0.4480200111866, 0.704632043838501],\n [0.447111994028091, 0.715808033943176],\n [0.444831997156143, 0.730794012546539],\n [0.430011987686157, 0.766808986663818],\n [0.406787008047104, 0.685672998428345],\n [0.400738000869751, 0.681069016456604],\n [0.392399996519089, 0.677703022956848],\n [0.367855995893478, 0.663918972015381],\n [0.247923001646996, 0.601333022117615],\n [0.452769994735718, 0.420849978923798],\n [0.43639200925827, 0.359887003898621],\n [0.416164010763168, 0.368713974952698],\n [0.413385987281799, 0.692366003990173],\n [0.228018000721931, 0.683571994304657],\n [0.468268007040024, 0.352671027183533],\n [0.411361992359161, 0.804327011108398],\n [0.499989002943039, 0.469825029373169],\n [0.479153990745544, 0.442654013633728],\n [0.499974012374878, 0.439637005329132],\n [0.432112008333206, 0.493588984012604],\n [0.499886006116867, 0.866917014122009],\n [0.49991300702095, 0.821729004383087],\n [0.456548988819122, 0.819200992584229],\n [0.344549000263214, 0.745438992977142],\n [0.37890899181366, 0.574010014533997],\n [0.374292999505997, 0.780184984207153],\n [0.319687992334366, 0.570737957954407],\n [0.357154995203018, 0.604269981384277],\n [0.295284003019333, 0.621580958366394],\n [0.447750002145767, 0.862477004528046],\n [0.410986006259918, 0.508723020553589],\n [0.31395098567009, 0.775308012962341],\n [0.354128003120422, 0.812552988529205],\n [0.324548006057739, 0.703992962837219],\n [0.189096003770828, 0.646299958229065],\n [0.279776990413666, 0.71465802192688],\n [0.1338230073452, 0.682700991630554],\n [0.336768001317978, 0.644733011722565],\n [0.429883986711502, 0.466521978378296],\n [0.455527991056442, 0.548622965812683],\n [0.437114000320435, 0.558896005153656],\n [0.467287987470627, 0.529924988746643],\n [0.414712011814117, 0.335219979286194],\n [0.37704598903656, 0.322777986526489],\n [0.344107985496521, 0.320150971412659],\n [0.312875986099243, 0.32233202457428],\n [0.283526003360748, 0.333190023899078],\n [0.241245999932289, 0.382785975933075],\n [0.102986000478268, 0.468762993812561],\n [0.267612010240555, 0.424560010433197],\n [0.297879010438919, 0.433175981044769],\n [0.333433985710144, 0.433878004550934],\n [0.366427004337311, 0.426115989685059],\n [0.396012008190155, 0.416696012020111],\n [0.420121014118195, 0.41022801399231],\n [0.007561000064015, 0.480777025222778],\n [0.432949006557465, 0.569517970085144],\n [0.458638995885849, 0.479089021682739],\n [0.473466008901596, 0.545744001865387],\n [0.476087987422943, 0.563830018043518],\n [0.468472003936768, 0.555056989192963],\n [0.433990985155106, 0.582361996173859],\n [0.483518004417419, 0.562983989715576],\n [0.482482999563217, 0.57784903049469],\n [0.42645001411438, 0.389798998832703],\n [0.438998997211456, 0.39649498462677],\n [0.450067013502121, 0.400434017181396],\n [0.289712011814117, 0.368252992630005],\n [0.276670008897781, 0.363372981548309],\n [0.517862021923065, 0.471948027610779],\n [0.710287988185883, 0.380764007568359],\n [0.526226997375488, 0.573909997940063],\n [0.895093023777008, 0.254140973091125],\n [0.634069979190826, 0.409575998783112],\n [0.661242008209229, 0.41302502155304],\n [0.688880026340485, 0.409460008144379],\n [0.725341975688934, 0.389131009578705],\n [0.606630027294159, 0.40370500087738],\n [0.654766023159027, 0.344011008739471],\n [0.629905998706818, 0.346076011657715],\n [0.680678009986877, 0.347265005111694],\n [0.702096998691559, 0.353591024875641],\n [0.75221198797226, 0.410804986953735],\n [0.602918028831482, 0.842862963676453],\n [0.719901978969574, 0.375599980354309],\n [0.893692970275879, 0.399959981441498],\n [0.790081977844238, 0.391354024410248],\n [0.643998026847839, 0.534487962722778],\n [0.528249025344849, 0.65040397644043],\n [0.525849997997284, 0.680191040039062],\n [0.560214996337891, 0.657229006290436],\n [0.585384011268616, 0.66654098033905],\n [0.549625992774963, 0.680860996246338],\n [0.57122802734375, 0.682691991329193],\n [0.624852001667023, 0.72809898853302],\n [0.513050019741058, 0.547281980514526],\n [0.51509702205658, 0.527251958847046],\n [0.742246985435486, 0.314507007598877],\n [0.598631024360657, 0.454979002475739],\n [0.570338010787964, 0.548575043678284],\n [0.578631997108459, 0.533622980117798],\n [0.723087012767792, 0.532054007053375],\n [0.516445994377136, 0.499638974666595],\n [0.662801027297974, 0.282917976379395],\n [0.70362401008606, 0.293271005153656],\n [0.830704987049103, 0.193813979625702],\n [0.552385985851288, 0.302568018436432],\n [0.607609987258911, 0.353887975215912],\n [0.645429015159607, 0.696707010269165],\n [0.932694971561432, 0.730105042457581],\n [0.557260990142822, 0.572826027870178],\n [0.542901992797852, 0.584792017936707],\n [0.6180260181427, 0.694710969924927],\n [0.607590973377228, 0.694203019142151],\n [0.722943007946014, 0.271963000297546],\n [0.577413976192474, 0.563166975975037],\n [0.614082992076874, 0.281386971473694],\n [0.616907000541687, 0.255886018276215],\n [0.668509006500244, 0.119913995265961],\n [0.770092010498047, 0.232020974159241],\n [0.635536015033722, 0.189248979091644],\n [0.77039098739624, 0.299556016921997],\n [0.826722025871277, 0.278755009174347],\n [0.527121007442474, 0.666198015213013],\n [0.553171992301941, 0.668527007102966],\n [0.577238023281097, 0.673889994621277],\n [0.554691970348358, 0.580065965652466],\n [0.611896991729736, 0.693961024284363],\n [0.59696102142334, 0.706539988517761],\n [0.596370995044708, 0.693953037261963],\n [0.539958000183105, 0.557139039039612],\n [0.568841993808746, 0.692366003990173],\n [0.547818005084991, 0.692366003990173],\n [0.52461302280426, 0.692366003990173],\n [0.534089982509613, 0.779141008853912],\n [0.527670979499817, 0.736225962638855],\n [0.526912987232208, 0.717857003211975],\n [0.526877999305725, 0.704625964164734],\n [0.526966989040375, 0.695277988910675],\n [0.572058022022247, 0.695277988910675],\n [0.573521018028259, 0.703539967536926],\n [0.57683801651001, 0.711845993995667],\n [0.581691026687622, 0.720062971115112],\n [0.609944999217987, 0.639909982681274],\n [0.986046016216278, 0.560034036636353],\n [0.5867999792099, 0.69539999961853],\n [0.590372025966644, 0.701822996139526],\n [0.531915009021759, 0.601536989212036],\n [0.577268004417419, 0.585934996604919],\n [0.536915004253387, 0.593786001205444],\n [0.627542972564697, 0.473352015018463],\n [0.665585994720459, 0.495950996875763],\n [0.588353991508484, 0.546862006187439],\n [0.757824003696442, 0.14767599105835],\n [0.709249973297119, 0.201507985591888],\n [0.672684013843536, 0.256581008434296],\n [0.600408971309662, 0.74900496006012],\n [0.55826598405838, 0.261672019958496],\n [0.570303976535797, 0.187870979309082],\n [0.588165998458862, 0.109044015407562],\n [0.711045026779175, 0.398952007293701],\n [0.781069993972778, 0.435405015945435],\n [0.587247014045715, 0.398931980133057],\n [0.742869973182678, 0.355445981025696],\n [0.572156012058258, 0.437651991844177],\n [0.55186802148819, 0.536570012569427],\n [0.821442008018494, 0.457556009292603],\n [0.752701997756958, 0.457181990146637],\n [0.71375697851181, 0.467626988887787],\n [0.66711300611496, 0.460672974586487],\n [0.631101012229919, 0.447153985500336],\n [0.6008620262146, 0.432473003864288],\n [0.523481011390686, 0.405627012252808],\n [0.810747981071472, 0.523926019668579],\n [0.771045982837677, 0.348959028720856],\n [0.509127020835876, 0.562718033790588],\n [0.595292985439301, 0.485023975372314],\n [0.980530977249146, 0.401564002037048],\n [0.573499977588654, 0.420000016689301],\n [0.602994978427887, 0.548687994480133],\n [0.733529984951019, 0.376977026462555],\n [0.560611009597778, 0.519016981124878],\n [0.967685997486115, 0.644356966018677],\n [0.580985009670258, 0.387160003185272],\n [0.537728011608124, 0.505385041236877],\n [0.760966002941132, 0.779752969741821],\n [0.801778972148895, 0.831938028335571],\n [0.892440974712372, 0.54076099395752],\n [0.816350996494293, 0.740260004997253],\n [0.865594983100891, 0.333687007427216],\n [0.614073991775513, 0.883246004581451],\n [0.508952975273132, 0.579437971115112],\n [0.617941975593567, 0.508316040039062],\n [0.825608015060425, 0.397674977779388],\n [0.681214988231659, 0.39623498916626],\n [0.656635999679565, 0.400596976280212],\n [0.603900015354156, 0.710216999053955],\n [0.81208598613739, 0.588539004325867],\n [0.56801301240921, 0.944564998149872],\n [0.681007981300354, 0.898285031318665],\n [0.733752012252808, 0.869701027870178],\n [0.633830010890961, 0.398822009563446],\n [0.606792986392975, 0.39553701877594],\n [0.589659988880157, 0.391062021255493],\n [0.805015981197357, 0.342108011245728],\n [0.611334979534149, 0.362284004688263],\n [0.634037971496582, 0.355970978736877],\n [0.656635999679565, 0.355356991291046],\n [0.681214988231659, 0.35834002494812],\n [0.698584973812103, 0.363156020641327],\n [0.941866993904114, 0.319076001644135],\n [0.698584973812103, 0.387449026107788],\n [0.584177017211914, 0.624107003211975],\n [0.554318010807037, 0.566076993942261],\n [0.534153997898102, 0.62064003944397],\n [0.711217999458313, 0.819975018501282],\n [0.664629995822906, 0.852871000766754],\n [0.559099972248077, 0.902631998062134],\n [0.871706008911133, 0.791940987110138],\n [0.591234028339386, 0.373893976211548],\n [0.544341027736664, 0.451583981513977],\n [0.624562978744507, 0.924192011356354],\n [0.88577002286911, 0.615028977394104],\n [0.551338016986847, 0.695277988910675],\n [0.551980018615723, 0.704632043838501],\n [0.552887976169586, 0.715808033943176],\n [0.555167973041534, 0.730794012546539],\n [0.569944024085999, 0.767035007476807],\n [0.593203008174896, 0.685675978660583],\n [0.599261999130249, 0.681069016456604],\n [0.607599973678589, 0.677703022956848],\n [0.631937980651855, 0.663500010967255],\n [0.752032995223999, 0.601315021514893],\n [0.547226011753082, 0.420395016670227],\n [0.563543975353241, 0.359827995300293],\n [0.583841025829315, 0.368713974952698],\n [0.586614012718201, 0.692366003990173],\n [0.771915018558502, 0.683578014373779],\n [0.531597018241882, 0.352482974529266],\n [0.588370978832245, 0.804440975189209],\n [0.52079701423645, 0.442565023899078],\n [0.567984998226166, 0.493479013442993],\n [0.543282985687256, 0.819254994392395],\n [0.655317008495331, 0.745514988899231],\n [0.621008992195129, 0.574018001556396],\n [0.625559985637665, 0.78031200170517],\n [0.680198013782501, 0.570719003677368],\n [0.64276397228241, 0.604337990283966],\n [0.704662978649139, 0.621529996395111],\n [0.552012026309967, 0.862591981887817],\n [0.589071989059448, 0.508637011051178],\n [0.685944974422455, 0.775357007980347],\n [0.645735025405884, 0.812640011310577],\n [0.675342977046967, 0.703978002071381],\n [0.810858011245728, 0.646304965019226],\n [0.72012197971344, 0.714666962623596],\n [0.866151988506317, 0.682704985141754],\n [0.663187026977539, 0.644596993923187],\n [0.570082008838654, 0.466325998306274],\n [0.544561982154846, 0.548375964164734],\n [0.562758982181549, 0.558784961700439],\n [0.531987011432648, 0.530140042304993],\n [0.585271000862122, 0.335177004337311],\n [0.622952997684479, 0.32277899980545],\n [0.655896008014679, 0.320163011550903],\n [0.687132000923157, 0.322345972061157],\n [0.716481983661652, 0.333200991153717],\n [0.758756995201111, 0.382786989212036],\n [0.897013008594513, 0.468769013881683],\n [0.732392013072968, 0.424547016620636],\n [0.70211398601532, 0.433162987232208],\n [0.66652500629425, 0.433866024017334],\n [0.633504986763, 0.426087975502014],\n [0.603875994682312, 0.416586995124817],\n [0.579657971858978, 0.409945011138916],\n [0.992439985275269, 0.480777025222778],\n [0.567192018032074, 0.569419980049133],\n [0.54136598110199, 0.478899002075195],\n [0.526564002037048, 0.546118021011353],\n [0.523913025856018, 0.563830018043518],\n [0.531529009342194, 0.555056989192963],\n [0.566035985946655, 0.582329034805298],\n [0.51631098985672, 0.563053965568542],\n [0.5174720287323, 0.577877044677734],\n [0.573594987392426, 0.389806985855103],\n [0.560697972774506, 0.395331978797913],\n [0.549755990505219, 0.399751007556915],\n [0.710287988185883, 0.368252992630005],\n [0.723330020904541, 0.363372981548309],\n];\n\nexport const TRI468 = [\n 127, 34, 139, 11, 0, 37, 232, 231, 120, 72, 37, 39, 128, 121, 47, 232, 121, 128, 104, 69, 67, 175, 171, 148, 157, 154, 155, 118, 50, 101, 73, 39, 40, 9,\n 151, 108, 48, 115, 131, 194, 204, 211, 74, 40, 185, 80, 42, 183, 40, 92, 186, 230, 229, 118, 202, 212, 214, 83, 18, 17, 76, 61, 146, 160, 29, 30, 56,\n 157, 173, 106, 204, 194, 135, 214, 192, 203, 165, 98, 21, 71, 68, 51, 45, 4, 144, 24, 23, 77, 146, 91, 205, 50, 187, 201, 200, 18, 91, 106, 182, 90, 91,\n 181, 85, 84, 17, 206, 203, 36, 148, 171, 140, 92, 40, 39, 193, 189, 244, 159, 158, 28, 247, 246, 161, 236, 3, 196, 54, 68, 104, 193, 168, 8, 117,\n 228, 31, 189, 193, 55, 98, 97, 99, 126, 47, 100, 166, 79, 218, 155, 154, 26, 209, 49, 131, 135, 136, 150, 47, 126, 217, 223, 52, 53, 45, 51, 134, 211,\n 170, 140, 67, 69, 108, 43, 106, 91, 230, 119, 120, 226, 130, 247, 63, 53, 52, 238, 20, 242, 46, 70, 156, 78, 62, 96, 46, 53, 63, 143, 34, 227, 173,\n 155, 133, 123, 117, 111, 44, 125, 19, 236, 134, 51, 216, 206, 205, 154, 153, 22, 39, 37, 167, 200, 201, 208, 36, 142, 100, 57, 212, 202, 20, 60, 99, 28,\n 158, 157, 35, 226, 113, 160, 159, 27, 204, 202, 210, 113, 225, 46, 43, 202, 204, 62, 76, 77, 137, 123, 116, 41, 38, 72, 203, 129, 142, 64, 98, 240, 49,\n 102, 64, 41, 73, 74, 212, 216, 207, 42, 74, 184, 169, 170, 211, 170, 149, 176, 105, 66, 69, 122, 6, 168, 123, 147, 187, 96, 77, 90, 65, 55, 107, 89,\n 90, 180, 101, 100, 120, 63, 105, 104, 93, 137, 227, 15, 86, 85, 129, 102, 49, 14, 87, 86, 55, 8, 9, 100, 47, 121, 145, 23, 22, 88, 89, 179, 6, 122,\n 196, 88, 95, 96, 138, 172, 136, 215, 58, 172, 115, 48, 219, 42, 80, 81, 195, 3, 51, 43, 146, 61, 171, 175, 199, 81, 82, 38, 53, 46, 225, 144, 163, 110,\n 246, 33, 7, 52, 65, 66, 229, 228, 117, 34, 127, 234, 107, 108, 69, 109, 108, 151, 48, 64, 235, 62, 78, 191, 129, 209, 126, 111, 35, 143, 163, 161, 246,\n 117, 123, 50, 222, 65, 52, 19, 125, 141, 221, 55, 65, 3, 195, 197, 25, 7, 33, 220, 237, 44, 70, 71, 139, 122, 193, 245, 247, 130, 33, 71, 21, 162,\n 153, 158, 159, 170, 169, 150, 188, 174, 196, 216, 186, 92, 144, 160, 161, 2, 97, 167, 141, 125, 241, 164, 167, 37, 72, 38, 12, 145, 159, 160, 38, 82, 13,\n 63, 68, 71, 226, 35, 111, 158, 153, 154, 101, 50, 205, 206, 92, 165, 209, 198, 217, 165, 167, 97, 220, 115, 218, 133, 112, 243, 239, 238, 241, 214,\n 135, 169, 190, 173, 133, 171, 208, 32, 125, 44, 237, 86, 87, 178, 85, 86, 179, 84, 85, 180, 83, 84, 181, 201, 83, 182, 137, 93, 132, 76, 62, 183, 61,\n 76, 184, 57, 61, 185, 212, 57, 186, 214, 207, 187, 34, 143, 156, 79, 239, 237, 123, 137, 177, 44, 1, 4, 201, 194, 32, 64, 102, 129, 213, 215, 138, 59,\n 166, 219, 242, 99, 97, 2, 94, 141, 75, 59, 235, 24, 110, 228, 25, 130, 226, 23, 24, 229, 22, 23, 230, 26, 22, 231, 112, 26, 232, 189, 190, 243, 221, 56,\n 190, 28, 56, 221, 27, 28, 222, 29, 27, 223, 30, 29, 224, 247, 30, 225, 238, 79, 20, 166, 59, 75, 60, 75, 240, 147, 177, 215, 20, 79, 166, 187, 147, 213,\n 112, 233, 244, 233, 128, 245, 128, 114, 188, 114, 217, 174, 131, 115, 220, 217, 198, 236, 198, 131, 134, 177, 132, 58, 143, 35, 124, 110, 163, 7, 228,\n 110, 25, 356, 389, 368, 11, 302, 267, 452, 350, 349, 302, 303, 269, 357, 343, 277, 452, 453, 357, 333, 332, 297, 175, 152, 377, 384, 398, 382, 347,\n 348, 330, 303, 304, 270, 9, 336, 337, 278, 279, 360, 418, 262, 431, 304, 408, 409, 310, 415, 407, 270, 409, 410, 450, 348, 347, 422, 430, 434, 313,\n 314, 17, 306, 307, 375, 387, 388, 260, 286, 414, 398, 335, 406, 418, 364, 367, 416, 423, 358, 327, 251, 284, 298, 281, 5, 4, 373, 374, 253, 307, 320,\n 321, 425, 427, 411, 421, 313, 18, 321, 405, 406, 320, 404, 405, 315, 16, 17, 426, 425, 266, 377, 400, 369, 322, 391, 269, 417, 465, 464, 386, 257, 258,\n 466, 260, 388, 456, 399, 419, 284, 332, 333, 417, 285, 8, 346, 340, 261, 413, 441, 285, 327, 460, 328, 355, 371, 329, 392, 439, 438, 382, 341, 256,\n 429, 420, 360, 364, 394, 379, 277, 343, 437, 443, 444, 283, 275, 440, 363, 431, 262, 369, 297, 338, 337, 273, 375, 321, 450, 451, 349, 446, 342, 467,\n 293, 334, 282, 458, 461, 462, 276, 353, 383, 308, 324, 325, 276, 300, 293, 372, 345, 447, 382, 398, 362, 352, 345, 340, 274, 1, 19, 456, 248, 281, 436,\n 427, 425, 381, 256, 252, 269, 391, 393, 200, 199, 428, 266, 330, 329, 287, 273, 422, 250, 462, 328, 258, 286, 384, 265, 353, 342, 387, 259, 257, 424,\n 431, 430, 342, 353, 276, 273, 335, 424, 292, 325, 307, 366, 447, 345, 271, 303, 302, 423, 266, 371, 294, 455, 460, 279, 278, 294, 271, 272, 304, 432,\n 434, 427, 272, 407, 408, 394, 430, 431, 395, 369, 400, 334, 333, 299, 351, 417, 168, 352, 280, 411, 325, 319, 320, 295, 296, 336, 319, 403, 404, 330,\n 348, 349, 293, 298, 333, 323, 454, 447, 15, 16, 315, 358, 429, 279, 14, 15, 316, 285, 336, 9, 329, 349, 350, 374, 380, 252, 318, 402, 403, 6, 197, 419,\n 318, 319, 325, 367, 364, 365, 435, 367, 397, 344, 438, 439, 272, 271, 311, 195, 5, 281, 273, 287, 291, 396, 428, 199, 311, 271, 268, 283, 444, 445,\n 373, 254, 339, 263, 466, 249, 282, 334, 296, 449, 347, 346, 264, 447, 454, 336, 296, 299, 338, 10, 151, 278, 439, 455, 292, 407, 415, 358, 371, 355,\n 340, 345, 372, 390, 249, 466, 346, 347, 280, 442, 443, 282, 19, 94, 370, 441, 442, 295, 248, 419, 197, 263, 255, 359, 440, 275, 274, 300, 383, 368,\n 351, 412, 465, 263, 467, 466, 301, 368, 389, 380, 374, 386, 395, 378, 379, 412, 351, 419, 436, 426, 322, 373, 390, 388, 2, 164, 393, 370, 462, 461,\n 164, 0, 267, 302, 11, 12, 374, 373, 387, 268, 12, 13, 293, 300, 301, 446, 261, 340, 385, 384, 381, 330, 266, 425, 426, 423, 391, 429, 355, 437, 391,\n 327, 326, 440, 457, 438, 341, 382, 362, 459, 457, 461, 434, 430, 394, 414, 463, 362, 396, 369, 262, 354, 461, 457, 316, 403, 402, 315, 404, 403, 314,\n 405, 404, 313, 406, 405, 421, 418, 406, 366, 401, 361, 306, 408, 407, 291, 409, 408, 287, 410, 409, 432, 436, 410, 434, 416, 411, 264, 368, 383, 309,\n 438, 457, 352, 376, 401, 274, 275, 4, 421, 428, 262, 294, 327, 358, 433, 416, 367, 289, 455, 439, 462, 370, 326, 2, 326, 370, 305, 460, 455, 254,\n 449, 448, 255, 261, 446, 253, 450, 449, 252, 451, 450, 256, 452, 451, 341, 453, 452, 413, 464, 463, 441, 413, 414, 258, 442, 441, 257, 443, 442, 259,\n 444, 443, 260, 445, 444, 467, 342, 445, 459, 458, 250, 289, 392, 290, 290, 328, 460, 376, 433, 435, 250, 290, 392, 411, 416, 433, 341, 463, 464, 453,\n 464, 465, 357, 465, 412, 343, 412, 399, 360, 363, 440, 437, 399, 456, 420, 456, 363, 401, 435, 288, 372, 383, 353, 339, 255, 249, 448, 261, 255, 133,\n 243, 190, 133, 155, 112, 33, 246, 247, 33, 130, 25, 398, 384, 286, 362, 398, 414, 362, 463, 341, 263, 359, 467, 263, 249, 255, 466, 467, 260, 75, 60,\n 166, 238, 239, 79, 162, 127, 139, 72, 11, 37, 121, 232, 120, 73, 72, 39, 114, 128, 47, 233, 232, 128, 103, 104, 67, 152, 175, 148, 173, 157, 155,\n 119, 118, 101, 74, 73, 40, 107, 9, 108, 49, 48, 131, 32, 194, 211, 184, 74, 185, 191, 80, 183, 185, 40, 186, 119, 230, 118, 210, 202, 214, 84, 83, 17,\n 77, 76, 146, 161, 160, 30, 190, 56, 173, 182, 106, 194, 138, 135, 192, 129, 203, 98, 54, 21, 68, 5, 51, 4, 145, 144, 23, 90, 77, 91, 207, 205, 187, 83,\n 201, 18, 181, 91, 182, 180, 90, 181, 16, 85, 17, 205, 206, 36, 176, 148, 140, 165, 92, 39, 245, 193, 244, 27, 159, 28, 30, 247, 161, 174, 236, 196,\n 103, 54, 104, 55, 193, 8, 111, 117, 31, 221, 189, 55, 240, 98, 99, 142, 126, 100, 219, 166, 218, 112, 155, 26, 198, 209, 131, 169, 135, 150, 114, 47,\n 217, 224, 223, 53, 220, 45, 134, 32, 211, 140, 109, 67, 108, 146, 43, 91, 231, 230, 120, 113, 226, 247, 105, 63, 52, 241, 238, 242, 124, 46, 156, 95,\n 78, 96, 70, 46, 63, 116, 143, 227, 116, 123, 111, 1, 44, 19, 3, 236, 51, 207, 216, 205, 26, 154, 22, 165, 39, 167, 199, 200, 208, 101, 36, 100, 43,\n 57, 202, 242, 20, 99, 56, 28, 157, 124, 35, 113, 29, 160, 27, 211, 204, 210, 124, 113, 46, 106, 43, 204, 96, 62, 77, 227, 137, 116, 73, 41, 72, 36, 203,\n 142, 235, 64, 240, 48, 49, 64, 42, 41, 74, 214, 212, 207, 183, 42, 184, 210, 169, 211, 140, 170, 176, 104, 105, 69, 193, 122, 168, 50, 123, 187, 89, 96,\n 90, 66, 65, 107, 179, 89, 180, 119, 101, 120, 68, 63, 104, 234, 93, 227, 16, 15, 85, 209, 129, 49, 15, 14, 86, 107, 55, 9, 120, 100, 121, 153, 145, 22,\n 178, 88, 179, 197, 6, 196, 89, 88, 96, 135, 138, 136, 138, 215, 172, 218, 115, 219, 41, 42, 81, 5, 195, 51, 57, 43, 61, 208, 171, 199, 41, 81, 38,\n 224, 53, 225, 24, 144, 110, 105, 52, 66, 118, 229, 117, 227, 34, 234, 66, 107, 69, 10, 109, 151, 219, 48, 235, 183, 62, 191, 142, 129, 126, 116, 111,\n 143, 7, 163, 246, 118, 117, 50, 223, 222, 52, 94, 19, 141, 222, 221, 65, 196, 3, 197, 45, 220, 44, 156, 70, 139, 188, 122, 245, 139, 71, 162, 145,\n 153, 159, 149, 170, 150, 122, 188, 196, 206, 216, 92, 163, 144, 161, 164, 2, 167, 242, 141, 241, 0, 164, 37, 11, 72, 12, 144, 145, 160, 12, 38, 13, 70,\n 63, 71, 31, 226, 111, 157, 158, 154, 36, 101, 205, 203, 206, 165, 126, 209, 217, 98, 165, 97, 237, 220, 218, 237, 239, 241, 210, 214, 169, 140, 171, 32,\n 241, 125, 237, 179, 86, 178, 180, 85, 179, 181, 84, 180, 182, 83, 181, 194, 201, 182, 177, 137, 132, 184, 76, 183, 185, 61, 184, 186, 57, 185, 216, 212,\n 186, 192, 214, 187, 139, 34, 156, 218, 79, 237, 147, 123, 177, 45, 44, 4, 208, 201, 32, 98, 64, 129, 192, 213, 138, 235, 59, 219, 141, 242, 97, 97, 2,\n 141, 240, 75, 235, 229, 24, 228, 31, 25, 226, 230, 23, 229, 231, 22, 230, 232, 26, 231, 233, 112, 232, 244, 189, 243, 189, 221, 190, 222, 28, 221,\n 223, 27, 222, 224, 29, 223, 225, 30, 224, 113, 247, 225, 99, 60, 240, 213, 147, 215, 60, 20, 166, 192, 187, 213, 243, 112, 244, 244, 233, 245, 245,\n 128, 188, 188, 114, 174, 134, 131, 220, 174, 217, 236, 236, 198, 134, 215, 177, 58, 156, 143, 124, 25, 110, 7, 31, 228, 25, 264, 356, 368, 0, 11, 267,\n 451, 452, 349, 267, 302, 269, 350, 357, 277, 350, 452, 357, 299, 333, 297, 396, 175, 377, 381, 384, 382, 280, 347, 330, 269, 303, 270, 151, 9, 337,\n 344, 278, 360, 424, 418, 431, 270, 304, 409, 272, 310, 407, 322, 270, 410, 449, 450, 347, 432, 422, 434, 18, 313, 17, 291, 306, 375, 259, 387, 260,\n 424, 335, 418, 434, 364, 416, 391, 423, 327, 301, 251, 298, 275, 281, 4, 254, 373, 253, 375, 307, 321, 280, 425, 411, 200, 421, 18, 335, 321, 406,\n 321, 320, 405, 314, 315, 17, 423, 426, 266, 396, 377, 369, 270, 322, 269, 413, 417, 464, 385, 386, 258, 248, 456, 419, 298, 284, 333, 168, 417, 8,\n 448, 346, 261, 417, 413, 285, 326, 327, 328, 277, 355, 329, 309, 392, 438, 381, 382, 256, 279, 429, 360, 365, 364, 379, 355, 277, 437, 282, 443, 283,\n 281, 275, 363, 395, 431, 369, 299, 297, 337, 335, 273, 321, 348, 450, 349, 359, 446, 467, 283, 293, 282, 250, 458, 462, 300, 276, 383, 292, 308, 325,\n 283, 276, 293, 264, 372, 447, 346, 352, 340, 354, 274, 19, 363, 456, 281, 426, 436, 425, 380, 381, 252, 267, 269, 393, 421, 200, 428, 371, 266, 329,\n 432, 287, 422, 290, 250, 328, 385, 258, 384, 446, 265, 342, 386, 387, 257, 422, 424, 430, 445, 342, 276, 422, 273, 424, 306, 292, 307, 352, 366, 345,\n 268, 271, 302, 358, 423, 371, 327, 294, 460, 331, 279, 294, 303, 271, 304, 436, 432, 427, 304, 272, 408, 395, 394, 431, 378, 395, 400, 296, 334, 299,\n 6, 351, 168, 376, 352, 411, 307, 325, 320, 285, 295, 336, 320, 319, 404, 329, 330, 349, 334, 293, 333, 366, 323, 447, 316, 15, 315, 331, 358, 279,\n 317, 14, 316, 8, 285, 9, 277, 329, 350, 253, 374, 252, 319, 318, 403, 351, 6, 419, 324, 318, 325, 397, 367, 365, 288, 435, 397, 278, 344, 439, 310,\n 272, 311, 248, 195, 281, 375, 273, 291, 175, 396, 199, 312, 311, 268, 276, 283, 445, 390, 373, 339, 295, 282, 296, 448, 449, 346, 356, 264, 454, 337,\n 336, 299, 337, 338, 151, 294, 278, 455, 308, 292, 415, 429, 358, 355, 265, 340, 372, 388, 390, 466, 352, 346, 280, 295, 442, 282, 354, 19, 370, 285,\n 441, 295, 195, 248, 197, 457, 440, 274, 301, 300, 368, 417, 351, 465, 251, 301, 389, 385, 380, 386, 394, 395, 379, 399, 412, 419, 410, 436, 322, 387,\n 373, 388, 326, 2, 393, 354, 370, 461, 393, 164, 267, 268, 302, 12, 386, 374, 387, 312, 268, 13, 298, 293, 301, 265, 446, 340, 380, 385, 381, 280, 330,\n 425, 322, 426, 391, 420, 429, 437, 393, 391, 326, 344, 440, 438, 458, 459, 461, 364, 434, 394, 428, 396, 262, 274, 354, 457, 317, 316, 402, 316, 315,\n 403, 315, 314, 404, 314, 313, 405, 313, 421, 406, 323, 366, 361, 292, 306, 407, 306, 291, 408, 291, 287, 409, 287, 432, 410, 427, 434, 411, 372, 264,\n 383, 459, 309, 457, 366, 352, 401, 1, 274, 4, 418, 421, 262, 331, 294, 358, 435, 433, 367, 392, 289, 439, 328, 462, 326, 94, 2, 370, 289, 305, 455, 339,\n 254, 448, 359, 255, 446, 254, 253, 449, 253, 252, 450, 252, 256, 451, 256, 341, 452, 414, 413, 463, 286, 441, 414, 286, 258, 441, 258, 257, 442, 257,\n 259, 443, 259, 260, 444, 260, 467, 445, 309, 459, 250, 305, 289, 290, 305, 290, 460, 401, 376, 435, 309, 250, 392, 376, 411, 433, 453, 341, 464, 357,\n 453, 465, 343, 357, 412, 437, 343, 399, 344, 360, 440, 420, 437, 456, 360, 420, 363, 361, 401, 288, 265, 372, 353, 390, 339, 249, 339, 448, 255];\n\nexport const TRI68 = [0, 1, 36, 0, 36, 17, 1, 2, 41, 1, 41, 36, 2, 3, 31, 2, 31, 41, 3, 4, 48, 3, 48, 31, 4, 5, 48, 5, 6, 48, 6, 7, 59, 6, 59, 48, 7, 8, 58, 7, 58, 59,\n 8, 9, 56, 8, 56, 57, 8, 57, 58, 9, 10, 55, 9, 55, 56, 10, 11, 54, 10, 54, 55, 11, 12, 54, 12, 13, 54, 13, 14, 35, 13, 35, 54, 14, 15, 46, 14, 46, 35, 15, 16,\n 45, 15, 45, 46, 16, 26, 45, 17, 36, 18, 18, 37, 19, 18, 36, 37, 19, 38, 20, 19, 37, 38, 20, 39, 21, 20, 38, 39, 21, 39, 27, 22, 42, 23, 22, 27, 42, 23, 43, 24,\n 23, 42, 43, 24, 44, 25, 24, 43, 44, 25, 45, 26, 25, 44, 45, 27, 39, 28, 27, 28, 42, 28, 39, 29, 28, 29, 42, 29, 31, 30, 29, 30, 35, 29, 40, 31, 29, 35, 47, 29,\n 39, 40, 29, 47, 42, 30, 31, 32, 30, 32, 33, 30, 33, 34, 30, 34, 35, 31, 50, 32, 31, 40, 41, 31, 48, 49, 31, 49, 50, 32, 51, 33, 32, 50, 51, 33, 51, 34, 34, 52,\n 35, 34, 51, 52, 35, 46, 47, 35, 52, 53, 35, 53, 54, 36, 41, 37, 37, 40, 38, 37, 41, 40, 38, 40, 39, 42, 47, 43, 43, 47, 44, 44, 46, 45, 44, 47, 46, 48, 60, 49,\n 48, 59, 60, 49, 61, 50, 49, 60, 61, 50, 62, 51, 50, 61, 62, 51, 62, 52, 52, 63, 53, 52, 62, 63, 53, 64, 54, 53, 63, 64, 54, 64, 55, 55, 65, 56, 55, 64, 65, 56,\n 66, 57, 56, 65, 66, 57, 66, 58, 58, 67, 59, 58, 66, 67, 59, 67, 60, 60, 67, 61, 61, 66, 62, 61, 67, 66, 62, 66, 63, 63, 65, 64, 63, 66, 65, 21, 27, 22];\n\nexport const TRI33 = [\n /* eyes */ 0, 8, 7, 7, 8, 1, 2, 10, 9, 9, 10, 3,\n /* brows */ 17, 0, 18, 18, 0, 7, 18, 7, 19, 19, 7, 1, 19, 1, 11, 19, 11, 20, 21, 3, 22, 21, 9, 3, 20, 9, 21, 20, 2, 9, 20, 11, 2,\n /* 4head */ 23, 17, 18, 25, 21, 22, 24, 19, 20, 24, 18, 19, 24, 20, 21, 24, 23, 18, 24, 21, 25,\n /* nose */ 11, 12, 4, 11, 4, 13, 1, 12, 11, 11, 13, 2, 12, 14, 4, 4, 14, 13,\n /* up-lip */ 14, 5, 15, 14, 15, 6, 12, 5, 14, 14, 6, 13,\n /* cheeks */ 8, 12, 1, 2, 13, 10, 8, 26, 12, 10, 13, 27, 26, 5, 12, 13, 6, 27, 0, 26, 8, 10, 27, 3,\n /* chin */ 5, 32, 16, 16, 32, 6, 5, 30, 32, 6, 32, 31,\n /* cont */ 26, 30, 5, 27, 6, 31, 0, 28, 26, 3, 27, 29, 17, 28, 0, 3, 29, 22, 23, 28, 17, 22, 29, 25, 28, 30, 26, 27, 31, 29,\n];\n\nexport const TRI7 = [0, 4, 1, 2, 4, 3, 4, 5, 6];\n\nexport const VTX68 = [\n /* cont */ 127, 234, 132, 58, 172, 150, 149, 148, 152, 377, 378, 379, 397, 288, 361, 454, 356,\n /* brows */ 70, 63, 105, 66, 107, 336, 296, 334, 293, 300,\n /* nose */ 168, 6, 195, 4, 98, 97, 2, 326, 327,\n /* eyes */ 33, 160, 158, 133, 153, 144, 362, 385, 387, 263, 373, 380,\n /* lip */ 57, 40, 37, 0, 267, 270, 287, 321, 314, 17, 84, 91,\n /* mouth */ 78, 81, 13, 311, 308, 402, 14, 178,\n];\n\nexport const VTX33 = [33, 133, 362, 263, 1, 62, 308, 159, 145, 386, 374, 6, 102, 331, 2, 13, 14, 70, 105, 107, 336, 334, 300, 54, 10, 284, 50, 280, 234, 454, 58, 288, 152];\n\nexport const VTX7 = [33, 133, 362, 263, 1, 78, 308];\n\nexport const UV68 = VTX68.map((x) => UV468[x]);\n\nexport const UV33 = VTX33.map((x) => UV468[x]);\n\nexport const UV7 = VTX7.map((x) => UV468[x]);\n", "/* eslint-disable class-methods-use-this */\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as bounding from './box';\nimport * as util from './util';\nimport * as coords from './coords';\n\nconst leftOutline = coords.MESH_ANNOTATIONS['leftEyeLower0'];\nconst rightOutline = coords.MESH_ANNOTATIONS['rightEyeLower0'];\n\nconst eyeLandmarks = {\n leftBounds: [leftOutline[0], leftOutline[leftOutline.length - 1]],\n rightBounds: [rightOutline[0], rightOutline[rightOutline.length - 1]],\n};\n\nconst meshLandmarks = {\n count: 468,\n mouth: 13,\n symmetryLine: [13, coords.MESH_ANNOTATIONS['midwayBetweenEyes'][0]],\n};\n\nconst blazeFaceLandmarks = {\n leftEye: 0,\n rightEye: 1,\n nose: 2,\n mouth: 3,\n leftEar: 4,\n rightEar: 5,\n symmetryLine: [3, 2],\n};\n\nconst irisLandmarks = {\n upperCenter: 3,\n lowerCenter: 4,\n index: 71,\n numCoordinates: 76,\n};\n\n// Replace the raw coordinates returned by facemesh with refined iris model coordinates\n// Update the z coordinate to be an average of the original and the new.\nfunction replaceRawCoordinates(rawCoords, newCoords, prefix, keys) {\n for (let i = 0; i < coords.MESH_TO_IRIS_INDICES_MAP.length; i++) {\n const { key, indices } = coords.MESH_TO_IRIS_INDICES_MAP[i];\n const originalIndices = coords.MESH_ANNOTATIONS[`${prefix}${key}`];\n if (!keys || keys.includes(key)) {\n for (let j = 0; j < indices.length; j++) {\n const index = indices[j];\n rawCoords[originalIndices[j]] = [\n newCoords[index][0], newCoords[index][1],\n (newCoords[index][2] + rawCoords[originalIndices[j]][2]) / 2,\n ];\n }\n }\n }\n}\n// The Pipeline coordinates between the bounding box and skeleton models.\nexport class Pipeline {\n storedBoxes: any;\n boundingBoxDetector: any;\n meshDetector: any;\n irisModel: any;\n boxSize: number;\n meshSize: number;\n irisSize: number;\n irisEnlarge: number;\n skipped: number;\n detectedFaces: number;\n\n constructor(boundingBoxDetector, meshDetector, irisModel) {\n // An array of facial bounding boxes.\n this.storedBoxes = [];\n this.boundingBoxDetector = boundingBoxDetector;\n this.meshDetector = meshDetector;\n this.irisModel = irisModel;\n this.boxSize = boundingBoxDetector?.model?.inputs[0].shape[2] || 0;\n this.meshSize = meshDetector?.inputs[0].shape[2] || boundingBoxDetector?.model?.inputs[0].shape[2];\n this.irisSize = irisModel?.inputs[0].shape[1] || 0;\n this.irisEnlarge = 2.3;\n this.skipped = 0;\n this.detectedFaces = 0;\n }\n\n transformRawCoords(rawCoords, box, angle, rotationMatrix) {\n const boxSize = bounding.getBoxSize({ startPoint: box.startPoint, endPoint: box.endPoint });\n const coordsScaled = rawCoords.map((coord) => ([\n boxSize[0] / this.meshSize * (coord[0] - this.meshSize / 2),\n boxSize[1] / this.meshSize * (coord[1] - this.meshSize / 2),\n coord[2],\n ]));\n const coordsRotationMatrix = (angle !== 0) ? util.buildRotationMatrix(angle, [0, 0]) : util.IDENTITY_MATRIX;\n const coordsRotated = (angle !== 0) ? coordsScaled.map((coord) => ([...util.rotatePoint(coord, coordsRotationMatrix), coord[2]])) : coordsScaled;\n const inverseRotationMatrix = (angle !== 0) ? util.invertTransformMatrix(rotationMatrix) : util.IDENTITY_MATRIX;\n const boxCenter = [...bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint }), 1];\n return coordsRotated.map((coord) => ([\n coord[0] + util.dot(boxCenter, inverseRotationMatrix[0]),\n coord[1] + util.dot(boxCenter, inverseRotationMatrix[1]),\n coord[2],\n ]));\n }\n\n getLeftToRightEyeDepthDifference(rawCoords) {\n const leftEyeZ = rawCoords[eyeLandmarks.leftBounds[0]][2];\n const rightEyeZ = rawCoords[eyeLandmarks.rightBounds[0]][2];\n return leftEyeZ - rightEyeZ;\n }\n\n // Returns a box describing a cropped region around the eye fit for passing to the iris model.\n getEyeBox(rawCoords, face, eyeInnerCornerIndex, eyeOuterCornerIndex, flip = false) {\n const box = bounding.squarifyBox(bounding.enlargeBox(this.calculateLandmarksBoundingBox([rawCoords[eyeInnerCornerIndex], rawCoords[eyeOuterCornerIndex]]), this.irisEnlarge));\n const boxSize = bounding.getBoxSize(box);\n let crop = tf.image.cropAndResize(face, [[\n box.startPoint[1] / this.meshSize,\n box.startPoint[0] / this.meshSize, box.endPoint[1] / this.meshSize,\n box.endPoint[0] / this.meshSize,\n ]], [0], [this.irisSize, this.irisSize]);\n if (flip && tf.ENV.flags.IS_BROWSER) {\n crop = tf.image.flipLeftRight(crop); // flipLeftRight is not defined for tfjs-node\n }\n return { box, boxSize, crop };\n }\n\n // Given a cropped image of an eye, returns the coordinates of the contours surrounding the eye and the iris.\n getEyeCoords(eyeData, eyeBox, eyeBoxSize, flip = false) {\n const eyeRawCoords: Array = [];\n for (let i = 0; i < irisLandmarks.numCoordinates; i++) {\n const x = eyeData[i * 3];\n const y = eyeData[i * 3 + 1];\n const z = eyeData[i * 3 + 2];\n eyeRawCoords.push([\n (flip ? (1 - (x / this.irisSize)) : (x / this.irisSize)) * eyeBoxSize[0] + eyeBox.startPoint[0],\n (y / this.irisSize) * eyeBoxSize[1] + eyeBox.startPoint[1], z,\n ]);\n }\n return { rawCoords: eyeRawCoords, iris: eyeRawCoords.slice(irisLandmarks.index) };\n }\n\n // The z-coordinates returned for the iris are unreliable, so we take the z values from the surrounding keypoints.\n getAdjustedIrisCoords(rawCoords, irisCoords, direction) {\n const upperCenterZ = rawCoords[coords.MESH_ANNOTATIONS[`${direction}EyeUpper0`][irisLandmarks.upperCenter]][2];\n const lowerCenterZ = rawCoords[coords.MESH_ANNOTATIONS[`${direction}EyeLower0`][irisLandmarks.lowerCenter]][2];\n const averageZ = (upperCenterZ + lowerCenterZ) / 2;\n // Iris indices: 0: center | 1: right | 2: above | 3: left | 4: below\n return irisCoords.map((coord, i) => {\n let z = averageZ;\n if (i === 2) {\n z = upperCenterZ;\n } else if (i === 4) {\n z = lowerCenterZ;\n }\n return [coord[0], coord[1], z];\n });\n }\n\n async predict(input, config) {\n let useFreshBox = false;\n // run new detector every skipFrames unless we only want box to start with\n let detector;\n if ((this.skipped === 0) || (this.skipped > config.face.detector.skipFrames) || !config.face.mesh.enabled || !config.videoOptimized) {\n detector = await this.boundingBoxDetector.getBoundingBoxes(input);\n this.skipped = 0;\n }\n if (config.videoOptimized) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (!config.videoOptimized || (detector && detector.boxes && (!config.face.mesh.enabled || (detector.boxes.length !== this.detectedFaces) && (this.detectedFaces !== config.face.detector.maxFaces)))) {\n this.storedBoxes = [];\n this.detectedFaces = 0;\n for (const possible of detector.boxes) {\n this.storedBoxes.push({ startPoint: possible.box.startPoint.dataSync(), endPoint: possible.box.endPoint.dataSync(), landmarks: possible.landmarks, confidence: possible.confidence });\n }\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n\n if (config.face.detector.skipInitial && this.detectedFaces === 0) this.skipped = 0;\n\n if (useFreshBox) {\n if (!detector || !detector.boxes || (detector.boxes.length === 0)) {\n this.storedBoxes = [];\n this.detectedFaces = 0;\n return null;\n }\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const scaledBox = bounding.scaleBoxCoordinates({ startPoint: this.storedBoxes[i].startPoint, endPoint: this.storedBoxes[i].endPoint }, detector.scaleFactor);\n const enlargedBox = bounding.enlargeBox(scaledBox);\n const squarifiedBox = bounding.squarifyBox(enlargedBox);\n const landmarks = this.storedBoxes[i].landmarks.arraySync();\n const confidence = this.storedBoxes[i].confidence;\n this.storedBoxes[i] = { ...squarifiedBox, confidence, landmarks };\n }\n }\n if (detector && detector.boxes) {\n detector.boxes.forEach((prediction) => {\n prediction.box.startPoint.dispose();\n prediction.box.endPoint.dispose();\n prediction.landmarks.dispose();\n });\n }\n\n let results = tf.tidy(() => this.storedBoxes.map((box, i) => {\n const boxConfidence = box.confidence;\n\n // The facial bounding box landmarks could come either from blazeface (if we are using a fresh box), or from the mesh model (if we are reusing an old box).\n let face;\n let angle = 0;\n let rotationMatrix;\n\n if (config.face.detector.rotation && config.face.mesh.enabled && tf.ENV.flags.IS_BROWSER) {\n const [indexOfMouth, indexOfForehead] = (box.landmarks.length >= meshLandmarks.count) ? meshLandmarks.symmetryLine : blazeFaceLandmarks.symmetryLine;\n angle = util.computeRotation(box.landmarks[indexOfMouth], box.landmarks[indexOfForehead]);\n const faceCenter = bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint });\n const faceCenterNormalized = [faceCenter[0] / input.shape[2], faceCenter[1] / input.shape[1]];\n const rotatedImage = tf.image.rotateWithOffset(input, angle, 0, faceCenterNormalized); // rotateWithOffset is not defined for tfjs-node\n rotationMatrix = util.buildRotationMatrix(-angle, faceCenter);\n if (config.face.mesh.enabled) face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.meshSize, this.meshSize]).div(255);\n else face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.boxSize, this.boxSize]).div(255);\n } else {\n rotationMatrix = util.IDENTITY_MATRIX;\n const clonedImage = input.clone();\n if (config.face.mesh.enabled) face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, clonedImage, [this.meshSize, this.meshSize]).div(255);\n else face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, clonedImage, [this.boxSize, this.boxSize]).div(255);\n }\n\n // if we're not going to produce mesh, don't spend time with further processing\n if (!config.face.mesh.enabled) {\n const prediction = {\n coords: null,\n box,\n faceConfidence: null,\n boxConfidence,\n confidence: box.confidence,\n image: face,\n };\n return prediction;\n }\n\n const [, confidence, contourCoords] = this.meshDetector.predict(face); // The first returned tensor represents facial contours which are already included in the coordinates.\n const faceConfidence = confidence.dataSync()[0];\n if (faceConfidence < config.face.detector.minConfidence) return null; // if below confidence just exit\n const coordsReshaped = tf.reshape(contourCoords, [-1, 3]);\n let rawCoords = coordsReshaped.arraySync();\n\n if (config.face.iris.enabled) {\n const { box: leftEyeBox, boxSize: leftEyeBoxSize, crop: leftEyeCrop } = this.getEyeBox(rawCoords, face, eyeLandmarks.leftBounds[0], eyeLandmarks.leftBounds[1], true);\n const { box: rightEyeBox, boxSize: rightEyeBoxSize, crop: rightEyeCrop } = this.getEyeBox(rawCoords, face, eyeLandmarks.rightBounds[0], eyeLandmarks.rightBounds[1]);\n const eyePredictions = this.irisModel.predict(tf.concat([leftEyeCrop, rightEyeCrop]));\n const eyePredictionsData = eyePredictions.dataSync();\n const leftEyeData = eyePredictionsData.slice(0, irisLandmarks.numCoordinates * 3);\n const { rawCoords: leftEyeRawCoords, iris: leftIrisRawCoords } = this.getEyeCoords(leftEyeData, leftEyeBox, leftEyeBoxSize, true);\n const rightEyeData = eyePredictionsData.slice(irisLandmarks.numCoordinates * 3);\n const { rawCoords: rightEyeRawCoords, iris: rightIrisRawCoords } = this.getEyeCoords(rightEyeData, rightEyeBox, rightEyeBoxSize);\n const leftToRightEyeDepthDifference = this.getLeftToRightEyeDepthDifference(rawCoords);\n if (Math.abs(leftToRightEyeDepthDifference) < 30) { // User is looking straight ahead.\n replaceRawCoordinates(rawCoords, leftEyeRawCoords, 'left', null);\n replaceRawCoordinates(rawCoords, rightEyeRawCoords, 'right', null);\n // If the user is looking to the left or to the right, the iris coordinates tend to diverge too much from the mesh coordinates for them to be merged\n // So we only update a single contour line above and below the eye.\n } else if (leftToRightEyeDepthDifference < 1) { // User is looking towards the right.\n replaceRawCoordinates(rawCoords, leftEyeRawCoords, 'left', ['EyeUpper0', 'EyeLower0']);\n } else { // User is looking towards the left.\n replaceRawCoordinates(rawCoords, rightEyeRawCoords, 'right', ['EyeUpper0', 'EyeLower0']);\n }\n const adjustedLeftIrisCoords = this.getAdjustedIrisCoords(rawCoords, leftIrisRawCoords, 'left');\n const adjustedRightIrisCoords = this.getAdjustedIrisCoords(rawCoords, rightIrisRawCoords, 'right');\n rawCoords = rawCoords.concat(adjustedLeftIrisCoords).concat(adjustedRightIrisCoords);\n }\n\n // override box from detection with one calculated from mesh\n const transformedCoordsData = this.transformRawCoords(rawCoords, box, angle, rotationMatrix);\n box = bounding.enlargeBox(this.calculateLandmarksBoundingBox(transformedCoordsData), 1.5); // redefine box with mesh calculated one\n const transformedCoords = tf.tensor2d(transformedCoordsData);\n\n // do rotation one more time with mesh keypoints if we want to return perfect image\n if (config.face.detector.rotation && config.face.mesh.enabled && (config.face.description.enabled || config.face.embedding.enabled) && tf.ENV.flags.IS_BROWSER) {\n const [indexOfMouth, indexOfForehead] = (box.landmarks.length >= meshLandmarks.count) ? meshLandmarks.symmetryLine : blazeFaceLandmarks.symmetryLine;\n angle = util.computeRotation(box.landmarks[indexOfMouth], box.landmarks[indexOfForehead]);\n const faceCenter = bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint });\n const faceCenterNormalized = [faceCenter[0] / input.shape[2], faceCenter[1] / input.shape[1]];\n const rotatedImage = tf.image.rotateWithOffset(input.toFloat(), angle, 0, faceCenterNormalized); // rotateWithOffset is not defined for tfjs-node\n rotationMatrix = util.buildRotationMatrix(-angle, faceCenter);\n face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.meshSize, this.meshSize]).div(255);\n }\n\n const prediction = {\n coords: transformedCoords,\n box,\n faceConfidence,\n boxConfidence,\n image: face,\n rawCoords,\n };\n\n // updated stored cache values\n const squarifiedLandmarksBox = bounding.squarifyBox(box);\n this.storedBoxes[i] = { ...squarifiedLandmarksBox, landmarks: transformedCoordsData, confidence: box.confidence, faceConfidence };\n\n return prediction;\n }));\n\n results = results.filter((a) => a !== null);\n // remove cache entries for detected boxes on low confidence\n if (config.face.mesh.enabled) this.storedBoxes = this.storedBoxes.filter((a) => a.faceConfidence > config.face.detector.minConfidence);\n this.detectedFaces = results.length;\n\n return results;\n }\n\n calculateLandmarksBoundingBox(landmarks) {\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint, landmarks };\n }\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as poses from './poses';\nimport * as util from './utils';\n\nlet model;\nconst poseNetOutputs = ['MobilenetV1/offset_2/BiasAdd'/* offsets */, 'MobilenetV1/heatmap_2/BiasAdd'/* heatmapScores */, 'MobilenetV1/displacement_fwd_2/BiasAdd'/* displacementFwd */, 'MobilenetV1/displacement_bwd_2/BiasAdd'/* displacementBwd */];\n\nexport async function predict(input, config) {\n const res = tf.tidy(() => {\n const resized = input.resizeBilinear([model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const normalized = resized.toFloat().div(127.5).sub(1.0);\n const results = model.execute(normalized, poseNetOutputs);\n const results3d = results.map((y) => y.squeeze([0]));\n results3d[1] = results3d[1].sigmoid(); // apply sigmoid on scores\n return results3d;\n });\n\n const buffers = await Promise.all(res.map((tensor) => tensor.buffer()));\n for (const t of res) t.dispose();\n\n const decoded = await poses.decode(buffers[0], buffers[1], buffers[2], buffers[3], config.body.nmsRadius, config.body.maxDetections, config.body.scoreThreshold);\n const scaled = util.scalePoses(decoded, [input.shape[1], input.shape[2]], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n\n return scaled;\n}\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n", "export const partNames = [\n 'nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder',\n 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist',\n 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle',\n];\n\nexport const count = partNames.length; // 17 keypoints\n\nexport const partIds = partNames.reduce((result, jointName, i) => {\n result[jointName] = i;\n return result;\n}, {});\n\nconst connectedPartNames = [\n ['leftHip', 'leftShoulder'], ['leftElbow', 'leftShoulder'],\n ['leftElbow', 'leftWrist'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['rightHip', 'rightShoulder'],\n ['rightElbow', 'rightShoulder'], ['rightElbow', 'rightWrist'],\n ['rightHip', 'rightKnee'], ['rightKnee', 'rightAnkle'],\n ['leftShoulder', 'rightShoulder'], ['leftHip', 'rightHip'],\n];\nexport const connectedPartIndices = connectedPartNames.map(([jointNameA, jointNameB]) => ([partIds[jointNameA], partIds[jointNameB]]));\n\nexport const poseChain = [\n ['nose', 'leftEye'], ['leftEye', 'leftEar'], ['nose', 'rightEye'],\n ['rightEye', 'rightEar'], ['nose', 'leftShoulder'],\n ['leftShoulder', 'leftElbow'], ['leftElbow', 'leftWrist'],\n ['leftShoulder', 'leftHip'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['nose', 'rightShoulder'],\n ['rightShoulder', 'rightElbow'], ['rightElbow', 'rightWrist'],\n ['rightShoulder', 'rightHip'], ['rightHip', 'rightKnee'],\n ['rightKnee', 'rightAnkle'],\n];\n", "import * as kpt from './keypoints';\n\nexport function eitherPointDoesntMeetConfidence(a, b, minConfidence) {\n return (a < minConfidence || b < minConfidence);\n}\n\nexport function getAdjacentKeyPoints(keypoints, minConfidence) {\n return kpt.connectedPartIndices.reduce((result, [leftJoint, rightJoint]) => {\n if (eitherPointDoesntMeetConfidence(keypoints[leftJoint].score, keypoints[rightJoint].score, minConfidence)) {\n return result;\n }\n result.push([keypoints[leftJoint], keypoints[rightJoint]]);\n return result;\n }, []);\n}\n\nexport function getBoundingBox(keypoints) {\n const coord = keypoints.reduce(({ maxX, maxY, minX, minY }, { position: { x, y } }) => ({\n maxX: Math.max(maxX, x),\n maxY: Math.max(maxY, y),\n minX: Math.min(minX, x),\n minY: Math.min(minY, y),\n }), {\n maxX: Number.NEGATIVE_INFINITY,\n maxY: Number.NEGATIVE_INFINITY,\n minX: Number.POSITIVE_INFINITY,\n minY: Number.POSITIVE_INFINITY,\n });\n return [coord.minX, coord.minY, coord.maxX - coord.minX, coord.maxY - coord.minY];\n}\n\nexport function scalePoses(poses, [height, width], [inputResolutionHeight, inputResolutionWidth]) {\n const scalePose = (pose, scaleY, scaleX) => ({\n score: pose.score,\n box: [Math.trunc(pose.box[0] * scaleX), Math.trunc(pose.box[1] * scaleY), Math.trunc(pose.box[2] * scaleX), Math.trunc(pose.box[3] * scaleY)],\n keypoints: pose.keypoints.map(({ score, part, position }) => ({\n score,\n part,\n position: { x: Math.trunc(position.x * scaleX), y: Math.trunc(position.y * scaleY) },\n })),\n });\n\n const scaledPoses = poses.map((pose) => scalePose(pose, height / inputResolutionHeight, width / inputResolutionWidth));\n return scaledPoses;\n}\n\n// algorithm based on Coursera Lecture from Algorithms, Part 1: https://www.coursera.org/learn/algorithms-part1/lecture/ZjoSM/heapsort\nexport class MaxHeap {\n priorityQueue: any;\n numberOfElements: number;\n getElementValue: any;\n\n constructor(maxSize, getElementValue) {\n this.priorityQueue = new Array(maxSize);\n this.numberOfElements = -1;\n this.getElementValue = getElementValue;\n }\n\n enqueue(x) {\n this.priorityQueue[++this.numberOfElements] = x;\n this.swim(this.numberOfElements);\n }\n\n dequeue() {\n const max = this.priorityQueue[0];\n this.exchange(0, this.numberOfElements--);\n this.sink(0);\n this.priorityQueue[this.numberOfElements + 1] = null;\n return max;\n }\n\n empty() { return this.numberOfElements === -1; }\n\n size() { return this.numberOfElements + 1; }\n\n all() { return this.priorityQueue.slice(0, this.numberOfElements + 1); }\n\n max() { return this.priorityQueue[0]; }\n\n swim(k) {\n while (k > 0 && this.less(Math.floor(k / 2), k)) {\n this.exchange(k, Math.floor(k / 2));\n k = Math.floor(k / 2);\n }\n }\n\n sink(k) {\n while (2 * k <= this.numberOfElements) {\n let j = 2 * k;\n if (j < this.numberOfElements && this.less(j, j + 1)) j++;\n if (!this.less(k, j)) break;\n this.exchange(k, j);\n k = j;\n }\n }\n\n getValueAt(i) {\n return this.getElementValue(this.priorityQueue[i]);\n }\n\n less(i, j) {\n return this.getValueAt(i) < this.getValueAt(j);\n }\n\n exchange(i, j) {\n const t = this.priorityQueue[i];\n this.priorityQueue[i] = this.priorityQueue[j];\n this.priorityQueue[j] = t;\n }\n}\n\nexport function getOffsetPoint(y, x, keypoint, offsets) {\n return {\n y: offsets.get(y, x, keypoint),\n x: offsets.get(y, x, keypoint + kpt.count),\n };\n}\n\nexport function getImageCoords(part, outputStride, offsets) {\n const { heatmapY, heatmapX, id: keypoint } = part;\n const { y, x } = getOffsetPoint(heatmapY, heatmapX, keypoint, offsets);\n return {\n x: part.heatmapX * outputStride + x,\n y: part.heatmapY * outputStride + y,\n };\n}\n\nexport function fillArray(element, size) {\n const result = new Array(size);\n for (let i = 0; i < size; i++) {\n result[i] = element;\n }\n return result;\n}\n\nexport function clamp(a, min, max) {\n if (a < min) return min;\n if (a > max) return max;\n return a;\n}\n\nexport function squaredDistance(y1, x1, y2, x2) {\n const dy = y2 - y1;\n const dx = x2 - x1;\n return dy * dy + dx * dx;\n}\n\nexport function addVectors(a, b) {\n return { x: a.x + b.x, y: a.y + b.y };\n}\n\nexport function clampVector(a, min, max) {\n return { y: clamp(a.y, min, max), x: clamp(a.x, min, max) };\n}\n", "import * as utils from './utils';\nimport * as kpt from './keypoints';\n\nconst localMaximumRadius = 1;\nconst defaultOutputStride = 16;\n\nfunction traverseToTargetKeypoint(edgeId, sourceKeypoint, targetKeypointId, scoresBuffer, offsets, outputStride, displacements, offsetRefineStep = 2) {\n const getDisplacement = (point) => ({\n y: displacements.get(point.y, point.x, edgeId),\n x: displacements.get(point.y, point.x, (displacements.shape[2] / 2) + edgeId),\n });\n const getStridedIndexNearPoint = (point, height, width) => ({\n y: utils.clamp(Math.round(point.y / outputStride), 0, height - 1),\n x: utils.clamp(Math.round(point.x / outputStride), 0, width - 1),\n });\n\n const [height, width] = scoresBuffer.shape;\n // Nearest neighbor interpolation for the source->target displacements.\n const sourceKeypointIndices = getStridedIndexNearPoint(sourceKeypoint.position, height, width);\n const displacement = getDisplacement(sourceKeypointIndices);\n const displacedPoint = utils.addVectors(sourceKeypoint.position, displacement);\n let targetKeypoint = displacedPoint;\n for (let i = 0; i < offsetRefineStep; i++) {\n const targetKeypointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const offsetPoint = utils.getOffsetPoint(targetKeypointIndices.y, targetKeypointIndices.x, targetKeypointId, offsets);\n targetKeypoint = utils.addVectors({\n x: targetKeypointIndices.x * outputStride,\n y: targetKeypointIndices.y * outputStride,\n }, { x: offsetPoint.x, y: offsetPoint.y });\n }\n const targetKeyPointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const score = scoresBuffer.get(targetKeyPointIndices.y, targetKeyPointIndices.x, targetKeypointId);\n return { position: targetKeypoint, part: kpt.partNames[targetKeypointId], score };\n}\n\nexport function decodePose(root, scores, offsets, outputStride, displacementsFwd, displacementsBwd) {\n const parentChildrenTuples = kpt.poseChain.map(([parentJoinName, childJoinName]) => ([kpt.partIds[parentJoinName], kpt.partIds[childJoinName]]));\n const parentToChildEdges = parentChildrenTuples.map(([, childJointId]) => childJointId);\n const childToParentEdges = parentChildrenTuples.map(([parentJointId]) => parentJointId);\n const numParts = scores.shape[2];\n const numEdges = parentToChildEdges.length;\n const instanceKeypoints = new Array(numParts);\n // Start a new detection instance at the position of the root.\n const { part: rootPart, score: rootScore } = root;\n const rootPoint = utils.getImageCoords(rootPart, outputStride, offsets);\n instanceKeypoints[rootPart.id] = {\n score: rootScore,\n part: kpt.partNames[rootPart.id],\n position: rootPoint,\n };\n // Decode the part positions upwards in the tree, following the backward displacements.\n for (let edge = numEdges - 1; edge >= 0; --edge) {\n const sourceKeypointId = parentToChildEdges[edge];\n const targetKeypointId = childToParentEdges[edge];\n if (instanceKeypoints[sourceKeypointId] && !instanceKeypoints[targetKeypointId]) {\n instanceKeypoints[targetKeypointId] = traverseToTargetKeypoint(edge, instanceKeypoints[sourceKeypointId], targetKeypointId, scores, offsets, outputStride, displacementsBwd);\n }\n }\n // Decode the part positions downwards in the tree, following the forward displacements.\n for (let edge = 0; edge < numEdges; ++edge) {\n const sourceKeypointId = childToParentEdges[edge];\n const targetKeypointId = parentToChildEdges[edge];\n if (instanceKeypoints[sourceKeypointId] && !instanceKeypoints[targetKeypointId]) {\n instanceKeypoints[targetKeypointId] = traverseToTargetKeypoint(edge, instanceKeypoints[sourceKeypointId], targetKeypointId, scores, offsets, outputStride, displacementsFwd);\n }\n }\n return instanceKeypoints;\n}\n\nfunction scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores) {\n const [height, width] = scores.shape;\n let localMaximum = true;\n const yStart = Math.max(heatmapY - localMaximumRadius, 0);\n const yEnd = Math.min(heatmapY + localMaximumRadius + 1, height);\n for (let yCurrent = yStart; yCurrent < yEnd; ++yCurrent) {\n const xStart = Math.max(heatmapX - localMaximumRadius, 0);\n const xEnd = Math.min(heatmapX + localMaximumRadius + 1, width);\n for (let xCurrent = xStart; xCurrent < xEnd; ++xCurrent) {\n if (scores.get(yCurrent, xCurrent, keypointId) > score) {\n localMaximum = false;\n break;\n }\n }\n if (!localMaximum) break;\n }\n return localMaximum;\n}\n\nexport function buildPartWithScoreQueue(scoreThreshold, scores) {\n const [height, width, numKeypoints] = scores.shape;\n const queue = new utils.MaxHeap(height * width * numKeypoints, ({ score }) => score);\n for (let heatmapY = 0; heatmapY < height; ++heatmapY) {\n for (let heatmapX = 0; heatmapX < width; ++heatmapX) {\n for (let keypointId = 0; keypointId < numKeypoints; ++keypointId) {\n const score = scores.get(heatmapY, heatmapX, keypointId);\n // Only consider parts with score greater or equal to threshold as root candidates.\n if (score < scoreThreshold) continue;\n // Only consider keypoints whose score is maximum in a local window.\n if (scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores)) queue.enqueue({ score, part: { heatmapY, heatmapX, id: keypointId } });\n }\n }\n }\n return queue;\n}\n\nfunction withinRadius(poses, squaredNmsRadius, { x, y }, keypointId) {\n return poses.some(({ keypoints }) => {\n const correspondingKeypoint = keypoints[keypointId].position;\n return utils.squaredDistance(y, x, correspondingKeypoint.y, correspondingKeypoint.x) <= squaredNmsRadius;\n });\n}\n\nfunction getInstanceScore(existingPoses, squaredNmsRadius, instanceKeypoints) {\n const notOverlappedKeypointScores = instanceKeypoints.reduce((result, { position, score }, keypointId) => {\n if (!withinRadius(existingPoses, squaredNmsRadius, position, keypointId)) result += score;\n return result;\n }, 0.0);\n return notOverlappedKeypointScores / instanceKeypoints.length;\n}\n\nexport function decode(offsetsBuffer, scoresBuffer, displacementsFwdBuffer, displacementsBwdBuffer, nmsRadius, maxDetections, scoreThreshold) {\n const poses: Array<{ keypoints: any, box: any, score: number }> = [];\n const queue = buildPartWithScoreQueue(scoreThreshold, scoresBuffer);\n const squaredNmsRadius = nmsRadius ** 2;\n // Generate at most maxDetections object instances per image in decreasing root part score order.\n while (poses.length < maxDetections && !queue.empty()) {\n // The top element in the queue is the next root candidate.\n const root = queue.dequeue();\n // Part-based non-maximum suppression: We reject a root candidate if it is within a disk of `nmsRadius` pixels from the corresponding part of a previously detected instance.\n const rootImageCoords = utils.getImageCoords(root.part, defaultOutputStride, offsetsBuffer);\n if (withinRadius(poses, squaredNmsRadius, rootImageCoords, root.part.id)) continue;\n // Else start a new detection instance at the position of the root.\n const allKeypoints = decodePose(root, scoresBuffer, offsetsBuffer, defaultOutputStride, displacementsFwdBuffer, displacementsBwdBuffer);\n const keypoints = allKeypoints.filter((a) => a.score > scoreThreshold);\n const score = getInstanceScore(poses, squaredNmsRadius, keypoints);\n const box = utils.getBoundingBox(keypoints);\n if (score > scoreThreshold) poses.push({ keypoints, box, score: Math.round(100 * score) / 100 });\n }\n return poses;\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as handdetector from './handdetector';\nimport * as handpipeline from './handpipeline';\nimport * as anchors from './anchors';\n\nconst MESH_ANNOTATIONS = {\n thumb: [1, 2, 3, 4],\n indexFinger: [5, 6, 7, 8],\n middleFinger: [9, 10, 11, 12],\n ringFinger: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n palmBase: [0],\n};\n\nexport class HandPose {\n handPipeline: any;\n\n constructor(handPipeline) {\n this.handPipeline = handPipeline;\n }\n\n static getAnnotations() {\n return MESH_ANNOTATIONS;\n }\n\n async estimateHands(input, config) {\n const predictions = await this.handPipeline.estimateHands(input, config);\n if (!predictions) return [];\n const hands: Array<{ confidence: number, box: any, boxRaw: any, landmarks: any, annotations: any }> = [];\n for (const prediction of predictions) {\n const annotations = {};\n if (prediction.landmarks) {\n for (const key of Object.keys(MESH_ANNOTATIONS)) {\n annotations[key] = MESH_ANNOTATIONS[key].map((index) => prediction.landmarks[index]);\n }\n }\n const box = prediction.box ? [\n Math.max(0, prediction.box.topLeft[0]),\n Math.max(0, prediction.box.topLeft[1]),\n Math.min(input.shape[2], prediction.box.bottomRight[0]) - Math.max(0, prediction.box.topLeft[0]),\n Math.min(input.shape[1], prediction.box.bottomRight[1]) - Math.max(0, prediction.box.topLeft[1]),\n ] : [];\n const boxRaw = [\n (prediction.box.topLeft[0]) / input.shape[2],\n (prediction.box.topLeft[1]) / input.shape[1],\n (prediction.box.bottomRight[0] - prediction.box.topLeft[0]) / input.shape[2],\n (prediction.box.bottomRight[1] - prediction.box.topLeft[1]) / input.shape[1],\n ];\n hands.push({ confidence: Math.round(100 * prediction.confidence) / 100, box, boxRaw, landmarks: prediction.landmarks, annotations });\n }\n return hands;\n }\n}\n\nlet handDetectorModel;\nlet handPoseModel;\nexport async function load(config): Promise {\n if (!handDetectorModel || !handPoseModel) {\n [handDetectorModel, handPoseModel] = await Promise.all([\n config.hand.enabled ? tf.loadGraphModel(join(config.modelBasePath, config.hand.detector.modelPath), { fromTFHub: config.hand.detector.modelPath.includes('tfhub.dev') }) : null,\n config.hand.landmarks ? tf.loadGraphModel(join(config.modelBasePath, config.hand.skeleton.modelPath), { fromTFHub: config.hand.skeleton.modelPath.includes('tfhub.dev') }) : null,\n ]);\n if (config.hand.enabled) {\n if (!handDetectorModel || !handDetectorModel.modelUrl) log('load model failed:', config.hand.detector.modelPath);\n else if (config.debug) log('load model:', handDetectorModel.modelUrl);\n if (!handPoseModel || !handPoseModel.modelUrl) log('load model failed:', config.hand.skeleton.modelPath);\n else if (config.debug) log('load model:', handPoseModel.modelUrl);\n }\n } else {\n if (config.debug) log('cached model:', handDetectorModel.modelUrl);\n if (config.debug) log('cached model:', handPoseModel.modelUrl);\n }\n const handDetector = new handdetector.HandDetector(handDetectorModel, handDetectorModel?.inputs[0].shape[2], anchors.anchors);\n const handPipeline = new handpipeline.HandPipeline(handDetector, handPoseModel, handPoseModel?.inputs[0].shape[2]);\n const handPose = new HandPose(handPipeline);\n return handPose;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n const palmLandmarks = box.palmLandmarks.map((coord) => {\n const scaledCoord = [coord[0] * factor[0], coord[1] * factor[1]];\n return scaledCoord;\n });\n return { startPoint, endPoint, palmLandmarks, confidence: box.confidence };\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]];\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [centers[0] - halfSize, centers[1] - halfSize];\n const endPoint = [centers[0] + halfSize, centers[1] + halfSize];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function shiftBox(box, shiftFactor) {\n const boxSize = [\n box.endPoint[0] - box.startPoint[0],\n box.endPoint[1] - box.startPoint[1],\n ];\n const shiftVector = [boxSize[0] * shiftFactor[0], boxSize[1] * shiftFactor[1]];\n const startPoint = [box.startPoint[0] + shiftVector[0], box.startPoint[1] + shiftVector[1]];\n const endPoint = [box.endPoint[0] + shiftVector[0], box.endPoint[1] + shiftVector[1]];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\n\nexport class HandDetector {\n model: any;\n anchors: any;\n anchorsTensor: any;\n inputSize: number;\n inputSizeTensor: any;\n doubleInputSizeTensor: any;\n\n constructor(model, inputSize, anchorsAnnotated) {\n this.model = model;\n this.anchors = anchorsAnnotated.map((anchor) => [anchor.x_center, anchor.y_center]);\n this.anchorsTensor = tf.tensor2d(this.anchors);\n this.inputSize = inputSize;\n this.inputSizeTensor = tf.tensor1d([inputSize, inputSize]);\n this.doubleInputSizeTensor = tf.tensor1d([inputSize * 2, inputSize * 2]);\n }\n\n normalizeBoxes(boxes) {\n return tf.tidy(() => {\n const boxOffsets = tf.slice(boxes, [0, 0], [-1, 2]);\n const boxSizes = tf.slice(boxes, [0, 2], [-1, 2]);\n const boxCenterPoints = tf.add(tf.div(boxOffsets, this.inputSizeTensor), this.anchorsTensor);\n const halfBoxSizes = tf.div(boxSizes, this.doubleInputSizeTensor);\n const startPoints = tf.mul(tf.sub(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);\n const endPoints = tf.mul(tf.add(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);\n return tf.concat2d([startPoints, endPoints], 1);\n });\n }\n\n normalizeLandmarks(rawPalmLandmarks, index) {\n return tf.tidy(() => {\n const landmarks = tf.add(tf.div(rawPalmLandmarks.reshape([-1, 7, 2]), this.inputSizeTensor), this.anchors[index]);\n return tf.mul(landmarks, this.inputSizeTensor);\n });\n }\n\n async getBoxes(input, config) {\n const batched = this.model.predict(input);\n const predictions = batched.squeeze();\n batched.dispose();\n const scoresT = tf.tidy(() => tf.sigmoid(tf.slice(predictions, [0, 0], [-1, 1])).squeeze());\n const scores = scoresT.dataSync();\n const rawBoxes = tf.slice(predictions, [0, 1], [-1, 4]);\n const boxes = this.normalizeBoxes(rawBoxes);\n rawBoxes.dispose();\n const filteredT = await tf.image.nonMaxSuppressionAsync(boxes, scores, config.hand.maxHands, config.hand.iouThreshold, config.hand.scoreThreshold);\n const filtered = filteredT.arraySync();\n\n scoresT.dispose();\n filteredT.dispose();\n const hands: Array<{ box: any, palmLandmarks: any, confidence: number }> = [];\n for (const index of filtered) {\n if (scores[index] >= config.hand.minConfidence) {\n const matchingBox = tf.slice(boxes, [index, 0], [1, -1]);\n const rawPalmLandmarks = tf.slice(predictions, [index, 5], [1, 14]);\n const palmLandmarks = tf.tidy(() => this.normalizeLandmarks(rawPalmLandmarks, index).reshape([-1, 2]));\n rawPalmLandmarks.dispose();\n hands.push({ box: matchingBox, palmLandmarks, confidence: scores[index] });\n }\n }\n predictions.dispose();\n boxes.dispose();\n return hands;\n }\n\n async estimateHandBounds(input, config) {\n const inputHeight = input.shape[1];\n const inputWidth = input.shape[2];\n const image = tf.tidy(() => input.resizeBilinear([this.inputSize, this.inputSize]).div(127.5).sub(1));\n const predictions = await this.getBoxes(image, config);\n image.dispose();\n const hands: Array<{}> = [];\n if (!predictions || predictions.length === 0) return hands;\n for (const prediction of predictions) {\n const boxes = prediction.box.dataSync();\n const startPoint = boxes.slice(0, 2);\n const endPoint = boxes.slice(2, 4);\n const palmLandmarks = prediction.palmLandmarks.arraySync();\n prediction.box.dispose();\n prediction.palmLandmarks.dispose();\n hands.push(box.scaleBoxCoordinates({ startPoint, endPoint, palmLandmarks, confidence: prediction.confidence }, [inputWidth / this.inputSize, inputHeight / this.inputSize]));\n }\n return hands;\n }\n}\n", "export function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\nimport * as util from './util';\n\n// const PALM_BOX_SHIFT_VECTOR = [0, -0.4];\nconst PALM_BOX_ENLARGE_FACTOR = 5; // default 3\n// const HAND_BOX_SHIFT_VECTOR = [0, -0.1]; // move detected hand box by x,y to ease landmark detection\nconst HAND_BOX_ENLARGE_FACTOR = 1.65; // default 1.65\nconst PALM_LANDMARK_IDS = [0, 5, 9, 13, 17, 1, 2];\nconst PALM_LANDMARKS_INDEX_OF_PALM_BASE = 0;\nconst PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE = 2;\n\nexport class HandPipeline {\n handDetector: any;\n landmarkDetector: any;\n inputSize: number;\n storedBoxes: any;\n skipped: number;\n detectedHands: number;\n\n constructor(handDetector, landmarkDetector, inputSize) {\n this.handDetector = handDetector;\n this.landmarkDetector = landmarkDetector;\n this.inputSize = inputSize;\n this.storedBoxes = [];\n this.skipped = 0;\n this.detectedHands = 0;\n }\n\n getBoxForPalmLandmarks(palmLandmarks, rotationMatrix) {\n const rotatedPalmLandmarks = palmLandmarks.map((coord) => util.rotatePoint([...coord, 1], rotationMatrix));\n const boxAroundPalm = this.calculateLandmarksBoundingBox(rotatedPalmLandmarks);\n // return box.enlargeBox(box.squarifyBox(box.shiftBox(boxAroundPalm, PALM_BOX_SHIFT_VECTOR)), PALM_BOX_ENLARGE_FACTOR);\n return box.enlargeBox(box.squarifyBox(boxAroundPalm), PALM_BOX_ENLARGE_FACTOR);\n }\n\n getBoxForHandLandmarks(landmarks) {\n const boundingBox = this.calculateLandmarksBoundingBox(landmarks);\n // const boxAroundHand = box.enlargeBox(box.squarifyBox(box.shiftBox(boundingBox, HAND_BOX_SHIFT_VECTOR)), HAND_BOX_ENLARGE_FACTOR);\n const boxAroundHand = box.enlargeBox(box.squarifyBox(boundingBox), HAND_BOX_ENLARGE_FACTOR);\n boxAroundHand.palmLandmarks = [];\n for (let i = 0; i < PALM_LANDMARK_IDS.length; i++) {\n boxAroundHand.palmLandmarks.push(landmarks[PALM_LANDMARK_IDS[i]].slice(0, 2));\n }\n return boxAroundHand;\n }\n\n transformRawCoords(rawCoords, box2, angle, rotationMatrix) {\n const boxSize = box.getBoxSize(box2);\n const scaleFactor = [boxSize[0] / this.inputSize, boxSize[1] / this.inputSize, (boxSize[0] + boxSize[1]) / this.inputSize / 2];\n const coordsScaled = rawCoords.map((coord) => [\n scaleFactor[0] * (coord[0] - this.inputSize / 2),\n scaleFactor[1] * (coord[1] - this.inputSize / 2),\n scaleFactor[2] * coord[2],\n ]);\n const coordsRotationMatrix = util.buildRotationMatrix(angle, [0, 0]);\n const coordsRotated = coordsScaled.map((coord) => {\n const rotated = util.rotatePoint(coord, coordsRotationMatrix);\n return [...rotated, coord[2]];\n });\n const inverseRotationMatrix = util.invertTransformMatrix(rotationMatrix);\n const boxCenter = [...box.getBoxCenter(box2), 1];\n const originalBoxCenter = [\n util.dot(boxCenter, inverseRotationMatrix[0]),\n util.dot(boxCenter, inverseRotationMatrix[1]),\n ];\n return coordsRotated.map((coord) => [\n coord[0] + originalBoxCenter[0],\n coord[1] + originalBoxCenter[1],\n coord[2],\n ]);\n }\n\n async estimateHands(image, config) {\n let useFreshBox = false;\n\n // run new detector every skipFrames unless we only want box to start with\n let boxes;\n if ((this.skipped === 0) || (this.skipped > config.hand.skipFrames) || !config.hand.landmarks || !config.videoOptimized) {\n boxes = await this.handDetector.estimateHandBounds(image, config);\n this.skipped = 0;\n }\n if (config.videoOptimized) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (boxes && (boxes.length > 0) && ((boxes.length !== this.detectedHands) && (this.detectedHands !== config.hand.maxHands) || !config.hand.landmarks)) {\n this.detectedHands = 0;\n this.storedBoxes = [...boxes];\n // for (const possible of boxes) this.storedBoxes.push(possible);\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n const hands: Array<{}> = [];\n\n if (config.hand.skipInitial && this.detectedHands === 0) this.skipped = 0;\n\n // go through working set of boxes\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const currentBox = this.storedBoxes[i];\n if (!currentBox) continue;\n if (config.hand.landmarks) {\n const angle = config.hand.rotation ? util.computeRotation(currentBox.palmLandmarks[PALM_LANDMARKS_INDEX_OF_PALM_BASE], currentBox.palmLandmarks[PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE]) : 0;\n const palmCenter = box.getBoxCenter(currentBox);\n const palmCenterNormalized = [palmCenter[0] / image.shape[2], palmCenter[1] / image.shape[1]];\n const rotatedImage = config.hand.rotation ? tf.image.rotateWithOffset(image, angle, 0, palmCenterNormalized) : image.clone();\n const rotationMatrix = util.buildRotationMatrix(-angle, palmCenter);\n const newBox = useFreshBox ? this.getBoxForPalmLandmarks(currentBox.palmLandmarks, rotationMatrix) : currentBox;\n const croppedInput = box.cutBoxFromImageAndResize(newBox, rotatedImage, [this.inputSize, this.inputSize]);\n const handImage = croppedInput.div(255);\n croppedInput.dispose();\n rotatedImage.dispose();\n const [confidenceT, keypoints] = await this.landmarkDetector.predict(handImage);\n handImage.dispose();\n const confidence = confidenceT.dataSync()[0];\n confidenceT.dispose();\n if (confidence >= config.hand.minConfidence) {\n const keypointsReshaped = tf.reshape(keypoints, [-1, 3]);\n const rawCoords = keypointsReshaped.arraySync();\n keypoints.dispose();\n keypointsReshaped.dispose();\n const coords = this.transformRawCoords(rawCoords, newBox, angle, rotationMatrix);\n const nextBoundingBox = this.getBoxForHandLandmarks(coords);\n this.storedBoxes[i] = nextBoundingBox;\n const result = {\n landmarks: coords,\n confidence,\n box: { topLeft: nextBoundingBox.startPoint, bottomRight: nextBoundingBox.endPoint },\n };\n hands.push(result);\n } else {\n this.storedBoxes[i] = null;\n }\n keypoints.dispose();\n } else {\n // const enlarged = box.enlargeBox(box.squarifyBox(box.shiftBox(currentBox, HAND_BOX_SHIFT_VECTOR)), HAND_BOX_ENLARGE_FACTOR);\n const enlarged = box.enlargeBox(box.squarifyBox(currentBox), HAND_BOX_ENLARGE_FACTOR);\n const result = {\n confidence: currentBox.confidence,\n box: { topLeft: enlarged.startPoint, bottomRight: enlarged.endPoint },\n };\n hands.push(result);\n }\n }\n this.storedBoxes = this.storedBoxes.filter((a) => a !== null);\n this.detectedHands = hands.length;\n return hands;\n }\n\n // eslint-disable-next-line class-methods-use-this\n calculateLandmarksBoundingBox(landmarks) {\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint };\n }\n}\n", "export const anchors = [\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.015625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.046875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.078125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.109375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.140625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.171875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.203125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.234375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.265625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.296875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.328125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.359375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.390625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.421875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.453125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.484375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.515625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.546875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.578125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.609375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.640625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.671875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.703125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.734375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.765625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.796875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.828125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.859375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.890625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.921875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.953125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.015625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.046875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.078125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.109375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.140625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.171875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.203125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.234375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.265625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.296875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.328125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.359375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.390625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.421875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.453125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.484375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.515625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.546875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.578125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.609375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.640625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.671875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.703125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.734375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.765625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.796875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.828125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.859375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.890625,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.921875,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.953125,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.984375,\n y_center: 0.984375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.03125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.09375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.15625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.21875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.28125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.34375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.40625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.46875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.53125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.59375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.65625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.71875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.78125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.84375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.90625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.03125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.09375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.15625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.21875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.28125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.34375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.40625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.46875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.53125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.59375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.65625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.71875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.78125,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.84375,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.90625,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.96875,\n y_center: 0.96875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.0625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.1875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.3125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.4375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.5625,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.6875,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.8125,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.0625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.1875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.3125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.4375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.5625,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.6875,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.8125,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n {\n w: 1,\n h: 1,\n x_center: 0.9375,\n y_center: 0.9375,\n },\n];\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\nimport * as annotations from './annotations';\n\nlet model;\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n model.width = parseInt(model.signature.inputs['input_1:0'].tensorShape.dim[2].size);\n model.height = parseInt(model.signature.inputs['input_1:0'].tensorShape.dim[1].size);\n if (!model || !model.modelUrl) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if (!config.body.enabled) return null;\n const imgSize = { width: image.shape[2], height: image.shape[1] };\n const resize = tf.image.resizeBilinear(image, [model.width, model.height], false);\n const normalize = tf.div(resize, [255.0]);\n resize.dispose();\n let points;\n if (!config.profile) { // run through profiler or just execute\n const resT = await model.predict(normalize);\n // const segmentationT = resT.find((t) => (t.size === 16384))?.squeeze();\n // const segmentation = segmentationT.arraySync(); // array 128 x 128\n // segmentationT.dispose();\n points = resT.find((t) => (t.size === 195 || t.size === 155)).dataSync(); // order of output tensors may change between models, full has 195 and upper has 155 items\n resT.forEach((t) => t.dispose());\n } else {\n const profileData = await tf.profile(() => model.predict(normalize));\n points = profileData.result.find((t) => (t.size === 195 || t.size === 155)).dataSync();\n profileData.result.forEach((t) => t.dispose());\n profile.run('blazepose', profileData);\n }\n normalize.dispose();\n const keypoints: Array<{ id, part, position: { x, y, z }, score, presence }> = [];\n const labels = points.length === 195 ? annotations.full : annotations.upper; // full model has 39 keypoints, upper has 31 keypoints\n const depth = 5; // each points has x,y,z,visibility,presence\n for (let i = 0; i < points.length / depth; i++) {\n keypoints.push({\n id: i,\n part: labels[i],\n position: {\n x: Math.trunc(imgSize.width * points[depth * i + 0] / 255), // return normalized x value istead of 0..255\n y: Math.trunc(imgSize.height * points[depth * i + 1] / 255), // return normalized y value istead of 0..255\n z: Math.trunc(points[depth * i + 2]) + 0, // fix negative zero\n },\n score: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 3])))) / 100, // reverse sigmoid value\n presence: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 4])))) / 100, // reverse sigmoid value\n });\n }\n const score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n return [{ score, keypoints }];\n}\n", "export const full = [\n 'nose',\n 'leftEyeInside',\n 'leftEye',\n 'leftEyeOutside',\n 'rightEyeInside',\n 'rightEye',\n 'rightEyeOutside',\n 'leftEar',\n 'rightEar',\n 'leftMouth',\n 'rightMouth',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'leftWrist',\n 'rightWrist',\n 'leftPalm',\n 'rightPalm',\n 'leftIndex',\n 'rightIndex',\n 'leftPinky',\n 'rightPinky',\n 'leftHip',\n 'rightHip',\n 'leftKnee',\n 'rightKnee',\n 'leftAnkle',\n 'rightAnkle',\n 'leftHeel',\n 'rightHeel',\n 'leftFoot',\n 'rightFoot',\n 'midHip',\n 'forehead',\n 'leftThumb',\n 'leftHand',\n 'rightThumb',\n 'rightHand',\n];\n\nexport const upper = [\n 'nose',\n 'leftEyeInside',\n 'leftEye',\n 'leftEyeOutside',\n 'rightEyeInside',\n 'rightEye',\n 'rightEyeOutside',\n 'leftEar',\n 'rightEar',\n 'leftMouth',\n 'rightMouth',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'left:15',\n 'right:16',\n 'left:17',\n 'right:18',\n 'left:19',\n 'right:20',\n 'left:21',\n 'right:22',\n 'leftChest',\n 'rightChest',\n 'neck',\n 'forehead',\n 'left:27',\n 'right:28',\n 'left:29',\n 'right:30',\n];\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\n\nlet model;\nlet keypoints: Array = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst bodyParts = ['head', 'neck', 'rightShoulder', 'rightElbow', 'rightWrist', 'chest', 'leftShoulder', 'leftElbow', 'leftWrist', 'pelvis', 'rightHip', 'rightKnee', 'rightAnkle', 'leftHip', 'leftKnee', 'leftAnkle'];\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\n// performs argmax and max functions on a 2d tensor\nfunction max2d(inputs, minScore) {\n const [width, height] = inputs.shape;\n return tf.tidy(() => {\n // modulus op implemented in tf\n const mod = (a, b) => tf.sub(a, tf.mul(tf.div(a, tf.scalar(b, 'int32')), tf.scalar(b, 'int32')));\n // combine all data\n const reshaped = tf.reshape(inputs, [height * width]);\n // get highest score\n const score = tf.max(reshaped, 0).dataSync()[0];\n if (score > minScore) {\n // skip coordinate calculation is score is too low\n const coords = tf.argMax(reshaped, 0);\n const x = mod(coords, width).dataSync()[0];\n const y = tf.div(coords, tf.scalar(width, 'int32')).dataSync()[0];\n return [x, y, score];\n }\n return [0, 0, score];\n });\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n if ((skipped < config.body.skipFrames) && config.videoOptimized && Object.keys(keypoints).length > 0) {\n skipped++;\n return keypoints;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const tensor = tf.tidy(() => {\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const enhance = tf.mul(resize, 2);\n const norm = enhance.sub(1);\n return norm;\n });\n\n let resT;\n\n if (!config.profile) {\n if (config.body.enabled) resT = await model.predict(tensor);\n } else {\n const profileT = config.body.enabled ? await tf.profile(() => model.predict(tensor)) : {};\n resT = profileT.result.clone();\n profileT.result.dispose();\n profile.run('body', profileT);\n }\n tensor.dispose();\n\n if (resT) {\n const parts: Array<{ id, score, part, position: { x, y }, positionRaw: { xRaw, yRaw} }> = [];\n const squeeze = resT.squeeze();\n tf.dispose(resT);\n // body parts are basically just a stack of 2d tensors\n const stack = squeeze.unstack(2);\n tf.dispose(squeeze);\n // process each unstacked tensor as a separate body part\n for (let id = 0; id < stack.length; id++) {\n // actual processing to get coordinates and score\n const [x, y, score] = max2d(stack[id], config.body.scoreThreshold);\n if (score > config.body.scoreThreshold) {\n parts.push({\n id,\n score: Math.round(100 * score) / 100,\n part: bodyParts[id],\n positionRaw: {\n xRaw: x / model.inputs[0].shape[2], // x normalized to 0..1\n yRaw: y / model.inputs[0].shape[1], // y normalized to 0..1\n },\n position: {\n x: Math.round(image.shape[2] * x / model.inputs[0].shape[2]), // x normalized to input image size\n y: Math.round(image.shape[1] * y / model.inputs[0].shape[1]), // y normalized to input image size\n },\n });\n }\n }\n stack.forEach((s) => tf.dispose(s));\n keypoints = parts;\n }\n const score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n resolve([{ score, keypoints }]);\n });\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as profile from '../profile';\nimport { labels } from './labels';\n\nlet model;\nlet last: Array<{}> = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst scaleBox = 2.5; // increase box size\n\nexport async function load(config) {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.object.modelPath));\n const inputs = Object.values(model.modelSignature['inputs']);\n model.inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : null;\n if (!model.inputSize) throw new Error(`Human: Cannot determine model inputSize: ${config.object.modelPath}`);\n if (!model || !model.modelUrl) log('load model failed:', config.object.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nasync function process(res, inputSize, outputShape, config) {\n let id = 0;\n let results: Array<{ score: number, strideSize: number, class: number, label: string, center: number[], centerRaw: number[], box: number[], boxRaw: number[] }> = [];\n for (const strideSize of [1, 2, 4]) { // try each stride size as it detects large/medium/small objects\n // find scores, boxes, classes\n tf.tidy(() => { // wrap in tidy to automatically deallocate temp tensors\n const baseSize = strideSize * 13; // 13x13=169, 26x26=676, 52x52=2704\n // find boxes and scores output depending on stride\n const scoresT = res.find((a) => (a.shape[1] === (baseSize ** 2) && a.shape[2] === labels.length))?.squeeze();\n const featuresT = res.find((a) => (a.shape[1] === (baseSize ** 2) && a.shape[2] < labels.length))?.squeeze();\n const boxesMax = featuresT.reshape([-1, 4, featuresT.shape[1] / 4]); // reshape [output] to [4, output / 4] where number is number of different features inside each stride\n const boxIdx = boxesMax.argMax(2).arraySync(); // what we need is indexes of features with highest scores, not values itself\n const scores = scoresT.arraySync(); // optionally use exponential scores or just as-is\n for (let i = 0; i < scoresT.shape[0]; i++) { // total strides (x * y matrix)\n for (let j = 0; j < scoresT.shape[1]; j++) { // one score for each class\n const score = scores[i][j]; // get score for current position\n if (score > config.object.minConfidence && j !== 61) {\n const cx = (0.5 + Math.trunc(i % baseSize)) / baseSize; // center.x normalized to range 0..1\n const cy = (0.5 + Math.trunc(i / baseSize)) / baseSize; // center.y normalized to range 0..1\n const boxOffset = boxIdx[i].map((a) => a * (baseSize / strideSize / inputSize)); // just grab indexes of features with highest scores\n const [x, y] = [\n cx - (scaleBox / strideSize * boxOffset[0]),\n cy - (scaleBox / strideSize * boxOffset[1]),\n ];\n const [w, h] = [\n cx + (scaleBox / strideSize * boxOffset[2]) - x,\n cy + (scaleBox / strideSize * boxOffset[3]) - y,\n ];\n let boxRaw = [x, y, w, h]; // results normalized to range 0..1\n boxRaw = boxRaw.map((a) => Math.max(0, Math.min(a, 1))); // fix out-of-bounds coords\n const box = [ // results normalized to input image pixels\n boxRaw[0] * outputShape[0],\n boxRaw[1] * outputShape[1],\n boxRaw[2] * outputShape[0],\n boxRaw[3] * outputShape[1],\n ];\n const result = {\n id: id++,\n strideSize,\n score: Math.round(100 * score) / 100,\n class: j + 1,\n label: labels[j].label,\n center: [Math.trunc(outputShape[0] * cx), Math.trunc(outputShape[1] * cy)],\n centerRaw: [cx, cy],\n box: box.map((a) => Math.trunc(a)),\n boxRaw,\n };\n results.push(result);\n }\n }\n }\n });\n }\n // deallocate tensors\n res.forEach((t) => tf.dispose(t));\n\n // normally nms is run on raw results, but since boxes need to be calculated this way we skip calulcation of\n // unnecessary boxes and run nms only on good candidates (basically it just does IOU analysis as scores are already filtered)\n const nmsBoxes = results.map((a) => a.boxRaw);\n const nmsScores = results.map((a) => a.score);\n let nmsIdx: any[] = [];\n if (nmsBoxes && nmsBoxes.length > 0) {\n const nms = await tf.image.nonMaxSuppressionAsync(nmsBoxes, nmsScores, config.object.maxResults, config.object.iouThreshold, config.object.minConfidence);\n nmsIdx = nms.dataSync();\n tf.dispose(nms);\n }\n\n // filter & sort results\n results = results\n .filter((a, idx) => nmsIdx.includes(idx))\n .sort((a, b) => (b.score - a.score));\n\n return results;\n}\n\nexport async function predict(image, config) {\n if (!model) return null;\n // console.log(skipped, config.object.skipFrames, config.videoOptimized, ((skipped < config.object.skipFrames) && config.videoOptimized && (last.length > 0)));\n if ((skipped < config.object.skipFrames) && config.videoOptimized && (last.length > 0)) {\n skipped++;\n return last;\n }\n if (config.videoOptimized) skipped = 0;\n else skipped = Number.MAX_SAFE_INTEGER;\n return new Promise(async (resolve) => {\n const outputSize = [image.shape[2], image.shape[1]];\n const resize = tf.image.resizeBilinear(image, [model.inputSize, model.inputSize], false);\n const norm = resize.div(255);\n const transpose = norm.transpose([0, 3, 1, 2]);\n norm.dispose();\n resize.dispose();\n\n let objectT;\n if (!config.profile) {\n if (config.object.enabled) objectT = await model.predict(transpose);\n } else {\n const profileObject = config.object.enabled ? await tf.profile(() => model.predict(transpose)) : {};\n objectT = profileObject.result;\n profile.run('object', profileObject);\n }\n transpose.dispose();\n\n const obj = await process(objectT, model.inputSize, outputSize, config);\n last = obj;\n resolve(obj);\n });\n}\n", "export const labels = [\n { class: 1, label: 'person' },\n { class: 2, label: 'bicycle' },\n { class: 3, label: 'car' },\n { class: 4, label: 'motorcycle' },\n { class: 5, label: 'airplane' },\n { class: 6, label: 'bus' },\n { class: 7, label: 'train' },\n { class: 8, label: 'truck' },\n { class: 9, label: 'boat' },\n { class: 10, label: 'traffic light' },\n { class: 11, label: 'fire hydrant' },\n { class: 12, label: 'stop sign' },\n { class: 13, label: 'parking meter' },\n { class: 14, label: 'bench' },\n { class: 15, label: 'bird' },\n { class: 16, label: 'cat' },\n { class: 17, label: 'dog' },\n { class: 18, label: 'horse' },\n { class: 19, label: 'sheep' },\n { class: 20, label: 'cow' },\n { class: 21, label: 'elephant' },\n { class: 22, label: 'bear' },\n { class: 23, label: 'zebra' },\n { class: 24, label: 'giraffe' },\n { class: 25, label: 'backpack' },\n { class: 26, label: 'umbrella' },\n { class: 27, label: 'handbag' },\n { class: 28, label: 'tie' },\n { class: 29, label: 'suitcase' },\n { class: 30, label: 'frisbee' },\n { class: 31, label: 'skis' },\n { class: 32, label: 'snowboard' },\n { class: 33, label: 'sports ball' },\n { class: 34, label: 'kite' },\n { class: 35, label: 'baseball bat' },\n { class: 36, label: 'baseball glove' },\n { class: 37, label: 'skateboard' },\n { class: 38, label: 'surfboard' },\n { class: 39, label: 'tennis racket' },\n { class: 40, label: 'bottle' },\n { class: 41, label: 'wine glass' },\n { class: 42, label: 'cup' },\n { class: 43, label: 'fork' },\n { class: 44, label: 'knife' },\n { class: 45, label: 'spoon' },\n { class: 46, label: 'bowl' },\n { class: 47, label: 'banana' },\n { class: 48, label: 'apple' },\n { class: 49, label: 'sandwich' },\n { class: 50, label: 'orange' },\n { class: 51, label: 'broccoli' },\n { class: 52, label: 'carrot' },\n { class: 53, label: 'hot dog' },\n { class: 54, label: 'pizza' },\n { class: 55, label: 'donut' },\n { class: 56, label: 'cake' },\n { class: 57, label: 'chair' },\n { class: 58, label: 'couch' },\n { class: 59, label: 'potted plant' },\n { class: 60, label: 'bed' },\n { class: 61, label: 'dining table' },\n { class: 62, label: 'toilet' },\n { class: 63, label: 'tv' },\n { class: 64, label: 'laptop' },\n { class: 65, label: 'mouse' },\n { class: 66, label: 'remote' },\n { class: 67, label: 'keyboard' },\n { class: 68, label: 'cell phone' },\n { class: 69, label: 'microwave' },\n { class: 70, label: 'oven' },\n { class: 71, label: 'toaster' },\n { class: 72, label: 'sink' },\n { class: 73, label: 'refrigerator' },\n { class: 74, label: 'book' },\n { class: 75, label: 'clock' },\n { class: 76, label: 'vase' },\n { class: 77, label: 'scissors' },\n { class: 78, label: 'teddy bear' },\n { class: 79, label: 'hair drier' },\n { class: 80, label: 'toothbrush' },\n];\n", "export const body = (res) => {\n if (!res) return [];\n const gestures: Array<{ body: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n // raising hands\n const leftWrist = res[i].keypoints.find((a) => (a.part === 'leftWrist'));\n const rightWrist = res[i].keypoints.find((a) => (a.part === 'rightWrist'));\n const nose = res[i].keypoints.find((a) => (a.part === 'nose'));\n if (nose && leftWrist && rightWrist && (leftWrist.position.y < nose.position.y) && (rightWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'i give up' });\n else if (nose && leftWrist && (leftWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'raise left hand' });\n else if (nose && rightWrist && (rightWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'raise right hand' });\n\n // leaning\n const leftShoulder = res[i].keypoints.find((a) => (a.part === 'leftShoulder'));\n const rightShoulder = res[i].keypoints.find((a) => (a.part === 'rightShoulder'));\n if (leftShoulder && rightShoulder) gestures.push({ body: i, gesture: `leaning ${(leftShoulder.position.y > rightShoulder.position.y) ? 'left' : 'right'}` });\n }\n return gestures;\n};\n\nexport const face = (res) => {\n if (!res) return [];\n const gestures: Array<{ face: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n if (res[i].mesh && res[i].mesh.length > 0) {\n const eyeFacing = res[i].mesh[33][2] - res[i].mesh[263][2];\n if (Math.abs(eyeFacing) < 10) gestures.push({ face: i, gesture: 'facing center' });\n else gestures.push({ face: i, gesture: `facing ${eyeFacing < 0 ? 'left' : 'right'}` });\n const openLeft = Math.abs(res[i].mesh[374][1] - res[i].mesh[386][1]) / Math.abs(res[i].mesh[443][1] - res[i].mesh[450][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openLeft < 0.2) gestures.push({ face: i, gesture: 'blink left eye' });\n const openRight = Math.abs(res[i].mesh[145][1] - res[i].mesh[159][1]) / Math.abs(res[i].mesh[223][1] - res[i].mesh[230][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openRight < 0.2) gestures.push({ face: i, gesture: 'blink right eye' });\n const mouthOpen = Math.min(100, 500 * Math.abs(res[i].mesh[13][1] - res[i].mesh[14][1]) / Math.abs(res[i].mesh[10][1] - res[i].mesh[152][1]));\n if (mouthOpen > 10) gestures.push({ face: i, gesture: `mouth ${Math.trunc(mouthOpen)}% open` });\n const chinDepth = res[i].mesh[152][2];\n if (Math.abs(chinDepth) > 10) gestures.push({ face: i, gesture: `head ${chinDepth < 0 ? 'up' : 'down'}` });\n }\n }\n return gestures;\n};\n\nexport const iris = (res) => {\n if (!res) return [];\n const gestures: Array<{ iris: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n if (!res[i].annotations || !res[i].annotations.leftEyeIris || !res[i].annotations.rightEyeIris) continue;\n const sizeXLeft = res[i].annotations.leftEyeIris[3][0] - res[i].annotations.leftEyeIris[1][0];\n const sizeYLeft = res[i].annotations.leftEyeIris[4][1] - res[i].annotations.leftEyeIris[2][1];\n const areaLeft = Math.abs(sizeXLeft * sizeYLeft);\n\n const sizeXRight = res[i].annotations.rightEyeIris[3][0] - res[i].annotations.rightEyeIris[1][0];\n const sizeYRight = res[i].annotations.rightEyeIris[4][1] - res[i].annotations.rightEyeIris[2][1];\n const areaRight = Math.abs(sizeXRight * sizeYRight);\n\n let center = false;\n const difference = Math.abs(areaLeft - areaRight) / Math.max(areaLeft, areaRight);\n if (difference < 0.25) {\n center = true;\n gestures.push({ iris: i, gesture: 'facing center' });\n }\n\n const rightIrisCenterX = Math.abs(res[i].mesh[33][0] - res[i].annotations.rightEyeIris[0][0]) / res[i].annotations.rightEyeIris[0][0];\n const leftIrisCenterX = Math.abs(res[i].mesh[263][0] - res[i].annotations.leftEyeIris[0][0]) / res[i].annotations.leftEyeIris[0][0];\n if (leftIrisCenterX > 0.033 || rightIrisCenterX > 0.033) center = false;\n if (leftIrisCenterX > 0.033) gestures.push({ iris: i, gesture: 'looking right' });\n if (rightIrisCenterX > 0.033) gestures.push({ iris: i, gesture: 'looking left' });\n\n const rightIrisCenterY = Math.abs(res[i].mesh[145][1] - res[i].annotations.rightEyeIris[0][1]) / res[i].annotations.rightEyeIris[0][1];\n const leftIrisCenterY = Math.abs(res[i].mesh[374][1] - res[i].annotations.leftEyeIris[0][1]) / res[i].annotations.leftEyeIris[0][1];\n if (leftIrisCenterY < 0.015 || rightIrisCenterY < 0.015 || leftIrisCenterY > 0.030 || rightIrisCenterY > 0.030) center = false;\n if (leftIrisCenterY < 0.015 || rightIrisCenterY < 0.015) gestures.push({ iris: i, gesture: 'looking down' });\n if (leftIrisCenterY > 0.030 || rightIrisCenterY > 0.030) gestures.push({ iris: i, gesture: 'looking up' });\n\n // still center;\n if (center) gestures.push({ iris: i, gesture: 'looking center' });\n }\n return gestures;\n};\n\nexport const hand = (res) => {\n if (!res) return [];\n const gestures: Array<{ hand: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n const fingers: Array<{ name: string, position: number }> = [];\n for (const [finger, pos] of Object.entries(res[i]['annotations'])) {\n if (finger !== 'palmBase' && Array.isArray(pos)) fingers.push({ name: finger.toLowerCase(), position: pos[0] }); // get tip of each finger\n }\n if (fingers && fingers.length > 0) {\n const closest = fingers.reduce((best, a) => (best.position[2] < a.position[2] ? best : a));\n const highest = fingers.reduce((best, a) => (best.position[1] < a.position[1] ? best : a));\n gestures.push({ hand: i, gesture: `${closest.name} forward ${highest.name} up` });\n }\n }\n return gestures;\n};\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as fxImage from './imagefx';\n\nconst maxSize = 2048;\n// internal temp canvases\nlet inCanvas;\nlet outCanvas;\n// instance of fximage\nlet fx;\n\n// process input image and return tensor\n// input can be tensor, imagedata, htmlimageelement, htmlvideoelement\n// input is resized and run through imagefx filter\nexport function process(input, config): { tensor: typeof tf.Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement } {\n let tensor;\n if (!input) throw new Error('Human: Input is missing');\n // sanity checks since different browsers do not implement all dom elements\n if (\n !(input instanceof tf.Tensor)\n && !(typeof Image !== 'undefined' && input instanceof Image)\n && !(typeof ImageData !== 'undefined' && input instanceof ImageData)\n && !(typeof ImageBitmap !== 'undefined' && input instanceof ImageBitmap)\n && !(typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n && !(typeof HTMLMediaElement !== 'undefined' && input instanceof HTMLMediaElement)\n && !(typeof HTMLVideoElement !== 'undefined' && input instanceof HTMLVideoElement)\n && !(typeof HTMLCanvasElement !== 'undefined' && input instanceof HTMLCanvasElement)\n && !(typeof OffscreenCanvas !== 'undefined' && input instanceof OffscreenCanvas)\n ) {\n throw new Error('Human: Input type is not recognized');\n }\n if (input instanceof tf.Tensor) {\n // if input is tensor, use as-is\n if (input.shape && input.shape.length === 4 && input.shape[0] === 1 && input.shape[3] === 3) tensor = tf.clone(input);\n else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${input.shape}`);\n } else {\n // check if resizing will be needed\n const originalWidth = input['naturalWidth'] || input['videoWidth'] || input['width'] || (input['shape'] && (input['shape'][1] > 0));\n const originalHeight = input['naturalHeight'] || input['videoHeight'] || input['height'] || (input['shape'] && (input['shape'][2] > 0));\n let targetWidth = originalWidth;\n let targetHeight = originalHeight;\n if (targetWidth > maxSize) {\n targetWidth = maxSize;\n targetHeight = targetWidth * originalHeight / originalWidth;\n }\n if (targetHeight > maxSize) {\n targetHeight = maxSize;\n targetWidth = targetHeight * originalWidth / originalHeight;\n }\n\n // create our canvas and resize it if needed\n if (config.filter.width > 0) targetWidth = config.filter.width;\n else if (config.filter.height > 0) targetWidth = originalWidth * (config.filter.height / originalHeight);\n if (config.filter.height > 0) targetHeight = config.filter.height;\n else if (config.filter.width > 0) targetHeight = originalHeight * (config.filter.width / originalWidth);\n if (!targetWidth || !targetHeight) throw new Error('Human: Input cannot determine dimension');\n if (!inCanvas || (inCanvas?.width !== targetWidth) || (inCanvas?.height !== targetHeight)) {\n inCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n if (inCanvas?.width !== targetWidth) inCanvas.width = targetWidth;\n if (inCanvas?.height !== targetHeight) inCanvas.height = targetHeight;\n }\n\n // draw input to our canvas\n const ctx = inCanvas.getContext('2d');\n if (input instanceof ImageData) {\n ctx.putImageData(input, 0, 0);\n } else {\n if (config.filter.flip && typeof ctx.translate !== 'undefined') {\n ctx.translate(originalWidth, 0);\n ctx.scale(-1, 1);\n ctx.drawImage(input, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n ctx.setTransform(1, 0, 0, 1, 0, 0); // resets transforms to defaults\n } else {\n ctx.drawImage(input, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n }\n }\n\n // imagefx transforms using gl\n if (config.filter.enabled) {\n if (!fx || !outCanvas || (inCanvas.width !== outCanvas.width) || (inCanvas?.height !== outCanvas?.height)) {\n outCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(inCanvas?.width, inCanvas?.height) : document.createElement('canvas');\n if (outCanvas?.width !== inCanvas?.width) outCanvas.width = inCanvas?.width;\n if (outCanvas?.height !== inCanvas?.height) outCanvas.height = inCanvas?.height;\n // log('created FX filter');\n fx = tf.ENV.flags.IS_BROWSER ? new fxImage.GLImageFilter({ canvas: outCanvas }) : null; // && (typeof document !== 'undefined')\n }\n if (!fx) return { tensor: null, canvas: inCanvas };\n fx.reset();\n fx.addFilter('brightness', config.filter.brightness); // must have at least one filter enabled\n if (config.filter.contrast !== 0) fx.addFilter('contrast', config.filter.contrast);\n if (config.filter.sharpness !== 0) fx.addFilter('sharpen', config.filter.sharpness);\n if (config.filter.blur !== 0) fx.addFilter('blur', config.filter.blur);\n if (config.filter.saturation !== 0) fx.addFilter('saturation', config.filter.saturation);\n if (config.filter.hue !== 0) fx.addFilter('hue', config.filter.hue);\n if (config.filter.negative) fx.addFilter('negative');\n if (config.filter.sepia) fx.addFilter('sepia');\n if (config.filter.vintage) fx.addFilter('brownie');\n if (config.filter.sepia) fx.addFilter('sepia');\n if (config.filter.kodachrome) fx.addFilter('kodachrome');\n if (config.filter.technicolor) fx.addFilter('technicolor');\n if (config.filter.polaroid) fx.addFilter('polaroid');\n if (config.filter.pixelate !== 0) fx.addFilter('pixelate', config.filter.pixelate);\n fx.apply(inCanvas);\n // read pixel data\n /*\n const gl = outCanvas.getContext('webgl');\n if (gl) {\n const glBuffer = new Uint8Array(outCanvas.width * outCanvas.height * 4);\n const pixBuffer = new Uint8Array(outCanvas.width * outCanvas.height * 3);\n gl.readPixels(0, 0, outCanvas.width, outCanvas.height, gl.RGBA, gl.UNSIGNED_BYTE, glBuffer);\n // gl returns rbga while we only need rgb, so discarding alpha channel\n // gl returns starting point as lower left, so need to invert vertical\n let i = 0;\n for (let y = outCanvas.height - 1; y >= 0; y--) {\n for (let x = 0; x < outCanvas.width; x++) {\n const index = (x + y * outCanvas.width) * 4;\n pixBuffer[i++] = glBuffer[index + 0];\n pixBuffer[i++] = glBuffer[index + 1];\n pixBuffer[i++] = glBuffer[index + 2];\n }\n }\n outCanvas.data = pixBuffer;\n }\n */\n } else {\n outCanvas = inCanvas;\n if (fx) fx = null;\n }\n\n // create tensor from image\n let pixels;\n if (outCanvas.data) { // if we have data, just convert to tensor\n const shape = [outCanvas.height, outCanvas.width, 3];\n pixels = tf.tensor3d(outCanvas.data, shape, 'int32');\n } else if (outCanvas instanceof ImageData) { // if input is imagedata, just use it\n pixels = tf.browser.fromPixels(outCanvas);\n } else if (config.backend === 'webgl' || config.backend === 'humangl') { // tf kernel-optimized method to get imagedata\n // we can use canvas as-is as it already has a context, so we do a silly one more canvas\n const tempCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n tempCanvas.width = targetWidth;\n tempCanvas.height = targetHeight;\n const tempCtx = tempCanvas.getContext('2d');\n tempCtx?.drawImage(outCanvas, 0, 0);\n pixels = tf.browser.fromPixels(tempCanvas);\n } else { // cpu and wasm kernel does not implement efficient fromPixels method\n // we can use canvas as-is as it already has a context, so we do a silly one more canvas\n const tempCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n tempCanvas.width = targetWidth;\n tempCanvas.height = targetHeight;\n const tempCtx = tempCanvas.getContext('2d');\n tempCtx?.drawImage(outCanvas, 0, 0);\n const data = tempCtx?.getImageData(0, 0, targetWidth, targetHeight);\n pixels = tf.browser.fromPixels(data);\n }\n const casted = pixels.toFloat();\n tensor = casted.expandDims(0);\n pixels.dispose();\n casted.dispose();\n }\n const canvas = config.filter.return ? outCanvas : null;\n return { tensor, canvas };\n}\n", "/*\nWebGLImageFilter - MIT Licensed\n2013, Dominic Szablewski - phoboslab.org\n\n*/\n\nfunction GLProgram(gl, vertexSource, fragmentSource) {\n const _collect = function (source, prefix, collection) {\n const r = new RegExp('\\\\b' + prefix + ' \\\\w+ (\\\\w+)', 'ig');\n source.replace(r, (match, name) => {\n collection[name] = 0;\n return match;\n });\n };\n\n const _compile = function (source, type) {\n const shader = gl.createShader(type);\n gl.shaderSource(shader, source);\n gl.compileShader(shader);\n if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) throw new Error('Filter: GL compile failed', gl.getShaderInfoLog(shader));\n return shader;\n };\n\n this.uniform = {};\n this.attribute = {};\n const _vsh = _compile(vertexSource, gl.VERTEX_SHADER);\n const _fsh = _compile(fragmentSource, gl.FRAGMENT_SHADER);\n this.id = gl.createProgram();\n gl.attachShader(this.id, _vsh);\n gl.attachShader(this.id, _fsh);\n gl.linkProgram(this.id);\n\n if (!gl.getProgramParameter(this.id, gl.LINK_STATUS)) throw new Error('Filter: GL link failed', gl.getProgramInfoLog(this.id));\n\n gl.useProgram(this.id);\n // Collect attributes\n _collect(vertexSource, 'attribute', this.attribute);\n for (const a in this.attribute) this.attribute[a] = gl.getAttribLocation(this.id, a);\n // Collect uniforms\n _collect(vertexSource, 'uniform', this.uniform);\n _collect(fragmentSource, 'uniform', this.uniform);\n for (const u in this.uniform) this.uniform[u] = gl.getUniformLocation(this.id, u);\n}\n\n// export const GLImageFilter = function (params) {\nexport function GLImageFilter(params) {\n if (!params) params = { };\n let _drawCount = 0;\n let _sourceTexture = null;\n let _lastInChain = false;\n let _currentFramebufferIndex = -1;\n let _tempFramebuffers = [null, null];\n let _filterChain = [];\n let _width = -1;\n let _height = -1;\n let _vertexBuffer = null;\n let _currentProgram = null;\n const _filter = {};\n const _canvas = params.canvas || document.createElement('canvas');\n // key is the shader program source, value is the compiled program\n const _shaderProgramCache = { };\n const DRAW = { INTERMEDIATE: 1 };\n const gl = _canvas.getContext('webgl');\n if (!gl) throw new Error('Filter: getContext() failed');\n\n this.addFilter = function (name) {\n // eslint-disable-next-line prefer-rest-params\n const args = Array.prototype.slice.call(arguments, 1);\n const filter = _filter[name];\n _filterChain.push({ func: filter, args });\n };\n\n this.reset = function () {\n _filterChain = [];\n };\n\n const _resize = function (width, height) {\n // Same width/height? Nothing to do here\n if (width === _width && height === _height) { return; }\n _canvas.width = width;\n _width = width;\n _canvas.height = height;\n _height = height;\n // Create the context if we don't have it yet\n if (!_vertexBuffer) {\n // Create the vertex buffer for the two triangles [x, y, u, v] * 6\n const vertices = new Float32Array([\n -1, -1, 0, 1, 1, -1, 1, 1, -1, 1, 0, 0,\n -1, 1, 0, 0, 1, -1, 1, 1, 1, 1, 1, 0,\n ]);\n // eslint-disable-next-line no-unused-expressions\n (_vertexBuffer = gl.createBuffer(), gl.bindBuffer(gl.ARRAY_BUFFER, _vertexBuffer));\n gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);\n gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, true);\n }\n gl.viewport(0, 0, _width, _height);\n // Delete old temp framebuffers\n _tempFramebuffers = [null, null];\n };\n\n const _createFramebufferTexture = function (width, height) {\n const fbo = gl.createFramebuffer();\n gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);\n const renderbuffer = gl.createRenderbuffer();\n gl.bindRenderbuffer(gl.RENDERBUFFER, renderbuffer);\n const texture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, texture);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, width, height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);\n gl.bindTexture(gl.TEXTURE_2D, null);\n gl.bindFramebuffer(gl.FRAMEBUFFER, null);\n return { fbo, texture };\n };\n\n const _getTempFramebuffer = function (index) {\n _tempFramebuffers[index] = _tempFramebuffers[index] || _createFramebufferTexture(_width, _height);\n return _tempFramebuffers[index];\n };\n\n const _draw = function (flags = null) {\n let source = null;\n let target = null;\n let flipY = false;\n // Set up the source\n if (_drawCount === 0) {\n // First draw call - use the source texture\n source = _sourceTexture;\n } else {\n // All following draw calls use the temp buffer last drawn to\n source = _getTempFramebuffer(_currentFramebufferIndex)?.texture;\n }\n _drawCount++;\n // Set up the target\n if (_lastInChain && !(flags & DRAW.INTERMEDIATE)) {\n // Last filter in our chain - draw directly to the WebGL Canvas. We may\n // also have to flip the image vertically now\n target = null;\n flipY = _drawCount % 2 === 0;\n } else {\n // Intermediate draw call - get a temp buffer to draw to\n _currentFramebufferIndex = (_currentFramebufferIndex + 1) % 2;\n target = _getTempFramebuffer(_currentFramebufferIndex)?.fbo;\n }\n // Bind the source and target and draw the two triangles\n gl.bindTexture(gl.TEXTURE_2D, source);\n gl.bindFramebuffer(gl.FRAMEBUFFER, target);\n gl.uniform1f(_currentProgram.uniform.flipY, (flipY ? -1 : 1));\n gl.drawArrays(gl.TRIANGLES, 0, 6);\n };\n\n this.apply = function (image) {\n _resize(image.width, image.height);\n _drawCount = 0;\n // Create the texture for the input image if we haven't yet\n if (!_sourceTexture) _sourceTexture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, _sourceTexture);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);\n // No filters? Just draw\n if (_filterChain.length === 0) {\n // const program = _compileShader(SHADER.FRAGMENT_IDENTITY);\n _draw();\n return _canvas;\n }\n for (let i = 0; i < _filterChain.length; i++) {\n _lastInChain = (i === _filterChain.length - 1);\n const f = _filterChain[i];\n f.func.apply(this, f.args || []);\n }\n return _canvas;\n };\n\n const _compileShader = function (fragmentSource) {\n if (_shaderProgramCache[fragmentSource]) {\n _currentProgram = _shaderProgramCache[fragmentSource];\n gl.useProgram(_currentProgram.id);\n return _currentProgram;\n }\n // Compile shaders\n const SHADER = {};\n SHADER.VERTEX_IDENTITY = [\n 'precision highp float;',\n 'attribute vec2 pos;',\n 'attribute vec2 uv;',\n 'varying vec2 vUv;',\n 'uniform float flipY;',\n 'void main(void) {',\n 'vUv = uv;',\n 'gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);',\n '}',\n ].join('\\n');\n SHADER.FRAGMENT_IDENTITY = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'void main(void) {',\n 'gl_FragColor = texture2D(texture, vUv);',\n '}',\n ].join('\\n');\n _currentProgram = new GLProgram(gl, SHADER.VERTEX_IDENTITY, fragmentSource);\n const floatSize = Float32Array.BYTES_PER_ELEMENT;\n const vertSize = 4 * floatSize;\n gl.enableVertexAttribArray(_currentProgram.attribute.pos);\n gl.vertexAttribPointer(_currentProgram.attribute.pos, 2, gl.FLOAT, false, vertSize, 0 * floatSize);\n gl.enableVertexAttribArray(_currentProgram.attribute.uv);\n gl.vertexAttribPointer(_currentProgram.attribute.uv, 2, gl.FLOAT, false, vertSize, 2 * floatSize);\n _shaderProgramCache[fragmentSource] = _currentProgram;\n return _currentProgram;\n };\n\n // -------------------------------------------------------------------------\n // Color Matrix Filter\n _filter.colorMatrix = function (matrix) {\n // Create a Float32 Array and normalize the offset component to 0-1\n const m = new Float32Array(matrix);\n m[4] /= 255;\n m[9] /= 255;\n m[14] /= 255;\n m[19] /= 255;\n // Can we ignore the alpha value? Makes things a bit faster.\n const shader = (m[18] === 1 && m[3] === 0 && m[8] === 0 && m[13] === 0 && m[15] === 0 && m[16] === 0 && m[17] === 0 && m[19] === 0)\n ? _filter.colorMatrix.SHADER.WITHOUT_ALPHA\n : _filter.colorMatrix.SHADER.WITH_ALPHA;\n const program = _compileShader(shader);\n gl.uniform1fv(program.uniform.m, m);\n _draw();\n };\n _filter.colorMatrix.SHADER = {};\n _filter.colorMatrix.SHADER.WITH_ALPHA = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform float m[20];',\n 'void main(void) {',\n 'vec4 c = texture2D(texture, vUv);',\n 'gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];',\n 'gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];',\n 'gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];',\n 'gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];',\n '}',\n ].join('\\n');\n _filter.colorMatrix.SHADER.WITHOUT_ALPHA = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform float m[20];',\n 'void main(void) {',\n 'vec4 c = texture2D(texture, vUv);',\n 'gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];',\n 'gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];',\n 'gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];',\n 'gl_FragColor.a = c.a;',\n '}',\n ].join('\\n');\n\n _filter.brightness = function (brightness) {\n const b = (brightness || 0) + 1;\n _filter.colorMatrix([\n b, 0, 0, 0, 0,\n 0, b, 0, 0, 0,\n 0, 0, b, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.saturation = function (amount) {\n const x = (amount || 0) * 2 / 3 + 1;\n const y = ((x - 1) * -0.5);\n _filter.colorMatrix([\n x, y, y, 0, 0,\n y, x, y, 0, 0,\n y, y, x, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.desaturate = function () {\n _filter.saturation(-1);\n };\n\n _filter.contrast = function (amount) {\n const v = (amount || 0) + 1;\n const o = -128 * (v - 1);\n\n _filter.colorMatrix([\n v, 0, 0, 0, o,\n 0, v, 0, 0, o,\n 0, 0, v, 0, o,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.negative = function () {\n _filter.contrast(-2);\n };\n\n _filter.hue = function (rotation) {\n rotation = (rotation || 0) / 180 * Math.PI;\n const cos = Math.cos(rotation);\n const sin = Math.sin(rotation);\n const lumR = 0.213;\n const lumG = 0.715;\n const lumB = 0.072;\n\n _filter.colorMatrix([\n lumR + cos * (1 - lumR) + sin * (-lumR), lumG + cos * (-lumG) + sin * (-lumG), lumB + cos * (-lumB) + sin * (1 - lumB), 0, 0,\n lumR + cos * (-lumR) + sin * (0.143), lumG + cos * (1 - lumG) + sin * (0.140), lumB + cos * (-lumB) + sin * (-0.283), 0, 0,\n lumR + cos * (-lumR) + sin * (-(1 - lumR)), lumG + cos * (-lumG) + sin * (lumG), lumB + cos * (1 - lumB) + sin * (lumB), 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.desaturateLuminance = function () {\n _filter.colorMatrix([\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.sepia = function () {\n _filter.colorMatrix([\n 0.393, 0.7689999, 0.18899999, 0, 0,\n 0.349, 0.6859999, 0.16799999, 0, 0,\n 0.272, 0.5339999, 0.13099999, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.brownie = function () {\n _filter.colorMatrix([\n 0.5997023498159715, 0.34553243048391263, -0.2708298674538042, 0, 47.43192855600873,\n -0.037703249837783157, 0.8609577587992641, 0.15059552388459913, 0, -36.96841498319127,\n 0.24113635128153335, -0.07441037908422492, 0.44972182064877153, 0, -7.562075277591283,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.vintagePinhole = function () {\n _filter.colorMatrix([\n 0.6279345635605994, 0.3202183420819367, -0.03965408211312453, 0, 9.651285835294123,\n 0.02578397704808868, 0.6441188644374771, 0.03259127616149294, 0, 7.462829176470591,\n 0.0466055556782719, -0.0851232987247891, 0.5241648018700465, 0, 5.159190588235296,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.kodachrome = function () {\n _filter.colorMatrix([\n 1.1285582396593525, -0.3967382283601348, -0.03992559172921793, 0, 63.72958762196502,\n -0.16404339962244616, 1.0835251566291304, -0.05498805115633132, 0, 24.732407896706203,\n -0.16786010706155763, -0.5603416277695248, 1.6014850761964943, 0, 35.62982807460946,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.technicolor = function () {\n _filter.colorMatrix([\n 1.9125277891456083, -0.8545344976951645, -0.09155508482755585, 0, 11.793603434377337,\n -0.3087833385928097, 1.7658908555458428, -0.10601743074722245, 0, -70.35205161461398,\n -0.231103377548616, -0.7501899197440212, 1.847597816108189, 0, 30.950940869491138,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.polaroid = function () {\n _filter.colorMatrix([\n 1.438, -0.062, -0.062, 0, 0,\n -0.122, 1.378, -0.122, 0, 0,\n -0.016, -0.016, 1.483, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.shiftToBGR = function () {\n _filter.colorMatrix([\n 0, 0, 1, 0, 0,\n 0, 1, 0, 0, 0,\n 1, 0, 0, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n // -------------------------------------------------------------------------\n // Convolution Filter\n _filter.convolution = function (matrix) {\n const m = new Float32Array(matrix);\n const pixelSizeX = 1 / _width;\n const pixelSizeY = 1 / _height;\n const program = _compileShader(_filter.convolution.SHADER);\n gl.uniform1fv(program.uniform.m, m);\n gl.uniform2f(program.uniform.px, pixelSizeX, pixelSizeY);\n _draw();\n };\n\n _filter.convolution.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform vec2 px;',\n 'uniform float m[9];',\n 'void main(void) {',\n 'vec4 c11 = texture2D(texture, vUv - px);', // top left\n 'vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));', // top center\n 'vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));', // top right\n 'vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );', // mid left\n 'vec4 c22 = texture2D(texture, vUv);', // mid center\n 'vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );', // mid right\n 'vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );', // bottom left\n 'vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );', // bottom center\n 'vec4 c33 = texture2D(texture, vUv + px );', // bottom right\n 'gl_FragColor = ',\n 'c11 * m[0] + c12 * m[1] + c22 * m[2] +',\n 'c21 * m[3] + c22 * m[4] + c23 * m[5] +',\n 'c31 * m[6] + c32 * m[7] + c33 * m[8];',\n 'gl_FragColor.a = c22.a;',\n '}',\n ].join('\\n');\n\n _filter.detectEdges = function () {\n _filter.convolution.call(this, [\n 0, 1, 0,\n 1, -4, 1,\n 0, 1, 0,\n ]);\n };\n\n _filter.sobelX = function () {\n _filter.convolution.call(this, [\n -1, 0, 1,\n -2, 0, 2,\n -1, 0, 1,\n ]);\n };\n\n _filter.sobelY = function () {\n _filter.convolution.call(this, [\n -1, -2, -1,\n 0, 0, 0,\n 1, 2, 1,\n ]);\n };\n\n _filter.sharpen = function (amount) {\n const a = amount || 1;\n _filter.convolution.call(this, [\n 0, -1 * a, 0,\n -1 * a, 1 + 4 * a, -1 * a,\n 0, -1 * a, 0,\n ]);\n };\n\n _filter.emboss = function (size) {\n const s = size || 1;\n _filter.convolution.call(this, [\n -2 * s, -1 * s, 0,\n -1 * s, 1, 1 * s,\n 0, 1 * s, 2 * s,\n ]);\n };\n\n // -------------------------------------------------------------------------\n // Blur Filter\n _filter.blur = function (size) {\n const blurSizeX = (size / 7) / _width;\n const blurSizeY = (size / 7) / _height;\n const program = _compileShader(_filter.blur.SHADER);\n // Vertical\n gl.uniform2f(program.uniform.px, 0, blurSizeY);\n _draw(DRAW.INTERMEDIATE);\n // Horizontal\n gl.uniform2f(program.uniform.px, blurSizeX, 0);\n _draw();\n };\n\n _filter.blur.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform vec2 px;',\n 'void main(void) {',\n 'gl_FragColor = vec4(0.0);',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;',\n 'gl_FragColor += texture2D(texture, vUv )*0.159576912161;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;',\n '}',\n ].join('\\n');\n\n // -------------------------------------------------------------------------\n // Pixelate Filter\n _filter.pixelate = function (size) {\n const blurSizeX = (size) / _width;\n const blurSizeY = (size) / _height;\n const program = _compileShader(_filter.pixelate.SHADER);\n // Horizontal\n gl.uniform2f(program.uniform.size, blurSizeX, blurSizeY);\n _draw();\n };\n\n _filter.pixelate.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform vec2 size;',\n 'uniform sampler2D texture;',\n 'vec2 pixelate(vec2 coord, vec2 size) {',\n 'return floor( coord / size ) * size;',\n '}',\n 'void main(void) {',\n 'gl_FragColor = vec4(0.0);',\n 'vec2 coord = pixelate(vUv, size);',\n 'gl_FragColor += texture2D(texture, coord);',\n '}',\n ].join('\\n');\n}\n", "import { defaults } from '../config';\nimport { TRI468 as triangulation } from '../blazeface/coords';\nimport { mergeDeep } from '../helpers';\n\n/**\n * Draw Options\n * Accessed via `human.draw.options` or provided per each draw method as the drawOptions optional parameter\n * -color: draw color\n * -labelColor: color for labels\n * -shadowColor: optional shadow color for labels\n * -font: font for labels\n * -lineHeight: line height for labels, used for multi-line labels,\n * -lineWidth: width of any lines,\n * -pointSize: size of any point,\n * -roundRect: for boxes, round corners by this many pixels,\n * -drawPoints: should points be drawn,\n * -drawLabels: should labels be drawn,\n * -drawBoxes: should boxes be drawn,\n * -drawPolygons: should polygons be drawn,\n * -fillPolygons: should drawn polygons be filled,\n * -useDepth: use z-axis coordinate as color shade,\n * -useCurves: draw polygons as cures or as lines,\n * -bufferedOutput: experimental: allows to call draw methods multiple times for each detection and interpolate results between results thus achieving smoother animations\n * -useRawBoxes: Boolean: internal: use non-normalized coordinates when performing draw methods,\n */\nexport interface DrawOptions {\n color: string,\n labelColor: string,\n shadowColor: string,\n font: string,\n lineHeight: number,\n lineWidth: number,\n pointSize: number,\n roundRect: number,\n drawPoints: Boolean,\n drawLabels: Boolean,\n drawBoxes: Boolean,\n drawPolygons: Boolean,\n fillPolygons: Boolean,\n useDepth: Boolean,\n useCurves: Boolean,\n bufferedOutput: Boolean,\n useRawBoxes: Boolean,\n calculateHandBox: Boolean,\n}\n\nexport const options: DrawOptions = {\n color: 'rgba(173, 216, 230, 0.3)', // 'lightblue' with light alpha channel\n labelColor: 'rgba(173, 216, 230, 1)', // 'lightblue' with dark alpha channel\n shadowColor: 'black',\n font: 'small-caps 16px \"Segoe UI\"',\n lineHeight: 24,\n lineWidth: 6,\n pointSize: 2,\n roundRect: 28,\n drawPoints: false,\n drawLabels: true,\n drawBoxes: false,\n drawPolygons: true,\n fillPolygons: false,\n useDepth: true,\n useCurves: false,\n bufferedOutput: false,\n useRawBoxes: false,\n calculateHandBox: true,\n};\n\nfunction point(ctx, x, y, z = 0, localOptions) {\n ctx.fillStyle = localOptions.useDepth && z ? `rgba(${127.5 + (2 * z)}, ${127.5 - (2 * z)}, 255, 0.3)` : localOptions.color;\n ctx.beginPath();\n ctx.arc(x, y, localOptions.pointSize, 0, 2 * Math.PI);\n ctx.fill();\n}\n\nfunction rect(ctx, x, y, width, height, localOptions) {\n ctx.beginPath();\n if (localOptions.useCurves) {\n const cx = (x + x + width) / 2;\n const cy = (y + y + height) / 2;\n ctx.ellipse(cx, cy, width / 2, height / 2, 0, 0, 2 * Math.PI);\n } else {\n ctx.lineWidth = localOptions.lineWidth;\n ctx.moveTo(x + localOptions.roundRect, y);\n ctx.lineTo(x + width - localOptions.roundRect, y);\n ctx.quadraticCurveTo(x + width, y, x + width, y + localOptions.roundRect);\n ctx.lineTo(x + width, y + height - localOptions.roundRect);\n ctx.quadraticCurveTo(x + width, y + height, x + width - localOptions.roundRect, y + height);\n ctx.lineTo(x + localOptions.roundRect, y + height);\n ctx.quadraticCurveTo(x, y + height, x, y + height - localOptions.roundRect);\n ctx.lineTo(x, y + localOptions.roundRect);\n ctx.quadraticCurveTo(x, y, x + localOptions.roundRect, y);\n ctx.closePath();\n }\n ctx.stroke();\n}\n\nfunction lines(ctx, points: number[] = [], localOptions) {\n if (points === undefined || points.length === 0) return;\n ctx.beginPath();\n ctx.moveTo(points[0][0], points[0][1]);\n for (const pt of points) {\n ctx.strokeStyle = localOptions.useDepth && pt[2] ? `rgba(${127.5 + (2 * pt[2])}, ${127.5 - (2 * pt[2])}, 255, 0.3)` : localOptions.color;\n ctx.fillStyle = localOptions.useDepth && pt[2] ? `rgba(${127.5 + (2 * pt[2])}, ${127.5 - (2 * pt[2])}, 255, 0.3)` : localOptions.color;\n ctx.lineTo(pt[0], parseInt(pt[1]));\n }\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nfunction curves(ctx, points: number[] = [], localOptions) {\n if (points === undefined || points.length === 0) return;\n if (!localOptions.useCurves || points.length <= 2) {\n lines(ctx, points, localOptions);\n return;\n }\n ctx.moveTo(points[0][0], points[0][1]);\n for (let i = 0; i < points.length - 2; i++) {\n const xc = (points[i][0] + points[i + 1][0]) / 2;\n const yc = (points[i][1] + points[i + 1][1]) / 2;\n ctx.quadraticCurveTo(points[i][0], points[i][1], xc, yc);\n }\n ctx.quadraticCurveTo(points[points.length - 2][0], points[points.length - 2][1], points[points.length - 1][0], points[points.length - 1][1]);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport async function gesture(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.font = localOptions.font;\n ctx.fillStyle = localOptions.color;\n let i = 1;\n for (let j = 0; j < result.length; j++) {\n let where:any[] = [];\n let what:any[] = [];\n [where, what] = Object.entries(result[j]);\n if ((what.length > 1) && (what[1].length > 0)) {\n const person = where[1] > 0 ? `#${where[1]}` : '';\n const label = `${where[0]} ${person}: ${what[1]}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, 8, 2 + (i * localOptions.lineHeight));\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, 6, 0 + (i * localOptions.lineHeight));\n i += 1;\n }\n }\n}\n\nexport async function face(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n for (const f of result) {\n ctx.font = localOptions.font;\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n if (localOptions.drawBoxes) {\n if (localOptions.useRawBoxes) rect(ctx, inCanvas.width * f.boxRaw[0], inCanvas.height * f.boxRaw[1], inCanvas.width * f.boxRaw[2], inCanvas.height * f.boxRaw[3], localOptions);\n else rect(ctx, f.box[0], f.box[1], f.box[2], f.box[3], localOptions);\n }\n // silly hack since fillText does not suport new line\n const labels:string[] = [];\n labels.push(`face confidence: ${Math.trunc(100 * f.confidence)}%`);\n if (f.genderConfidence) labels.push(`${f.gender || ''} ${Math.trunc(100 * f.genderConfidence)}% confident`);\n // if (f.genderConfidence) labels.push(f.gender);\n if (f.age) labels.push(`age: ${f.age || ''}`);\n if (f.iris) labels.push(`iris distance: ${f.iris}`);\n if (f.emotion && f.emotion.length > 0) {\n const emotion = f.emotion.map((a) => `${Math.trunc(100 * a.score)}% ${a.emotion}`);\n labels.push(emotion.join(' '));\n }\n if (f.rotation && f.rotation.angle && f.rotation.angle.roll) labels.push(`roll: ${Math.trunc(100 * f.rotation.angle.roll) / 100} yaw:${Math.trunc(100 * f.rotation.angle.yaw) / 100} pitch:${Math.trunc(100 * f.rotation.angle.pitch) / 100}`);\n if (labels.length === 0) labels.push('face');\n ctx.fillStyle = localOptions.color;\n for (let i = labels.length - 1; i >= 0; i--) {\n const x = Math.max(f.box[0], 0);\n const y = i * localOptions.lineHeight + f.box[1];\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(labels[i], x + 5, y + 16);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(labels[i], x + 4, y + 15);\n }\n ctx.lineWidth = 1;\n if (f.mesh && f.mesh.length > 0) {\n if (localOptions.drawPoints) {\n for (const pt of f.mesh) point(ctx, pt[0], pt[1], pt[2], localOptions);\n // for (const pt of f.meshRaw) point(ctx, pt[0] * inCanvas.offsetWidth, pt[1] * inCanvas.offsetHeight, pt[2]);\n }\n if (localOptions.drawPolygons) {\n ctx.lineWidth = 1;\n for (let i = 0; i < triangulation.length / 3; i++) {\n const points = [\n triangulation[i * 3 + 0],\n triangulation[i * 3 + 1],\n triangulation[i * 3 + 2],\n ].map((index) => f.mesh[index]);\n lines(ctx, points, localOptions);\n }\n // iris: array[center, left, top, right, bottom]\n if (f.annotations && f.annotations.leftEyeIris) {\n ctx.strokeStyle = localOptions.useDepth ? 'rgba(255, 200, 255, 0.3)' : localOptions.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations.leftEyeIris[3][0] - f.annotations.leftEyeIris[1][0]) / 2;\n const sizeY = Math.abs(f.annotations.leftEyeIris[4][1] - f.annotations.leftEyeIris[2][1]) / 2;\n ctx.ellipse(f.annotations.leftEyeIris[0][0], f.annotations.leftEyeIris[0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.fillStyle = localOptions.useDepth ? 'rgba(255, 255, 200, 0.3)' : localOptions.color;\n ctx.fill();\n }\n }\n if (f.annotations && f.annotations.rightEyeIris) {\n ctx.strokeStyle = localOptions.useDepth ? 'rgba(255, 200, 255, 0.3)' : localOptions.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations.rightEyeIris[3][0] - f.annotations.rightEyeIris[1][0]) / 2;\n const sizeY = Math.abs(f.annotations.rightEyeIris[4][1] - f.annotations.rightEyeIris[2][1]) / 2;\n ctx.ellipse(f.annotations.rightEyeIris[0][0], f.annotations.rightEyeIris[0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.fillStyle = localOptions.useDepth ? 'rgba(255, 255, 200, 0.3)' : localOptions.color;\n ctx.fill();\n }\n }\n }\n }\n }\n}\n\nconst lastDrawnPose:any[] = [];\nexport async function body(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n for (let i = 0; i < result.length; i++) {\n // result[i].keypoints = result[i].keypoints.filter((a) => a.score > 0.5);\n if (!lastDrawnPose[i] && localOptions.bufferedOutput) lastDrawnPose[i] = { ...result[i] };\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n ctx.lineWidth = localOptions.lineWidth;\n ctx.font = localOptions.font;\n if (localOptions.drawBoxes) {\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n }\n if (localOptions.drawPoints) {\n for (let pt = 0; pt < result[i].keypoints.length; pt++) {\n ctx.fillStyle = localOptions.useDepth && result[i].keypoints[pt].position.z ? `rgba(${127.5 + (2 * result[i].keypoints[pt].position.z)}, ${127.5 - (2 * result[i].keypoints[pt].position.z)}, 255, 0.5)` : localOptions.color;\n if (localOptions.bufferedOutput) {\n lastDrawnPose[i].keypoints[pt][0] = (lastDrawnPose[i].keypoints[pt][0] + result[i].keypoints[pt].position.x) / 2;\n lastDrawnPose[i].keypoints[pt][1] = (lastDrawnPose[i].keypoints[pt][1] + result[i].keypoints[pt].position.y) / 2;\n point(ctx, lastDrawnPose[i].keypoints[pt][0], lastDrawnPose[i].keypoints[pt][1], 0, localOptions);\n } else {\n point(ctx, result[i].keypoints[pt].position.x, result[i].keypoints[pt].position.y, 0, localOptions);\n }\n }\n }\n if (localOptions.drawLabels) {\n ctx.font = localOptions.font;\n if (result[i].keypoints) {\n for (const pt of result[i].keypoints) {\n ctx.fillStyle = localOptions.useDepth && pt.position.z ? `rgba(${127.5 + (2 * pt.position.z)}, ${127.5 - (2 * pt.position.z)}, 255, 0.5)` : localOptions.color;\n ctx.fillText(`${pt.part} ${Math.trunc(100 * pt.score)}%`, pt.position.x + 4, pt.position.y + 4);\n }\n }\n }\n if (localOptions.drawPolygons && result[i].keypoints) {\n let part;\n const points: any[] = [];\n // shoulder line\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // torso main\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightHip');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftHip');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n if (points.length === 4) lines(ctx, points, localOptions); // only draw if we have complete torso\n // leg left\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftHip');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftKnee');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftAnkle');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftHeel');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftFoot');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // leg right\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightHip');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightKnee');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightAnkle');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightHeel');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightFoot');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // arm left\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftElbow');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftWrist');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'leftPalm');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // arm right\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightElbow');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightWrist');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n part = result[i].keypoints.find((a) => a.part === 'rightPalm');\n if (part && part.score > defaults.body.scoreThreshold) points.push([part.position.x, part.position.y]);\n curves(ctx, points, localOptions);\n // draw all\n }\n }\n}\n\nexport async function hand(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n let box;\n if (!localOptions.calculateHandBox) {\n box = localOptions.useRawBoxes ? h.boxRaw : h.box;\n } else {\n box = [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER, 0, 0];\n if (h.landmarks && h.landmarks.length > 0) {\n for (const pt of h.landmarks) {\n if (pt[0] < box[0]) box[0] = pt[0];\n if (pt[1] < box[1]) box[1] = pt[1];\n if (pt[0] > box[2]) box[2] = pt[0];\n if (pt[1] > box[3]) box[3] = pt[1];\n }\n box[2] -= box[0];\n box[3] -= box[1];\n }\n }\n if (localOptions.useRawBoxes) rect(ctx, inCanvas.width * box[0], inCanvas.height * box[1], inCanvas.width * box[2], inCanvas.height * box[3], localOptions);\n else rect(ctx, box[0], box[1], box[2], box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText('hand', box[0] + 3, 1 + box[1] + localOptions.lineHeight, box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText('hand', box[0] + 2, 0 + box[1] + localOptions.lineHeight, box[2]);\n }\n ctx.stroke();\n }\n if (localOptions.drawPoints) {\n if (h.landmarks && h.landmarks.length > 0) {\n for (const pt of h.landmarks) {\n ctx.fillStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * pt[2])}, ${127.5 - (2 * pt[2])}, 255, 0.5)` : localOptions.color;\n point(ctx, pt[0], pt[1], 0, localOptions);\n }\n }\n }\n if (localOptions.drawPolygons) {\n const addPart = (part) => {\n if (!part) return;\n for (let i = 0; i < part.length; i++) {\n ctx.lineWidth = localOptions.lineWidth;\n ctx.beginPath();\n ctx.strokeStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * part[i][2])}, ${127.5 - (2 * part[i][2])}, 255, 0.5)` : localOptions.color;\n ctx.moveTo(part[i > 0 ? i - 1 : 0][0], part[i > 0 ? i - 1 : 0][1]);\n ctx.lineTo(part[i][0], part[i][1]);\n ctx.stroke();\n }\n };\n addPart(h.annotations.indexFinger);\n addPart(h.annotations.middleFinger);\n addPart(h.annotations.ringFinger);\n addPart(h.annotations.pinky);\n addPart(h.annotations.thumb);\n // addPart(hand.annotations.palmBase);\n }\n }\n}\n\nexport async function object(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n if (localOptions.useRawBoxes) rect(ctx, inCanvas.width * h.boxRaw[0], inCanvas.height * h.boxRaw[1], inCanvas.width * h.boxRaw[2], inCanvas.height * h.boxRaw[3], localOptions);\n else rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `${Math.round(100 * h.score)}% ${h.label}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.stroke();\n }\n }\n}\n\nexport async function canvas(inCanvas: HTMLCanvasElement, outCanvas: HTMLCanvasElement) {\n if (!inCanvas || !outCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement) || !(outCanvas instanceof HTMLCanvasElement)) return;\n const outCtx = inCanvas.getContext('2d');\n outCtx?.drawImage(inCanvas, 0, 0);\n}\n\nexport async function all(inCanvas: HTMLCanvasElement, result:any, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n face(inCanvas, result.face, localOptions);\n body(inCanvas, result.body, localOptions);\n hand(inCanvas, result.hand, localOptions);\n gesture(inCanvas, result.gesture, localOptions);\n object(inCanvas, result.object, localOptions);\n}\n", "/* eslint-disable indent */\n/* eslint-disable no-multi-spaces */\n\n/**\n * Configuration interface definition for **Human** library\n *\n * Contains all configurable parameters\n */\nexport interface Config {\n /** Backend used for TFJS operations */\n backend: null | '' | 'cpu' | 'wasm' | 'webgl' | 'humangl' | 'tensorflow',\n /** Path to *.wasm files if backend is set to `wasm` */\n wasmPath: string,\n /** Print debug statements to console */\n debug: boolean,\n /** Perform model loading and inference concurrently or sequentially */\n async: boolean,\n /** Collect and print profiling data during inference operations */\n profile: boolean,\n /** Internal: Use aggressive GPU memory deallocator when backend is set to `webgl` or `humangl` */\n deallocate: boolean,\n /** Internal: Run all inference operations in an explicit local scope run to avoid memory leaks */\n scoped: boolean,\n /** Perform additional optimizations when input is video,\n * - must be disabled for images\n * - automatically disabled for Image, ImageData, ImageBitmap and Tensor inputs\n * - skips boundary detection for every `skipFrames` frames specified for each model\n * - while maintaining in-box detection since objects don't change definition as fast */\n videoOptimized: boolean,\n /** What to use for `human.warmup()`\n * - warmup pre-initializes all models for faster inference but can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n */\n warmup: 'none' | 'face' | 'full' | 'body',\n /** Base model path (typically starting with file://, http:// or https://) for all models\n * - individual modelPath values are joined to this path\n */\n modelBasePath: string,\n /** Run input through image filters before inference\n * - image filters run with near-zero latency as they are executed on the GPU\n */\n filter: {\n enabled: boolean,\n /** Resize input width\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n width: number,\n /** Resize input height\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n height: number,\n /** Return processed canvas imagedata in result */\n return: boolean,\n /** Flip input as mirror image */\n flip: boolean,\n /** Range: -1 (darken) to 1 (lighten) */\n brightness: number,\n /** Range: -1 (reduce contrast) to 1 (increase contrast) */\n contrast: number,\n /** Range: 0 (no sharpening) to 1 (maximum sharpening) */\n sharpness: number,\n /** Range: 0 (no blur) to N (blur radius in pixels) */\n blur: number\n /** Range: -1 (reduce saturation) to 1 (increase saturation) */\n saturation: number,\n /** Range: 0 (no change) to 360 (hue rotation in degrees) */\n hue: number,\n /** Image negative */\n negative: boolean,\n /** Image sepia colors */\n sepia: boolean,\n /** Image vintage colors */\n vintage: boolean,\n /** Image kodachrome colors */\n kodachrome: boolean,\n /** Image technicolor colors */\n technicolor: boolean,\n /** Image polaroid camera effect */\n polaroid: boolean,\n /** Range: 0 (no pixelate) to N (number of pixels to pixelate) */\n pixelate: number,\n },\n // type definition end\n\n /** Controlls gesture detection */\n gesture: {\n enabled: boolean,\n },\n /** Controlls and configures all face-specific options:\n * - face detection, face mesh detection, age, gender, emotion detection and face description\n * Parameters:\n * - enabled: true/false\n * - modelPath: path for individual face model\n * - rotation: use calculated rotated face image or just box with rotation as-is, false means higher performance, but incorrect mesh mapping on higher face angles\n * - maxFaces: maximum number of faces detected in the input, should be set to the minimum number for performance\n * - skipFrames: how many frames to go without re-running the face detector and just run modified face mesh analysis, only valid if videoOptimized is set to true\n * - skipInitial: if previous detection resulted in no faces detected, should skipFrames be reset immediately to force new detection cycle\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: threshold for deciding whether boxes overlap too much in non-maximum suppression\n * - scoreThreshold: threshold for deciding when to remove boxes based on score in non-maximum suppression\n * - return extracted face as tensor for futher user processing\n */\n face: {\n enabled: boolean,\n detector: {\n modelPath: string,\n rotation: boolean,\n maxFaces: number,\n skipFrames: number,\n skipInitial: boolean,\n minConfidence: number,\n iouThreshold: number,\n scoreThreshold: number,\n return: boolean,\n },\n mesh: {\n enabled: boolean,\n modelPath: string,\n },\n iris: {\n enabled: boolean,\n modelPath: string,\n },\n description: {\n enabled: boolean,\n modelPath: string,\n skipFrames: number,\n },\n age: {\n enabled: boolean,\n modelPath: string,\n skipFrames: number,\n },\n gender: {\n enabled: boolean,\n minConfidence: number,\n modelPath: string,\n skipFrames: number,\n },\n emotion: {\n enabled: boolean,\n minConfidence: number,\n skipFrames: number,\n modelPath: string,\n },\n embedding: {\n enabled: boolean,\n modelPath: string,\n },\n },\n /** Controlls and configures all body detection specific options\n * - enabled: true/false\n * - modelPath: paths for both hand detector model and hand skeleton model\n * - maxDetections: maximum number of people detected in the input, should be set to the minimum number for performance\n * - scoreThreshold: threshold for deciding when to remove people based on score in non-maximum suppression\n * - nmsRadius: threshold for deciding whether body parts overlap too much in non-maximum suppression\n */\n body: {\n enabled: boolean,\n modelPath: string,\n maxDetections: number,\n scoreThreshold: number,\n nmsRadius: number,\n },\n /** Controlls and configures all hand detection specific options\n * - enabled: true/false\n * - modelPath: paths for both hand detector model and hand skeleton model\n * - rotation: use best-guess rotated hand image or just box with rotation as-is, false means higher performance, but incorrect finger mapping if hand is inverted\n * - skipFrames: how many frames to go without re-running the hand bounding box detector and just run modified hand skeleton detector, only valid if videoOptimized is set to true\n * - skipInitial: if previous detection resulted in no hands detected, should skipFrames be reset immediately to force new detection cycle\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: threshold for deciding whether boxes overlap too much in non-maximum suppression\n * - scoreThreshold: threshold for deciding when to remove boxes based on score in non-maximum suppression\n * - maxHands: maximum number of hands detected in the input, should be set to the minimum number for performance\n * - landmarks: detect hand landmarks or just hand boundary box\n */\n hand: {\n enabled: boolean,\n rotation: boolean,\n skipFrames: number,\n skipInitial: boolean,\n minConfidence: number,\n iouThreshold: number,\n scoreThreshold: number,\n maxHands: number,\n landmarks: boolean,\n detector: {\n modelPath: string,\n },\n skeleton: {\n modelPath: string,\n },\n },\n /** Controlls and configures all object detection specific options\n * - minConfidence: minimum score that detection must have to return as valid object\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxResults: maximum number of detections to return\n * - skipFrames: run object detection every n input frames, only valid if videoOptimized is set to true\n */\n object: {\n enabled: boolean,\n modelPath: string,\n minConfidence: number,\n iouThreshold: number,\n maxResults: number,\n skipFrames: number,\n },\n}\n\nconst config: Config = {\n backend: 'webgl', // select tfjs backend to use\n // can be 'webgl', 'wasm', 'cpu', or 'humangl' which is a custom version of webgl\n // leave as empty string to continue using default backend\n // when backend is set outside of Human library\n modelBasePath: '../models/', // base path for all models\n wasmPath: '../assets/', // path for wasm binaries\n // only used for backend: wasm\n debug: true, // print additional status messages to console\n async: true, // execute enabled models in parallel\n // this disables per-model performance data but\n // slightly increases performance\n // cannot be used if profiling is enabled\n profile: false, // internal: enable tfjs profiling\n // this has significant performance impact\n // only enable for debugging purposes\n // currently only implemented for age,gender,emotion models\n deallocate: false, // internal: aggresively deallocate gpu memory after each usage\n // only valid for webgl and humangl backend and only during first call\n // cannot be changed unless library is reloaded\n // this has significant performance impact\n // only enable on low-memory devices\n scoped: false, // internal: enable scoped runs\n // some models *may* have memory leaks,\n // this wrapps everything in a local scope at a cost of performance\n // typically not needed\n videoOptimized: true, // perform additional optimizations when input is video,\n // must be disabled for images\n // automatically disabled for Image, ImageData, ImageBitmap and Tensor inputs\n // skips boundary detection for every n frames\n // while maintaining in-box detection since objects cannot move that fast\n warmup: 'face', // what to use for human.warmup(), can be 'none', 'face', 'full'\n // warmup pre-initializes all models for faster inference but can take\n // significant time on startup\n // only used for `webgl` and `humangl` backends\n filter: { // run input through image filters before inference\n // image filters run with near-zero latency as they are executed on the GPU\n enabled: true, // enable image pre-processing filters\n width: 0, // resize input width\n height: 0, // resize input height\n // if both width and height are set to 0, there is no resizing\n // if just one is set, second one is scaled automatically\n // if both are set, values are used as-is\n flip: false, // flip input as mirror image\n return: true, // return processed canvas imagedata in result\n brightness: 0, // range: -1 (darken) to 1 (lighten)\n contrast: 0, // range: -1 (reduce contrast) to 1 (increase contrast)\n sharpness: 0, // range: 0 (no sharpening) to 1 (maximum sharpening)\n blur: 0, // range: 0 (no blur) to N (blur radius in pixels)\n saturation: 0, // range: -1 (reduce saturation) to 1 (increase saturation)\n hue: 0, // range: 0 (no change) to 360 (hue rotation in degrees)\n negative: false, // image negative\n sepia: false, // image sepia colors\n vintage: false, // image vintage colors\n kodachrome: false, // image kodachrome colors\n technicolor: false, // image technicolor colors\n polaroid: false, // image polaroid camera effect\n pixelate: 0, // range: 0 (no pixelate) to N (number of pixels to pixelate)\n },\n\n gesture: {\n enabled: true, // enable simple gesture recognition\n },\n\n face: {\n enabled: true, // controls if specified modul is enabled\n // face.enabled is required for all face models:\n // detector, mesh, iris, age, gender, emotion\n // (note: module is not loaded until it is required)\n detector: {\n modelPath: 'blazeface-back.json', // detector model\n // can be either absolute path or relative to modelBasePath\n rotation: false, // use best-guess rotated face image or just box with rotation as-is\n // false means higher performance, but incorrect mesh mapping if face angle is above 20 degrees\n // this parameter is not valid in nodejs\n maxFaces: 10, // maximum number of faces detected in the input\n // should be set to the minimum number for performance\n skipFrames: 21, // how many frames to go without re-running the face bounding box detector\n // only used for video inputs\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated face analysis as the head probably hasn't moved much\n // in short time (10 * 1/25 = 0.25 sec)\n skipInitial: false, // if previous detection resulted in no faces detected,\n // should skipFrames be reset immediately to force new detection cycle\n minConfidence: 0.2, // threshold for discarding a prediction\n iouThreshold: 0.1, // threshold for deciding whether boxes overlap too much in\n // non-maximum suppression (0.1 means drop if overlap 10%)\n scoreThreshold: 0.2, // threshold for deciding when to remove boxes based on score\n // in non-maximum suppression,\n // this is applied on detection objects only and before minConfidence\n return: false, // return extracted face as tensor\n },\n\n mesh: {\n enabled: true,\n modelPath: 'facemesh.json', // facemesh model\n // can be either absolute path or relative to modelBasePath\n },\n\n iris: {\n enabled: true,\n modelPath: 'iris.json', // face iris model\n // can be either absolute path or relative to modelBasePath\n },\n\n description: {\n enabled: true, // to improve accuracy of face description extraction it is\n // recommended to enable detector.rotation and mesh.enabled\n modelPath: 'faceres.json', // face description model\n // can be either absolute path or relative to modelBasePath\n skipFrames: 31, // how many frames to go without re-running the detector\n // only used for video inputs\n },\n\n emotion: {\n enabled: true,\n minConfidence: 0.1, // threshold for discarding a prediction\n skipFrames: 32, // how many frames to go without re-running the detector\n modelPath: 'emotion.json', // face emotion model\n // can be either absolute path or relative to modelBasePath\n },\n\n age: {\n enabled: false, // obsolete, replaced by description module\n modelPath: 'age.json', // age model\n // can be either absolute path or relative to modelBasePath\n skipFrames: 33, // how many frames to go without re-running the detector\n // only used for video inputs\n },\n\n gender: {\n enabled: false, // obsolete, replaced by description module\n minConfidence: 0.1, // threshold for discarding a prediction\n modelPath: 'gender.json', // gender model\n // can be either absolute path or relative to modelBasePath\n skipFrames: 34, // how many frames to go without re-running the detector\n // only used for video inputs\n },\n\n embedding: {\n enabled: false, // obsolete, replaced by description module\n modelPath: 'mobileface.json', // face descriptor model\n // can be either absolute path or relative to modelBasePath\n },\n },\n\n body: {\n enabled: true,\n modelPath: 'posenet.json', // body model\n // can be either absolute path or relative to modelBasePath\n // can be 'posenet', 'blazepose' or 'efficientpose'\n // 'blazepose' and 'efficientpose' are experimental\n maxDetections: 1, // maximum number of people detected in the input\n // should be set to the minimum number for performance\n // only valid for posenet as blazepose only detects single pose\n scoreThreshold: 0.2, // threshold for deciding when to remove boxes based on score\n // in non-maximum suppression\n // only valid for posenet as blazepose only detects single pose\n nmsRadius: 20, // radius for deciding points are too close in non-maximum suppression\n // only valid for posenet as blazepose only detects single pose\n },\n\n hand: {\n enabled: true,\n rotation: false, // use best-guess rotated hand image or just box with rotation as-is\n // false means higher performance, but incorrect finger mapping if hand is inverted\n skipFrames: 12, // how many frames to go without re-running the hand bounding box detector\n // only used for video inputs\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated hand skeleton analysis as the hand probably\n // hasn't moved much in short time (10 * 1/25 = 0.25 sec)\n skipInitial: false, // if previous detection resulted in no hands detected,\n // should skipFrames be reset immediately to force new detection cycle\n minConfidence: 0.1, // threshold for discarding a prediction\n iouThreshold: 0.1, // threshold for deciding whether boxes overlap too much\n // in non-maximum suppression\n scoreThreshold: 0.5, // threshold for deciding when to remove boxes based on\n // score in non-maximum suppression\n maxHands: 1, // maximum number of hands detected in the input\n // should be set to the minimum number for performance\n landmarks: true, // detect hand landmarks or just hand boundary box\n detector: {\n modelPath: 'handdetect.json', // hand detector model\n // can be either absolute path or relative to modelBasePath\n },\n skeleton: {\n modelPath: 'handskeleton.json', // hand skeleton model\n // can be either absolute path or relative to modelBasePath\n },\n },\n\n object: {\n enabled: false,\n modelPath: 'nanodet.json', // object detection model\n // can be either absolute path or relative to modelBasePath\n // 'nanodet' is experimental\n minConfidence: 0.20, // threshold for discarding a prediction\n iouThreshold: 0.40, // threshold for deciding whether boxes overlap too much\n // in non-maximum suppression\n maxResults: 10, // maximum number of objects detected in the input\n skipFrames: 41, // how many frames to go without re-running the detector\n },\n};\nexport { config as defaults };\n", "// data:image/jpeg;base64,\nexport const face = `\n/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA\nAAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu\nbmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob\nIxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo\nKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E\nAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB\nAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET\nIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla\nY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG\nx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML\nXp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF\nPUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/\nAJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z\n5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9\nzZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO\ntHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6\n8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W\nwA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk\nEtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6\nGhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT\nA7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep\nrBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb\nLCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ\nih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K\nKAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l\npBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x\nUqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4\nHaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr\nxL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS\nNO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD\n1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX\n+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3\nGBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K\nq4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0\nnhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm\nuic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH\nArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV\nwF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8\n87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P\nFQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD\nYNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv\nJmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ\nQmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el\nUJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681\nly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly\nCK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc\nUDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF\n63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x\nXY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2\nZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk\nXb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK\ncBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef\neNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4\n/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5\nrl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru\n/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A\nzviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO\nI4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1\njfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ\nGRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG\ncZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb\nWmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis\nZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH\nckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi\nlbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO\nxuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK\nJtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX\nPaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c\nW0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t\nC6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk\n4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn\nxHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW\nvHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi\nqr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV\nhamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F\nj4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6\nwqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm\noy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ\nk7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg\nnQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP\n1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1\nH1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ\n1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx\nzSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt\nfFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp\nOxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj\nVtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy\nrFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe\n5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D\nd/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69\nMlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ\nFbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ\nMA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP\nByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn\n0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU\nyOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is\npNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz\nTSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu\nuCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem\ngGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk\nHvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy\ns9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu\nm6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb\n0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz\n9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN\nDNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n\nR6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk\nnmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu\n6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd\n9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb\nSms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S\nMSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz\nFEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8\nVSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx\nY0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ\nmupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+\n5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh\n05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd\nua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ\n5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR\nMqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8\n1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4\nB9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag\nBc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA\n3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn\n3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx\n1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU\ntzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6\nf3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA\nbvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ\nzyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup\n6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM\n350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0\n/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a\nYfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ\nagBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO\nmAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl\nmOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR\nnqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo\nEPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt\n4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ\nScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p\niMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj\nPQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l\nc6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1\n8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3\nylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY\neuPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`;\n\n// data:image/jpeg;base64,\nexport const body = `\n/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk\nJyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF\nRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA\nAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA\nAQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA\nAAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA\nAhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj\n+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt\nFh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR\nPLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl\nmZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp\n+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa\nzhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D\nh1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2\nex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67\nd4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y\nRv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP\nLd3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC\nvy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi\neSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/\nMx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+\nr3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO\nO0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s\ntfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN\nTmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc\n0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj\nq83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w\n+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s\nd8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t\ncI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4\nYibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe\nbzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi\nKxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6\nrNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ\n9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf\nJvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V\nbxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q\nVbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM\nlorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/\n/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme\nE4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv\nfauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6\njkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN\n+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk\nRvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK\ncGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop\nyW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn\nE8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX\n12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW\niI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS\nRWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf\n0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx\nDS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL\nG8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK\nxC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ\na9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4\nZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6\ntvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+\nfJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE\nerk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR\nMd5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9\nlcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD\nj8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV\n5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt\nCu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/\n+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c\nvUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p\njrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0\n77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP\nSel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8\n5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe\nY0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R\nHwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV\nrWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU\nz7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8\nto6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X\ny8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt\nstcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/\nw9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT\nDpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l\nXV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t\nydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS\n34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX\ne09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn\n26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf\n3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q\n6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P\nNbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO\nyZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN\n3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8\n2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h\ndqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx\nkr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t\nDHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb\neFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc\n1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka\nc258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE\nxEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu\ns5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK\n0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9\ndM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt\nPXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T\nMd/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T\nadq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b\nSVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt\npdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm\nvfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr\nEejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N\nvwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh\nZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I\ntkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW\nd43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe\nN4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218\n8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG\nPNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY\nV1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw\nw18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT\nEx5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1\naxqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/\ntDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I\nmbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe\nXRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1\nizjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2\ncrFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4\nOadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2\nr8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx\nzc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz\n+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v\nMevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu\nryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095\nYZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE\n9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8\nmNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O\nuSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O\nfft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6\nOlty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT\nuTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3\n6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1\nMb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF\nfeH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq\nxVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v\ned7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ\nmtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz\nmWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP\nB39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0\n5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1\nmkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt\nmxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO\n1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq\nZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q\nky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7\nROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK\nGEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i\ntMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T\n+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+\nO8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO\nesd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es\nvPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz\nXV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1\n+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY\n36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL\nq555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY\n3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz\np7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr\n1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV\nxUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt\npCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS\nfP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH\nmMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z\n1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+\nn3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d\nMRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df\nzXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl\nJ2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs\nzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH\nDpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ\ndHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR\ntER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j\nadmFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC\nb2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X\nqdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh\nydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O\n8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L\nT7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0\nZa1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr\nvNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer\nrWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL\noNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq\nj/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh\nodZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8\n8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1\nlNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+\noza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL\nknU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK\nEtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N\nmtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm\n9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N\nIpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W\nMYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2\n+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql\no+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37\nO99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE\nTE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1\nL7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4\nizsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt\n1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb\nV5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum\nL37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12\nCvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE\nebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo\nGvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu\nL8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh\n5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3\n6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9\nXO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM\nfeKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj\nSZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF\nXaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr\n79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h\nyeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT\nOC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223\n2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt\nadohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y\ncnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX\nDpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p\n7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso\nS24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l\nbPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe\nvVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG\nH6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7\nx3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz\n5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY\nq+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn\nvLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2\nIjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK\nz0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ\nYYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON\nZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW\nekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf\ncjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c\nbiuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO\nCkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw\ny1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi\nQXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E\nbL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r\ntv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t\nLRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP\nRqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm\ns7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el\nXX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1\nvK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq\nqrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v\nVYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0\nZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q\nmT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm\n6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG\nf63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo\ndPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22\ngtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M\nMoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb\nc2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX\n6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn\n1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK\nfOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ\nEqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u\n7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT\nqPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa\nS2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf\nLp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU\nIiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O\n8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c\nvU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx\n5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V\nKTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm\n2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu\nj8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB\nTTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9\nRUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL\nCWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA\nAAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8\ncTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj\nqKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF\n0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK\nZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK\n66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu\nXT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9\nXOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN\nM2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv\nVrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK\n7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI\n3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m\nXY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m\n1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A\nJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC\nEgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9\n8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL\nOrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H\nM+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA\nTsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8\nelpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp\nBjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS\nCRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r\nrcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY\njbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW\nUsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB\nKUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb\nSz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL\n+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v\nT471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM\nsfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj\nFontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl\n5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q\n7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv\n6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa\n0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/\nAOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM\nd8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5\n6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP\nbFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu\nLJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy\nwt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX\n0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK\n3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn\nKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0\nvobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t\nzya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps\nuOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi\nFdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2\nO3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z\naK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz\n0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb\nT/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l\nqMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t\ntrJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn\nmvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa\neq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe\nPwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of\nTdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O\n1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG\nf/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi\n0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY\n5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc\nV2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L\n/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM\nt/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd\nVknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD\nKLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R\nfwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3\nVxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ\nDJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ\n3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv\nx7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD\nweqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI\n6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew\nPnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk\nj3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm\nOqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/\nAKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez\nN9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ\n92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp\n+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue\nV9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv\navHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0\nvQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP\n8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt\nn1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw\nnUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3\n7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P\n0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U\nx8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG\n0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L\nfaQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ\nQKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA\nBAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A\ntLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv\n9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr\njn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm\nb7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB\nACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk\ndEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1\nrMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+\nx+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA\nAAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr\nYvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4\n5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V\nkK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg\nBIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA\nAAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g\nWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx\nOEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2\nH/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF\n+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V\nh6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA\nEgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu\nZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml\nHMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl\nn0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN\n3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi\n/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00\n+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC\nUACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2\nM2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp\n5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn\nN1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS\nOjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL\n/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo\nstLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3\nGyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA\nAAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4\nqmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy\nWEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a\nfJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI\nrTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2\nrz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc\n3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3\nTur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA\nAAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx\nskA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F\no7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx\nNO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h\n2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te\npSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7\ncvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7\nmZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA\nAAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA\nhGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J\nqx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI\nXRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy\nRHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX\nqNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX\nkaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P\nya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC\nExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA\nlAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA\nAAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o\nb9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP\ny6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae\nkzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu\n9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ\nk7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1\n8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp\nDXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh\nnyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ\nAAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA\nAAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO\nyvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5\nPM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii\nIpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r\nO3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE\nyTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX\n6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2\nJgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS\nAAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA\nAAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx\nWa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI\n6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5\nK2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7\nVv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id\nPW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ\n2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4\neF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7\npiVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR\nACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ\nJQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i\nUiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61\nrZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq\nZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2\nf0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO\nIjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts\nbAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA\nAAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA\nBAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2\nSbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T\nlBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/\n2Q==`;\n", "import { log, now, mergeDeep } from './helpers';\nimport * as sysinfo from './sysinfo';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as backend from './tfjs/backend';\nimport * as faceall from './faceall';\nimport * as facemesh from './blazeface/facemesh';\nimport * as age from './age/age';\nimport * as gender from './gender/gender';\nimport * as faceres from './faceres/faceres';\nimport * as emotion from './emotion/emotion';\nimport * as embedding from './embedding/embedding';\nimport * as posenet from './posenet/posenet';\nimport * as handpose from './handpose/handpose';\nimport * as blazepose from './blazepose/blazepose';\nimport * as efficientpose from './efficientpose/efficientpose';\nimport * as nanodet from './nanodet/nanodet';\nimport * as gesture from './gesture/gesture';\nimport * as image from './image/image';\nimport * as draw from './draw/draw';\nimport * as profile from './profile';\nimport { Config, defaults } from './config';\nimport { Result } from './result';\nimport * as sample from './sample';\nimport * as app from '../package.json';\n\n/** Generic Tensor object type */\nexport type Tensor = typeof tf.Tensor;\n\nexport type { Config } from './config';\nexport type { Result } from './result';\nexport type { DrawOptions } from './draw/draw';\n\n/** Defines all possible input types for **Human** detection */\nexport type Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;\n\n/** Error message */\nexport type Error = { error: string };\n\n/** Instance of TensorFlow/JS */\nexport type TensorFlow = typeof tf;\n\n/** Generic Model object type, holds instance of individual models */\ntype Model = Object;\n\n/**\n * **Human** library main class\n *\n * All methods and properties are available only as members of Human class\n *\n * - Configuration object definition: {@link Config}\n * - Results object definition: {@link Result}\n * - Possible inputs: {@link Input}\n */\nexport class Human {\n /** Current version of Human library in semver format */\n version: string;\n /** Current configuration\n * - Details: {@link Config}\n */\n config: Config;\n /** Current state of Human library\n * - Can be polled to determine operations that are currently executed\n */\n state: string;\n /** Internal: Instance of current image being processed */\n image: { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement | null };\n /** Internal: Instance of TensorFlow/JS used by Human\n * - Can be embedded or externally provided\n */\n tf: TensorFlow;\n /** Draw helper classes that can draw detected objects on canvas using specified draw styles\n * - options: global settings for all draw operations, can be overriden for each draw method, for details see {@link DrawOptions}\n * - face: draw detected faces\n * - body: draw detected people and body parts\n * - hand: draw detected hands and hand parts\n * - canvas: draw processed canvas which is a processed copy of the input\n * - all: meta-function that performs: canvas, face, body, hand\n */\n draw: {\n options: draw.DrawOptions,\n gesture: typeof draw.gesture,\n face: typeof draw.face,\n body: typeof draw.body,\n hand: typeof draw.hand,\n canvas: typeof draw.canvas,\n all: typeof draw.all,\n };\n /** Internal: Currently loaded models */\n models: {\n face: facemesh.MediaPipeFaceMesh | Model | null,\n posenet: Model | null,\n blazepose: Model | null,\n efficientpose: Model | null,\n handpose: handpose.HandPose | null,\n iris: Model | null,\n age: Model | null,\n gender: Model | null,\n emotion: Model | null,\n embedding: Model | null,\n nanodet: Model | null,\n faceres: Model | null,\n };\n /** Internal: Currently loaded classes */\n classes: {\n facemesh: typeof facemesh;\n age: typeof age;\n gender: typeof gender;\n emotion: typeof emotion;\n body: typeof posenet | typeof blazepose;\n hand: typeof handpose;\n nanodet: typeof nanodet;\n faceres: typeof faceres;\n };\n /** Face triangualtion array of 468 points, used for triangle references between points */\n faceTriangulation: typeof facemesh.triangulation;\n /** UV map of 468 values, used for 3D mapping of the face mesh */\n faceUVMap: typeof facemesh.uvmap;\n /** Platform and agent information detected by Human */\n sysinfo: { platform: string, agent: string };\n /** Performance object that contains values for all recently performed operations */\n perf: any;\n #numTensors: number;\n #analyzeMemoryLeaks: boolean;\n #checkSanity: boolean;\n #firstRun: boolean;\n\n // definition end\n\n /**\n * Creates instance of Human library that is futher used for all operations\n * - @param userConfig: {@link Config}\n */\n constructor(userConfig: Config | Object = {}) {\n this.tf = tf;\n this.draw = draw;\n this.version = app.version;\n this.config = mergeDeep(defaults, userConfig);\n this.state = 'idle';\n this.#numTensors = 0;\n this.#analyzeMemoryLeaks = false;\n this.#checkSanity = false;\n this.#firstRun = true;\n this.perf = {};\n // object that contains all initialized models\n this.models = {\n face: null,\n posenet: null,\n blazepose: null,\n efficientpose: null,\n handpose: null,\n iris: null,\n age: null,\n gender: null,\n emotion: null,\n embedding: null,\n nanodet: null,\n faceres: null,\n };\n // export access to image processing\n // @ts-ignore eslint-typescript cannot correctly infer type in anonymous function\n this.image = (input: Input) => image.process(input, this.config);\n // export raw access to underlying models\n this.classes = {\n facemesh,\n age,\n gender,\n emotion,\n faceres,\n body: this.config.body.modelPath.includes('posenet') ? posenet : blazepose,\n hand: handpose,\n nanodet,\n };\n this.faceTriangulation = facemesh.triangulation;\n this.faceUVMap = facemesh.uvmap;\n // include platform info\n this.sysinfo = sysinfo.info();\n }\n\n /** Internal: ProfileData method returns last known profiling information\n * - Requires human.config.profile set to true\n */\n profileData(): { newBytes, newTensors, peakBytes, numKernelOps, timeKernelOps, slowestKernelOps, largestKernelOps } | {} {\n if (this.config.profile) return profile.data;\n return {};\n }\n\n // helper function: measure tensor leak\n /** @hidden */\n analyze = (...msg) => {\n if (!this.#analyzeMemoryLeaks) return;\n const current = this.tf.engine().state.numTensors;\n const previous = this.#numTensors;\n this.#numTensors = current;\n const leaked = current - previous;\n if (leaked !== 0) log(...msg, leaked);\n }\n\n // quick sanity check on inputs\n /** @hidden */\n #sanity = (input): null | string => {\n if (!this.#checkSanity) return null;\n if (!input) return 'input is not defined';\n if (this.tf.ENV.flags.IS_NODE && !(input instanceof tf.Tensor)) return 'input must be a tensor';\n try {\n this.tf.getBackend();\n } catch {\n return 'backend not loaded';\n }\n return null;\n }\n\n /** Simmilarity method calculates simmilarity between two provided face descriptors (face embeddings)\n * - Calculation is based on normalized Minkowski distance between\n */\n similarity(embedding1: Array, embedding2: Array): number {\n if (this.config.face.description.enabled) return faceres.similarity(embedding1, embedding2);\n if (this.config.face.embedding.enabled) return embedding.similarity(embedding1, embedding2);\n return 0;\n }\n\n /** Enhance method performs additional enhacements to face image previously detected for futher processing\n * @param input Tensor as provided in human.result.face[n].tensor\n * @returns Tensor\n */\n // eslint-disable-next-line class-methods-use-this\n enhance(input: Tensor): Tensor | null {\n return faceres.enhance(input);\n }\n\n /**\n * Math method find best match between provided face descriptor and predefined database of known descriptors\n * @param faceEmbedding: face descriptor previsouly calculated on any face\n * @param db: array of mapping of face descriptors to known values\n * @param threshold: minimum score for matching to be considered in the result\n * @returns best match\n */\n // eslint-disable-next-line class-methods-use-this\n match(faceEmbedding: Array, db: Array<{ name: string, source: string, embedding: number[] }>, threshold = 0): { name: string, source: string, similarity: number, embedding: number[] } {\n return faceres.match(faceEmbedding, db, threshold);\n }\n\n /** Load method preloads all configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n */\n async load(userConfig: Config | Object = {}) {\n this.state = 'load';\n const timeStamp = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig);\n\n if (this.#firstRun) {\n if (this.config.debug) log(`version: ${this.version}`);\n if (this.config.debug) log(`tfjs version: ${this.tf.version_core}`);\n if (this.config.debug) log('platform:', this.sysinfo.platform);\n if (this.config.debug) log('agent:', this.sysinfo.agent);\n\n await this.#checkBackend(true);\n if (this.tf.ENV.flags.IS_BROWSER) {\n if (this.config.debug) log('configuration:', this.config);\n if (this.config.debug) log('tf flags:', this.tf.ENV.flags);\n }\n }\n if (this.config.async) {\n [\n this.models.face,\n this.models.age,\n this.models.gender,\n this.models.emotion,\n this.models.embedding,\n this.models.handpose,\n this.models.posenet,\n this.models.blazepose,\n this.models.efficientpose,\n this.models.nanodet,\n this.models.faceres,\n ] = await Promise.all([\n this.models.face || (this.config.face.enabled ? facemesh.load(this.config) : null),\n this.models.age || ((this.config.face.enabled && this.config.face.age.enabled) ? age.load(this.config) : null),\n this.models.gender || ((this.config.face.enabled && this.config.face.gender.enabled) ? gender.load(this.config) : null),\n this.models.emotion || ((this.config.face.enabled && this.config.face.emotion.enabled) ? emotion.load(this.config) : null),\n this.models.embedding || ((this.config.face.enabled && this.config.face.embedding.enabled) ? embedding.load(this.config) : null),\n this.models.handpose || (this.config.hand.enabled ? handpose.load(this.config) : null),\n this.models.posenet || (this.config.body.enabled && this.config.body.modelPath.includes('posenet') ? posenet.load(this.config) : null),\n this.models.blazepose || (this.config.body.enabled && this.config.body.modelPath.includes('blazepose') ? blazepose.load(this.config) : null),\n this.models.efficientpose || (this.config.body.enabled && this.config.body.modelPath.includes('efficientpose') ? efficientpose.load(this.config) : null),\n this.models.nanodet || (this.config.object.enabled ? nanodet.load(this.config) : null),\n this.models.faceres || ((this.config.face.enabled && this.config.face.description.enabled) ? faceres.load(this.config) : null),\n ]);\n } else {\n if (this.config.face.enabled && !this.models.face) this.models.face = await facemesh.load(this.config);\n if (this.config.face.enabled && this.config.face.age.enabled && !this.models.age) this.models.age = await age.load(this.config);\n if (this.config.face.enabled && this.config.face.gender.enabled && !this.models.gender) this.models.gender = await gender.load(this.config);\n if (this.config.face.enabled && this.config.face.emotion.enabled && !this.models.emotion) this.models.emotion = await emotion.load(this.config);\n if (this.config.face.enabled && this.config.face.embedding.enabled && !this.models.embedding) this.models.embedding = await embedding.load(this.config);\n if (this.config.hand.enabled && !this.models.handpose) this.models.handpose = await handpose.load(this.config);\n if (this.config.body.enabled && !this.models.posenet && this.config.body.modelPath.includes('posenet')) this.models.posenet = await posenet.load(this.config);\n if (this.config.body.enabled && !this.models.blazepose && this.config.body.modelPath.includes('blazepose')) this.models.blazepose = await blazepose.load(this.config);\n if (this.config.body.enabled && !this.models.efficientpose && this.config.body.modelPath.includes('efficientpose')) this.models.efficientpose = await efficientpose.load(this.config);\n if (this.config.object.enabled && !this.models.nanodet) this.models.nanodet = await nanodet.load(this.config);\n if (this.config.face.enabled && this.config.face.description.enabled && !this.models.faceres) this.models.faceres = await faceres.load(this.config);\n }\n\n if (this.#firstRun) {\n if (this.config.debug) log('tf engine state:', this.tf.engine().state.numBytes, 'bytes', this.tf.engine().state.numTensors, 'tensors');\n this.#firstRun = false;\n }\n\n const current = Math.trunc(now() - timeStamp);\n if (current > (this.perf.load || 0)) this.perf.load = current;\n }\n\n // check if backend needs initialization if it changed\n /** @hidden */\n #checkBackend = async (force = false) => {\n if (this.config.backend && (this.config.backend.length > 0) && force || (this.tf.getBackend() !== this.config.backend)) {\n const timeStamp = now();\n this.state = 'backend';\n /* force backend reload\n if (this.config.backend in tf.engine().registry) {\n const backendFactory = tf.findBackendFactory(this.config.backend);\n tf.removeBackend(this.config.backend);\n tf.registerBackend(this.config.backend, backendFactory);\n } else {\n log('Backend not registred:', this.config.backend);\n }\n */\n\n if (this.config.backend && this.config.backend.length > 0) {\n // force browser vs node backend\n if (this.tf.ENV.flags.IS_BROWSER && this.config.backend === 'tensorflow') this.config.backend = 'webgl';\n if (this.tf.ENV.flags.IS_NODE && (this.config.backend === 'webgl' || this.config.backend === 'humangl')) this.config.backend = 'tensorflow';\n\n if (this.config.debug) log('setting backend:', this.config.backend);\n\n if (this.config.backend === 'wasm') {\n if (this.config.debug) log('wasm path:', this.config.wasmPath);\n if (typeof this.tf?.setWasmPaths !== 'undefined') this.tf.setWasmPaths(this.config.wasmPath);\n else throw new Error('Human: WASM backend is not loaded');\n const simd = await this.tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');\n const mt = await this.tf.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT');\n if (this.config.debug) log(`wasm execution: ${simd ? 'SIMD' : 'no SIMD'} ${mt ? 'multithreaded' : 'singlethreaded'}`);\n if (this.config.debug && !simd) log('warning: wasm simd support is not enabled');\n }\n\n if (this.config.backend === 'humangl') backend.register();\n try {\n await this.tf.setBackend(this.config.backend);\n } catch (err) {\n log('error: cannot set backend:', this.config.backend, err);\n }\n }\n this.tf.enableProdMode();\n // this.tf.enableDebugMode();\n if (this.tf.getBackend() === 'webgl' || this.tf.getBackend() === 'humangl') {\n this.tf.ENV.set('CHECK_COMPUTATION_FOR_ERRORS', false);\n this.tf.ENV.set('WEBGL_PACK_DEPTHWISECONV', true);\n if (this.config.deallocate) {\n log('changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:', this.config.deallocate);\n this.tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', this.config.deallocate ? 0 : -1);\n }\n const gl = await this.tf.backend().getGPGPUContext().gl;\n if (this.config.debug) log(`gl version:${gl.getParameter(gl.VERSION)} renderer:${gl.getParameter(gl.RENDERER)}`);\n }\n await this.tf.ready();\n this.perf.backend = Math.trunc(now() - timeStamp);\n }\n }\n\n /** Main detection method\n * - Analyze configuration: {@link Config}\n * - Pre-process input: {@link Input}\n * - Run inference for all configured models\n * - Process and return result: {@link Result}\n */\n async detect(input: Input, userConfig: Config | Object = {}): Promise {\n // detection happens inside a promise\n return new Promise(async (resolve) => {\n this.state = 'config';\n let timeStamp;\n\n // update configuration\n this.config = mergeDeep(this.config, userConfig);\n\n // sanity checks\n this.state = 'check';\n const error = this.#sanity(input);\n if (error) {\n log(error, input);\n resolve({ error });\n }\n\n const timeStart = now();\n\n // configure backend\n await this.#checkBackend();\n\n // load models if enabled\n await this.load();\n\n if (this.config.scoped) this.tf.engine().startScope();\n this.analyze('Start Scope:');\n\n // disable video optimization for inputs of type image\n let previousVideoOptimized;\n if (input && this.config.videoOptimized && (\n (typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n || (typeof Image !== 'undefined' && input instanceof Image)\n || (typeof ImageData !== 'undefined' && input instanceof ImageData)\n || (typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap))\n ) {\n log('disabling video optimization');\n previousVideoOptimized = this.config.videoOptimized;\n this.config.videoOptimized = false;\n }\n\n timeStamp = now();\n const process = image.process(input, this.config);\n if (!process || !process.tensor) {\n log('could not convert input to tensor');\n resolve({ error: 'could not convert input to tensor' });\n return;\n }\n this.perf.image = Math.trunc(now() - timeStamp);\n this.analyze('Get Image:');\n\n // prepare where to store model results\n let bodyRes;\n let handRes;\n let faceRes;\n let objectRes;\n let current;\n\n // run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion\n if (this.config.async) {\n faceRes = this.config.face.enabled ? faceall.detectFace(this, process.tensor) : [];\n if (this.perf.face) delete this.perf.face;\n } else {\n this.state = 'run:face';\n timeStamp = now();\n faceRes = this.config.face.enabled ? await faceall.detectFace(this, process.tensor) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.face = current;\n }\n\n // run body: can be posenet or blazepose\n this.analyze('Start Body:');\n if (this.config.async) {\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? posenet.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? efficientpose.predict(process.tensor, this.config) : [];\n if (this.perf.body) delete this.perf.body;\n } else {\n this.state = 'run:body';\n timeStamp = now();\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? await posenet.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? await efficientpose.predict(process.tensor, this.config) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.body = current;\n }\n this.analyze('End Body:');\n\n // run handpose\n this.analyze('Start Hand:');\n if (this.config.async) {\n handRes = this.config.hand.enabled ? this.models.handpose?.estimateHands(process.tensor, this.config) : [];\n if (this.perf.hand) delete this.perf.hand;\n } else {\n this.state = 'run:hand';\n timeStamp = now();\n handRes = this.config.hand.enabled ? await this.models.handpose?.estimateHands(process.tensor, this.config) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.hand = current;\n }\n this.analyze('End Hand:');\n\n // run nanodet\n this.analyze('Start Object:');\n if (this.config.async) {\n objectRes = this.config.object.enabled ? nanodet.predict(process.tensor, this.config) : [];\n if (this.perf.object) delete this.perf.object;\n } else {\n this.state = 'run:object';\n timeStamp = now();\n objectRes = this.config.object.enabled ? await nanodet.predict(process.tensor, this.config) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.object = current;\n }\n this.analyze('End Object:');\n\n // if async wait for results\n if (this.config.async) {\n [faceRes, bodyRes, handRes, objectRes] = await Promise.all([faceRes, bodyRes, handRes, objectRes]);\n }\n tf.dispose(process.tensor);\n\n if (this.config.scoped) this.tf.engine().endScope();\n this.analyze('End Scope:');\n\n // run gesture analysis last\n let gestureRes: any[] = [];\n if (this.config.gesture.enabled) {\n timeStamp = now();\n gestureRes = [...gesture.face(faceRes), ...gesture.body(bodyRes), ...gesture.hand(handRes), ...gesture.iris(faceRes)];\n if (!this.config.async) this.perf.gesture = Math.trunc(now() - timeStamp);\n else if (this.perf.gesture) delete this.perf.gesture;\n }\n\n // restore video optimizations if previously disabled\n if (previousVideoOptimized) this.config.videoOptimized = previousVideoOptimized;\n\n this.perf.total = Math.trunc(now() - timeStart);\n this.state = 'idle';\n const result = {\n face: faceRes,\n body: bodyRes,\n hand: handRes,\n gesture: gestureRes,\n object: objectRes,\n performance: this.perf,\n canvas: process.canvas,\n };\n // log('Result:', result);\n resolve(result);\n });\n }\n\n /** @hidden */\n #warmupBitmap = async () => {\n const b64toBlob = (base64, type = 'application/octet-stream') => fetch(`data:${type};base64,${base64}`).then((res) => res.blob());\n let blob;\n let res;\n switch (this.config.warmup) {\n case 'face': blob = await b64toBlob(sample.face); break;\n case 'full': blob = await b64toBlob(sample.body); break;\n default: blob = null;\n }\n if (blob) {\n const bitmap = await createImageBitmap(blob);\n res = await this.detect(bitmap, this.config);\n bitmap.close();\n }\n return res;\n }\n\n /** @hidden */\n #warmupCanvas = async () => new Promise((resolve) => {\n let src;\n let size = 0;\n switch (this.config.warmup) {\n case 'face':\n size = 256;\n src = 'data:image/jpeg;base64,' + sample.face;\n break;\n case 'full':\n case 'body':\n size = 1200;\n src = 'data:image/jpeg;base64,' + sample.body;\n break;\n default:\n src = null;\n }\n // src = encodeURI('../assets/human-sample-upper.jpg');\n const img = new Image();\n img.onload = async () => {\n const canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(size, size) : document.createElement('canvas');\n canvas.width = img.naturalWidth;\n canvas.height = img.naturalHeight;\n const ctx = canvas.getContext('2d');\n ctx?.drawImage(img, 0, 0);\n // const data = ctx?.getImageData(0, 0, canvas.height, canvas.width);\n const res = await this.detect(canvas, this.config);\n resolve(res);\n };\n if (src) img.src = src;\n else resolve(null);\n });\n\n /** @hidden */\n #warmupNode = async () => {\n const atob = (str) => Buffer.from(str, 'base64');\n let img;\n if (this.config.warmup === 'face') img = atob(sample.face);\n if (this.config.warmup === 'body' || this.config.warmup === 'full') img = atob(sample.body);\n if (!img) return null;\n let res;\n if (typeof tf['node'] !== 'undefined') {\n const data = tf['node'].decodeJpeg(img);\n const expanded = data.expandDims(0);\n this.tf.dispose(data);\n // log('Input:', expanded);\n res = await this.detect(expanded, this.config);\n this.tf.dispose(expanded);\n } else {\n if (this.config.debug) log('Warmup tfjs-node not loaded');\n /*\n const input = await canvasJS.loadImage(img);\n const canvas = canvasJS.createCanvas(input.width, input.height);\n const ctx = canvas.getContext('2d');\n ctx.drawImage(img, 0, 0, input.width, input.height);\n res = await this.detect(input, this.config);\n */\n }\n return res;\n }\n\n /** Warmup metho pre-initializes all models for faster inference\n * - can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n */\n async warmup(userConfig: Config | Object = {}): Promise {\n const t0 = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig);\n if (!this.config.warmup || this.config.warmup === 'none') return { error: 'null' };\n const save = this.config.videoOptimized;\n this.config.videoOptimized = false;\n let res;\n if (typeof createImageBitmap === 'function') res = await this.#warmupBitmap();\n else if (typeof Image !== 'undefined') res = await this.#warmupCanvas();\n else res = await this.#warmupNode();\n this.config.videoOptimized = save;\n const t1 = now();\n if (this.config.debug) log('Warmup', this.config.warmup, Math.round(t1 - t0), 'ms', res);\n return res;\n }\n}\n\n/**\n * Class Human is also available as default export\n */\nexport { Human as default };\n"], + "mappings": ";;;;;;;ukBACO,WAAc,EAAgB,EAAsB,CACzD,GAAM,GAAY,EAAO,SAAS,KAAO,GAAK,IAExC,EAAO,AADI,EAAK,WAAW,MAAQ,EAAK,WAAW,MAAQ,EAAK,WAAW,UAAY,EAAK,WAAW,WAAa,EAAK,WAAW,SAClH,GAAG,IAAS,GAAG,IAAS,IAAY,IAC5D,GAAI,CAAC,EAAK,oBAAoB,SAAS,SAAU,KAAM,IAAI,OAAM,2BAA2B,yBAC5F,MAAO,GAIF,cAAgB,EAAK,CAC1B,GAAM,GAAK,GAAI,MACT,EAAK,GAAG,EAAG,WAAW,WAAW,SAAS,EAAG,QAAQ,EAAG,aAAa,WAAW,SAAS,EAAG,QAAQ,EAAG,aAAa,WAAW,SAAS,EAAG,QAAQ,EAAG,kBAAkB,WAAW,SAAS,EAAG,OAErM,AAAI,GAAK,QAAQ,IAAI,EAAI,SAAU,GAAG,GAIjC,GAAM,GAAM,IACb,MAAO,cAAgB,YAAoB,YAAY,MACpD,SAAU,QAAO,QAAQ,OAAO,UAAY,IAAO,KAAM,YAI3D,cAAsB,EAAS,CACpC,GAAM,GAAW,AAAC,GAAQ,GAAO,MAAO,IAAQ,SAChD,MAAO,GAAQ,OAAO,CAAC,EAAM,IAC3B,QAAO,KAAK,GAAO,IAAI,QAAQ,AAAC,GAAQ,CACtC,GAAM,GAAO,EAAK,GACZ,EAAO,EAAI,GACjB,AAAI,MAAM,QAAQ,IAAS,MAAM,QAAQ,GAAO,EAAK,GAAO,EAAK,OAAO,GAAG,GACtE,AAAI,EAAS,IAAS,EAAS,GAAO,EAAK,GAAO,EAAU,EAAM,GAClE,EAAK,GAAO,IAEZ,GACN,ICnCE,aAAqD,CAC1D,GAAI,GACA,EACJ,GAAI,MAAO,YAAc,YAAa,CACpC,GAAM,GAAM,UAAU,UAAU,MAAM,iBACtC,GAAI,GAAO,EAAI,GAAI,CACjB,GAAM,GAAgB,EAAI,GAAG,MAAM,iBACnC,EAAW,EAAgB,EAAc,GAAG,QAAQ,SAAU,IAAM,GACpE,EAAQ,UAAU,UAAU,QAAQ,EAAI,GAAI,IACxC,EAAS,IAAI,GAAQ,EAAM,QAAQ,EAAI,GAAI,KAC/C,EAAQ,EAAM,QAAQ,MAAO,UAE1B,AAAI,OAAO,UAAY,aAC5B,GAAW,GAAG,QAAQ,YAAY,QAAQ,OAC1C,EAAQ,UAAU,QAAQ,WAE5B,MAAO,CAAE,WAAU,oDCMrB,QACA,QACA,QAEA,QACA,QACA,QAjBA,iDACA,sDACA,sDACA,wDACA,2DAEA,0EACA,8EACA,4EAGA,uDACA,yDACA,4DACA,uDACA,8DACA,gEACA,+DAcO,GAAM,IAAU,CACrB,KAAM,KAAA,KAAA,OAAe,aAAW,OAChC,YAAa,KAAA,KAAA,OAAa,aAAW,OACrC,YAAa,KAAA,KAAA,OAAa,aAAW,OACrC,cAAe,KAAA,KAAA,OAAe,aAAW,OACzC,iBAAkB,KAAA,KAAA,OAAkB,aAAW,OAC/C,mBAAoB,IAAe,OACnC,qBAAsB,IAAiB,OACvC,oBAAqB,IAAgB,QC/ChC,GAAM,GAAS,CACpB,KAAM,UACN,SAAU,GACV,OAAoD,KACpD,GAAS,KACT,MAAO,KACP,OAAQ,KACR,UAAW,CACT,MAAO,GACP,UAAW,GACX,mBAAoB,GACpB,sBAAuB,GACvB,MAAO,GACP,QAAS,GACT,6BAA8B,GAC9B,eAAgB,KAIb,aAA0B,CAC/B,GAAI,CAAC,AAAG,cAAY,EAAO,MAAO,CAChC,EAAI,wBAAyB,EAAO,MACpC,GAAI,CACF,EAAO,OAAU,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,MAAO,EAAO,QAAU,SAAS,cAAc,gBAC9H,EAAP,CACA,EAAI,+BAAgC,GACpC,OAEF,GAAI,CACF,EAAO,GAAK,EAAO,OAAO,WAAW,SAAU,EAAO,iBAC/C,EAAP,CACA,EAAI,oCAAqC,GACzC,OAEF,GAAI,CACF,AAAG,kBAAgB,EAAG,EAAO,UACtB,EAAP,CACA,EAAI,oCAAqC,GACzC,OAEF,GAAI,CACF,GAAM,GAAM,GAAO,gBAAa,EAAO,IACvC,AAAG,kBAAgB,EAAO,KAAM,IAAM,GAAO,oBAAiB,GAAM,EAAO,gBACpE,EAAP,CACA,EAAI,wCAAyC,GAC7C,OAEF,GAAI,CAEF,AADgB,AAAG,uBAAqB,SAChC,QAAQ,AAAC,GAAiB,CAChC,GAAM,GAAkB,IAAK,EAAc,YAAa,EAAO,MAC/D,AAAG,iBAAe,WAEb,EAAP,CACA,EAAI,mDAAoD,GACxD,OAEF,GAAI,CACF,AAAG,MAAI,IAAI,gBAAiB,SAIrB,EAAP,CACA,EAAI,yCAA0C,GAC9C,OAEF,EAAI,sBAAuB,EAAO,OCrEtC,6CCEO,GAAM,IAAO,GAEb,WAAa,EAAmB,EAAwB,CAC7D,GAAI,CAAC,GAAe,CAAC,EAAY,QAAS,OAC1C,GAAM,GAAa,EACb,EAAO,EAAY,QACtB,OAAO,AAAC,GAAM,EAAE,aAAe,GAC/B,OAAO,CAAC,EAAG,IAAM,GAAK,EAAE,aAAc,GACnC,EAAU,EAAY,QACzB,IAAI,CAAC,EAAG,IAAQ,GAAE,GAAK,EAAU,IACjC,OAAO,AAAC,GAAM,EAAE,aAAe,GAC/B,KAAK,CAAC,EAAG,IAAM,EAAE,aAAe,EAAE,cAC/B,EAAU,EAAY,QACzB,IAAI,CAAC,EAAG,IAAQ,GAAE,GAAK,EAAU,IACjC,OAAO,AAAC,GAAM,EAAE,mBAAqB,GACrC,KAAK,CAAC,EAAG,IAAM,EAAE,mBAAqB,EAAE,oBAC3C,AAAI,EAAQ,OAAS,GAAY,GAAQ,OAAS,GAC9C,EAAQ,OAAS,GAAY,GAAQ,OAAS,GAClD,GAAK,GAAa,CAChB,MAAO,EACP,SAAU,EAAY,SACtB,WAAY,EAAY,WACxB,UAAW,EAAY,UACvB,aAAc,EAAY,QAAQ,OAClC,cAAe,EACf,iBAAkB,EAClB,iBAAkB,GAEpB,EAAI,WAAY,EAAW,GAAK,ID1BlC,GAAI,GACA,GAAO,CAAE,IAAK,GACd,GAAU,OAAO,iBAErB,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,IAAI,YAC3E,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,IAAI,WAChE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GACA,GAAU,EAAO,KAAK,IAAI,YAAe,EAAO,gBAAkB,GAAK,KAAQ,GAAK,IAAM,EAC7F,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAC9F,EAAU,AAAG,MAAI,EAAQ,CAAC,MAChC,AAAG,UAAQ,GAEX,GAAI,GACE,EAAM,CAAE,IAAK,GAEnB,GAAI,CAAC,EAAO,QACV,AAAI,EAAO,KAAK,IAAI,SAAS,GAAO,KAAM,GAAM,QAAQ,QACnD,CACL,GAAM,GAAa,EAAO,KAAK,IAAI,QAAU,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IAAY,GAC9F,EAAO,EAAW,OAAO,QACzB,EAAW,OAAO,UAClB,AAAQ,EAAI,MAAO,GAIrB,GAFA,EAAQ,UAEJ,EAAM,CACR,GAAM,GAAO,EAAK,WAClB,EAAI,IAAM,KAAK,MAAM,GAAK,EAAK,IAAM,GAEvC,EAAK,UAEL,GAAO,EACP,EAAQ,MAhCS,KElBrB,6CAIA,GAAI,GACA,GAAO,CAAE,OAAQ,IACjB,GAAU,OAAO,iBACjB,GAAc,GAGZ,GAAM,CAAC,MAAQ,KAAQ,MAE7B,kBAA2B,EAAQ,CACjC,MAAK,GAKM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAJlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,OAAO,YAC9E,GAAc,EAAM,OAAO,GAAG,MAAM,KAAO,EAC3C,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,OAAO,WACnE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GACA,GAAU,EAAO,KAAK,OAAO,YAAe,EAAO,gBAAkB,GAAK,SAAW,GACxF,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAChG,EACJ,AAAI,GACF,EAAU,AAAG,OAAK,IAAM,CACtB,GAAM,CAAC,EAAK,EAAO,GAAQ,AAAG,QAAM,EAAQ,EAAG,GACzC,EAAU,AAAG,MAAI,EAAK,GAAI,IAC1B,EAAY,AAAG,MAAI,EAAO,GAAI,IAC9B,EAAW,AAAG,MAAI,EAAM,GAAI,IAGlC,MADkB,AADA,AAAG,QAAK,CAAC,EAAS,EAAW,IACnB,IAAI,IAAK,IAAI,KAI3C,EAAU,AAAG,MAAI,EAAQ,CAAC,MAE5B,AAAG,UAAQ,GAEX,GAAI,GACE,EAAM,CAAE,OAAQ,GAAI,WAAY,GAEtC,GAAI,CAAC,EAAO,QACV,AAAI,EAAO,KAAK,OAAO,SAAS,GAAU,KAAM,GAAM,QAAQ,QACzD,CACL,GAAM,GAAgB,EAAO,KAAK,OAAO,QAAU,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IAAY,GACpG,EAAU,EAAc,OAAO,QAC/B,EAAc,OAAO,UACrB,AAAQ,EAAI,SAAU,GAIxB,GAFA,EAAQ,UAEJ,EACF,GAAK,MAAM,QAAQ,GAiBZ,CACL,GAAM,GAAS,EAAQ,GAAG,WACpB,EAAa,KAAK,MAAM,IAAM,KAAK,IAAK,EAAO,GAAK,KAAS,IACnE,AAAI,EAAa,EAAO,KAAK,OAAO,eAClC,GAAI,OAAS,EAAO,IAAM,GAAM,SAAW,OAC3C,EAAI,WAAa,KAAK,IAAI,IAAM,IAQlC,EAAQ,QAAQ,AAAC,GAAM,AAAG,UAAQ,QA9BP,CAC3B,GAAM,GAAO,EAAQ,WACrB,GAAI,GAEF,AAAI,GAAK,GAAK,EAAO,KAAK,OAAO,eAAiB,EAAK,GAAK,EAAO,KAAK,OAAO,gBAC7E,GAAI,OAAS,EAAK,GAAK,EAAK,GAAK,SAAW,OAC5C,EAAI,WAAa,EAAK,GAAK,EAAK,GAAM,KAAK,MAAM,IAAM,EAAK,IAAM,IAAQ,KAAK,MAAM,IAAM,EAAK,IAAM,SAEnG,CAEL,GAAM,GAAa,KAAK,MAAM,IAAM,KAAK,IAAK,EAAK,GAAK,KAAS,IACjE,AAAI,EAAa,EAAO,KAAK,OAAO,eAClC,GAAI,OAAS,EAAK,IAAM,GAAM,SAAW,OACzC,EAAI,WAAa,KAAK,IAAI,IAAM,IAGpC,EAAQ,UAiBZ,GAAO,EACP,EAAQ,MAzES,KCvBrB,6CAIA,GAAM,IAAc,CAAC,QAAS,UAAW,OAAQ,QAAS,MAAO,WAAY,WACzE,EACA,GAAkD,GAClD,GAAU,OAAO,iBAGf,GAAM,CAAC,MAAQ,KAAQ,MAE7B,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,QAAQ,YAC/E,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,QAAQ,WACpE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GACA,GAAU,EAAO,KAAK,QAAQ,YAAe,EAAO,gBAAmB,GAAK,OAAS,EACxF,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAC9F,CAAC,EAAK,EAAO,GAAQ,AAAG,QAAM,EAAQ,EAAG,GAC/C,EAAO,UAEP,GAAM,GAAU,AAAG,MAAI,EAAK,GAAI,IAC1B,EAAY,AAAG,MAAI,EAAO,GAAI,IAC9B,EAAW,AAAG,MAAI,EAAM,GAAI,IAClC,EAAI,UACJ,EAAM,UACN,EAAK,UACL,GAAM,GAAY,AAAG,OAAK,CAAC,EAAS,EAAW,IAC/C,EAAQ,UACR,EAAU,UACV,EAAS,UACT,GAAM,GAAY,AAAG,OAAK,IAAM,EAAU,IAAI,IAAK,IAAI,IACvD,EAAU,UACV,GAAM,GAAiD,GACvD,GAAI,EAAO,KAAK,QAAQ,QAAS,CAC/B,GAAI,GACJ,GAAK,EAAO,QAIL,CACL,GAAM,GAAc,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IACzD,EAAO,EAAY,OAAO,WAC1B,EAAY,OAAO,UACnB,AAAQ,EAAI,UAAW,OARJ,CACnB,GAAM,GAAW,KAAM,GAAM,QAAQ,GACrC,EAAO,EAAS,WAChB,AAAG,UAAQ,GAOb,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAC/B,AAAI,EAAK,GAAK,EAAO,KAAK,QAAQ,eAAe,EAAI,KAAK,CAAE,MAAO,KAAK,IAAI,IAAM,KAAK,MAAM,IAAM,EAAK,IAAM,KAAM,QAAS,GAAY,KAE3I,EAAI,KAAK,CAAC,EAAG,IAAM,EAAE,MAAQ,EAAE,OAEjC,EAAU,UACV,GAAO,EACP,EAAQ,MA5CS,KChBrB,GAAI,GAEJ,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,UAAU,YACjF,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,UAAU,WACtE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGF,YAAoB,EAAY,EAAY,EAAQ,EAAW,CAGpE,GAFI,CAAC,GAAc,CAAC,GAChB,kBAAY,UAAW,GAAK,kBAAY,UAAW,GACnD,kBAAY,UAAW,kBAAY,QAAQ,MAAO,GAEtD,GAAM,GAAW,EACd,IAAI,CAAC,EAAK,IAAO,KAAK,IAAI,EAAW,GAAK,EAAW,KAAO,GAC5D,OAAO,CAAC,EAAK,IAAS,EAAM,EAAM,IAC/B,GAAI,GAEV,MADY,MAAK,IAAI,KAAK,MAAM,IAAQ,GAAI,IAAa,IAAM,GAgB1D,YAAiB,EAAe,CAqCrC,MApCc,AAAG,QAAK,IAAM,CAK1B,GAAM,GAAM,CAAC,CAAC,IAAM,IAAM,IAAM,MAC1B,EAAS,EAAM,OAAS,EAAM,OACpC,GAAI,CAAE,aAAqB,WAAS,MAAO,MAC3C,GAAM,GAAQ,EAAO,MAAM,SAAW,EAClC,AAAG,QAAM,cAAc,AAAG,aAAW,EAAQ,GAAI,EAAK,CAAC,GAAI,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAC5G,AAAG,QAAM,cAAc,EAAQ,EAAK,CAAC,GAAI,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAGxF,EAAM,CAAC,MAAQ,KAAQ,MACvB,CAAC,EAAK,EAAO,GAAQ,AAAG,QAAM,EAAM,EAAG,GACvC,EAAU,AAAG,MAAI,EAAK,EAAI,IAC1B,EAAY,AAAG,MAAI,EAAO,EAAI,IAC9B,EAAW,AAAG,MAAI,EAAM,EAAI,IAC5B,EAAY,AAAG,OAAK,CAAC,EAAS,EAAW,IACzC,EAAQ,AAAG,QAAM,CAAC,EAAW,EAAW,GAAY,GAAG,QAAQ,GAY/D,EAAS,EAAM,IAAI,EAAM,OAG/B,MAFgB,GAAO,IAAI,EAAO,SAOtC,kBAA8B,EAAO,EAA2B,CAC9D,MAAK,GACE,GAAI,SAAQ,KAAO,IAAY,CAEpC,GAAI,GAAsB,GAC1B,GAAI,EAAO,KAAK,UAAU,QAAS,CACjC,GAAM,GAAQ,GAAQ,GACtB,GAAI,CAAC,EAAO,QACV,EAAO,AAAG,OAAK,IA+BN,CAAC,GADsB,AAFf,AADC,AArBJ,EAAM,QAAQ,GAqBN,QAAQ,CAAC,IAAK,IACX,UAAU,GAEI,iBAGlC,CACL,GAAM,GAAc,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,CAAE,WAAY,KACvE,EAAO,CAAC,GAAG,EAAY,OAAO,YAC9B,EAAY,OAAO,UACnB,AAAQ,EAAI,UAAW,GAEzB,AAAG,UAAQ,GAEb,EAAQ,KAhDS,GCnFrB,2FAIA,GAAI,GACA,GAAO,CAAE,IAAK,GACd,GAAU,OAAO,iBAKrB,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YAAY,YACnF,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,YAAY,WACxE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGF,YAAoB,EAAY,EAAY,EAAQ,EAAW,CAGpE,GAFI,CAAC,GAAc,CAAC,GAChB,kBAAY,UAAW,GAAK,kBAAY,UAAW,GACnD,kBAAY,UAAW,kBAAY,QAAQ,MAAO,GAEtD,GAAM,GAAW,EAAM,EACpB,IAAI,CAAC,EAAK,IAAO,KAAK,IAAI,EAAW,GAAK,EAAW,KAAO,GAC5D,OAAO,CAAC,EAAK,IAAS,EAAM,EAAM,IAC/B,GAAI,GAEV,MADY,MAAK,IAAI,EAAG,IAAM,GAAY,IAIrC,YAAe,EAA0B,EAAQ,EAAY,EAAG,CACrE,GAAI,GAAO,CAAE,WAAY,EAAG,KAAM,GAAI,OAAQ,GAAI,UAAW,IAC7D,GAAI,CAAC,GAAa,CAAC,GAAM,CAAC,MAAM,QAAQ,IAAc,CAAC,MAAM,QAAQ,GAAK,MAAO,GACjF,OAAW,KAAK,GACd,GAAI,EAAE,WAAa,EAAE,KAAM,CACzB,GAAM,GAAO,GAAW,EAAW,EAAE,WACrC,AAAI,EAAO,GAAa,EAAO,EAAK,YAAY,GAAO,IAAK,EAAG,WAAY,IAG/E,MAAO,GAGF,YAAiB,EAAe,CA4CrC,MA3Cc,AAAG,QAAK,IAAM,CAG1B,GAAM,GAAS,EAAM,OAAS,EAAM,QAAU,EAC9C,GAAI,CAAE,aAAqB,WAAS,MAAO,MAE3C,GAAM,GAAM,CAAC,CAAC,IAAM,IAAM,IAAM,MAmChC,MAFa,AA/BC,GAAO,MAAM,SAAW,EAClC,AAAG,QAAM,cAAc,AAAG,aAAW,EAAQ,GAAI,EAAK,CAAC,GAAI,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAC5G,AAAG,QAAM,cAAc,EAAQ,EAAK,CAAC,GAAI,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,MA6B5E,IAAI,OAO1B,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GACA,GAAU,EAAO,KAAK,YAAY,YAAe,EAAO,gBAAkB,GAAK,KAAQ,GAAK,IAAM,EACrG,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAW,GAAQ,GAErB,EACE,EAAM,CACV,IAAa,EACb,OAAgB,UAChB,iBAA0B,EAC1B,WAAsB,IAExB,GAAI,CAAC,EAAO,QACV,AAAI,EAAO,KAAK,YAAY,SAAS,GAAO,KAAM,GAAM,QAAQ,QAC3D,CACL,GAAM,GAAc,EAAO,KAAK,YAAY,QAAU,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IAAa,GACxG,EAAO,EAAY,OACnB,AAAQ,EAAI,UAAW,GAEzB,AAAG,UAAQ,GAEP,GACF,CAAG,OAAK,IAAM,CACZ,GAAM,GAAS,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,GAAG,WAC5C,EAAa,KAAK,MAAM,IAAM,KAAK,IAAK,EAAO,GAAK,KAAS,IACnE,AAAI,EAAa,EAAO,KAAK,OAAO,eAClC,GAAI,OAAS,EAAO,IAAM,GAAM,SAAW,OAC3C,EAAI,iBAAmB,KAAK,IAAI,IAAM,IAExC,GAAM,GAAM,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,KAAK,OAAO,GAAG,WAAW,GAChE,EAAM,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,KAAK,WACjD,EAAI,IAAM,KAAK,MAAM,EAAI,EAAM,GAAK,EAAI,EAAM,GAAK,GAAK,EAAM,IAAM,EAAI,EAAM,GAAK,GAAK,EAAM,IAAM,EAAI,EAAM,IAAM,GAEpH,GAAM,GAAO,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,MAI7C,EAAI,WAAa,CAAC,GAAG,EAAK,cAE5B,EAAK,QAAQ,AAAC,GAAM,AAAG,UAAQ,KAGjC,GAAO,EACP,EAAQ,MAhDS,KCnFrB,GAAM,IAAqB,CAAC,EAAM,IAA0J,CAE1L,GAAM,GAAU,AAAC,GAAW,EAAQ,IAAO,KAAK,GAE1C,EAAY,AAAC,GAAM,CACvB,GAAM,GAAS,KAAK,KAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,IAC9D,SAAE,IAAM,EACR,EAAE,IAAM,EACR,EAAE,IAAM,EACD,GAEH,EAAa,CAAC,EAAG,IAAM,CAC3B,GAAM,GAAI,EAAE,GAAK,EAAE,GACb,EAAI,EAAE,GAAK,EAAE,GACb,EAAI,EAAE,GAAK,EAAE,GACnB,MAAO,CAAC,EAAG,EAAG,IAEV,EAAe,CAAC,EAAG,IAAM,CAC7B,GAAM,GAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAC3B,EAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAC3B,EAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GACjC,MAAO,CAAC,EAAG,EAAG,IAGV,EAA6B,AAAC,GAAM,CAExC,GAAM,CAAC,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,GAAO,EAClD,EAAY,GAAY,EAC5B,MAAI,GAAM,EACR,AAAI,EAAM,GACR,GAAS,KAAK,KAAK,GACnB,GAAS,KAAK,MAAM,CAAC,EAAK,GAC1B,EAAS,KAAK,MAAM,CAAC,EAAK,IAE1B,GAAS,CAAC,KAAK,GAAK,EACpB,GAAS,CAAC,KAAK,MAAM,EAAK,GAC1B,EAAS,GAGX,GAAS,KAAK,GAAK,EACnB,GAAS,KAAK,MAAM,EAAK,GACzB,EAAS,GAEJ,CAAE,MAAO,EAAI,CAAC,EAAQ,IAAK,EAAI,CAAC,GAAQ,KAAM,EAAI,CAAC,IAItD,EAAmB,AAAC,GAAS,CACjC,GAAM,GAAU,CAAC,EAAI,EAAI,EAAI,IAAO,KAAK,MAAM,EAAK,EAAI,EAAK,GAY7D,MAVc,CAIZ,MAAO,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,IAEjE,IAAK,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,IAE/D,KAAM,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,MAK9D,EAAO,EAAK,QAClB,GAAI,CAAC,GAAQ,EAAK,OAAS,IAAK,MAAO,CAAE,MAAO,CAAE,MAAO,EAAG,IAAK,EAAG,KAAM,GAAK,OAAQ,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,IAEhH,GAAM,GAAO,KAAK,IAAI,EAAK,OAAO,GAAK,EAAW,GAAI,EAAK,OAAO,GAAK,EAAW,IAAM,IAElF,EAAM,CAAC,EAAK,IAAK,EAAK,KAAM,EAAK,KAAM,EAAK,MAAM,IAAI,AAAC,GAAO,CAElE,EAAG,GAAK,EAAW,GAAK,EACxB,EAAG,GAAK,EAAW,GAAK,EACxB,EAAG,KAGC,EAAS,EAAU,EAAW,EAAI,GAAI,EAAI,KAC5C,EAAS,EAAU,EAAW,EAAI,GAAI,EAAI,KACxC,EAAS,EAAU,EAAa,EAAQ,IAE9C,EAAS,EAAa,EAAQ,GAI9B,GAAM,GAAmF,CACvF,EAAO,GAAI,EAAO,GAAI,EAAO,GAC7B,EAAO,GAAI,EAAO,GAAI,EAAO,GAC7B,EAAO,GAAI,EAAO,GAAI,EAAO,IAI/B,MAAO,CAAE,MAFK,EAA2B,GAEzB,WAGL,GAAa,MAAO,EAAQ,IAAwB,CAvGjE,kBA0GE,GAAI,GACA,EACA,EACA,EACA,EACA,EACE,EAoBC,GACP,EAAO,MAAQ,WACf,EAAY,IACZ,GAAM,GAAQ,KAAM,MAAO,OAAO,OAAd,cAAoB,cAAc,EAAO,EAAO,SAEpE,GADA,EAAO,KAAK,KAAO,KAAK,MAAM,IAAQ,GAClC,CAAC,EAAO,MAAO,GACnB,OAAW,KAAQ,GAAO,CAIxB,GAHA,EAAO,QAAQ,YAGX,CAAC,EAAK,OAAS,EAAK,MAAM,mBAAoB,CAChD,EAAI,2BAA4B,EAAK,OACrC,SAGF,GAAM,GAAW,GAAmB,EAAM,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,KAGvE,EAAO,QAAQ,cACf,AAAI,EAAO,OAAO,MAChB,EAAS,EAAO,OAAO,KAAK,IAAI,QAAU,AAAI,GAAQ,EAAK,MAAO,EAAO,QAAU,GAEnF,GAAO,MAAQ,UACf,EAAY,IACZ,EAAS,EAAO,OAAO,KAAK,IAAI,QAAU,KAAM,AAAI,IAAQ,EAAK,MAAO,EAAO,QAAU,GACzF,EAAO,KAAK,IAAM,KAAK,MAAM,IAAQ,IAIvC,EAAO,QAAQ,iBACf,AAAI,EAAO,OAAO,MAChB,EAAY,EAAO,OAAO,KAAK,OAAO,QAAU,AAAO,GAAQ,EAAK,MAAO,EAAO,QAAU,GAE5F,GAAO,MAAQ,aACf,EAAY,IACZ,EAAY,EAAO,OAAO,KAAK,OAAO,QAAU,KAAM,AAAO,IAAQ,EAAK,MAAO,EAAO,QAAU,GAClG,EAAO,KAAK,OAAS,KAAK,MAAM,IAAQ,IAI1C,EAAO,QAAQ,kBACf,AAAI,EAAO,OAAO,MAChB,EAAa,EAAO,OAAO,KAAK,QAAQ,QAAU,AAAQ,GAAQ,EAAK,MAAO,EAAO,QAAU,GAE/F,GAAO,MAAQ,cACf,EAAY,IACZ,EAAa,EAAO,OAAO,KAAK,QAAQ,QAAU,KAAM,AAAQ,IAAQ,EAAK,MAAO,EAAO,QAAU,GACrG,EAAO,KAAK,QAAU,KAAK,MAAM,IAAQ,IAE3C,EAAO,QAAQ,gBAGf,EAAO,QAAQ,oBACf,AAAI,EAAO,OAAO,MAChB,EAAe,EAAO,OAAO,KAAK,UAAU,QAAU,AAAU,GAAQ,EAAM,EAAO,QAAU,GAE/F,GAAO,MAAQ,gBACf,EAAY,IACZ,EAAe,EAAO,OAAO,KAAK,UAAU,QAAU,KAAM,AAAU,IAAQ,EAAM,EAAO,QAAU,GACrG,EAAO,KAAK,UAAY,KAAK,MAAM,IAAQ,IAE7C,EAAO,QAAQ,kBAGf,EAAO,QAAQ,sBACf,AAAI,EAAO,OAAO,MAChB,EAAU,EAAO,OAAO,KAAK,YAAY,QAAU,AAAQ,GAAQ,EAAM,EAAO,QAAU,GAE1F,GAAO,MAAQ,kBACf,EAAY,IACZ,EAAU,EAAO,OAAO,KAAK,YAAY,QAAU,KAAM,AAAQ,IAAQ,EAAK,MAAO,EAAO,QAAU,GACtG,EAAO,KAAK,UAAY,KAAK,MAAM,IAAQ,IAE7C,EAAO,QAAQ,oBAGX,EAAO,OAAO,OAChB,EAAC,EAAQ,EAAW,EAAY,EAAc,GAAW,KAAM,SAAQ,IAAI,CAAC,EAAQ,EAAW,EAAY,EAAc,KAG3H,EAAO,QAAQ,gBAIX,CAAC,EAAO,OAAO,KAAK,KAAK,SAAW,qBAAM,cAAN,cAAmB,cAAe,qBAAM,cAAN,cAAmB,eAC3F,OAAO,GAAK,YAAY,YACxB,MAAO,GAAK,YAAY,cAE1B,GAAM,GAAY,MAAK,cAAL,cAAkB,cAAe,MAAK,cAAL,cAAkB,cAEjE,KAAO,KAAK,IAAI,KAAK,IAAI,EAAK,YAAY,YAAY,GAAG,GAAK,EAAK,YAAY,YAAY,GAAG,IAAK,KAAK,IAAI,EAAK,YAAY,aAAa,GAAG,GAAK,EAAK,YAAY,aAAa,GAAG,KACnL,EAGJ,EAAQ,KAAK,IACR,EACH,IAAK,EAAQ,KAAO,EAAO,IAC3B,OAAQ,EAAQ,QAAU,EAAU,OACpC,iBAAkB,EAAQ,kBAAoB,EAAU,WACxD,UAAW,EAAQ,YAAc,EACjC,QAAS,EACT,KAAO,IAAa,EAAK,KAAK,MAAM,GAAY,IAAM,EACtD,WACA,OAAQ,EAAO,OAAO,KAAK,SAAS,OAAS,KAAK,QAAL,cAAY,UAAY,OAGvE,KAAK,QAAL,QAAY,UAEZ,EAAO,QAAQ,YAEjB,SAAO,QAAQ,iBACX,EAAO,OAAO,OACZ,GAAO,KAAK,MAAM,MAAO,GAAO,KAAK,KACrC,EAAO,KAAK,KAAK,MAAO,GAAO,KAAK,IACpC,EAAO,KAAK,QAAQ,MAAO,GAAO,KAAK,OACvC,EAAO,KAAK,SAAS,MAAO,GAAO,KAAK,SAEvC,GCzPT,yFCGA,GAAM,IAAgB,EAEtB,YAAyB,EAAW,CAClC,GAAM,GAAO,CAAE,QAAS,CAAC,EAAY,GAAI,EAAY,GAAI,QAAS,CAAC,EAAG,IAChE,EAAmC,GACzC,OAAS,GAAI,EAAG,EAAI,EAAK,QAAQ,OAAQ,IAAK,CAC5C,GAAM,GAAS,EAAK,QAAQ,GACtB,EAAW,KAAK,MAAO,GAAY,EAAS,GAAK,GACjD,EAAW,KAAK,MAAO,GAAY,EAAS,GAAK,GACjD,EAAa,EAAK,QAAQ,GAChC,OAAS,GAAQ,EAAG,EAAQ,EAAU,IAAS,CAC7C,GAAM,GAAU,EAAU,GAAQ,IAClC,OAAS,GAAQ,EAAG,EAAQ,EAAU,IAAS,CAC7C,GAAM,GAAU,EAAU,GAAQ,IAClC,OAAS,GAAI,EAAG,EAAI,EAAY,IAC9B,EAAQ,KAAK,CAAC,EAAS,MAK/B,MAAO,GAST,GAAM,IAAY,AAAC,GAAoB,EACrC,iBACA,WAAY,AAAG,QAAM,EAAgB,CAAC,EAAG,GAAI,CAAC,GAAI,IAClD,SAAU,AAAG,QAAM,EAAgB,CAAC,EAAG,GAAI,CAAC,GAAI,MAGlD,YAAsB,EAAY,EAAS,EAAW,CACpD,GAAM,GAAY,AAAG,QAAM,EAAY,CAAC,EAAG,GAAI,CAAC,GAAI,IAC9C,EAAU,AAAG,MAAI,EAAW,GAC5B,EAAW,AAAG,QAAM,EAAY,CAAC,EAAG,GAAI,CAAC,GAAI,IAC7C,EAAqB,AAAG,MAAI,EAAU,GACtC,EAAoB,AAAG,MAAI,EAAS,GACpC,EAAc,AAAG,MAAI,EAAoB,GACzC,EAAS,AAAG,MAAI,EAAmB,GACnC,EAAO,AAAG,MAAI,EAAmB,GACjC,EAAkB,AAAG,MAAI,EAAQ,GACjC,EAAgB,AAAG,MAAI,EAAM,GAEnC,MAAO,AAAG,YAAS,CAAC,EAAiB,GADlB,GAId,YAAqB,CAO1B,YAAY,EAAO,EAAQ,CACzB,KAAK,MAAQ,EACb,KAAK,YAAc,GAAgB,EAAM,OAAO,GAAG,MAAM,IACzD,KAAK,QAAU,AAAG,WAAS,KAAK,aAChC,KAAK,UAAY,EAAM,OAAO,GAAG,MAAM,GACvC,KAAK,OAAS,OAGV,kBAAiB,EAAY,CAEjC,GAAK,CAAC,GAAgB,EAAW,oBAAwB,EAAW,MAAM,SAAW,GAAO,EAAW,MAAM,GAAK,GAAO,EAAW,MAAM,GAAK,EAAI,MAAO,MAC1J,GAAM,CAAC,EAAO,EAAO,GAAU,AAAG,OAAK,IAAM,CAG3C,GAAM,GAAkB,AAFH,EAAW,eAAe,CAAC,KAAK,UAAW,KAAK,YAEhC,IAAI,OAAO,IAAI,IAC9C,EAAoB,KAAK,MAAM,QAAQ,GACzC,EAEJ,GAAI,MAAM,QAAQ,GAAoB,CACpC,GAAM,GAAS,EAAkB,KAAK,CAAC,EAAG,IAAM,EAAE,KAAO,EAAE,MACrD,EAAY,AAAG,SAAO,CAAC,EAAO,GAAI,EAAO,IAAK,GAC9C,EAAY,AAAG,SAAO,CAAC,EAAO,GAAI,EAAO,IAAK,GAEpD,EAAW,AADI,AAAG,SAAO,CAAC,EAAW,GAAY,GAC/B,QAAQ,OAE1B,GAAW,EAAkB,UAE/B,GAAM,GAAW,GAAa,EAAU,KAAK,QAAS,CAAC,KAAK,UAAW,KAAK,YACtE,EAAS,AAAG,QAAM,EAAU,CAAC,EAAG,GAAI,CAAC,GAAI,IACzC,EAAY,AAAG,UAAQ,GAAQ,UACrC,MAAO,CAAC,EAAU,EAAU,KAExB,EAAmB,KAAM,AAAG,SAAM,uBAAuB,EAAO,EAAQ,KAAK,OAAO,KAAK,SAAS,SAAU,KAAK,OAAO,KAAK,SAAS,aAAc,KAAK,OAAO,KAAK,SAAS,gBAC9K,EAAa,EAAiB,YACpC,EAAiB,UAEjB,GAAM,GAAgB,AADG,EAAW,IAAI,AAAC,GAAa,AAAG,QAAM,EAAO,CAAC,EAAU,GAAI,CAAC,EAAG,MAClD,IAAI,AAAC,GAAgB,CAC1D,GAAM,GAAO,EAAY,YACzB,SAAY,UACL,IAGH,EAAY,EAAO,WACnB,EAAuF,GAC7F,OAAS,GAAI,EAAG,EAAI,EAAc,OAAQ,IAAK,CAC7C,GAAM,GAAW,EAAW,GACtB,EAAa,EAAU,GAC7B,GAAI,EAAa,KAAK,OAAO,KAAK,SAAS,cAAe,CACxD,GAAM,GAAM,GAAU,EAAc,IAC9B,EAAS,KAAK,YAAY,GAC1B,EAAY,AAAG,OAAK,IAAM,AAAG,QAAM,EAAO,CAAC,EAAU,GAAgB,GAAI,CAAC,EAAG,KAAK,UAAU,QAAQ,CAAC,GAAe,MAC1H,EAAe,KAAK,CAAE,MAAK,YAAW,SAAQ,gBAGlD,SAAM,UACN,EAAM,UACN,EAAO,UACA,CACL,MAAO,EACP,YAAa,CAAC,EAAW,MAAM,GAAK,KAAK,UAAW,EAAW,MAAM,GAAK,KAAK,cAKrF,kBAA2B,EAAQ,CACjC,GAAM,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eACjJ,EAAY,GAAI,IAAe,EAAO,GAC5C,MAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,SAAS,WACrE,EAAO,OAAO,EAAI,cAAe,EAAM,UACzC,EC/HF,YAA6B,EAAK,EAAQ,CAC/C,GAAM,GAAa,CAAC,EAAI,WAAW,GAAK,EAAO,GAAI,EAAI,WAAW,GAAK,EAAO,IACxE,EAAW,CAAC,EAAI,SAAS,GAAK,EAAO,GAAI,EAAI,SAAS,GAAK,EAAO,IACxE,MAAO,CAAE,aAAY,YAGhB,YAAoB,EAAK,CAC9B,MAAO,CACL,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,IAC1C,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,KAIvC,YAAsB,EAAK,CAChC,MAAO,CACL,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAC5D,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,GAIzD,YAAkC,EAAK,EAAO,EAAU,CAC7D,GAAM,GAAI,EAAM,MAAM,GAChB,EAAI,EAAM,MAAM,GAChB,EAAQ,CAAC,CACb,EAAI,WAAW,GAAK,EACpB,EAAI,WAAW,GAAK,EACpB,EAAI,SAAS,GAAK,EAClB,EAAI,SAAS,GAAK,IAEpB,MAAO,AAAG,SAAM,cAAc,EAAO,EAAO,CAAC,GAAI,GAG5C,YAAoB,EAAK,EAAS,IAAK,CAC5C,GAAM,GAAS,GAAa,GACtB,EAAO,GAAW,GAClB,EAAc,CAAC,EAAS,EAAK,GAAK,EAAG,EAAS,EAAK,GAAK,GACxD,EAAa,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IAClE,EAAW,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IACtE,MAAO,CAAE,aAAY,WAAU,UAAW,EAAI,WAGzC,YAAqB,EAAK,CAC/B,GAAM,GAAU,GAAa,GACvB,EAAO,GAAW,GAElB,EAAW,AADD,KAAK,IAAI,GAAG,GACD,EACrB,EAAa,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GAClD,EAAW,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GACtD,MAAO,CAAE,aAAY,WAAU,UAAW,EAAI,WClDzC,GAAM,IAAkB,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAKtD,YAA0B,EAAO,CACtC,MAAO,GAAQ,EAAI,KAAK,GAAK,KAAK,MAAO,GAAQ,KAAK,IAAO,GAAI,KAAK,KAQjE,YAAyB,EAAQ,EAAQ,CAC9C,GAAM,GAAU,KAAK,GAAK,EAAI,KAAK,MAAM,CAAE,GAAO,GAAK,EAAO,IAAK,EAAO,GAAK,EAAO,IACtF,MAAO,IAAiB,GAOnB,YAAgC,EAAG,EAAG,CAC3C,MAAO,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAGhC,YAAa,EAAI,EAAI,CAC1B,GAAI,GAAU,EACd,OAAS,GAAI,EAAG,EAAI,EAAG,OAAQ,IAC7B,GAAW,EAAG,GAAK,EAAG,GAExB,MAAO,GAGF,YAA4B,EAAK,EAAa,CACnD,GAAM,GAAwB,GAC9B,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,EAAO,KAAK,EAAI,GAAG,IAErB,MAAO,GAGF,YAAmC,EAAM,EAAM,CACpD,GAAM,GAA2B,GAC3B,EAAO,EAAK,OAClB,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,CACnC,EAAQ,KAAK,IACb,OAAS,GAAM,EAAG,EAAM,EAAM,IAC5B,EAAQ,GAAK,KAAK,GAAI,EAAK,GAAM,GAAmB,EAAM,KAG9D,MAAO,GAGF,YAA6B,EAAU,EAAQ,CACpD,GAAM,GAAO,KAAK,IAAI,GAChB,EAAO,KAAK,IAAI,GAChB,EAAiB,CAAC,CAAC,EAAM,CAAC,EAAM,GAAI,CAAC,EAAM,EAAM,GAAI,CAAC,EAAG,EAAG,IAC5D,EAAoB,GAAuB,EAAO,GAAI,EAAO,IAC7D,EAA2B,GAA0B,EAAmB,GACxE,EAA4B,GAAuB,CAAC,EAAO,GAAI,CAAC,EAAO,IAC7E,MAAO,IAA0B,EAA0B,GAGtD,YAA+B,EAAQ,CAC5C,GAAM,GAAoB,CAAC,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAAK,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,KAC5E,EAAuB,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAChD,EAAsB,CAC1B,CAAC,GAAI,EAAkB,GAAI,GAC3B,CAAC,GAAI,EAAkB,GAAI,IAE7B,MAAO,CACL,EAAkB,GAAG,OAAO,EAAoB,IAChD,EAAkB,GAAG,OAAO,EAAoB,IAChD,CAAC,EAAG,EAAG,IAIJ,YAAqB,EAAuB,EAAgB,CACjE,MAAO,CACL,GAAI,EAAuB,EAAe,IAC1C,GAAI,EAAuB,EAAe,KClFvC,GAAM,GAAmB,CAC9B,WAAY,CACV,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACvD,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,KAEpD,eAAgB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,KAC7D,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC3D,eAAgB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC9D,eAAgB,CAAC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC9D,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC/C,eAAgB,CAAC,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACtD,eAAgB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,KAC1C,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,KACpD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC/C,eAAgB,CAAC,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACzD,kBAAmB,CAAC,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,KACnD,kBAAmB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,IACzC,aAAc,CAAC,IAAK,IAAK,IAAK,IAAK,KACnC,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACtD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,KAC5C,YAAa,CAAC,IAAK,IAAK,IAAK,IAAK,KAClC,kBAAmB,CAAC,KACpB,QAAS,CAAC,GACV,WAAY,CAAC,GACb,gBAAiB,CAAC,IAClB,eAAgB,CAAC,KACjB,WAAY,CAAC,KACb,UAAW,CAAC,MAGD,GAA2B,CACtC,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,GAAI,GAAI,GAAI,GAAI,GAAI,KACrD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KACtD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KACtD,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,IACtD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KAC9D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KAC9D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,MAKnD,GAAQ,CACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,iBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,iBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,cAAgB,kBACjB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,mBAGT,GAAS,CACpB,IAAK,GAAI,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,EACtJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GACrJ,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAC7I,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAClJ,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GACrJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GACpJ,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GACjJ,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,EAAG,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,EAAG,IAC/I,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,GAAI,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GACtJ,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAClJ,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACnJ,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,IAClJ,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,EAAG,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GACnJ,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,EAAG,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,EAAG,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAClJ,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAChJ,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IACpJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GACrJ,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GACpJ,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EACpJ,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAC9I,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAC9I,IAAK,GAAI,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAwBvI,GAAM,IAAQ,CACP,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/E,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC1C,IAAK,EAAG,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,IAChC,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAChD,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,KAGhC,GAAQ,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,KAE1J,GAAO,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,KAElC,GAAO,GAAM,IAAI,AAAC,GAAM,GAAM,IAE9B,GAAO,GAAM,IAAI,AAAC,GAAM,GAAM,IAE9B,GAAM,GAAK,IAAI,AAAC,GAAM,GAAM,ICjoBzC,GAAM,IAAc,AAAO,EAAiB,cACtC,GAAe,AAAO,EAAiB,eAEvC,GAAe,CACnB,WAAY,CAAC,GAAY,GAAI,GAAY,GAAY,OAAS,IAC9D,YAAa,CAAC,GAAa,GAAI,GAAa,GAAa,OAAS,KAG9D,GAAgB,CACpB,MAAO,IACP,MAAO,GACP,aAAc,CAAC,GAAI,AAAO,EAAiB,kBAAqB,KAG5D,GAAqB,CACzB,QAAS,EACT,SAAU,EACV,KAAM,EACN,MAAO,EACP,QAAS,EACT,SAAU,EACV,aAAc,CAAC,EAAG,IAGd,GAAgB,CACpB,YAAa,EACb,YAAa,EACb,MAAO,GACP,eAAgB,IAKlB,YAA+B,EAAW,EAAW,EAAQ,EAAM,CACjE,OAAS,GAAI,EAAG,EAAI,AAAO,GAAyB,OAAQ,IAAK,CAC/D,GAAM,CAAE,MAAK,WAAY,AAAO,GAAyB,GACnD,EAAkB,AAAO,EAAiB,GAAG,IAAS,KAC5D,GAAI,CAAC,GAAQ,EAAK,SAAS,GACzB,OAAS,GAAI,EAAG,EAAI,EAAQ,OAAQ,IAAK,CACvC,GAAM,GAAQ,EAAQ,GACtB,EAAU,EAAgB,IAAM,CAC9B,EAAU,GAAO,GAAI,EAAU,GAAO,GACrC,GAAU,GAAO,GAAK,EAAU,EAAgB,IAAI,IAAM,KAO9D,YAAe,CAYpB,YAAY,EAAqB,EAAc,EAAW,CAnE5D,QAqEI,KAAK,YAAc,GACnB,KAAK,oBAAsB,EAC3B,KAAK,aAAe,EACpB,KAAK,UAAY,EACjB,KAAK,QAAU,qBAAqB,QAArB,cAA4B,OAAO,GAAG,MAAM,KAAM,EACjE,KAAK,SAAW,kBAAc,OAAO,GAAG,MAAM,KAAM,qBAAqB,QAArB,cAA4B,OAAO,GAAG,MAAM,IAChG,KAAK,SAAW,kBAAW,OAAO,GAAG,MAAM,KAAM,EACjD,KAAK,YAAc,IACnB,KAAK,QAAU,EACf,KAAK,cAAgB,EAGvB,mBAAmB,EAAW,EAAK,EAAO,EAAgB,CACxD,GAAM,GAAU,AAAS,GAAW,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC1E,EAAe,EAAU,IAAI,AAAC,GAAW,CAC7C,EAAQ,GAAK,KAAK,SAAY,GAAM,GAAK,KAAK,SAAW,GACzD,EAAQ,GAAK,KAAK,SAAY,GAAM,GAAK,KAAK,SAAW,GACzD,EAAM,KAEF,EAAwB,IAAU,EAAK,AAAK,GAAoB,EAAO,CAAC,EAAG,IAAW,GACtF,EAAiB,IAAU,EAAK,EAAa,IAAI,AAAC,GAAW,CAAC,GAAG,AAAK,GAAY,EAAO,GAAuB,EAAM,KAAQ,EAC9H,EAAyB,IAAU,EAAK,AAAK,GAAsB,GAAuB,GAC1F,EAAY,CAAC,GAAG,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAAa,GACrG,MAAO,GAAc,IAAI,AAAC,GAAW,CACnC,EAAM,GAAK,AAAK,GAAI,EAAW,EAAsB,IACrD,EAAM,GAAK,AAAK,GAAI,EAAW,EAAsB,IACrD,EAAM,KAIV,iCAAiC,EAAW,CAC1C,GAAM,GAAW,EAAU,GAAa,WAAW,IAAI,GACjD,EAAY,EAAU,GAAa,YAAY,IAAI,GACzD,MAAO,GAAW,EAIpB,UAAU,EAAW,EAAM,EAAqB,EAAqB,EAAO,GAAO,CACjF,GAAM,GAAM,AAAS,GAAY,AAAS,GAAW,KAAK,8BAA8B,CAAC,EAAU,GAAsB,EAAU,KAAwB,KAAK,cAC1J,EAAU,AAAS,GAAW,GAChC,EAAO,AAAG,QAAM,cAAc,EAAM,CAAC,CACvC,EAAI,WAAW,GAAK,KAAK,SACzB,EAAI,WAAW,GAAK,KAAK,SAAU,EAAI,SAAS,GAAK,KAAK,SAC1D,EAAI,SAAS,GAAK,KAAK,WACrB,CAAC,GAAI,CAAC,KAAK,SAAU,KAAK,WAC9B,MAAI,IAAQ,AAAG,MAAI,MAAM,YACvB,GAAO,AAAG,QAAM,cAAc,IAEzB,CAAE,MAAK,UAAS,QAIzB,aAAa,EAAS,EAAQ,EAAY,EAAO,GAAO,CACtD,GAAM,GAA6B,GACnC,OAAS,GAAI,EAAG,EAAI,GAAc,eAAgB,IAAK,CACrD,GAAM,GAAI,EAAQ,EAAI,GAChB,EAAI,EAAQ,EAAI,EAAI,GACpB,EAAI,EAAQ,EAAI,EAAI,GAC1B,EAAa,KAAK,CACf,GAAQ,EAAK,EAAI,KAAK,SAAc,EAAI,KAAK,UAAa,EAAW,GAAK,EAAO,WAAW,GAC5F,EAAI,KAAK,SAAY,EAAW,GAAK,EAAO,WAAW,GAAI,IAGhE,MAAO,CAAE,UAAW,EAAc,KAAM,EAAa,MAAM,GAAc,QAI3E,sBAAsB,EAAW,EAAY,EAAW,CACtD,GAAM,GAAe,EAAU,AAAO,EAAiB,GAAG,cAAsB,GAAc,cAAc,GACtG,EAAe,EAAU,AAAO,EAAiB,GAAG,cAAsB,GAAc,cAAc,GACtG,EAAY,GAAe,GAAgB,EAEjD,MAAO,GAAW,IAAI,CAAC,EAAO,IAAM,CAClC,GAAI,GAAI,EACR,MAAI,KAAM,EACR,EAAI,EACK,IAAM,GACf,GAAI,GAEC,CAAC,EAAM,GAAI,EAAM,GAAI,UAI1B,SAAQ,EAAO,EAAQ,CAC3B,GAAI,GAAc,GAEd,EAQJ,GAPK,MAAK,UAAY,GAAO,KAAK,QAAU,EAAO,KAAK,SAAS,YAAe,CAAC,EAAO,KAAK,KAAK,SAAW,CAAC,EAAO,iBACnH,GAAW,KAAM,MAAK,oBAAoB,iBAAiB,GAC3D,KAAK,QAAU,GAEb,EAAO,gBAAgB,KAAK,UAG5B,CAAC,EAAO,gBAAmB,GAAY,EAAS,OAAU,EAAC,EAAO,KAAK,KAAK,SAAY,EAAS,MAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkB,EAAO,KAAK,SAAS,UAAa,CACrM,KAAK,YAAc,GACnB,KAAK,cAAgB,EACrB,OAAW,KAAY,GAAS,MAC9B,KAAK,YAAY,KAAK,CAAE,WAAY,EAAS,IAAI,WAAW,WAAY,SAAU,EAAS,IAAI,SAAS,WAAY,UAAW,EAAS,UAAW,WAAY,EAAS,aAE1K,AAAI,KAAK,YAAY,OAAS,GAAG,GAAc,IAKjD,GAFI,EAAO,KAAK,SAAS,aAAe,KAAK,gBAAkB,GAAG,MAAK,QAAU,GAE7E,EAAa,CACf,GAAI,CAAC,GAAY,CAAC,EAAS,OAAU,EAAS,MAAM,SAAW,EAC7D,YAAK,YAAc,GACnB,KAAK,cAAgB,EACd,KAET,OAAS,GAAI,EAAG,EAAI,KAAK,YAAY,OAAQ,IAAK,CAChD,GAAM,GAAY,AAAS,GAAoB,CAAE,WAAY,KAAK,YAAY,GAAG,WAAY,SAAU,KAAK,YAAY,GAAG,UAAY,EAAS,aAC1I,EAAc,AAAS,GAAW,GAClC,EAAgB,AAAS,GAAY,GACrC,EAAY,KAAK,YAAY,GAAG,UAAU,YAC1C,EAAa,KAAK,YAAY,GAAG,WACvC,KAAK,YAAY,GAAK,IAAK,EAAe,aAAY,cAG1D,AAAI,GAAY,EAAS,OACvB,EAAS,MAAM,QAAQ,AAAC,GAAe,CACrC,EAAW,IAAI,WAAW,UAC1B,EAAW,IAAI,SAAS,UACxB,EAAW,UAAU,YAIzB,GAAI,GAAU,AAAG,OAAK,IAAM,KAAK,YAAY,IAAI,CAAC,EAAK,IAAM,CAC3D,GAAM,GAAgB,EAAI,WAGtB,EACA,EAAQ,EACR,EAEJ,GAAI,EAAO,KAAK,SAAS,UAAY,EAAO,KAAK,KAAK,SAAW,AAAG,MAAI,MAAM,WAAY,CACxF,GAAM,CAAC,EAAc,GAAoB,EAAI,UAAU,QAAU,GAAc,MAAS,GAAc,aAAe,GAAmB,aACxI,EAAQ,AAAK,GAAgB,EAAI,UAAU,GAAe,EAAI,UAAU,IACxE,GAAM,GAAa,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC/E,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,AAAG,QAAM,iBAAiB,EAAO,EAAO,EAAG,GAChE,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,AAAI,EAAO,KAAK,KAAK,QAAS,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,SAAU,KAAK,WAAW,IAAI,KAC5K,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,QAAS,KAAK,UAAU,IAAI,SACjJ,CACL,EAAsB,GACtB,GAAM,GAAc,EAAM,QAC1B,AAAI,EAAO,KAAK,KAAK,QAAS,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAa,CAAC,KAAK,SAAU,KAAK,WAAW,IAAI,KAC3K,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAa,CAAC,KAAK,QAAS,KAAK,UAAU,IAAI,KAIvJ,GAAI,CAAC,EAAO,KAAK,KAAK,QASpB,MARmB,CACjB,OAAQ,KACR,MACA,eAAgB,KAChB,gBACA,WAAY,EAAI,WAChB,MAAO,GAKX,GAAM,CAAC,CAAE,EAAY,GAAiB,KAAK,aAAa,QAAQ,GAC1D,EAAiB,EAAW,WAAW,GAC7C,GAAI,EAAiB,EAAO,KAAK,SAAS,cAAe,MAAO,MAEhE,GAAI,GAAY,AADO,AAAG,UAAQ,EAAe,CAAC,GAAI,IACvB,YAE/B,GAAI,EAAO,KAAK,KAAK,QAAS,CAC5B,GAAM,CAAE,IAAK,EAAY,QAAS,EAAgB,KAAM,GAAgB,KAAK,UAAU,EAAW,EAAM,GAAa,WAAW,GAAI,GAAa,WAAW,GAAI,IAC1J,CAAE,IAAK,EAAa,QAAS,EAAiB,KAAM,GAAiB,KAAK,UAAU,EAAW,EAAM,GAAa,YAAY,GAAI,GAAa,YAAY,IAE3J,EAAqB,AADJ,KAAK,UAAU,QAAQ,AAAG,SAAO,CAAC,EAAa,KAC5B,WACpC,GAAc,EAAmB,MAAM,EAAG,GAAc,eAAiB,GACzE,CAAE,UAAW,GAAkB,KAAM,IAAsB,KAAK,aAAa,GAAa,EAAY,EAAgB,IACtH,GAAe,EAAmB,MAAM,GAAc,eAAiB,GACvE,CAAE,UAAW,GAAmB,KAAM,IAAuB,KAAK,aAAa,GAAc,EAAa,GAC1G,GAAgC,KAAK,iCAAiC,GAC5E,AAAI,KAAK,IAAI,IAAiC,GAC5C,IAAsB,EAAW,GAAkB,OAAQ,MAC3D,GAAsB,EAAW,GAAmB,QAAS,OAGxD,AAAI,GAAgC,EACzC,GAAsB,EAAW,GAAkB,OAAQ,CAAC,YAAa,cAEzE,GAAsB,EAAW,GAAmB,QAAS,CAAC,YAAa,cAE7E,GAAM,IAAyB,KAAK,sBAAsB,EAAW,GAAmB,QAClF,GAA0B,KAAK,sBAAsB,EAAW,GAAoB,SAC1F,EAAY,EAAU,OAAO,IAAwB,OAAO,IAI9D,GAAM,GAAwB,KAAK,mBAAmB,EAAW,EAAK,EAAO,GAC7E,EAAM,AAAS,GAAW,KAAK,8BAA8B,GAAwB,KACrF,GAAM,GAAoB,AAAG,WAAS,GAGtC,GAAI,EAAO,KAAK,SAAS,UAAY,EAAO,KAAK,KAAK,SAAY,GAAO,KAAK,YAAY,SAAW,EAAO,KAAK,UAAU,UAAY,AAAG,MAAI,MAAM,WAAY,CAC9J,GAAM,CAAC,EAAc,GAAoB,EAAI,UAAU,QAAU,GAAc,MAAS,GAAc,aAAe,GAAmB,aACxI,EAAQ,AAAK,GAAgB,EAAI,UAAU,GAAe,EAAI,UAAU,IACxE,GAAM,GAAa,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC/E,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,AAAG,QAAM,iBAAiB,EAAM,UAAW,EAAO,EAAG,GAC1E,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,SAAU,KAAK,WAAW,IAAI,KAGrJ,GAAM,GAAa,CACjB,OAAQ,EACR,MACA,iBACA,gBACA,MAAO,EACP,aAII,EAAyB,AAAS,GAAY,GACpD,YAAK,YAAY,GAAK,IAAK,EAAwB,UAAW,EAAuB,WAAY,EAAI,WAAY,kBAE1G,KAGT,SAAU,EAAQ,OAAO,AAAC,GAAM,IAAM,MAElC,EAAO,KAAK,KAAK,SAAS,MAAK,YAAc,KAAK,YAAY,OAAO,AAAC,GAAM,EAAE,eAAiB,EAAO,KAAK,SAAS,gBACxH,KAAK,cAAgB,EAAQ,OAEtB,EAGT,8BAA8B,EAAW,CACvC,GAAM,GAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAa,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC3C,EAAW,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC/C,MAAO,CAAE,aAAY,WAAU,eLhT5B,YAAwB,CAI7B,YAAY,EAAW,EAAgB,EAAW,EAAQ,CACxD,KAAK,aAAe,GAAiB,IAAS,EAAW,EAAgB,GACzE,KAAK,OAAS,OAGV,eAAc,EAAO,EAAkH,CAC3I,GAAM,GAAc,KAAM,MAAK,aAAa,QAAQ,EAAO,GACrD,EAAgH,GACtH,OAAW,KAAe,IAAe,GAAK,CAC5C,GAAI,EAAW,mBAAoB,SACnC,GAAM,GAAO,EAAW,OAAS,EAAW,OAAO,YAAc,GAC3D,EAAU,EAAK,IAAI,AAAC,GAAO,CAC/B,EAAG,GAAK,EAAM,MAAM,GACpB,EAAG,GAAK,EAAM,MAAM,GACpB,EAAG,GAAK,KAAK,aAAa,WAEtB,EAAc,GACpB,GAAI,GAAQ,EAAK,OAAS,EACxB,OAAW,KAAO,QAAO,KAAY,GAAmB,EAAY,GAAO,AAAO,EAAiB,GAAK,IAAI,AAAC,GAAU,EAAK,IAE9H,GAAM,GAAM,EAAW,IAAM,CAC3B,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,IACtC,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,IACtC,KAAK,IAAI,EAAM,MAAM,GAAI,EAAW,IAAI,SAAS,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,IAC7F,KAAK,IAAI,EAAM,MAAM,GAAI,EAAW,IAAI,SAAS,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,KAC3F,EACE,EAAS,EAAW,IAAM,CAC9B,EAAW,IAAI,WAAW,GAAK,EAAM,MAAM,GAC3C,EAAW,IAAI,WAAW,GAAK,EAAM,MAAM,GAC1C,GAAW,IAAI,SAAS,GAAK,EAAW,IAAI,WAAW,IAAM,EAAM,MAAM,GACzE,GAAW,IAAI,SAAS,GAAK,EAAW,IAAI,WAAW,IAAM,EAAM,MAAM,IACxE,GACJ,EAAQ,KAAK,CACX,WAAY,KAAK,MAAM,IAAM,EAAW,gBAAkB,IAAM,EAAW,eAAiB,GAAK,IACjG,cAAe,KAAK,MAAM,IAAM,EAAW,eAAiB,IAC5D,eAAgB,KAAK,MAAM,IAAM,EAAW,gBAAkB,IAC9D,MACA,SACA,OACA,UACA,cACA,MAAO,EAAW,MAAQ,EAAW,MAAM,QAAU,OAEnD,EAAW,QAAQ,EAAW,OAAO,UACrC,EAAW,OAAO,EAAW,MAAM,UAEzC,MAAO,KAIP,EAA6B,CAAC,KAAM,KAAM,MAC9C,kBAA2B,EAAoC,CAC7D,MAAK,CAAC,EAAW,IAAM,EAAO,KAAK,SAAa,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,SAAa,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QACjI,GAAa,KAAM,SAAQ,IAAI,CAC5B,CAAC,EAAW,IAAM,EAAO,KAAK,QAAW,AAAU,GAAK,GAAU,KAClE,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QAAW,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,KAAK,WAAY,CAAE,UAAW,EAAO,KAAK,KAAK,UAAU,SAAS,eAAkB,KAC3L,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QAAW,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,KAAK,WAAY,CAAE,UAAW,EAAO,KAAK,KAAK,UAAU,SAAS,eAAkB,OAE1L,EAAO,KAAK,KAAK,SACnB,CAAI,CAAC,EAAW,IAAM,CAAC,EAAW,GAAG,SAAU,EAAI,qBAAsB,EAAO,KAAK,KAAK,WACjF,EAAO,OAAO,EAAI,cAAe,EAAW,GAAG,WAEtD,EAAO,KAAK,KAAK,SACnB,CAAI,CAAC,EAAW,IAAM,CAAC,EAAW,GAAG,SAAU,EAAI,qBAAsB,EAAO,KAAK,KAAK,WACjF,EAAO,OAAO,EAAI,cAAe,EAAW,GAAG,YAEjD,EAAO,OAChB,GAAI,gBAAiB,EAAW,GAAG,MAAM,UACzC,EAAI,gBAAiB,EAAW,GAAG,UACnC,EAAI,gBAAiB,EAAW,GAAG,WAEpB,GAAI,IAAkB,EAAW,GAAI,EAAW,GAAI,EAAW,GAAI,GAI/E,GAAM,IAAuB,GACvB,GAAe,GMtF5B,6CCAO,GAAM,IAAY,CACvB,OAAQ,UAAW,WAAY,UAAW,WAAY,eACtD,gBAAiB,YAAa,aAAc,YAAa,aACzD,UAAW,WAAY,WAAY,YAAa,YAAa,cAGlD,GAAQ,GAAU,OAElB,GAAU,GAAU,OAAO,CAAC,EAAQ,EAAW,IAC1D,GAAO,GAAa,EACb,GACN,IAEG,GAAqB,CACzB,CAAC,UAAW,gBAAiB,CAAC,YAAa,gBAC3C,CAAC,YAAa,aAAc,CAAC,UAAW,YACxC,CAAC,WAAY,aAAc,CAAC,WAAY,iBACxC,CAAC,aAAc,iBAAkB,CAAC,aAAc,cAChD,CAAC,WAAY,aAAc,CAAC,YAAa,cACzC,CAAC,eAAgB,iBAAkB,CAAC,UAAW,aAEpC,GAAuB,GAAmB,IAAI,CAAC,CAAC,EAAY,KAAiB,CAAC,GAAQ,GAAa,GAAQ,KAE3G,GAAY,CACvB,CAAC,OAAQ,WAAY,CAAC,UAAW,WAAY,CAAC,OAAQ,YACtD,CAAC,WAAY,YAAa,CAAC,OAAQ,gBACnC,CAAC,eAAgB,aAAc,CAAC,YAAa,aAC7C,CAAC,eAAgB,WAAY,CAAC,UAAW,YACzC,CAAC,WAAY,aAAc,CAAC,OAAQ,iBACpC,CAAC,gBAAiB,cAAe,CAAC,aAAc,cAChD,CAAC,gBAAiB,YAAa,CAAC,WAAY,aAC5C,CAAC,YAAa,eCfT,YAAwB,EAAW,CACxC,GAAM,GAAQ,EAAU,OAAO,CAAC,CAAE,OAAM,OAAM,OAAM,QAAQ,CAAE,SAAU,CAAE,IAAG,QAAW,EACtF,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,KACnB,CACF,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,oBAEf,MAAO,CAAC,EAAM,KAAM,EAAM,KAAM,EAAM,KAAO,EAAM,KAAM,EAAM,KAAO,EAAM,MAGvE,YAAoB,EAAO,CAAC,EAAQ,GAAQ,CAAC,EAAuB,GAAuB,CAChG,GAAM,GAAY,CAAC,EAAM,EAAQ,IAAY,EAC3C,MAAO,EAAK,MACZ,IAAK,CAAC,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,IACrI,UAAW,EAAK,UAAU,IAAI,CAAC,CAAE,QAAO,OAAM,cAAgB,EAC5D,QACA,OACA,SAAU,CAAE,EAAG,KAAK,MAAM,EAAS,EAAI,GAAS,EAAG,KAAK,MAAM,EAAS,EAAI,SAK/E,MADoB,GAAM,IAAI,AAAC,GAAS,EAAU,EAAM,EAAS,EAAuB,EAAQ,IAK3F,YAAc,CAKnB,YAAY,EAAS,EAAiB,CACpC,KAAK,cAAgB,GAAI,OAAM,GAC/B,KAAK,iBAAmB,GACxB,KAAK,gBAAkB,EAGzB,QAAQ,EAAG,CACT,KAAK,cAAc,EAAE,KAAK,kBAAoB,EAC9C,KAAK,KAAK,KAAK,kBAGjB,SAAU,CACR,GAAM,GAAM,KAAK,cAAc,GAC/B,YAAK,SAAS,EAAG,KAAK,oBACtB,KAAK,KAAK,GACV,KAAK,cAAc,KAAK,iBAAmB,GAAK,KACzC,EAGT,OAAQ,CAAE,MAAO,MAAK,mBAAqB,GAE3C,MAAO,CAAE,MAAO,MAAK,iBAAmB,EAExC,KAAM,CAAE,MAAO,MAAK,cAAc,MAAM,EAAG,KAAK,iBAAmB,GAEnE,KAAM,CAAE,MAAO,MAAK,cAAc,GAElC,KAAK,EAAG,CACN,KAAO,EAAI,GAAK,KAAK,KAAK,KAAK,MAAM,EAAI,GAAI,IAC3C,KAAK,SAAS,EAAG,KAAK,MAAM,EAAI,IAChC,EAAI,KAAK,MAAM,EAAI,GAIvB,KAAK,EAAG,CACN,KAAO,EAAI,GAAK,KAAK,kBAAkB,CACrC,GAAI,GAAI,EAAI,EAEZ,GADI,EAAI,KAAK,kBAAoB,KAAK,KAAK,EAAG,EAAI,IAAI,IAClD,CAAC,KAAK,KAAK,EAAG,GAAI,MACtB,KAAK,SAAS,EAAG,GACjB,EAAI,GAIR,WAAW,EAAG,CACZ,MAAO,MAAK,gBAAgB,KAAK,cAAc,IAGjD,KAAK,EAAG,EAAG,CACT,MAAO,MAAK,WAAW,GAAK,KAAK,WAAW,GAG9C,SAAS,EAAG,EAAG,CACb,GAAM,GAAI,KAAK,cAAc,GAC7B,KAAK,cAAc,GAAK,KAAK,cAAc,GAC3C,KAAK,cAAc,GAAK,IAIrB,YAAwB,EAAG,EAAG,EAAU,EAAS,CACtD,MAAO,CACL,EAAG,EAAQ,IAAI,EAAG,EAAG,GACrB,EAAG,EAAQ,IAAI,EAAG,EAAG,EAAe,KAIjC,YAAwB,EAAM,EAAc,EAAS,CAC1D,GAAM,CAAE,WAAU,WAAU,GAAI,GAAa,EACvC,CAAE,IAAG,KAAM,GAAe,EAAU,EAAU,EAAU,GAC9D,MAAO,CACL,EAAG,EAAK,SAAW,EAAe,EAClC,EAAG,EAAK,SAAW,EAAe,GAY/B,YAAe,EAAG,EAAK,EAAK,CACjC,MAAI,GAAI,EAAY,EAChB,EAAI,EAAY,EACb,EAGF,YAAyB,EAAI,EAAI,EAAI,EAAI,CAC9C,GAAM,GAAK,EAAK,EACV,EAAK,EAAK,EAChB,MAAO,GAAK,EAAK,EAAK,EAGjB,YAAoB,EAAG,EAAG,CAC/B,MAAO,CAAE,EAAG,EAAE,EAAI,EAAE,EAAG,EAAG,EAAE,EAAI,EAAE,GCjJpC,GAAM,IAAqB,EACrB,GAAsB,GAE5B,YAAkC,EAAQ,EAAgB,EAAkB,EAAc,EAAS,EAAc,EAAe,EAAmB,EAAG,CACpJ,GAAM,GAAkB,AAAC,GAAW,EAClC,EAAG,EAAc,IAAI,EAAM,EAAG,EAAM,EAAG,GACvC,EAAG,EAAc,IAAI,EAAM,EAAG,EAAM,EAAI,EAAc,MAAM,GAAK,EAAK,KAElE,EAA2B,CAAC,EAAO,EAAQ,IAAW,EAC1D,EAAG,AAAM,GAAM,KAAK,MAAM,EAAM,EAAI,GAAe,EAAG,EAAS,GAC/D,EAAG,AAAM,GAAM,KAAK,MAAM,EAAM,EAAI,GAAe,EAAG,EAAQ,KAG1D,CAAC,EAAQ,GAAS,EAAa,MAE/B,EAAwB,EAAyB,EAAe,SAAU,EAAQ,GAClF,EAAe,EAAgB,GAEjC,EADmB,AAAM,GAAW,EAAe,SAAU,GAEjE,OAAS,GAAI,EAAG,EAAI,EAAkB,IAAK,CACzC,GAAM,GAAwB,EAAyB,EAAgB,EAAQ,GACzE,EAAc,AAAM,GAAe,EAAsB,EAAG,EAAsB,EAAG,EAAkB,GAC7G,EAAiB,AAAM,GAAW,CAChC,EAAG,EAAsB,EAAI,EAC7B,EAAG,EAAsB,EAAI,GAC5B,CAAE,EAAG,EAAY,EAAG,EAAG,EAAY,IAExC,GAAM,GAAwB,EAAyB,EAAgB,EAAQ,GACzE,EAAQ,EAAa,IAAI,EAAsB,EAAG,EAAsB,EAAG,GACjF,MAAO,CAAE,SAAU,EAAgB,KAAM,AAAI,GAAU,GAAmB,SAGrE,YAAoB,EAAM,EAAQ,EAAS,EAAc,EAAkB,EAAkB,CAClG,GAAM,GAAuB,AAAI,GAAU,IAAI,CAAC,CAAC,EAAgB,KAAoB,CAAC,AAAI,GAAQ,GAAiB,AAAI,GAAQ,KACzH,EAAqB,EAAqB,IAAI,CAAC,CAAC,CAAE,KAAkB,GACpE,EAAqB,EAAqB,IAAI,CAAC,CAAC,KAAmB,GACnE,EAAW,EAAO,MAAM,GACxB,EAAW,EAAmB,OAC9B,EAAoB,GAAI,OAAM,GAE9B,CAAE,KAAM,EAAU,MAAO,GAAc,EACvC,EAAY,AAAM,GAAe,EAAU,EAAc,GAC/D,EAAkB,EAAS,IAAM,CAC/B,MAAO,EACP,KAAM,AAAI,GAAU,EAAS,IAC7B,SAAU,GAGZ,OAAS,GAAO,EAAW,EAAG,GAAQ,EAAG,EAAE,EAAM,CAC/C,GAAM,GAAmB,EAAmB,GACtC,EAAmB,EAAmB,GAC5C,AAAI,EAAkB,IAAqB,CAAC,EAAkB,IAC5D,GAAkB,GAAoB,GAAyB,EAAM,EAAkB,GAAmB,EAAkB,EAAQ,EAAS,EAAc,IAI/J,OAAS,GAAO,EAAG,EAAO,EAAU,EAAE,EAAM,CAC1C,GAAM,GAAmB,EAAmB,GACtC,EAAmB,EAAmB,GAC5C,AAAI,EAAkB,IAAqB,CAAC,EAAkB,IAC5D,GAAkB,GAAoB,GAAyB,EAAM,EAAkB,GAAmB,EAAkB,EAAQ,EAAS,EAAc,IAG/J,MAAO,GAGT,YAAqC,EAAY,EAAO,EAAU,EAAU,EAAQ,CAClF,GAAM,CAAC,EAAQ,GAAS,EAAO,MAC3B,EAAe,GACb,EAAS,KAAK,IAAI,EAAW,GAAoB,GACjD,EAAO,KAAK,IAAI,EAAW,GAAqB,EAAG,GACzD,OAAS,GAAW,EAAQ,EAAW,EAAM,EAAE,EAAU,CACvD,GAAM,GAAS,KAAK,IAAI,EAAW,GAAoB,GACjD,EAAO,KAAK,IAAI,EAAW,GAAqB,EAAG,GACzD,OAAS,GAAW,EAAQ,EAAW,EAAM,EAAE,EAC7C,GAAI,EAAO,IAAI,EAAU,EAAU,GAAc,EAAO,CACtD,EAAe,GACf,MAGJ,GAAI,CAAC,EAAc,MAErB,MAAO,GAGF,YAAiC,EAAgB,EAAQ,CAC9D,GAAM,CAAC,EAAQ,EAAO,GAAgB,EAAO,MACvC,EAAQ,GAAU,IAAQ,EAAS,EAAQ,EAAc,CAAC,CAAE,WAAY,GAC9E,OAAS,GAAW,EAAG,EAAW,EAAQ,EAAE,EAC1C,OAAS,GAAW,EAAG,EAAW,EAAO,EAAE,EACzC,OAAS,GAAa,EAAG,EAAa,EAAc,EAAE,EAAY,CAChE,GAAM,GAAQ,EAAO,IAAI,EAAU,EAAU,GAE7C,AAAI,EAAQ,GAER,GAA4B,EAAY,EAAO,EAAU,EAAU,IAAS,EAAM,QAAQ,CAAE,QAAO,KAAM,CAAE,WAAU,WAAU,GAAI,KAI7I,MAAO,GAGT,YAAsB,EAAO,EAAkB,CAAE,IAAG,KAAK,EAAY,CACnE,MAAO,GAAM,KAAK,CAAC,CAAE,eAAgB,CACnC,GAAM,GAAwB,EAAU,GAAY,SACpD,MAAO,AAAM,IAAgB,EAAG,EAAG,EAAsB,EAAG,EAAsB,IAAM,IAI5F,YAA0B,EAAe,EAAkB,EAAmB,CAK5E,MAAO,AAJ6B,GAAkB,OAAO,CAAC,EAAQ,CAAE,WAAU,SAAS,IACpF,IAAa,EAAe,EAAkB,EAAU,IAAa,IAAU,GAC7E,GACN,GACkC,EAAkB,OAGlD,YAAgB,EAAe,EAAc,EAAwB,EAAwB,EAAW,EAAe,EAAgB,CAC5I,GAAM,GAA4D,GAC5D,EAAQ,GAAwB,EAAgB,GAChD,EAAmB,GAAa,EAEtC,KAAO,EAAM,OAAS,GAAiB,CAAC,EAAM,SAAS,CAErD,GAAM,GAAO,EAAM,UAEb,EAAkB,AAAM,GAAe,EAAK,KAAM,GAAqB,GAC7E,GAAI,GAAa,EAAO,EAAkB,EAAiB,EAAK,KAAK,IAAK,SAG1E,GAAM,GAAY,AADG,GAAW,EAAM,EAAc,EAAe,GAAqB,EAAwB,GACjF,OAAO,AAAC,GAAM,EAAE,MAAQ,GACjD,EAAQ,GAAiB,EAAO,EAAkB,GAClD,EAAM,AAAM,GAAe,GACjC,AAAI,EAAQ,GAAgB,EAAM,KAAK,CAAE,YAAW,MAAK,MAAO,KAAK,MAAM,IAAM,GAAS,MAE5F,MAAO,GHrIT,GAAI,GACE,GAAiB,CAAC,+BAA6C,gCAAoD,yCAA+D,0CAExL,kBAA8B,EAAO,EAAQ,CAC3C,GAAM,GAAM,AAAG,OAAK,IAAM,CAExB,GAAM,GAAa,AADH,EAAM,eAAe,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAC3D,UAAU,IAAI,OAAO,IAAI,GAE9C,EAAY,AADF,EAAM,QAAQ,EAAY,IAChB,IAAI,AAAC,GAAM,EAAE,QAAQ,CAAC,KAChD,SAAU,GAAK,EAAU,GAAG,UACrB,IAGH,EAAU,KAAM,SAAQ,IAAI,EAAI,IAAI,AAAC,GAAW,EAAO,WAC7D,OAAW,KAAK,GAAK,EAAE,UAEvB,GAAM,GAAU,KAAM,AAAM,IAAO,EAAQ,GAAI,EAAQ,GAAI,EAAQ,GAAI,EAAQ,GAAI,EAAO,KAAK,UAAW,EAAO,KAAK,cAAe,EAAO,KAAK,gBAGjJ,MAFe,AAAK,IAAW,EAAS,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAAK,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAK7H,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,WAC5D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EIjCT,8CCEO,YAAoB,EAAK,CAC9B,MAAO,CACL,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,IAC1C,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,KAIvC,YAAsB,EAAK,CAChC,MAAO,CACL,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAC5D,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,GAIzD,YAAkC,EAAK,EAAO,EAAU,CAC7D,GAAM,GAAI,EAAM,MAAM,GAChB,EAAI,EAAM,MAAM,GAChB,EAAQ,CAAC,CACb,EAAI,WAAW,GAAK,EACpB,EAAI,WAAW,GAAK,EACpB,EAAI,SAAS,GAAK,EAClB,EAAI,SAAS,GAAK,IAEpB,MAAO,AAAG,SAAM,cAAc,EAAO,EAAO,CAAC,GAAI,GAG5C,YAA6B,EAAK,EAAQ,CAC/C,GAAM,GAAa,CAAC,EAAI,WAAW,GAAK,EAAO,GAAI,EAAI,WAAW,GAAK,EAAO,IACxE,EAAW,CAAC,EAAI,SAAS,GAAK,EAAO,GAAI,EAAI,SAAS,GAAK,EAAO,IAClE,EAAgB,EAAI,cAAc,IAAI,AAAC,GACvB,CAAC,EAAM,GAAK,EAAO,GAAI,EAAM,GAAK,EAAO,KAG/D,MAAO,CAAE,aAAY,WAAU,gBAAe,WAAY,EAAI,YAGzD,YAAoB,EAAK,EAAS,IAAK,CAC5C,GAAM,GAAS,GAAa,GACtB,EAAO,GAAW,GAClB,EAAc,CAAC,EAAS,EAAK,GAAK,EAAG,EAAS,EAAK,GAAK,GACxD,EAAa,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IAClE,EAAW,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IACtE,MAAO,CAAE,aAAY,WAAU,cAAe,EAAI,eAG7C,YAAqB,EAAK,CAC/B,GAAM,GAAU,GAAa,GACvB,EAAO,GAAW,GAElB,EAAW,AADD,KAAK,IAAI,GAAG,GACD,EACrB,EAAa,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GAClD,EAAW,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GACtD,MAAO,CAAE,aAAY,WAAU,cAAe,EAAI,eCnD7C,YAAmB,CAQxB,YAAY,EAAO,EAAW,EAAkB,CAC9C,KAAK,MAAQ,EACb,KAAK,QAAU,EAAiB,IAAI,AAAC,GAAW,CAAC,EAAO,SAAU,EAAO,WACzE,KAAK,cAAgB,AAAG,WAAS,KAAK,SACtC,KAAK,UAAY,EACjB,KAAK,gBAAkB,AAAG,WAAS,CAAC,EAAW,IAC/C,KAAK,sBAAwB,AAAG,WAAS,CAAC,EAAY,EAAG,EAAY,IAGvE,eAAe,EAAO,CACpB,MAAO,AAAG,QAAK,IAAM,CACnB,GAAM,GAAa,AAAG,QAAM,EAAO,CAAC,EAAG,GAAI,CAAC,GAAI,IAC1C,EAAW,AAAG,QAAM,EAAO,CAAC,EAAG,GAAI,CAAC,GAAI,IACxC,EAAkB,AAAG,MAAI,AAAG,MAAI,EAAY,KAAK,iBAAkB,KAAK,eACxE,EAAe,AAAG,MAAI,EAAU,KAAK,uBACrC,EAAc,AAAG,MAAI,AAAG,MAAI,EAAiB,GAAe,KAAK,iBACjE,EAAY,AAAG,MAAI,AAAG,MAAI,EAAiB,GAAe,KAAK,iBACrE,MAAO,AAAG,YAAS,CAAC,EAAa,GAAY,KAIjD,mBAAmB,EAAkB,EAAO,CAC1C,MAAO,AAAG,QAAK,IAAM,CACnB,GAAM,GAAY,AAAG,MAAI,AAAG,MAAI,EAAiB,QAAQ,CAAC,GAAI,EAAG,IAAK,KAAK,iBAAkB,KAAK,QAAQ,IAC1G,MAAO,AAAG,OAAI,EAAW,KAAK,wBAI5B,UAAS,EAAO,EAAQ,CAC5B,GAAM,GAAU,KAAK,MAAM,QAAQ,GAC7B,EAAc,EAAQ,UAC5B,EAAQ,UACR,GAAM,GAAU,AAAG,OAAK,IAAM,AAAG,UAAQ,AAAG,QAAM,EAAa,CAAC,EAAG,GAAI,CAAC,GAAI,KAAK,WAC3E,EAAS,EAAQ,WACjB,EAAW,AAAG,QAAM,EAAa,CAAC,EAAG,GAAI,CAAC,GAAI,IAC9C,EAAQ,KAAK,eAAe,GAClC,EAAS,UACT,GAAM,GAAY,KAAM,AAAG,SAAM,uBAAuB,EAAO,EAAQ,EAAO,KAAK,SAAU,EAAO,KAAK,aAAc,EAAO,KAAK,gBAC7H,EAAW,EAAU,YAE3B,EAAQ,UACR,EAAU,UACV,GAAM,GAAqE,GAC3E,OAAW,KAAS,GAClB,GAAI,EAAO,IAAU,EAAO,KAAK,cAAe,CAC9C,GAAM,GAAc,AAAG,QAAM,EAAO,CAAC,EAAO,GAAI,CAAC,EAAG,KAC9C,EAAmB,AAAG,QAAM,EAAa,CAAC,EAAO,GAAI,CAAC,EAAG,KACzD,EAAgB,AAAG,OAAK,IAAM,KAAK,mBAAmB,EAAkB,GAAO,QAAQ,CAAC,GAAI,KAClG,EAAiB,UACjB,EAAM,KAAK,CAAE,IAAK,EAAa,gBAAe,WAAY,EAAO,KAGrE,SAAY,UACZ,EAAM,UACC,OAGH,oBAAmB,EAAO,EAAQ,CACtC,GAAM,GAAc,EAAM,MAAM,GAC1B,EAAa,EAAM,MAAM,GACzB,EAAQ,AAAG,OAAK,IAAM,EAAM,eAAe,CAAC,KAAK,UAAW,KAAK,YAAY,IAAI,OAAO,IAAI,IAC5F,EAAc,KAAM,MAAK,SAAS,EAAO,GAC/C,EAAM,UACN,GAAM,GAAmB,GACzB,GAAI,CAAC,GAAe,EAAY,SAAW,EAAG,MAAO,GACrD,OAAW,KAAc,GAAa,CACpC,GAAM,GAAQ,EAAW,IAAI,WACvB,EAAa,EAAM,MAAM,EAAG,GAC5B,EAAW,EAAM,MAAM,EAAG,GAC1B,EAAgB,EAAW,cAAc,YAC/C,EAAW,IAAI,UACf,EAAW,cAAc,UACzB,EAAM,KAAK,AAAI,GAAoB,CAAE,aAAY,WAAU,gBAAe,WAAY,EAAW,YAAc,CAAC,EAAa,KAAK,UAAW,EAAc,KAAK,aAElK,MAAO,KCrFJ,YAA0B,EAAO,CACtC,MAAO,GAAQ,EAAI,KAAK,GAAK,KAAK,MAAO,GAAQ,KAAK,IAAO,GAAI,KAAK,KAGjE,YAAyB,EAAQ,EAAQ,CAC9C,GAAM,GAAU,KAAK,GAAK,EAAI,KAAK,MAAM,CAAE,GAAO,GAAK,EAAO,IAAK,EAAO,GAAK,EAAO,IACtF,MAAO,IAAiB,GAGnB,GAAM,IAAyB,CAAC,EAAG,IAAM,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAEvE,YAAa,EAAI,EAAI,CAC1B,GAAI,GAAU,EACd,OAAS,GAAI,EAAG,EAAI,EAAG,OAAQ,IAC7B,GAAW,EAAG,GAAK,EAAG,GAExB,MAAO,GAGF,YAA4B,EAAK,EAAa,CACnD,GAAM,GAAwB,GAC9B,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,EAAO,KAAK,EAAI,GAAG,IAErB,MAAO,GAGF,YAAmC,EAAM,EAAM,CACpD,GAAM,GAA2B,GAC3B,EAAO,EAAK,OAClB,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,CACnC,EAAQ,KAAK,IACb,OAAS,GAAM,EAAG,EAAM,EAAM,IAC5B,EAAQ,GAAK,KAAK,GAAI,EAAK,GAAM,GAAmB,EAAM,KAG9D,MAAO,GAGF,YAA6B,EAAU,EAAQ,CACpD,GAAM,GAAO,KAAK,IAAI,GAChB,EAAO,KAAK,IAAI,GAChB,EAAiB,CAAC,CAAC,EAAM,CAAC,EAAM,GAAI,CAAC,EAAM,EAAM,GAAI,CAAC,EAAG,EAAG,IAC5D,EAAoB,GAAuB,EAAO,GAAI,EAAO,IAC7D,EAA2B,GAA0B,EAAmB,GACxE,EAA4B,GAAuB,CAAC,EAAO,GAAI,CAAC,EAAO,IAC7E,MAAO,IAA0B,EAA0B,GAGtD,YAA+B,EAAQ,CAC5C,GAAM,GAAoB,CAAC,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAAK,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,KAC5E,EAAuB,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAChD,EAAsB,CAC1B,CAAC,GAAI,EAAkB,GAAI,GAC3B,CAAC,GAAI,EAAkB,GAAI,IAE7B,MAAO,CACL,EAAkB,GAAG,OAAO,EAAoB,IAChD,EAAkB,GAAG,OAAO,EAAoB,IAChD,CAAC,EAAG,EAAG,IAIJ,YAAqB,EAAuB,EAAgB,CACjE,MAAO,CACL,GAAI,EAAuB,EAAe,IAC1C,GAAI,EAAuB,EAAe,KC7D9C,GAAM,IAA0B,EAE1B,GAA0B,KAC1B,GAAoB,CAAC,EAAG,EAAG,EAAG,GAAI,GAAI,EAAG,GACzC,GAAoC,EACpC,GAA6C,EAE5C,QAAmB,CAQxB,YAAY,EAAc,EAAkB,EAAW,CACrD,KAAK,aAAe,EACpB,KAAK,iBAAmB,EACxB,KAAK,UAAY,EACjB,KAAK,YAAc,GACnB,KAAK,QAAU,EACf,KAAK,cAAgB,EAGvB,uBAAuB,EAAe,EAAgB,CACpD,GAAM,GAAuB,EAAc,IAAI,AAAC,GAAU,AAAK,GAAY,CAAC,GAAG,EAAO,GAAI,IACpF,EAAgB,KAAK,8BAA8B,GAEzD,MAAO,AAAI,IAAW,AAAI,GAAY,GAAgB,IAGxD,uBAAuB,EAAW,CAChC,GAAM,GAAc,KAAK,8BAA8B,GAEjD,EAAgB,AAAI,GAAW,AAAI,GAAY,GAAc,IACnE,EAAc,cAAgB,GAC9B,OAAS,GAAI,EAAG,EAAI,GAAkB,OAAQ,IAC5C,EAAc,cAAc,KAAK,EAAU,GAAkB,IAAI,MAAM,EAAG,IAE5E,MAAO,GAGT,mBAAmB,EAAW,EAAM,EAAO,EAAgB,CACzD,GAAM,GAAU,AAAI,GAAW,GACzB,EAAc,CAAC,EAAQ,GAAK,KAAK,UAAW,EAAQ,GAAK,KAAK,UAAY,GAAQ,GAAK,EAAQ,IAAM,KAAK,UAAY,GACtH,EAAe,EAAU,IAAI,AAAC,GAAU,CAC5C,EAAY,GAAM,GAAM,GAAK,KAAK,UAAY,GAC9C,EAAY,GAAM,GAAM,GAAK,KAAK,UAAY,GAC9C,EAAY,GAAK,EAAM,KAEnB,EAAuB,AAAK,GAAoB,EAAO,CAAC,EAAG,IAC3D,EAAgB,EAAa,IAAI,AAAC,GAE/B,CAAC,GADQ,AAAK,GAAY,EAAO,GACpB,EAAM,KAEtB,EAAwB,AAAK,GAAsB,GACnD,EAAY,CAAC,GAAG,AAAI,GAAa,GAAO,GACxC,EAAoB,CACxB,AAAK,GAAI,EAAW,EAAsB,IAC1C,AAAK,GAAI,EAAW,EAAsB,KAE5C,MAAO,GAAc,IAAI,AAAC,GAAU,CAClC,EAAM,GAAK,EAAkB,GAC7B,EAAM,GAAK,EAAkB,GAC7B,EAAM,UAIJ,eAAc,EAAO,EAAQ,CACjC,GAAI,GAAc,GAGd,EACJ,AAAK,MAAK,UAAY,GAAO,KAAK,QAAU,EAAO,KAAK,YAAe,CAAC,EAAO,KAAK,WAAa,CAAC,EAAO,iBACvG,GAAQ,KAAM,MAAK,aAAa,mBAAmB,EAAO,GAC1D,KAAK,QAAU,GAEb,EAAO,gBAAgB,KAAK,UAG5B,GAAU,EAAM,OAAS,GAAQ,GAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkB,EAAO,KAAK,UAAa,CAAC,EAAO,KAAK,YACzI,MAAK,cAAgB,EACrB,KAAK,YAAc,CAAC,GAAG,GAEnB,KAAK,YAAY,OAAS,GAAG,GAAc,KAEjD,GAAM,GAAmB,GAEzB,AAAI,EAAO,KAAK,aAAe,KAAK,gBAAkB,GAAG,MAAK,QAAU,GAGxE,OAAS,GAAI,EAAG,EAAI,KAAK,YAAY,OAAQ,IAAK,CAChD,GAAM,GAAa,KAAK,YAAY,GACpC,GAAI,EAAC,EACL,GAAI,EAAO,KAAK,UAAW,CACzB,GAAM,GAAQ,EAAO,KAAK,SAAW,AAAK,GAAgB,EAAW,cAAc,IAAoC,EAAW,cAAc,KAA+C,EACzL,EAAa,AAAI,GAAa,GAC9B,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,EAAO,KAAK,SAAW,AAAG,QAAM,iBAAiB,EAAO,EAAO,EAAG,GAAwB,EAAM,QAC/G,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,EAAS,EAAc,KAAK,uBAAuB,EAAW,cAAe,GAAkB,EAC/F,EAAe,AAAI,GAAyB,EAAQ,EAAc,CAAC,KAAK,UAAW,KAAK,YACxF,EAAY,EAAa,IAAI,KACnC,EAAa,UACb,EAAa,UACb,GAAM,CAAC,EAAa,GAAa,KAAM,MAAK,iBAAiB,QAAQ,GACrE,EAAU,UACV,GAAM,GAAa,EAAY,WAAW,GAE1C,GADA,EAAY,UACR,GAAc,EAAO,KAAK,cAAe,CAC3C,GAAM,GAAoB,AAAG,UAAQ,EAAW,CAAC,GAAI,IAC/C,EAAY,EAAkB,YACpC,EAAU,UACV,EAAkB,UAClB,GAAM,GAAS,KAAK,mBAAmB,EAAW,EAAQ,EAAO,GAC3D,EAAkB,KAAK,uBAAuB,GACpD,KAAK,YAAY,GAAK,EACtB,GAAM,GAAS,CACb,UAAW,EACX,aACA,IAAK,CAAE,QAAS,EAAgB,WAAY,YAAa,EAAgB,WAE3E,EAAM,KAAK,OAEX,MAAK,YAAY,GAAK,KAExB,EAAU,cACL,CAEL,GAAM,GAAW,AAAI,GAAW,AAAI,GAAY,GAAa,IACvD,EAAS,CACb,WAAY,EAAW,WACvB,IAAK,CAAE,QAAS,EAAS,WAAY,YAAa,EAAS,WAE7D,EAAM,KAAK,IAGf,YAAK,YAAc,KAAK,YAAY,OAAO,AAAC,GAAM,IAAM,MACxD,KAAK,cAAgB,EAAM,OACpB,EAIT,8BAA8B,EAAW,CACvC,GAAM,GAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAa,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC3C,EAAW,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC/C,MAAO,CAAE,aAAY,cCzJlB,GAAM,IAAU,CACrB,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,QACV,SAAU,SAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,OACV,SAAU,QAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,OAEZ,CACE,EAAG,EACH,EAAG,EACH,SAAU,MACV,SAAU,QLzviBd,GAAM,IAAmB,CACvB,MAAO,CAAC,EAAG,EAAG,EAAG,GACjB,YAAa,CAAC,EAAG,EAAG,EAAG,GACvB,aAAc,CAAC,EAAG,GAAI,GAAI,IAC1B,WAAY,CAAC,GAAI,GAAI,GAAI,IACzB,MAAO,CAAC,GAAI,GAAI,GAAI,IACpB,SAAU,CAAC,IAGN,QAAe,CAGpB,YAAY,EAAc,CACxB,KAAK,aAAe,QAGf,iBAAiB,CACtB,MAAO,SAGH,eAAc,EAAO,EAAQ,CACjC,GAAM,GAAc,KAAM,MAAK,aAAa,cAAc,EAAO,GACjE,GAAI,CAAC,EAAa,MAAO,GACzB,GAAM,GAAgG,GACtG,OAAW,KAAc,GAAa,CACpC,GAAM,GAAc,GACpB,GAAI,EAAW,UACb,OAAW,KAAO,QAAO,KAAK,IAC5B,EAAY,GAAO,GAAiB,GAAK,IAAI,AAAC,GAAU,EAAW,UAAU,IAGjF,GAAM,GAAM,EAAW,IAAM,CAC3B,KAAK,IAAI,EAAG,EAAW,IAAI,QAAQ,IACnC,KAAK,IAAI,EAAG,EAAW,IAAI,QAAQ,IACnC,KAAK,IAAI,EAAM,MAAM,GAAI,EAAW,IAAI,YAAY,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,QAAQ,IAC7F,KAAK,IAAI,EAAM,MAAM,GAAI,EAAW,IAAI,YAAY,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,QAAQ,KAC3F,GACE,EAAS,CACZ,EAAW,IAAI,QAAQ,GAAM,EAAM,MAAM,GACzC,EAAW,IAAI,QAAQ,GAAM,EAAM,MAAM,GACzC,GAAW,IAAI,YAAY,GAAK,EAAW,IAAI,QAAQ,IAAM,EAAM,MAAM,GACzE,GAAW,IAAI,YAAY,GAAK,EAAW,IAAI,QAAQ,IAAM,EAAM,MAAM,IAE5E,EAAM,KAAK,CAAE,WAAY,KAAK,MAAM,IAAM,EAAW,YAAc,IAAK,MAAK,SAAQ,UAAW,EAAW,UAAW,gBAExH,MAAO,KAIP,EACA,GACJ,kBAA2B,EAA2B,CACpD,AAAI,CAAC,GAAqB,CAAC,GACzB,EAAC,EAAmB,IAAiB,KAAM,SAAQ,IAAI,CACrD,EAAO,KAAK,QAAU,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eAAkB,KAC3K,EAAO,KAAK,UAAY,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eAAkB,OAE3K,EAAO,KAAK,SACd,CAAI,CAAC,GAAqB,CAAC,EAAkB,SAAU,EAAI,qBAAsB,EAAO,KAAK,SAAS,WAC7F,EAAO,OAAO,EAAI,cAAe,EAAkB,UAC5D,AAAI,CAAC,IAAiB,CAAC,GAAc,SAAU,EAAI,qBAAsB,EAAO,KAAK,SAAS,WACrF,EAAO,OAAO,EAAI,cAAe,GAAc,YAGtD,GAAO,OAAO,EAAI,gBAAiB,EAAkB,UACrD,EAAO,OAAO,EAAI,gBAAiB,GAAc,WAEvD,GAAM,GAAe,GAAiB,IAAa,EAAmB,iBAAmB,OAAO,GAAG,MAAM,GAAY,IAC/G,EAAe,GAAiB,IAAa,EAAc,GAAe,mBAAe,OAAO,GAAG,MAAM,IAE/G,MADiB,IAAI,IAAS,GM3EhC,6CCAO,GAAM,IAAO,CAClB,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,YACA,aACA,WACA,YACA,YACA,aACA,YACA,aACA,UACA,WACA,WACA,YACA,YACA,aACA,WACA,YACA,WACA,YACA,SACA,WACA,YACA,WACA,aACA,aAGW,GAAQ,CACnB,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,UACA,WACA,UACA,WACA,UACA,WACA,UACA,WACA,YACA,aACA,OACA,WACA,UACA,WACA,UACA,YDpEF,GAAI,GAEJ,kBAA2B,EAAQ,CACjC,MAAK,GAMM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UALlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,EAAM,MAAQ,SAAS,EAAM,UAAU,OAAO,aAAa,YAAY,IAAI,GAAG,MAC9E,EAAM,OAAS,SAAS,EAAM,UAAU,OAAO,aAAa,YAAY,IAAI,GAAG,MAC/E,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,WAC5D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAO,EAAQ,CAE3C,GADI,CAAC,GACD,CAAC,EAAO,KAAK,QAAS,MAAO,MACjC,GAAM,GAAU,CAAE,MAAO,EAAM,MAAM,GAAI,OAAQ,EAAM,MAAM,IACvD,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,MAAO,EAAM,QAAS,IACrE,EAAY,AAAG,MAAI,EAAQ,CAAC,MAClC,EAAO,UACP,GAAI,GACJ,GAAK,EAAO,QAOL,CACL,GAAM,GAAc,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IACzD,EAAS,EAAY,OAAO,KAAK,AAAC,GAAO,EAAE,OAAS,KAAO,EAAE,OAAS,KAAM,WAC5E,EAAY,OAAO,QAAQ,AAAC,GAAM,EAAE,WACpC,AAAQ,EAAI,YAAa,OAXN,CACnB,GAAM,GAAO,KAAM,GAAM,QAAQ,GAIjC,EAAS,EAAK,KAAK,AAAC,GAAO,EAAE,OAAS,KAAO,EAAE,OAAS,KAAM,WAC9D,EAAK,QAAQ,AAAC,GAAM,EAAE,WAOxB,EAAU,UACV,GAAM,GAAyE,GACzE,EAAS,EAAO,SAAW,IAAkB,GAAmB,GAChE,EAAQ,EACd,OAAS,GAAI,EAAG,EAAI,EAAO,OAAS,EAAO,IACzC,EAAU,KAAK,CACb,GAAI,EACJ,KAAM,EAAO,GACb,SAAU,CACR,EAAG,KAAK,MAAM,EAAQ,MAAQ,EAAO,EAAQ,EAAI,GAAK,KACtD,EAAG,KAAK,MAAM,EAAQ,OAAS,EAAO,EAAQ,EAAI,GAAK,KACvD,EAAG,KAAK,MAAM,EAAO,EAAQ,EAAI,IAAM,GAEzC,MAAQ,KAAM,KAAK,MAAM,IAAO,GAAI,KAAK,IAAI,EAAO,EAAQ,EAAI,OAAS,IACzE,SAAW,KAAM,KAAK,MAAM,IAAO,GAAI,KAAK,IAAI,EAAO,EAAQ,EAAI,OAAS,MAIhF,MAAO,CAAC,CAAE,MADI,EAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GACvE,cErDnB,GAAI,GACA,GAAwB,GACxB,GAAU,OAAO,iBAEf,GAAY,CAAC,OAAQ,OAAQ,gBAAiB,aAAc,aAAc,QAAS,eAAgB,YAAa,YAAa,SAAU,WAAY,YAAa,aAAc,UAAW,WAAY,aAE3M,kBAA2B,EAAQ,CACjC,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,WAC5D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAIT,YAAe,EAAQ,EAAU,CAC/B,GAAM,CAAC,EAAO,GAAU,EAAO,MAC/B,MAAO,AAAG,QAAK,IAAM,CAEnB,GAAM,GAAM,CAAC,EAAG,IAAM,AAAG,MAAI,EAAG,AAAG,MAAI,AAAG,MAAI,EAAG,AAAG,SAAO,EAAG,UAAW,AAAG,SAAO,EAAG,WAEhF,EAAW,AAAG,UAAQ,EAAQ,CAAC,EAAS,IAExC,EAAQ,AAAG,MAAI,EAAU,GAAG,WAAW,GAC7C,GAAI,EAAQ,EAAU,CAEpB,GAAM,GAAS,AAAG,SAAO,EAAU,GAC7B,EAAI,EAAI,EAAQ,GAAO,WAAW,GAClC,EAAI,AAAG,MAAI,EAAQ,AAAG,SAAO,EAAO,UAAU,WAAW,GAC/D,MAAO,CAAC,EAAG,EAAG,GAEhB,MAAO,CAAC,EAAG,EAAG,KAIlB,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GACA,GAAU,EAAO,KAAK,YAAe,EAAO,gBAAkB,OAAO,KAAK,IAAW,OAAS,EACjG,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,OAAK,IAAM,CAC3B,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAGpG,MADa,AADG,AAAG,OAAI,EAAQ,GACV,IAAI,KAIvB,EAEJ,GAAI,CAAC,EAAO,QACV,AAAI,EAAO,KAAK,SAAS,GAAO,KAAM,GAAM,QAAQ,QAC/C,CACL,GAAM,GAAW,EAAO,KAAK,QAAU,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IAAW,GACvF,EAAO,EAAS,OAAO,QACvB,EAAS,OAAO,UAChB,AAAQ,EAAI,OAAQ,GAItB,GAFA,EAAO,UAEH,EAAM,CACR,GAAM,GAAoF,GACpF,EAAU,EAAK,UACrB,AAAG,UAAQ,GAEX,GAAM,GAAQ,EAAQ,QAAQ,GAC9B,AAAG,UAAQ,GAEX,OAAS,GAAK,EAAG,EAAK,EAAM,OAAQ,IAAM,CAExC,GAAM,CAAC,EAAG,EAAG,GAAS,GAAM,EAAM,GAAK,EAAO,KAAK,gBACnD,AAAI,EAAQ,EAAO,KAAK,gBACtB,EAAM,KAAK,CACT,KACA,MAAO,KAAK,MAAM,IAAM,GAAS,IACjC,KAAM,GAAU,GAChB,YAAa,CACX,KAAM,EAAI,EAAM,OAAO,GAAG,MAAM,GAChC,KAAM,EAAI,EAAM,OAAO,GAAG,MAAM,IAElC,SAAU,CACR,EAAG,KAAK,MAAM,EAAM,MAAM,GAAK,EAAI,EAAM,OAAO,GAAG,MAAM,IACzD,EAAG,KAAK,MAAM,EAAM,MAAM,GAAK,EAAI,EAAM,OAAO,GAAG,MAAM,OAKjE,EAAM,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAChC,GAAY,EAEd,GAAM,GAAQ,GAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GACxF,EAAQ,CAAC,CAAE,QAAO,mBA1DD,KCzCrB,6CCAO,GAAM,IAAS,CACpB,CAAE,MAAO,EAAG,MAAO,UACnB,CAAE,MAAO,EAAG,MAAO,WACnB,CAAE,MAAO,EAAG,MAAO,OACnB,CAAE,MAAO,EAAG,MAAO,cACnB,CAAE,MAAO,EAAG,MAAO,YACnB,CAAE,MAAO,EAAG,MAAO,OACnB,CAAE,MAAO,EAAG,MAAO,SACnB,CAAE,MAAO,EAAG,MAAO,SACnB,CAAE,MAAO,EAAG,MAAO,QACnB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,eACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,kBACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,MACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,eD3EtB,GAAI,GACA,GAAkB,GAClB,GAAU,OAAO,iBAEf,GAAW,IAEjB,kBAA2B,EAAQ,CACjC,GAAK,EAOE,AAAI,EAAO,OAAO,EAAI,gBAAiB,EAAM,cAPxC,CACV,EAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,OAAO,YACzE,GAAM,GAAS,OAAO,OAAO,EAAM,eAAe,QAElD,GADA,EAAM,UAAY,MAAM,QAAQ,GAAU,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,MAAQ,KACpF,CAAC,EAAM,UAAW,KAAM,IAAI,OAAM,4CAA4C,EAAO,OAAO,aAChG,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,OAAO,WAC9D,EAAO,OAAO,EAAI,cAAe,EAAM,UAElD,MAAO,GAGT,kBAAuB,EAAK,EAAW,EAAa,EAAQ,CAC1D,GAAI,GAAK,EACL,EAA8J,GAClK,OAAW,KAAc,CAAC,EAAG,EAAG,GAE9B,AAAG,OAAK,IAAM,CA5BlB,QA6BM,GAAM,GAAW,EAAa,GAExB,EAAU,KAAI,KAAK,AAAC,GAAO,EAAE,MAAM,KAAQ,GAAY,GAAM,EAAE,MAAM,KAAO,GAAO,UAAzE,cAAmF,UAC7F,EAAY,KAAI,KAAK,AAAC,GAAO,EAAE,MAAM,KAAQ,GAAY,GAAM,EAAE,MAAM,GAAK,GAAO,UAAvE,cAAiF,UAE7F,EAAS,AADE,EAAU,QAAQ,CAAC,GAAI,EAAG,EAAU,MAAM,GAAK,IACxC,OAAO,GAAG,YAC5B,EAAS,EAAQ,YACvB,OAAS,GAAI,EAAG,EAAI,EAAQ,MAAM,GAAI,IACpC,OAAS,GAAI,EAAG,EAAI,EAAQ,MAAM,GAAI,IAAK,CACzC,GAAM,GAAQ,EAAO,GAAG,GACxB,GAAI,EAAQ,EAAO,OAAO,eAAiB,IAAM,GAAI,CACnD,GAAM,GAAM,IAAM,KAAK,MAAM,EAAI,IAAa,EACxC,EAAM,IAAM,KAAK,MAAM,EAAI,IAAa,EACxC,EAAY,EAAO,GAAG,IAAI,AAAC,IAAM,GAAK,GAAW,EAAa,IAC9D,CAAC,EAAG,GAAK,CACb,EAAM,GAAW,EAAa,EAAU,GACxC,EAAM,GAAW,EAAa,EAAU,IAEpC,CAAC,EAAG,IAAK,CACb,EAAM,GAAW,EAAa,EAAU,GAAM,EAC9C,EAAM,GAAW,EAAa,EAAU,GAAM,GAE5C,EAAS,CAAC,EAAG,EAAG,EAAG,IACvB,EAAS,EAAO,IAAI,AAAC,IAAM,KAAK,IAAI,EAAG,KAAK,IAAI,GAAG,KACnD,GAAM,IAAM,CACV,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,IAEpB,GAAS,CACb,GAAI,IACJ,aACA,MAAO,KAAK,MAAM,IAAM,GAAS,IACjC,MAAO,EAAI,EACX,MAAO,GAAO,GAAG,MACjB,OAAQ,CAAC,KAAK,MAAM,EAAY,GAAK,GAAK,KAAK,MAAM,EAAY,GAAK,IACtE,UAAW,CAAC,EAAI,GAChB,IAAK,GAAI,IAAI,AAAC,IAAM,KAAK,MAAM,KAC/B,UAEF,EAAQ,KAAK,QAOvB,EAAI,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAI9B,GAAM,GAAW,EAAQ,IAAI,AAAC,GAAM,EAAE,QAChC,EAAY,EAAQ,IAAI,AAAC,GAAM,EAAE,OACnC,EAAgB,GACpB,GAAI,GAAY,EAAS,OAAS,EAAG,CACnC,GAAM,GAAM,KAAM,AAAG,SAAM,uBAAuB,EAAU,EAAW,EAAO,OAAO,WAAY,EAAO,OAAO,aAAc,EAAO,OAAO,eAC3I,EAAS,EAAI,WACb,AAAG,UAAQ,GAIb,SAAU,EACP,OAAO,CAAC,EAAG,IAAQ,EAAO,SAAS,IACnC,KAAK,CAAC,EAAG,IAAO,EAAE,MAAQ,EAAE,OAExB,EAGT,kBAA8B,EAAO,EAAQ,CAC3C,MAAK,GAEA,GAAU,EAAO,OAAO,YAAe,EAAO,gBAAmB,GAAK,OAAS,EAClF,MACO,IAET,CAAI,EAAO,eAAgB,GAAU,EAChC,GAAU,OAAO,iBACf,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAa,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAC1C,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,UAAW,EAAM,WAAY,IAC5E,EAAO,EAAO,IAAI,KAClB,EAAY,EAAK,UAAU,CAAC,EAAG,EAAG,EAAG,IAC3C,EAAK,UACL,EAAO,UAEP,GAAI,GACJ,GAAI,CAAC,EAAO,QACV,AAAI,EAAO,OAAO,SAAS,GAAU,KAAM,GAAM,QAAQ,QACpD,CACL,GAAM,GAAgB,EAAO,OAAO,QAAU,KAAM,AAAG,WAAQ,IAAM,EAAM,QAAQ,IAAc,GACjG,EAAU,EAAc,OACxB,AAAQ,EAAI,SAAU,GAExB,EAAU,UAEV,GAAM,GAAM,KAAM,IAAQ,EAAS,EAAM,UAAW,EAAY,GAChE,GAAO,EACP,EAAQ,MA5BS,KEnGd,GAAM,IAAO,AAAC,GAAQ,CAC3B,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CAEnC,GAAM,GAAY,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,aACrD,EAAa,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,cACtD,EAAO,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,QACtD,AAAI,GAAQ,GAAa,GAAe,EAAU,SAAS,EAAI,EAAK,SAAS,GAAO,EAAW,SAAS,EAAI,EAAK,SAAS,EAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,cAC3J,AAAI,GAAQ,GAAc,EAAU,SAAS,EAAI,EAAK,SAAS,EAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,oBACjG,GAAQ,GAAe,EAAW,SAAS,EAAI,EAAK,SAAS,GAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,qBAG5G,GAAM,GAAe,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,gBACxD,EAAgB,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,iBAC/D,AAAI,GAAgB,GAAe,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,WAAY,EAAa,SAAS,EAAI,EAAc,SAAS,EAAK,OAAS,YAElJ,MAAO,IAGI,GAAO,AAAC,GAAQ,CAC3B,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,GAAI,EAAI,GAAG,MAAQ,EAAI,GAAG,KAAK,OAAS,EAAG,CACzC,GAAM,GAAY,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,KAAK,GACxD,AAAI,KAAK,IAAI,GAAa,GAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,kBAC3D,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,UAAU,EAAY,EAAI,OAAS,YAEtE,AADa,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IACxG,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAElD,AADc,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IACxG,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,oBACvD,GAAM,GAAY,KAAK,IAAI,IAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,IAAI,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,KAAK,KACzI,AAAI,EAAY,IAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,SAAS,KAAK,MAAM,aAC1E,GAAM,GAAY,EAAI,GAAG,KAAK,KAAK,GACnC,AAAI,KAAK,IAAI,GAAa,IAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,QAAQ,EAAY,EAAI,KAAO,WAGnG,MAAO,IAGI,GAAO,AAAC,GAAQ,CAC3B,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAI,CAAC,EAAI,GAAG,aAAe,CAAC,EAAI,GAAG,YAAY,aAAe,CAAC,EAAI,GAAG,YAAY,aAAc,SAChG,GAAM,GAAY,EAAI,GAAG,YAAY,YAAY,GAAG,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,GACrF,EAAY,EAAI,GAAG,YAAY,YAAY,GAAG,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,GACrF,EAAW,KAAK,IAAI,EAAY,GAEhC,EAAa,EAAI,GAAG,YAAY,aAAa,GAAG,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,GACxF,EAAa,EAAI,GAAG,YAAY,aAAa,GAAG,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,GACxF,EAAY,KAAK,IAAI,EAAa,GAEpC,EAAS,GAEb,AAAI,AADe,KAAK,IAAI,EAAW,GAAa,KAAK,IAAI,EAAU,GACtD,KACf,GAAS,GACT,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAGpC,GAAM,GAAmB,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,IAAM,EAAI,GAAG,YAAY,aAAa,GAAG,GAC7H,EAAkB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,IAAM,EAAI,GAAG,YAAY,YAAY,GAAG,GACjI,AAAI,GAAkB,MAAS,EAAmB,OAAO,GAAS,IAC9D,EAAkB,MAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,kBAC3D,EAAmB,MAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,iBAEhE,GAAM,GAAmB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,IAAM,EAAI,GAAG,YAAY,aAAa,GAAG,GAC9H,EAAkB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,IAAM,EAAI,GAAG,YAAY,YAAY,GAAG,GACjI,AAAI,GAAkB,MAAS,EAAmB,MAAS,EAAkB,KAAS,EAAmB,MAAO,GAAS,IACrH,GAAkB,MAAS,EAAmB,OAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,iBACvF,GAAkB,KAAS,EAAmB,MAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,eAGvF,GAAQ,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAEhD,MAAO,IAGI,GAAO,AAAC,GAAQ,CAC3B,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAM,GAAqD,GAC3D,OAAW,CAAC,EAAQ,IAAQ,QAAO,QAAQ,EAAI,GAAG,aAChD,AAAI,IAAW,YAAc,MAAM,QAAQ,IAAM,EAAQ,KAAK,CAAE,KAAM,EAAO,cAAe,SAAU,EAAI,KAE5G,GAAI,GAAW,EAAQ,OAAS,EAAG,CACjC,GAAM,GAAU,EAAQ,OAAO,CAAC,EAAM,IAAO,EAAK,SAAS,GAAK,EAAE,SAAS,GAAK,EAAO,GACjF,EAAU,EAAQ,OAAO,CAAC,EAAM,IAAO,EAAK,SAAS,GAAK,EAAE,SAAS,GAAK,EAAO,GACvF,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,GAAG,EAAQ,gBAAgB,EAAQ,aAGzE,MAAO,IC7FT,iCCMA,YAAmB,EAAI,EAAc,EAAgB,CACnD,GAAM,GAAW,SAAU,EAAQ,EAAQ,EAAY,CACrD,GAAM,GAAI,GAAI,QAAO,MAAQ,EAAS,eAAgB,MACtD,EAAO,QAAQ,EAAG,CAAC,EAAO,IACxB,GAAW,GAAQ,EACZ,KAIL,EAAW,SAAU,EAAQ,EAAM,CACvC,GAAM,GAAS,EAAG,aAAa,GAG/B,GAFA,EAAG,aAAa,EAAQ,GACxB,EAAG,cAAc,GACb,CAAC,EAAG,mBAAmB,EAAQ,EAAG,gBAAiB,KAAM,IAAI,OAAM,4BAA6B,EAAG,iBAAiB,IACxH,MAAO,IAGT,KAAK,QAAU,GACf,KAAK,UAAY,GACjB,GAAM,GAAO,EAAS,EAAc,EAAG,eACjC,EAAO,EAAS,EAAgB,EAAG,iBAMzC,GALA,KAAK,GAAK,EAAG,gBACb,EAAG,aAAa,KAAK,GAAI,GACzB,EAAG,aAAa,KAAK,GAAI,GACzB,EAAG,YAAY,KAAK,IAEhB,CAAC,EAAG,oBAAoB,KAAK,GAAI,EAAG,aAAc,KAAM,IAAI,OAAM,yBAA0B,EAAG,kBAAkB,KAAK,KAE1H,EAAG,WAAW,KAAK,IAEnB,EAAS,EAAc,YAAa,KAAK,WACzC,OAAW,KAAK,MAAK,UAAW,KAAK,UAAU,GAAK,EAAG,kBAAkB,KAAK,GAAI,GAElF,EAAS,EAAc,UAAW,KAAK,SACvC,EAAS,EAAgB,UAAW,KAAK,SACzC,OAAW,KAAK,MAAK,QAAS,KAAK,QAAQ,GAAK,EAAG,mBAAmB,KAAK,GAAI,GAI1E,YAAuB,EAAQ,CACpC,AAAK,GAAQ,GAAS,IACtB,GAAI,GAAa,EACb,EAAiB,KACjB,EAAe,GACf,EAA2B,GAC3B,EAAoB,CAAC,KAAM,MAC3B,EAAe,GACf,EAAS,GACT,EAAU,GACV,EAAgB,KAChB,EAAkB,KAChB,EAAU,GACV,EAAU,EAAO,QAAU,SAAS,cAAc,UAElD,EAAsB,GACtB,EAAO,CAAE,aAAc,GACvB,EAAK,EAAQ,WAAW,SAC9B,GAAI,CAAC,EAAI,KAAM,IAAI,OAAM,+BAEzB,KAAK,UAAY,SAAU,EAAM,CAE/B,GAAM,GAAO,MAAM,UAAU,MAAM,KAAK,UAAW,GAC7C,EAAS,EAAQ,GACvB,EAAa,KAAK,CAAE,KAAM,EAAQ,UAGpC,KAAK,MAAQ,UAAY,CACvB,EAAe,IAGjB,GAAM,GAAU,SAAU,EAAO,EAAQ,CAEvC,GAAI,MAAU,GAAU,IAAW,GAMnC,IALA,EAAQ,MAAQ,EAChB,EAAS,EACT,EAAQ,OAAS,EACjB,EAAU,EAEN,CAAC,EAAe,CAElB,GAAM,GAAW,GAAI,cAAa,CAChC,GAAI,GAAI,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,GAAI,EAAG,EAAG,EACrC,GAAI,EAAG,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,EAAG,EAAG,EAAG,IAGrC,AAAC,EAAgB,EAAG,eAAgB,EAAG,WAAW,EAAG,aAAc,GACnE,EAAG,WAAW,EAAG,aAAc,EAAU,EAAG,aAC5C,EAAG,YAAY,EAAG,+BAAgC,IAEpD,EAAG,SAAS,EAAG,EAAG,EAAQ,GAE1B,EAAoB,CAAC,KAAM,QAGvB,EAA4B,SAAU,EAAO,EAAQ,CACzD,GAAM,GAAM,EAAG,oBACf,EAAG,gBAAgB,EAAG,YAAa,GACnC,GAAM,GAAe,EAAG,qBACxB,EAAG,iBAAiB,EAAG,aAAc,GACrC,GAAM,GAAU,EAAG,gBACnB,SAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,WAAW,EAAG,WAAY,EAAG,EAAG,KAAM,EAAO,EAAQ,EAAG,EAAG,KAAM,EAAG,cAAe,MACtF,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,QAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,QAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,qBAAqB,EAAG,YAAa,EAAG,kBAAmB,EAAG,WAAY,EAAS,GACtF,EAAG,YAAY,EAAG,WAAY,MAC9B,EAAG,gBAAgB,EAAG,YAAa,MAC5B,CAAE,MAAK,YAGV,EAAsB,SAAU,EAAO,CAC3C,SAAkB,GAAS,EAAkB,IAAU,EAA0B,EAAQ,GAClF,EAAkB,IAGrB,EAAQ,SAAU,EAAQ,KAAM,CA3HxC,QA4HI,GAAI,GAAS,KACT,EAAS,KACT,EAAQ,GAEZ,AAAI,IAAe,EAEjB,EAAS,EAGT,EAAS,KAAoB,KAApB,cAA+C,QAE1D,IAEA,AAAI,GAAgB,CAAE,GAAQ,EAAK,cAGjC,GAAS,KACT,EAAQ,EAAa,GAAM,GAG3B,GAA4B,GAA2B,GAAK,EAC5D,EAAS,KAAoB,KAApB,cAA+C,KAG1D,EAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,gBAAgB,EAAG,YAAa,GACnC,EAAG,UAAU,EAAgB,QAAQ,MAAQ,EAAQ,GAAK,GAC1D,EAAG,WAAW,EAAG,UAAW,EAAG,IAGjC,KAAK,MAAQ,SAAU,EAAO,CAY5B,GAXA,EAAQ,EAAM,MAAO,EAAM,QAC3B,EAAa,EAER,GAAgB,GAAiB,EAAG,iBACzC,EAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,SAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,SAC1D,EAAG,WAAW,EAAG,WAAY,EAAG,EAAG,KAAM,EAAG,KAAM,EAAG,cAAe,GAEhE,EAAa,SAAW,EAE1B,WACO,EAET,OAAS,GAAI,EAAG,EAAI,EAAa,OAAQ,IAAK,CAC5C,EAAgB,IAAM,EAAa,OAAS,EAC5C,GAAM,GAAI,EAAa,GACvB,EAAE,KAAK,MAAM,KAAM,EAAE,MAAQ,IAE/B,MAAO,IAGT,GAAM,GAAiB,SAAU,EAAgB,CAC/C,GAAI,EAAoB,GACtB,SAAkB,EAAoB,GACtC,EAAG,WAAW,EAAgB,IACvB,EAGT,GAAM,GAAS,GACf,EAAO,gBAAkB,CACvB,yBACA,sBACA,qBACA,oBACA,uBACA,oBACA,YACA,mDACA,KACA,KAAK;AAAA,GACP,EAAO,kBAAoB,CACzB,yBACA,oBACA,6BACA,oBACA,0CACA,KACA,KAAK;AAAA,GACP,EAAkB,GAAI,IAAU,EAAI,EAAO,gBAAiB,GAC5D,GAAM,GAAY,aAAa,kBACzB,EAAW,EAAI,EACrB,SAAG,wBAAwB,EAAgB,UAAU,KACrD,EAAG,oBAAoB,EAAgB,UAAU,IAAK,EAAG,EAAG,MAAO,GAAO,EAAU,EAAI,GACxF,EAAG,wBAAwB,EAAgB,UAAU,IACrD,EAAG,oBAAoB,EAAgB,UAAU,GAAI,EAAG,EAAG,MAAO,GAAO,EAAU,EAAI,GACvF,EAAoB,GAAkB,EAC/B,GAKT,EAAQ,YAAc,SAAU,EAAQ,CAEtC,GAAM,GAAI,GAAI,cAAa,GAC3B,EAAE,IAAM,IACR,EAAE,IAAM,IACR,EAAE,KAAO,IACT,EAAE,KAAO,IAET,GAAM,GAAU,EAAE,MAAQ,GAAK,EAAE,KAAO,GAAK,EAAE,KAAO,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,EAC7H,EAAQ,YAAY,OAAO,cAC3B,EAAQ,YAAY,OAAO,WACzB,EAAU,EAAe,GAC/B,EAAG,WAAW,EAAQ,QAAQ,EAAG,GACjC,KAEF,EAAQ,YAAY,OAAS,GAC7B,EAAQ,YAAY,OAAO,WAAa,CACtC,yBACA,oBACA,6BACA,uBACA,oBACA,oCACA,6EACA,6EACA,kFACA,kFACA,KACA,KAAK;AAAA,GACP,EAAQ,YAAY,OAAO,cAAgB,CACzC,yBACA,oBACA,6BACA,uBACA,oBACA,oCACA,gEACA,gEACA,oEACA,wBACA,KACA,KAAK;AAAA,GAEP,EAAQ,WAAa,SAAU,EAAY,CACzC,GAAM,GAAK,IAAc,GAAK,EAC9B,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,SAAU,EAAQ,CACrC,GAAM,GAAK,IAAU,GAAK,EAAI,EAAI,EAC5B,EAAM,GAAI,GAAK,IACrB,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,WAAW,KAGrB,EAAQ,SAAW,SAAU,EAAQ,CACnC,GAAM,GAAK,IAAU,GAAK,EACpB,EAAI,KAAQ,GAAI,GAEtB,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,SAAW,UAAY,CAC7B,EAAQ,SAAS,KAGnB,EAAQ,IAAM,SAAU,EAAU,CAChC,EAAY,IAAY,GAAK,IAAM,KAAK,GACxC,GAAM,GAAM,KAAK,IAAI,GACf,EAAM,KAAK,IAAI,GACf,EAAO,KACP,EAAO,KACP,EAAO,KAEb,EAAQ,YAAY,CAClB,EAAO,EAAO,GAAI,GAAQ,EAAO,CAAC,EAAO,EAAO,EAAO,CAAC,EAAQ,EAAO,CAAC,EAAO,EAAO,EAAO,CAAC,EAAQ,EAAO,GAAI,GAAO,EAAG,EAC3H,EAAO,EAAO,CAAC,EAAQ,EAAO,KAAQ,EAAO,EAAO,GAAI,GAAQ,EAAO,IAAQ,EAAO,EAAO,CAAC,EAAQ,EAAO,MAAS,EAAG,EACzH,EAAO,EAAO,CAAC,EAAQ,EAAO,CAAE,GAAI,GAAQ,EAAO,EAAO,CAAC,EAAQ,EAAO,EAAO,EAAO,EAAO,GAAI,GAAQ,EAAO,EAAO,EAAG,EAC5H,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,oBAAsB,UAAY,CACxC,EAAQ,YAAY,CAClB,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,MAAQ,UAAY,CAC1B,EAAQ,YAAY,CAClB,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,QAAU,UAAY,CAC5B,EAAQ,YAAY,CAClB,kBAAoB,mBAAqB,mBAAqB,EAAG,kBACjE,qBAAuB,kBAAoB,mBAAqB,EAAG,mBACnE,mBAAqB,oBAAsB,mBAAqB,EAAG,mBACnE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,eAAiB,UAAY,CACnC,EAAQ,YAAY,CAClB,kBAAoB,kBAAoB,oBAAsB,EAAG,kBACjE,mBAAqB,kBAAoB,mBAAqB,EAAG,kBACjE,kBAAoB,mBAAqB,kBAAoB,EAAG,kBAChE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,YAAY,CAClB,mBAAoB,mBAAqB,oBAAsB,EAAG,kBAClE,oBAAsB,mBAAoB,oBAAsB,EAAG,mBACnE,oBAAsB,mBAAqB,mBAAoB,EAAG,kBAClE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,YAAc,UAAY,CAChC,EAAQ,YAAY,CAClB,mBAAoB,mBAAqB,oBAAsB,EAAG,mBAClE,mBAAqB,mBAAoB,oBAAsB,EAAG,mBAClE,kBAAoB,mBAAqB,kBAAmB,EAAG,mBAC/D,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,SAAW,UAAY,CAC7B,EAAQ,YAAY,CAClB,MAAO,MAAQ,MAAQ,EAAG,EAC1B,MAAQ,MAAO,MAAQ,EAAG,EAC1B,MAAQ,MAAQ,MAAO,EAAG,EAC1B,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAMhB,EAAQ,YAAc,SAAU,EAAQ,CACtC,GAAM,GAAI,GAAI,cAAa,GACrB,EAAa,EAAI,EACjB,EAAa,EAAI,EACjB,EAAU,EAAe,EAAQ,YAAY,QACnD,EAAG,WAAW,EAAQ,QAAQ,EAAG,GACjC,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAY,GAC7C,KAGF,EAAQ,YAAY,OAAS,CAC3B,yBACA,oBACA,6BACA,mBACA,sBACA,oBACA,2CACA,4DACA,mEACA,6DACA,sCACA,6DACA,oEACA,6DACA,4CACA,kBACA,yCACA,yCACA,wCACA,0BACA,KACA,KAAK;AAAA,GAEP,EAAQ,YAAc,UAAY,CAChC,EAAQ,YAAY,KAAK,KAAM,CAC7B,EAAG,EAAG,EACN,EAAG,GAAI,EACP,EAAG,EAAG,KAIV,EAAQ,OAAS,UAAY,CAC3B,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAI,EAAG,EACP,GAAI,EAAG,EACP,GAAI,EAAG,KAIX,EAAQ,OAAS,UAAY,CAC3B,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAI,GAAI,GACR,EAAG,EAAG,EACN,EAAG,EAAG,KAIV,EAAQ,QAAU,SAAU,EAAQ,CAClC,GAAM,GAAI,GAAU,EACpB,EAAQ,YAAY,KAAK,KAAM,CAC7B,EAAG,GAAK,EAAG,EACX,GAAK,EAAG,EAAI,EAAI,EAAG,GAAK,EACxB,EAAG,GAAK,EAAG,KAIf,EAAQ,OAAS,SAAU,EAAM,CAC/B,GAAM,GAAI,GAAQ,EAClB,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAK,EAAG,GAAK,EAAG,EAChB,GAAK,EAAG,EAAG,EAAI,EACf,EAAG,EAAI,EAAG,EAAI,KAMlB,EAAQ,KAAO,SAAU,EAAM,CAC7B,GAAM,GAAa,EAAO,EAAK,EACzB,EAAa,EAAO,EAAK,EACzB,EAAU,EAAe,EAAQ,KAAK,QAE5C,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAG,GACpC,EAAM,EAAK,cAEX,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAW,GAC5C,KAGF,EAAQ,KAAK,OAAS,CACpB,yBACA,oBACA,6BACA,mBACA,oBACA,4BACA,8FACA,yFACA,wFACA,wFACA,wFACA,uFACA,uFACA,uFACA,uFACA,uFACA,wFACA,wFACA,wFACA,yFACA,8FACA,KACA,KAAK;AAAA,GAIP,EAAQ,SAAW,SAAU,EAAM,CACjC,GAAM,GAAa,EAAQ,EACrB,EAAa,EAAQ,EACrB,EAAU,EAAe,EAAQ,SAAS,QAEhD,EAAG,UAAU,EAAQ,QAAQ,KAAM,EAAW,GAC9C,KAGF,EAAQ,SAAS,OAAS,CACxB,yBACA,oBACA,qBACA,6BACA,yCACA,uCACA,IACA,oBACA,4BACA,oCACA,6CACA,KACA,KAAK;GDjhBT,GAAM,IAAU,KAEZ,EACA,EAEA,EAKG,YAAiB,EAAO,EAA0F,CACvH,GAAI,GACJ,GAAI,CAAC,EAAO,KAAM,IAAI,OAAM,2BAE5B,GACE,CAAE,aAAoB,YACnB,CAAE,OAAO,QAAU,aAAe,YAAiB,SACnD,CAAE,OAAO,YAAc,aAAe,YAAiB,aACvD,CAAE,OAAO,cAAgB,aAAe,YAAiB,eACzD,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,oBAAsB,aAAe,YAAiB,qBAC/D,CAAE,OAAO,kBAAoB,aAAe,YAAiB,kBAEhE,KAAM,IAAI,OAAM,uCAElB,GAAI,YAAoB,UAEtB,GAAI,EAAM,OAAS,EAAM,MAAM,SAAW,GAAK,EAAM,MAAM,KAAO,GAAK,EAAM,MAAM,KAAO,EAAG,EAAS,AAAG,QAAM,OAC1G,MAAM,IAAI,OAAM,2EAA2E,EAAM,aACjG,CAEL,GAAM,GAAgB,EAAM,cAAmB,EAAM,YAAiB,EAAM,OAAa,EAAM,OAAa,EAAM,MAAS,GAAK,EAC1H,EAAiB,EAAM,eAAoB,EAAM,aAAkB,EAAM,QAAc,EAAM,OAAa,EAAM,MAAS,GAAK,EAChI,EAAc,EACd,EAAe,EAenB,GAdI,EAAc,IAChB,GAAc,GACd,EAAe,EAAc,EAAiB,GAE5C,EAAe,IACjB,GAAe,GACf,EAAc,EAAe,EAAgB,GAI/C,AAAI,EAAO,OAAO,MAAQ,EAAG,EAAc,EAAO,OAAO,MAChD,EAAO,OAAO,OAAS,GAAG,GAAc,EAAiB,GAAO,OAAO,OAAS,IACzF,AAAI,EAAO,OAAO,OAAS,EAAG,EAAe,EAAO,OAAO,OAClD,EAAO,OAAO,MAAQ,GAAG,GAAe,EAAkB,GAAO,OAAO,MAAQ,IACrF,CAAC,GAAe,CAAC,EAAc,KAAM,IAAI,OAAM,2CACnD,AAAI,EAAC,GAAa,kBAAU,SAAU,GAAiB,kBAAU,UAAW,IAC1E,GAAY,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UAC1H,kBAAU,SAAU,GAAa,GAAS,MAAQ,GAClD,kBAAU,UAAW,GAAc,GAAS,OAAS,IAI3D,GAAM,GAAM,EAAS,WAAW,MAehC,GAdA,AAAI,YAAiB,WACnB,EAAI,aAAa,EAAO,EAAG,GAE3B,AAAI,EAAO,OAAO,MAAQ,MAAO,GAAI,WAAc,YACjD,GAAI,UAAU,EAAe,GAC7B,EAAI,MAAM,GAAI,GACd,EAAI,UAAU,EAAO,EAAG,EAAG,EAAe,EAAgB,EAAG,EAAG,iBAAU,MAAO,iBAAU,QAC3F,EAAI,aAAa,EAAG,EAAG,EAAG,EAAG,EAAG,IAEhC,EAAI,UAAU,EAAO,EAAG,EAAG,EAAe,EAAgB,EAAG,EAAG,iBAAU,MAAO,iBAAU,QAK3F,EAAO,OAAO,QAAS,CAQzB,GAPI,EAAC,GAAM,CAAC,GAAc,EAAS,QAAU,EAAU,OAAW,kBAAU,UAAW,kBAAW,UAChG,GAAa,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,iBAAU,MAAO,iBAAU,QAAU,SAAS,cAAc,UACnI,kBAAW,SAAU,kBAAU,QAAO,GAAU,MAAQ,iBAAU,OAClE,kBAAW,UAAW,kBAAU,SAAQ,GAAU,OAAS,iBAAU,QAEzE,EAAK,AAAG,MAAI,MAAM,WAAa,GAAY,IAAc,CAAE,OAAQ,IAAe,MAEhF,CAAC,EAAI,MAAO,CAAE,OAAQ,KAAM,OAAQ,GACxC,EAAG,QACH,EAAG,UAAU,aAAc,EAAO,OAAO,YACrC,EAAO,OAAO,WAAa,GAAG,EAAG,UAAU,WAAY,EAAO,OAAO,UACrE,EAAO,OAAO,YAAc,GAAG,EAAG,UAAU,UAAW,EAAO,OAAO,WACrE,EAAO,OAAO,OAAS,GAAG,EAAG,UAAU,OAAQ,EAAO,OAAO,MAC7D,EAAO,OAAO,aAAe,GAAG,EAAG,UAAU,aAAc,EAAO,OAAO,YACzE,EAAO,OAAO,MAAQ,GAAG,EAAG,UAAU,MAAO,EAAO,OAAO,KAC3D,EAAO,OAAO,UAAU,EAAG,UAAU,YACrC,EAAO,OAAO,OAAO,EAAG,UAAU,SAClC,EAAO,OAAO,SAAS,EAAG,UAAU,WACpC,EAAO,OAAO,OAAO,EAAG,UAAU,SAClC,EAAO,OAAO,YAAY,EAAG,UAAU,cACvC,EAAO,OAAO,aAAa,EAAG,UAAU,eACxC,EAAO,OAAO,UAAU,EAAG,UAAU,YACrC,EAAO,OAAO,WAAa,GAAG,EAAG,UAAU,WAAY,EAAO,OAAO,UACzE,EAAG,MAAM,OAuBT,GAAY,EACR,GAAI,GAAK,MAIf,GAAI,GACJ,GAAI,EAAU,KAAM,CAClB,GAAM,GAAQ,CAAC,EAAU,OAAQ,EAAU,MAAO,GAClD,EAAS,AAAG,WAAS,EAAU,KAAM,EAAO,iBACnC,YAAqB,WAC9B,EAAS,AAAG,UAAQ,WAAW,WACtB,EAAO,UAAY,SAAW,EAAO,UAAY,UAAW,CAErE,GAAM,GAAc,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UACtI,EAAW,MAAQ,EACnB,EAAW,OAAS,EACpB,GAAM,GAAU,EAAW,WAAW,MACtC,WAAS,UAAU,EAAW,EAAG,GACjC,EAAS,AAAG,UAAQ,WAAW,OAC1B,CAEL,GAAM,GAAc,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UACtI,EAAW,MAAQ,EACnB,EAAW,OAAS,EACpB,GAAM,GAAU,EAAW,WAAW,MACtC,WAAS,UAAU,EAAW,EAAG,GACjC,GAAM,GAAO,iBAAS,aAAa,EAAG,EAAG,EAAa,GACtD,EAAS,AAAG,UAAQ,WAAW,GAEjC,GAAM,GAAS,EAAO,UACtB,EAAS,EAAO,WAAW,GAC3B,EAAO,UACP,EAAO,UAET,GAAM,GAAS,EAAO,OAAO,OAAS,EAAY,KAClD,MAAO,CAAE,SAAQ,UE/JnB,2HCqNA,GAAM,GAAiB,CACrB,QAAS,QAIT,cAAe,aACf,SAAU,aAEV,MAAO,GACP,MAAO,GAIP,QAAS,GAIT,WAAY,GAKZ,OAAQ,GAIR,eAAgB,GAKhB,OAAQ,OAIR,OAAQ,CAEN,QAAS,GACT,MAAO,EACP,OAAQ,EAIR,KAAM,GACN,OAAQ,GACR,WAAY,EACZ,SAAU,EACV,UAAW,EACX,KAAM,EACN,WAAY,EACZ,IAAK,EACL,SAAU,GACV,MAAO,GACP,QAAS,GACT,WAAY,GACZ,YAAa,GACb,SAAU,GACV,SAAU,GAGZ,QAAS,CACP,QAAS,IAGX,KAAM,CACJ,QAAS,GAIT,SAAU,CACR,UAAW,sBAEX,SAAU,GAGV,SAAU,GAEV,WAAY,GAKZ,YAAa,GAEb,cAAe,GACf,aAAc,GAEd,eAAgB,GAGhB,OAAQ,IAGV,KAAM,CACJ,QAAS,GACT,UAAW,iBAIb,KAAM,CACJ,QAAS,GACT,UAAW,aAIb,YAAa,CACX,QAAS,GAET,UAAW,eAEX,WAAY,IAId,QAAS,CACP,QAAS,GACT,cAAe,GACf,WAAY,GACZ,UAAW,gBAIb,IAAK,CACH,QAAS,GACT,UAAW,WAEX,WAAY,IAId,OAAQ,CACN,QAAS,GACT,cAAe,GACf,UAAW,cAEX,WAAY,IAId,UAAW,CACT,QAAS,GACT,UAAW,oBAKf,KAAM,CACJ,QAAS,GACT,UAAW,eAIX,cAAe,EAGf,eAAgB,GAGhB,UAAW,IAIb,KAAM,CACJ,QAAS,GACT,SAAU,GAEV,WAAY,GAKZ,YAAa,GAEb,cAAe,GACf,aAAc,GAEd,eAAgB,GAEhB,SAAU,EAEV,UAAW,GACX,SAAU,CACR,UAAW,mBAGb,SAAU,CACR,UAAW,sBAKf,OAAQ,CACN,QAAS,GACT,UAAW,eAGX,cAAe,GACf,aAAc,GAEd,WAAY,GACZ,WAAY,KD/WT,GAAM,IAAuB,CAClC,MAAe,2BACf,WAAoB,yBACpB,YAAqB,QACrB,KAAc,6BACd,WAAoB,GACpB,UAAmB,EACnB,UAAmB,EACnB,UAAmB,GACnB,WAAqB,GACrB,WAAqB,GACrB,UAAoB,GACpB,aAAuB,GACvB,aAAuB,GACvB,SAAmB,GACnB,UAAoB,GACpB,eAAyB,GACzB,YAAsB,GACtB,iBAA2B,IAG7B,YAAe,EAAK,EAAG,EAAG,EAAI,EAAG,EAAc,CAC7C,EAAI,UAAY,EAAa,UAAY,EAAI,QAAQ,MAAS,EAAI,MAAO,MAAS,EAAI,eAAkB,EAAa,MACrH,EAAI,YACJ,EAAI,IAAI,EAAG,EAAG,EAAa,UAAW,EAAG,EAAI,KAAK,IAClD,EAAI,OAGN,YAAc,EAAK,EAAG,EAAG,EAAO,EAAQ,EAAc,CAEpD,GADA,EAAI,YACA,EAAa,UAAW,CAC1B,GAAM,GAAM,GAAI,EAAI,GAAS,EACvB,EAAM,GAAI,EAAI,GAAU,EAC9B,EAAI,QAAQ,EAAI,EAAI,EAAQ,EAAG,EAAS,EAAG,EAAG,EAAG,EAAI,KAAK,QAE1D,GAAI,UAAY,EAAa,UAC7B,EAAI,OAAO,EAAI,EAAa,UAAW,GACvC,EAAI,OAAO,EAAI,EAAQ,EAAa,UAAW,GAC/C,EAAI,iBAAiB,EAAI,EAAO,EAAG,EAAI,EAAO,EAAI,EAAa,WAC/D,EAAI,OAAO,EAAI,EAAO,EAAI,EAAS,EAAa,WAChD,EAAI,iBAAiB,EAAI,EAAO,EAAI,EAAQ,EAAI,EAAQ,EAAa,UAAW,EAAI,GACpF,EAAI,OAAO,EAAI,EAAa,UAAW,EAAI,GAC3C,EAAI,iBAAiB,EAAG,EAAI,EAAQ,EAAG,EAAI,EAAS,EAAa,WACjE,EAAI,OAAO,EAAG,EAAI,EAAa,WAC/B,EAAI,iBAAiB,EAAG,EAAG,EAAI,EAAa,UAAW,GACvD,EAAI,YAEN,EAAI,SAGN,YAAe,EAAK,EAAmB,GAAI,EAAc,CACvD,GAAI,MAAW,QAAa,EAAO,SAAW,GAC9C,GAAI,YACJ,EAAI,OAAO,EAAO,GAAG,GAAI,EAAO,GAAG,IACnC,OAAW,KAAM,GACf,EAAI,YAAc,EAAa,UAAY,EAAG,GAAK,QAAQ,MAAS,EAAI,EAAG,OAAQ,MAAS,EAAI,EAAG,gBAAmB,EAAa,MACnI,EAAI,UAAY,EAAa,UAAY,EAAG,GAAK,QAAQ,MAAS,EAAI,EAAG,OAAQ,MAAS,EAAI,EAAG,gBAAmB,EAAa,MACjI,EAAI,OAAO,EAAG,GAAI,SAAS,EAAG,KAEhC,EAAI,SACA,EAAa,cACf,GAAI,YACJ,EAAI,SAIR,YAAgB,EAAK,EAAmB,GAAI,EAAc,CACxD,GAAI,MAAW,QAAa,EAAO,SAAW,GAC9C,IAAI,CAAC,EAAa,WAAa,EAAO,QAAU,EAAG,CACjD,GAAM,EAAK,EAAQ,GACnB,OAEF,EAAI,OAAO,EAAO,GAAG,GAAI,EAAO,GAAG,IACnC,OAAS,GAAI,EAAG,EAAI,EAAO,OAAS,EAAG,IAAK,CAC1C,GAAM,GAAM,GAAO,GAAG,GAAK,EAAO,EAAI,GAAG,IAAM,EACzC,EAAM,GAAO,GAAG,GAAK,EAAO,EAAI,GAAG,IAAM,EAC/C,EAAI,iBAAiB,EAAO,GAAG,GAAI,EAAO,GAAG,GAAI,EAAI,GAEvD,EAAI,iBAAiB,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,IACzI,EAAI,SACA,EAAa,cACf,GAAI,YACJ,EAAI,SAIR,kBAA8B,EAA6B,EAAoB,EAA2B,CACxG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,CAAC,EAAK,OACV,EAAI,KAAO,EAAa,KACxB,EAAI,UAAY,EAAa,MAC7B,GAAI,GAAI,EACR,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IAAK,CACtC,GAAI,GAAc,GACd,EAAa,GAEjB,GADA,CAAC,EAAO,GAAQ,OAAO,QAAQ,EAAO,IACjC,EAAK,OAAS,GAAO,EAAK,GAAG,OAAS,EAAI,CAC7C,GAAM,GAAS,EAAM,GAAK,EAAI,IAAI,EAAM,KAAO,GACzC,EAAQ,GAAG,EAAM,MAAM,MAAW,EAAK,KAC7C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAG,EAAK,EAAI,EAAa,aAE/C,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAG,EAAK,EAAI,EAAa,YAC7C,GAAK,IAKX,kBAA2B,EAA6B,EAAoB,EAA2B,CACrG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,OAAW,KAAK,GAAQ,CACtB,EAAI,KAAO,EAAa,KACxB,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MACzB,EAAa,WACf,CAAI,EAAa,YAAa,GAAK,EAAK,EAAS,MAAQ,EAAE,OAAO,GAAI,EAAS,OAAS,EAAE,OAAO,GAAI,EAAS,MAAQ,EAAE,OAAO,GAAI,EAAS,OAAS,EAAE,OAAO,GAAI,GAC7J,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,IAGzD,GAAM,GAAkB,GAMxB,GALA,EAAO,KAAK,oBAAoB,KAAK,MAAM,IAAM,EAAE,gBAC/C,EAAE,kBAAkB,EAAO,KAAK,GAAG,EAAE,QAAU,MAAM,KAAK,MAAM,IAAM,EAAE,gCAExE,EAAE,KAAK,EAAO,KAAK,QAAQ,EAAE,KAAO,MACpC,EAAE,MAAM,EAAO,KAAK,kBAAkB,EAAE,QACxC,EAAE,SAAW,EAAE,QAAQ,OAAS,EAAG,CACrC,GAAM,GAAU,EAAE,QAAQ,IAAI,AAAC,GAAM,GAAG,KAAK,MAAM,IAAM,EAAE,WAAW,EAAE,WACxE,EAAO,KAAK,EAAQ,KAAK,MAE3B,AAAI,EAAE,UAAY,EAAE,SAAS,OAAS,EAAE,SAAS,MAAM,MAAM,EAAO,KAAK,SAAS,KAAK,MAAM,IAAM,EAAE,SAAS,MAAM,MAAQ,WAAW,KAAK,MAAM,IAAM,EAAE,SAAS,MAAM,KAAO,aAAa,KAAK,MAAM,IAAM,EAAE,SAAS,MAAM,OAAS,OACpO,EAAO,SAAW,GAAG,EAAO,KAAK,QACrC,EAAI,UAAY,EAAa,MAC7B,OAAS,GAAI,EAAO,OAAS,EAAG,GAAK,EAAG,IAAK,CAC3C,GAAM,GAAI,KAAK,IAAI,EAAE,IAAI,GAAI,GACvB,EAAI,EAAI,EAAa,WAAa,EAAE,IAAI,GAC9C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,GAAI,EAAI,EAAG,EAAI,KAErC,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,GAAI,EAAI,EAAG,EAAI,IAGrC,GADA,EAAI,UAAY,EACZ,EAAE,MAAQ,EAAE,KAAK,OAAS,EAAG,CAC/B,GAAI,EAAa,WACf,OAAW,KAAM,GAAE,KAAM,GAAM,EAAK,EAAG,GAAI,EAAG,GAAI,EAAG,GAAI,GAG3D,GAAI,EAAa,aAAc,CAC7B,EAAI,UAAY,EAChB,OAAS,GAAI,EAAG,EAAI,GAAc,OAAS,EAAG,IAAK,CACjD,GAAM,GAAS,CACb,GAAc,EAAI,EAAI,GACtB,GAAc,EAAI,EAAI,GACtB,GAAc,EAAI,EAAI,IACtB,IAAI,AAAC,GAAU,EAAE,KAAK,IACxB,GAAM,EAAK,EAAQ,GAGrB,GAAI,EAAE,aAAe,EAAE,YAAY,YAAa,CAC9C,EAAI,YAAc,EAAa,SAAW,2BAA6B,EAAa,MACpF,EAAI,YACJ,GAAM,GAAQ,KAAK,IAAI,EAAE,YAAY,YAAY,GAAG,GAAK,EAAE,YAAY,YAAY,GAAG,IAAM,EACtF,EAAQ,KAAK,IAAI,EAAE,YAAY,YAAY,GAAG,GAAK,EAAE,YAAY,YAAY,GAAG,IAAM,EAC5F,EAAI,QAAQ,EAAE,YAAY,YAAY,GAAG,GAAI,EAAE,YAAY,YAAY,GAAG,GAAI,EAAO,EAAO,EAAG,EAAG,EAAI,KAAK,IAC3G,EAAI,SACA,EAAa,cACf,GAAI,UAAY,EAAa,SAAW,2BAA6B,EAAa,MAClF,EAAI,QAGR,GAAI,EAAE,aAAe,EAAE,YAAY,aAAc,CAC/C,EAAI,YAAc,EAAa,SAAW,2BAA6B,EAAa,MACpF,EAAI,YACJ,GAAM,GAAQ,KAAK,IAAI,EAAE,YAAY,aAAa,GAAG,GAAK,EAAE,YAAY,aAAa,GAAG,IAAM,EACxF,EAAQ,KAAK,IAAI,EAAE,YAAY,aAAa,GAAG,GAAK,EAAE,YAAY,aAAa,GAAG,IAAM,EAC9F,EAAI,QAAQ,EAAE,YAAY,aAAa,GAAG,GAAI,EAAE,YAAY,aAAa,GAAG,GAAI,EAAO,EAAO,EAAG,EAAG,EAAI,KAAK,IAC7G,EAAI,SACA,EAAa,cACf,GAAI,UAAY,EAAa,SAAW,2BAA6B,EAAa,MAClF,EAAI,YAQhB,GAAM,IAAsB,GAC5B,kBAA2B,EAA6B,EAAoB,EAA2B,CACrG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IAAK,CAkBtC,GAhBI,CAAC,GAAc,IAAM,EAAa,gBAAgB,IAAc,GAAK,IAAK,EAAO,KACrF,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,EAAI,UAAY,EAAa,UAC7B,EAAI,KAAO,EAAa,KACpB,EAAa,WACf,IAAK,EAAK,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,GAC9E,EAAa,YACX,GAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,QAAQ,IAAM,EAAO,GAAG,SAAU,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,KAErI,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,QAAQ,IAAM,EAAO,GAAG,SAAU,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,MAGnI,EAAa,WACf,OAAS,GAAK,EAAG,EAAK,EAAO,GAAG,UAAU,OAAQ,IAChD,EAAI,UAAY,EAAa,UAAY,EAAO,GAAG,UAAU,GAAI,SAAS,EAAI,QAAQ,MAAS,EAAI,EAAO,GAAG,UAAU,GAAI,SAAS,MAAO,MAAS,EAAI,EAAO,GAAG,UAAU,GAAI,SAAS,eAAkB,EAAa,MACxN,AAAI,EAAa,eACf,IAAc,GAAG,UAAU,GAAI,GAAM,IAAc,GAAG,UAAU,GAAI,GAAK,EAAO,GAAG,UAAU,GAAI,SAAS,GAAK,EAC/G,GAAc,GAAG,UAAU,GAAI,GAAM,IAAc,GAAG,UAAU,GAAI,GAAK,EAAO,GAAG,UAAU,GAAI,SAAS,GAAK,EAC/G,GAAM,EAAK,GAAc,GAAG,UAAU,GAAI,GAAI,GAAc,GAAG,UAAU,GAAI,GAAI,EAAG,IAEpF,GAAM,EAAK,EAAO,GAAG,UAAU,GAAI,SAAS,EAAG,EAAO,GAAG,UAAU,GAAI,SAAS,EAAG,EAAG,GAI5F,GAAI,EAAa,YACf,GAAI,KAAO,EAAa,KACpB,EAAO,GAAG,WACZ,OAAW,KAAM,GAAO,GAAG,UACzB,EAAI,UAAY,EAAa,UAAY,EAAG,SAAS,EAAI,QAAQ,MAAS,EAAI,EAAG,SAAS,MAAO,MAAS,EAAI,EAAG,SAAS,eAAkB,EAAa,MACzJ,EAAI,SAAS,GAAG,EAAG,QAAQ,KAAK,MAAM,IAAM,EAAG,UAAW,EAAG,SAAS,EAAI,EAAG,EAAG,SAAS,EAAI,GAInG,GAAI,EAAa,cAAgB,EAAO,GAAG,UAAW,CACpD,GAAI,GACE,EAAgB,GAEtB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IAC/F,EAAO,SAAW,GAAG,GAAM,EAAK,EAAQ,GAE5C,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAQ,EAAK,MAAQ,EAAS,KAAK,gBAAgB,EAAO,KAAK,CAAC,EAAK,SAAS,EAAG,EAAK,SAAS,IACnG,GAAO,EAAK,EAAQ,MAM1B,kBAA2B,EAA6B,EAAoB,EAA2B,CACrG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KACxB,OAAW,KAAK,GAAQ,CACtB,GAAI,EAAa,UAAW,CAC1B,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAI,GACJ,GAAI,CAAC,EAAa,iBAChB,EAAM,EAAa,YAAc,EAAE,OAAS,EAAE,YAE9C,EAAM,CAAC,OAAO,iBAAkB,OAAO,iBAAkB,EAAG,GACxD,EAAE,WAAa,EAAE,UAAU,OAAS,EAAG,CACzC,OAAW,KAAM,GAAE,UACjB,AAAI,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAElC,EAAI,IAAM,EAAI,GACd,EAAI,IAAM,EAAI,GAGlB,AAAI,EAAa,YAAa,GAAK,EAAK,EAAS,MAAQ,EAAI,GAAI,EAAS,OAAS,EAAI,GAAI,EAAS,MAAQ,EAAI,GAAI,EAAS,OAAS,EAAI,GAAI,GACzI,GAAK,EAAK,EAAI,GAAI,EAAI,GAAI,EAAI,GAAI,EAAI,GAAI,GAC3C,EAAa,YACX,GAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,OAAQ,EAAI,GAAK,EAAG,EAAI,EAAI,GAAK,EAAa,WAAY,EAAI,KAE7E,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,OAAQ,EAAI,GAAK,EAAG,EAAI,EAAI,GAAK,EAAa,WAAY,EAAI,KAE7E,EAAI,SAEN,GAAI,EAAa,YACX,EAAE,WAAa,EAAE,UAAU,OAAS,EACtC,OAAW,KAAM,GAAE,UACjB,EAAI,UAAY,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAG,OAAQ,MAAS,EAAI,EAAG,gBAAmB,EAAa,MACxH,GAAM,EAAK,EAAG,GAAI,EAAG,GAAI,EAAG,GAIlC,GAAI,EAAa,aAAc,CAC7B,GAAM,GAAU,AAAC,GAAS,CACxB,GAAI,EAAC,EACL,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAC/B,EAAI,UAAY,EAAa,UAC7B,EAAI,YACJ,EAAI,YAAc,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAK,GAAG,OAAQ,MAAS,EAAI,EAAK,GAAG,gBAAmB,EAAa,MACpI,EAAI,OAAO,EAAK,EAAI,EAAI,EAAI,EAAI,GAAG,GAAI,EAAK,EAAI,EAAI,EAAI,EAAI,GAAG,IAC/D,EAAI,OAAO,EAAK,GAAG,GAAI,EAAK,GAAG,IAC/B,EAAI,UAGR,EAAQ,EAAE,YAAY,aACtB,EAAQ,EAAE,YAAY,cACtB,EAAQ,EAAE,YAAY,YACtB,EAAQ,EAAE,YAAY,OACtB,EAAQ,EAAE,YAAY,UAM5B,kBAA6B,EAA6B,EAAoB,EAA2B,CACvG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KACxB,OAAW,KAAK,GACd,GAAI,EAAa,UAAW,CAK1B,GAJA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,AAAI,EAAa,YAAa,GAAK,EAAK,EAAS,MAAQ,EAAE,OAAO,GAAI,EAAS,OAAS,EAAE,OAAO,GAAI,EAAS,MAAQ,EAAE,OAAO,GAAI,EAAS,OAAS,EAAE,OAAO,GAAI,GAC7J,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,GACnD,EAAa,WAAY,CAC3B,GAAM,GAAQ,GAAG,KAAK,MAAM,IAAM,EAAE,WAAW,EAAE,QACjD,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,KAElF,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,IAElF,EAAI,WAKV,kBAA6B,EAA6B,EAA8B,CAEtF,GADI,CAAC,GAAY,CAAC,GACd,CAAE,aAAoB,qBAAsB,CAAE,aAAqB,oBAAoB,OAC3F,GAAM,GAAS,EAAS,WAAW,MACnC,WAAQ,UAAU,EAAU,EAAG,GAGjC,kBAA0B,EAA6B,EAAY,EAA2B,CAC5F,GAAM,GAAe,EAAU,GAAS,GACxC,AAAI,CAAC,GAAU,CAAC,GACV,YAAoB,oBAC1B,IAAK,EAAU,EAAO,KAAM,GAC5B,GAAK,EAAU,EAAO,KAAM,GAC5B,GAAK,EAAU,EAAO,KAAM,GAC5B,GAAQ,EAAU,EAAO,QAAS,GAClC,GAAO,EAAU,EAAO,OAAQ,IE5d3B,GAAM,IAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kEA0JP,GAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;qBC3JpB,+BAqDO,QAAY,CA+EjB,YAAY,EAA8B,GAAI,CAX9C,oBACA,oBACA,oBACA,oBAgEA,aAAU,IAAI,IAAQ,CACpB,GAAI,CAAC,OAAK,IAAqB,OAC/B,GAAM,GAAU,KAAK,GAAG,SAAS,MAAM,WACjC,EAAW,OAAK,IACtB,QAAK,GAAc,GACnB,GAAM,GAAS,EAAU,EACzB,AAAI,IAAW,GAAG,EAAI,GAAG,EAAK,IAKhC,YAAU,AAAC,GAAyB,CAClC,GAAI,CAAC,OAAK,IAAc,MAAO,MAC/B,GAAI,CAAC,EAAO,MAAO,uBACnB,GAAI,KAAK,GAAG,IAAI,MAAM,SAAW,CAAE,aAAoB,WAAS,MAAO,yBACvE,GAAI,CACF,KAAK,GAAG,mBACF,EAAN,CACA,MAAO,qBAET,MAAO,QAwGT,YAAgB,MAAO,EAAQ,KAAU,CAxT3C,MAyTI,GAAI,KAAK,OAAO,SAAY,KAAK,OAAO,QAAQ,OAAS,GAAM,GAAU,KAAK,GAAG,eAAiB,KAAK,OAAO,QAAU,CACtH,GAAM,GAAY,IAYlB,GAXA,KAAK,MAAQ,UAWT,KAAK,OAAO,SAAW,KAAK,OAAO,QAAQ,OAAS,EAAG,CAOzD,GALI,KAAK,GAAG,IAAI,MAAM,YAAc,KAAK,OAAO,UAAY,cAAc,MAAK,OAAO,QAAU,SAC5F,KAAK,GAAG,IAAI,MAAM,SAAY,MAAK,OAAO,UAAY,SAAW,KAAK,OAAO,UAAY,YAAY,MAAK,OAAO,QAAU,cAE3H,KAAK,OAAO,OAAO,EAAI,mBAAoB,KAAK,OAAO,SAEvD,KAAK,OAAO,UAAY,OAAQ,CAElC,GADI,KAAK,OAAO,OAAO,EAAI,aAAc,KAAK,OAAO,UACjD,MAAO,SAAK,KAAL,cAAS,eAAiB,YAAa,KAAK,GAAG,aAAa,KAAK,OAAO,cAC9E,MAAM,IAAI,OAAM,qCACrB,GAAM,GAAO,KAAM,MAAK,GAAG,MAAM,SAAS,yBACpC,EAAK,KAAM,MAAK,GAAG,MAAM,SAAS,gCACxC,AAAI,KAAK,OAAO,OAAO,EAAI,mBAAmB,EAAO,OAAS,aAAa,EAAK,gBAAkB,oBAC9F,KAAK,OAAO,OAAS,CAAC,GAAM,EAAI,6CAGtC,AAAI,KAAK,OAAO,UAAY,WAAW,AAAQ,KAC/C,GAAI,CACF,KAAM,MAAK,GAAG,WAAW,KAAK,OAAO,eAC9B,EAAP,CACA,EAAI,6BAA8B,KAAK,OAAO,QAAS,IAK3D,GAFA,KAAK,GAAG,iBAEJ,KAAK,GAAG,eAAiB,SAAW,KAAK,GAAG,eAAiB,UAAW,CAC1E,KAAK,GAAG,IAAI,IAAI,+BAAgC,IAChD,KAAK,GAAG,IAAI,IAAI,2BAA4B,IACxC,KAAK,OAAO,YACd,GAAI,kDAAmD,KAAK,OAAO,YACnE,KAAK,GAAG,IAAI,IAAI,iCAAkC,KAAK,OAAO,WAAa,EAAI,KAEjF,GAAM,GAAK,KAAM,MAAK,GAAG,UAAU,kBAAkB,GACrD,AAAI,KAAK,OAAO,OAAO,EAAI,cAAc,EAAG,aAAa,EAAG,qBAAqB,EAAG,aAAa,EAAG,aAEtG,KAAM,MAAK,GAAG,QACd,KAAK,KAAK,QAAU,KAAK,MAAM,IAAQ,MAoK3C,YAAgB,SAAY,CAC1B,GAAM,GAAY,CAAC,EAAQ,EAAO,6BAA+B,MAAM,QAAQ,YAAe,KAAU,KAAK,AAAC,GAAQ,EAAI,QACtH,EACA,EACJ,OAAQ,KAAK,OAAO,YACb,OAAQ,EAAO,KAAM,GAAiB,IAAO,UAC7C,OAAQ,EAAO,KAAM,GAAiB,IAAO,cACzC,EAAO,KAElB,GAAI,EAAM,CACR,GAAM,GAAS,KAAM,mBAAkB,GACvC,EAAM,KAAM,MAAK,OAAO,EAAQ,KAAK,QACrC,EAAO,QAET,MAAO,KAIT,YAAgB,SAAY,GAAI,SAAQ,AAAC,GAAY,CACnD,GAAI,GACA,EAAO,EACX,OAAQ,KAAK,OAAO,YACb,OACH,EAAO,IACP,EAAM,0BAAmC,GACzC,UACG,WACA,OACH,EAAO,KACP,EAAM,0BAAmC,GACzC,cAEA,EAAM,KAGV,GAAM,GAAM,GAAI,OAChB,EAAI,OAAS,SAAY,CACvB,GAAM,GAAU,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAM,GAAQ,SAAS,cAAc,UACnH,EAAO,MAAQ,EAAI,aACnB,EAAO,OAAS,EAAI,cACpB,GAAM,GAAM,EAAO,WAAW,MAC9B,WAAK,UAAU,EAAK,EAAG,GAEvB,GAAM,GAAM,KAAM,MAAK,OAAO,EAAQ,KAAK,QAC3C,EAAQ,IAEV,AAAI,EAAK,EAAI,IAAM,EACd,EAAQ,SAIf,YAAc,SAAY,CACxB,GAAM,GAAO,AAAC,GAAQ,OAAO,KAAK,EAAK,UACnC,EAGJ,GAFI,KAAK,OAAO,SAAW,QAAQ,GAAM,EAAY,KACjD,MAAK,OAAO,SAAW,QAAU,KAAK,OAAO,SAAW,SAAQ,GAAM,EAAY,KAClF,CAAC,EAAK,MAAO,MACjB,GAAI,GACJ,GAAI,MAAU,SAAY,YAAa,CACrC,GAAM,GAAO,AAAG,OAAQ,WAAW,GAC7B,EAAW,EAAK,WAAW,GACjC,KAAK,GAAG,QAAQ,GAEhB,EAAM,KAAM,MAAK,OAAO,EAAU,KAAK,QACvC,KAAK,GAAG,QAAQ,OAEhB,AAAI,MAAK,OAAO,OAAO,EAAI,+BAS7B,MAAO,KArdP,KAAK,GAAK,EACV,KAAK,KAAO,GACZ,KAAK,QAAc,GACnB,KAAK,OAAS,EAAU,EAAU,GAClC,KAAK,MAAQ,OACb,QAAK,GAAc,GACnB,QAAK,GAAsB,IAC3B,QAAK,GAAe,IACpB,QAAK,GAAY,IACjB,KAAK,KAAO,GAEZ,KAAK,OAAS,CACZ,KAAM,KACN,QAAS,KACT,UAAW,KACX,cAAe,KACf,SAAU,KACV,KAAM,KACN,IAAK,KACL,OAAQ,KACR,QAAS,KACT,UAAW,KACX,QAAS,KACT,QAAS,MAIX,KAAK,MAAQ,AAAC,GAAiB,AAAM,GAAQ,EAAO,KAAK,QAEzD,KAAK,QAAU,CACb,YACA,OACA,UACA,WACA,WACA,KAAM,KAAK,OAAO,KAAK,UAAU,SAAS,WAAa,GAAU,GACjE,KAAM,GACN,YAEF,KAAK,kBAA6B,GAClC,KAAK,UAAqB,GAE1B,KAAK,QAAU,AAAQ,KAMzB,aAAyH,CACvH,MAAI,MAAK,OAAO,QAAwB,GACjC,GA+BT,WAAW,EAA2B,EAAmC,CACvE,MAAI,MAAK,OAAO,KAAK,YAAY,QAAgB,AAAQ,GAAW,EAAY,GAC5E,KAAK,OAAO,KAAK,UAAU,QAAgB,AAAU,GAAW,EAAY,GACzE,EAQT,QAAQ,EAA8B,CACpC,MAAO,AAAQ,IAAQ,GAWzB,MAAM,EAA8B,EAAkE,EAAY,EAA8E,CAC9L,MAAO,AAAQ,IAAM,EAAe,EAAI,QAMpC,MAAK,EAA8B,GAAI,CAC3C,KAAK,MAAQ,OACb,GAAM,GAAY,IAClB,AAAI,GAAY,MAAK,OAAS,EAAU,KAAK,OAAQ,IAEjD,OAAK,KACH,MAAK,OAAO,OAAO,EAAI,YAAY,KAAK,WACxC,KAAK,OAAO,OAAO,EAAI,iBAAiB,KAAK,GAAG,gBAChD,KAAK,OAAO,OAAO,EAAI,YAAa,KAAK,QAAQ,UACjD,KAAK,OAAO,OAAO,EAAI,SAAU,KAAK,QAAQ,OAElD,KAAM,QAAK,IAAL,UAAmB,IACrB,KAAK,GAAG,IAAI,MAAM,YAChB,MAAK,OAAO,OAAO,EAAI,iBAAkB,KAAK,QAC9C,KAAK,OAAO,OAAO,EAAI,YAAa,KAAK,GAAG,IAAI,SAGxD,AAAI,KAAK,OAAO,MACd,CACE,KAAK,OAAO,KACZ,KAAK,OAAO,IACZ,KAAK,OAAO,OACZ,KAAK,OAAO,QACZ,KAAK,OAAO,UACZ,KAAK,OAAO,SACZ,KAAK,OAAO,QACZ,KAAK,OAAO,UACZ,KAAK,OAAO,cACZ,KAAK,OAAO,QACZ,KAAK,OAAO,SACV,KAAM,SAAQ,IAAI,CACpB,KAAK,OAAO,MAAS,MAAK,OAAO,KAAK,QAAU,AAAS,GAAK,KAAK,QAAU,MAC7E,KAAK,OAAO,KAAS,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,IAAI,QAAW,AAAI,GAAK,KAAK,QAAU,MACzG,KAAK,OAAO,QAAY,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,OAAO,QAAW,AAAO,GAAK,KAAK,QAAU,MAClH,KAAK,OAAO,SAAa,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,QAAQ,QAAW,AAAQ,GAAK,KAAK,QAAU,MACrH,KAAK,OAAO,WAAe,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,UAAU,QAAW,AAAU,GAAK,KAAK,QAAU,MAC3H,KAAK,OAAO,UAAa,MAAK,OAAO,KAAK,QAAU,AAAS,GAAK,KAAK,QAAU,MACjF,KAAK,OAAO,SAAY,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,UAAU,SAAS,WAAkB,AAAQ,GAAK,KAAK,QAAU,MACtI,KAAK,OAAO,WAAc,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,UAAU,SAAS,aAAe,AAAU,GAAK,KAAK,QAAU,MACvI,KAAK,OAAO,eAAkB,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,UAAU,SAAS,iBAAmB,AAAc,GAAK,KAAK,QAAU,MACnJ,KAAK,OAAO,SAAY,MAAK,OAAO,OAAO,QAAU,AAAQ,GAAK,KAAK,QAAU,MACjF,KAAK,OAAO,SAAa,MAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,YAAY,QAAW,AAAQ,GAAK,KAAK,QAAU,QAGvH,MAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,MAAM,MAAK,OAAO,KAAO,KAAM,AAAS,IAAK,KAAK,SAC3F,KAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,IAAI,SAAW,CAAC,KAAK,OAAO,KAAK,MAAK,OAAO,IAAM,KAAM,AAAI,IAAK,KAAK,SACpH,KAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,OAAO,SAAW,CAAC,KAAK,OAAO,QAAQ,MAAK,OAAO,OAAS,KAAM,AAAO,IAAK,KAAK,SAChI,KAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,QAAQ,SAAW,CAAC,KAAK,OAAO,SAAS,MAAK,OAAO,QAAU,KAAM,AAAQ,IAAK,KAAK,SACpI,KAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,UAAU,SAAW,CAAC,KAAK,OAAO,WAAW,MAAK,OAAO,UAAY,KAAM,AAAU,IAAK,KAAK,SAC5I,KAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,UAAU,MAAK,OAAO,SAAW,KAAM,AAAS,IAAK,KAAK,SACnG,KAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,SAAW,KAAK,OAAO,KAAK,UAAU,SAAS,YAAY,MAAK,OAAO,QAAU,KAAM,AAAQ,IAAK,KAAK,SAClJ,KAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,WAAa,KAAK,OAAO,KAAK,UAAU,SAAS,cAAc,MAAK,OAAO,UAAY,KAAM,AAAU,IAAK,KAAK,SAC1J,KAAK,OAAO,KAAK,SAAW,CAAC,KAAK,OAAO,eAAiB,KAAK,OAAO,KAAK,UAAU,SAAS,kBAAkB,MAAK,OAAO,cAAgB,KAAM,AAAc,IAAK,KAAK,SAC1K,KAAK,OAAO,OAAO,SAAW,CAAC,KAAK,OAAO,SAAS,MAAK,OAAO,QAAU,KAAM,AAAQ,IAAK,KAAK,SAClG,KAAK,OAAO,KAAK,SAAW,KAAK,OAAO,KAAK,YAAY,SAAW,CAAC,KAAK,OAAO,SAAS,MAAK,OAAO,QAAU,KAAM,AAAQ,IAAK,KAAK,UAG1I,OAAK,KACH,MAAK,OAAO,OAAO,EAAI,mBAAoB,KAAK,GAAG,SAAS,MAAM,SAAU,QAAS,KAAK,GAAG,SAAS,MAAM,WAAY,WAC5H,QAAK,GAAY,KAGnB,GAAM,GAAU,KAAK,MAAM,IAAQ,GACnC,AAAI,EAAW,MAAK,KAAK,MAAQ,IAAI,MAAK,KAAK,KAAO,QAkElD,QAAO,EAAc,EAA8B,GAA6B,CAEpF,MAAO,IAAI,SAAQ,KAAO,IAAY,CAvX1C,QAwXM,KAAK,MAAQ,SACb,GAAI,GAGJ,KAAK,OAAS,EAAU,KAAK,OAAQ,GAGrC,KAAK,MAAQ,QACb,GAAM,GAAQ,OAAK,IAAL,UAAa,GAC3B,AAAI,GACF,GAAI,EAAO,GACX,EAAQ,CAAE,WAGZ,GAAM,GAAY,IAGlB,KAAM,QAAK,IAAL,WAGN,KAAM,MAAK,OAEP,KAAK,OAAO,QAAQ,KAAK,GAAG,SAAS,aACzC,KAAK,QAAQ,gBAGb,GAAI,GACJ,AAAI,GAAS,KAAK,OAAO,gBACtB,OAAO,mBAAqB,aAAe,YAAiB,mBACzD,MAAO,QAAU,aAAe,YAAiB,QACjD,MAAO,YAAc,aAAe,YAAiB,YACrD,MAAO,cAAgB,aAAe,aAAiB,eAE3D,GAAI,gCACJ,EAAyB,KAAK,OAAO,eACrC,KAAK,OAAO,eAAiB,IAG/B,EAAY,IACZ,GAAM,GAAU,AAAM,GAAQ,EAAO,KAAK,QAC1C,GAAI,CAAC,GAAW,CAAC,EAAQ,OAAQ,CAC/B,EAAI,qCACJ,EAAQ,CAAE,MAAO,sCACjB,OAEF,KAAK,KAAK,MAAQ,KAAK,MAAM,IAAQ,GACrC,KAAK,QAAQ,cAGb,GAAI,GACA,EACA,EACA,EACA,EAGJ,AAAI,KAAK,OAAO,MACd,GAAU,KAAK,OAAO,KAAK,QAAU,AAAQ,GAAW,KAAM,EAAQ,QAAU,GAC5E,KAAK,KAAK,MAAM,MAAO,MAAK,KAAK,MAErC,MAAK,MAAQ,WACb,EAAY,IACZ,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAQ,IAAW,KAAM,EAAQ,QAAU,GACtF,EAAU,KAAK,MAAM,IAAQ,GACzB,EAAU,GAAG,MAAK,KAAK,KAAO,IAIpC,KAAK,QAAQ,eACb,AAAI,KAAK,OAAO,MACd,CAAI,KAAK,OAAO,KAAK,UAAU,SAAS,WAAY,EAAU,KAAK,OAAO,KAAK,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACnI,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,aAAc,EAAU,KAAK,OAAO,KAAK,QAAU,AAAU,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACxI,KAAK,OAAO,KAAK,UAAU,SAAS,kBAAkB,GAAU,KAAK,OAAO,KAAK,QAAU,AAAc,GAAQ,EAAQ,OAAQ,KAAK,QAAU,IACrJ,KAAK,KAAK,MAAM,MAAO,MAAK,KAAK,MAErC,MAAK,MAAQ,WACb,EAAY,IACZ,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,WAAY,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GACzI,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,aAAc,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAU,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC9I,KAAK,OAAO,KAAK,UAAU,SAAS,kBAAkB,GAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAc,IAAQ,EAAQ,OAAQ,KAAK,QAAU,IAC/J,EAAU,KAAK,MAAM,IAAQ,GACzB,EAAU,GAAG,MAAK,KAAK,KAAO,IAEpC,KAAK,QAAQ,aAGb,KAAK,QAAQ,eACb,AAAI,KAAK,OAAO,MACd,GAAU,KAAK,OAAO,KAAK,QAAU,QAAK,OAAO,WAAZ,cAAsB,cAAc,EAAQ,OAAQ,KAAK,QAAU,GACpG,KAAK,KAAK,MAAM,MAAO,MAAK,KAAK,MAErC,MAAK,MAAQ,WACb,EAAY,IACZ,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,SAAK,OAAO,WAAZ,cAAsB,cAAc,EAAQ,OAAQ,KAAK,SAAU,GAC9G,EAAU,KAAK,MAAM,IAAQ,GACzB,EAAU,GAAG,MAAK,KAAK,KAAO,IAEpC,KAAK,QAAQ,aAGb,KAAK,QAAQ,iBACb,AAAI,KAAK,OAAO,MACd,GAAY,KAAK,OAAO,OAAO,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACpF,KAAK,KAAK,QAAQ,MAAO,MAAK,KAAK,QAEvC,MAAK,MAAQ,aACb,EAAY,IACZ,EAAY,KAAK,OAAO,OAAO,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC9F,EAAU,KAAK,MAAM,IAAQ,GACzB,EAAU,GAAG,MAAK,KAAK,OAAS,IAEtC,KAAK,QAAQ,eAGT,KAAK,OAAO,OACd,EAAC,EAAS,EAAS,EAAS,GAAa,KAAM,SAAQ,IAAI,CAAC,EAAS,EAAS,EAAS,KAEzF,AAAG,UAAQ,EAAQ,QAEf,KAAK,OAAO,QAAQ,KAAK,GAAG,SAAS,WACzC,KAAK,QAAQ,cAGb,GAAI,GAAoB,GACxB,AAAI,KAAK,OAAO,QAAQ,SACtB,GAAY,IACZ,EAAa,CAAC,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,IAC5G,AAAK,KAAK,OAAO,MACR,KAAK,KAAK,SAAS,MAAO,MAAK,KAAK,QADrB,KAAK,KAAK,QAAU,KAAK,MAAM,IAAQ,IAK7D,GAAwB,MAAK,OAAO,eAAiB,GAEzD,KAAK,KAAK,MAAQ,KAAK,MAAM,IAAQ,GACrC,KAAK,MAAQ,OACb,GAAM,GAAS,CACb,KAAM,EACN,KAAM,EACN,KAAM,EACN,QAAS,EACT,OAAQ,EACR,YAAa,KAAK,KAClB,OAAQ,EAAQ,QAGlB,EAAQ,UAuFN,QAAO,EAA8B,GAAiC,CAC1E,GAAM,GAAK,IAEX,GADI,GAAY,MAAK,OAAS,EAAU,KAAK,OAAQ,IACjD,CAAC,KAAK,OAAO,QAAU,KAAK,OAAO,SAAW,OAAQ,MAAO,CAAE,MAAO,QAC1E,GAAM,GAAO,KAAK,OAAO,eACzB,KAAK,OAAO,eAAiB,GAC7B,GAAI,GACJ,AAAI,MAAO,oBAAsB,WAAY,EAAM,KAAM,QAAK,IAAL,WACpD,AAAI,MAAO,QAAU,YAAa,EAAM,KAAM,QAAK,IAAL,WAC9C,EAAM,KAAM,QAAK,IAAL,WACjB,KAAK,OAAO,eAAiB,EAC7B,GAAM,GAAK,IACX,MAAI,MAAK,OAAO,OAAO,EAAI,SAAU,KAAK,OAAO,OAAQ,KAAK,MAAM,EAAK,GAAK,KAAM,GAC7E,IArfT,eACA,eACA,eACA,eA2EA,eAiHA,eAuNA,eAkBA,eAiCA", "names": [] } diff --git a/dist/human.esm.js b/dist/human.esm.js index 75f01425..c3d94b5e 100644 --- a/dist/human.esm.js +++ b/dist/human.esm.js @@ -5,35 +5,35 @@ author: ' */ -var c9=Object.defineProperty;var lr=(e,t)=>{for(var n in t)c9(e,n,{get:t[n],enumerable:!0})};var u5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var ur=(e,t,n)=>(u5(e,t,"read from private field"),n?n.call(e):t.get(e)),us=(e,t,n,r)=>(u5(e,t,"write to private field"),r?r.call(e,n):t.set(e,n),n);function pt(e,t){let n=e.endsWith("/")?"":"/",a=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!a.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${a} Expecting JSON file`);return a}function le(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var Ye=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Yn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(a=>{let s=n[a],i=r[a];Array.isArray(s)&&Array.isArray(i)?n[a]=s.concat(...i):t(s)&&t(i)?n[a]=Yn(s,i):n[a]=i}),n),{})}function c5(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let r=n[0].match(/\(([^()]+)\)/g);e=r?r[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var gu={};lr(gu,{Abs:()=>lo,Acos:()=>uo,Acosh:()=>co,AdadeltaOptimizer:()=>tp,AdagradOptimizer:()=>np,AdamOptimizer:()=>rp,AdamaxOptimizer:()=>ap,Add:()=>Ca,AddN:()=>ds,All:()=>ho,Any:()=>po,ArgMax:()=>ps,ArgMin:()=>vu,Asin:()=>fo,Asinh:()=>mo,Atan:()=>Ao,Atan2:()=>go,Atanh:()=>yo,AvgPool:()=>fs,AvgPool3D:()=>ku,AvgPool3DGrad:()=>Oh,AvgPoolGrad:()=>Dh,BackendWasm:()=>Dv,BatchMatMul:()=>ms,BatchToSpaceND:()=>Iu,Bincount:()=>zh,BroadcastTo:()=>nw,Callback:()=>N4,CallbackList:()=>k6,Cast:()=>As,Ceil:()=>ys,ClipByValue:()=>Ra,Complex:()=>Ph,ComplexAbs:()=>Su,Concat:()=>xo,Conv2D:()=>gs,Conv2DBackpropFilter:()=>Lh,Conv2DBackpropInput:()=>xs,Conv3D:()=>Nu,Conv3DBackpropFilterV2:()=>Wh,Conv3DBackpropInputV2:()=>Bh,Cos:()=>ws,Cosh:()=>wo,CropAndResize:()=>bo,Cumsum:()=>bs,CustomCallback:()=>S6,DataStorage:()=>Rh,DenseBincount:()=>Vh,DepthToSpace:()=>_o,DepthwiseConv2dNative:()=>_s,DepthwiseConv2dNativeBackpropFilter:()=>jh,DepthwiseConv2dNativeBackpropInput:()=>Uh,Diag:()=>Hh,Dilation2D:()=>Tu,Dilation2DBackpropFilter:()=>qh,Dilation2DBackpropInput:()=>Gh,ENV:()=>_r,EarlyStopping:()=>E4,Einsum:()=>Xh,Elu:()=>vo,EluGrad:()=>Kh,Environment:()=>ew,Equal:()=>Io,Erf:()=>ko,Exp:()=>ks,ExpandDims:()=>So,Expm1:()=>No,FFT:()=>Zh,Fill:()=>Eu,FlipLeftRight:()=>To,Floor:()=>Is,FloorDiv:()=>Ss,FromPixels:()=>dd,FusedBatchNorm:()=>Ns,FusedConv2D:()=>oi,FusedDepthwiseConv2D:()=>li,GPGPUContext:()=>bp,GatherNd:()=>Co,GatherV2:()=>Eo,GraphModel:()=>s8,Greater:()=>Ro,GreaterEqual:()=>Ts,History:()=>I6,IFFT:()=>Yh,Identity:()=>Es,Imag:()=>Jh,InputSpec:()=>Ft,IsFinite:()=>Mo,IsInf:()=>Fo,IsNan:()=>$o,KernelBackend:()=>wu,LRN:()=>Mu,LRNGrad:()=>ed,LayerVariable:()=>x6,LayersModel:()=>ga,LeakyRelu:()=>Cs,Less:()=>Do,LessEqual:()=>Oo,LinSpace:()=>Qh,Log:()=>Rs,Log1p:()=>zo,LogSoftmax:()=>rw,LogicalAnd:()=>Po,LogicalNot:()=>Cu,LogicalOr:()=>Ru,MathBackendCPU:()=>lp,MathBackendWebGL:()=>Bl,Max:()=>Ms,MaxPool:()=>$s,MaxPool3D:()=>Fu,MaxPool3DGrad:()=>nd,MaxPoolGrad:()=>td,MaxPoolWithArgmax:()=>rd,Maximum:()=>Fs,Mean:()=>Ds,Min:()=>Os,Minimum:()=>zs,MirrorPad:()=>Ps,Mod:()=>Lo,MomentumOptimizer:()=>sp,Multinomial:()=>ad,Multiply:()=>Ls,Neg:()=>Wo,NonMaxSuppressionV3:()=>Vo,NonMaxSuppressionV4:()=>jo,NonMaxSuppressionV5:()=>Uo,NotEqual:()=>Bo,OP_SCOPE_SUFFIX:()=>fw,OneHot:()=>Ws,OnesLike:()=>Ho,Optimizer:()=>fa,Pack:()=>Go,PadV2:()=>Bs,Pool:()=>hI,Pow:()=>Vs,Prelu:()=>js,Prod:()=>qo,RMSPropOptimizer:()=>ip,RNN:()=>Zr,Range:()=>$u,Rank:()=>Pf,Real:()=>sd,RealDiv:()=>vs,Reciprocal:()=>Xo,Reduction:()=>hn,Relu:()=>Us,Relu6:()=>Gs,Reshape:()=>Ko,ResizeBilinear:()=>Hs,ResizeBilinearGrad:()=>od,ResizeNearestNeighbor:()=>Du,ResizeNearestNeighborGrad:()=>id,Reverse:()=>qs,RotateWithOffset:()=>ll,Round:()=>Xs,Rsqrt:()=>Ks,SGDOptimizer:()=>dc,ScatterNd:()=>Zo,Select:()=>Yo,Selu:()=>Jo,Sequential:()=>Zl,Sigmoid:()=>Ys,Sign:()=>tl,Sin:()=>Zs,Sinh:()=>el,Slice:()=>Qo,Softmax:()=>ei,Softplus:()=>nl,SpaceToBatchND:()=>Ou,SparseReshape:()=>ld,SparseToDense:()=>ud,SplitV:()=>rl,Sqrt:()=>Js,Square:()=>zu,SquaredDifference:()=>ti,Step:()=>Fa,StridedSlice:()=>al,Sub:()=>ni,Sum:()=>Qs,SymbolicTensor:()=>Mr,Tan:()=>ri,Tanh:()=>ai,Tensor:()=>Pe,TensorBuffer:()=>Ot,Tile:()=>Ma,TopK:()=>sl,Transform:()=>cd,Transpose:()=>si,Unique:()=>hd,Unpack:()=>il,UnsortedSegmentSum:()=>Pu,Variable:()=>Hu,ZerosLike:()=>ol,_FusedMatMul:()=>ii,abs:()=>zt,acos:()=>cm,acosh:()=>hm,add:()=>se,addN:()=>Pa,all:()=>kd,any:()=>Zu,argMax:()=>mi,argMin:()=>dm,asin:()=>pm,asinh:()=>fm,atan:()=>mm,atan2:()=>Am,atanh:()=>ym,avgPool:()=>Ju,avgPool3d:()=>wm,backend:()=>Kw,backend_util:()=>E,basicLSTMCell:()=>jN,batchNorm:()=>gi,batchNorm2d:()=>Qw,batchNorm3d:()=>eb,batchNorm4d:()=>tb,batchToSpaceND:()=>Qu,bincount:()=>nb,booleanMaskAsync:()=>KC,broadcastTo:()=>xl,browser:()=>pi,buffer:()=>Be,callbacks:()=>Gae,cast:()=>ge,ceil:()=>bm,clipByValue:()=>En,clone:()=>Wr,complex:()=>$a,concat:()=>rt,concat1d:()=>rb,concat2d:()=>wl,concat3d:()=>ab,concat4d:()=>sb,constraints:()=>Gv,conv1d:()=>Sd,conv2d:()=>ca,conv2dTranspose:()=>Nd,conv3d:()=>vm,conv3dTranspose:()=>ob,copyRegisteredKernels:()=>fI,cos:()=>ec,cosh:()=>Td,cosineWindow:()=>Ym,cumsum:()=>Ed,customGrad:()=>Vr,data:()=>i8,denseBincount:()=>lb,deprecationWarn:()=>lm,depthToSpace:()=>km,depthwiseConv2d:()=>bl,deregisterOp:()=>Xae,device_util:()=>qu,diag:()=>gT,dilation2d:()=>Im,disableDeprecationWarnings:()=>rN,dispose:()=>_e,disposeVariables:()=>aN,div:()=>Ae,divNoNan:()=>Sm,dot:()=>ub,dropout:()=>Cb,einsum:()=>cb,elu:()=>_l,enableDebugMode:()=>nN,enableProdMode:()=>tN,enclosingPowerOfTwo:()=>Rb,engine:()=>ua,env:()=>J,equal:()=>Wa,erf:()=>Nm,exp:()=>Qn,expandDims:()=>Qt,expm1:()=>Tm,eye:()=>Em,fft:()=>cc,fill:()=>tc,findBackend:()=>um,findBackendFactory:()=>cN,floor:()=>vl,floorDiv:()=>vd,forceHalfFloat:()=>q3,fused:()=>Ua,gather:()=>xi,gatherND:()=>Eb,gather_util:()=>tm,getBackend:()=>lN,getGradient:()=>Df,getKernel:()=>pd,getKernelsForBackend:()=>cl,gpgpu_util:()=>y3,grad:()=>XT,grads:()=>KT,greater:()=>pr,greaterEqual:()=>Va,ifft:()=>Nl,imag:()=>Cd,image:()=>Le,inTopKAsync:()=>iR,initializers:()=>Qv,input:()=>d6,io:()=>Nn,irfft:()=>Gd,isFinite:()=>hb,isInf:()=>db,isNaN:()=>Cm,keep:()=>Ht,kernel_impls:()=>Hr,layers:()=>h6,leakyRelu:()=>nc,less:()=>Rd,lessEqual:()=>wi,linalg:()=>jb,linspace:()=>pb,loadGraphModel:()=>ct,loadLayersModel:()=>dae,localResponseNormalization:()=>Rm,log:()=>zn,log1p:()=>Md,logSigmoid:()=>mb,logSoftmax:()=>$d,logSumExp:()=>$m,logicalAnd:()=>fr,logicalNot:()=>rc,logicalOr:()=>Dd,logicalXor:()=>xb,losses:()=>IM,matMul:()=>Ve,math:()=>Cw,max:()=>Rn,maxPool:()=>ac,maxPool3d:()=>Dm,maxPoolWithArgmax:()=>wb,maximum:()=>jr,mean:()=>It,memory:()=>_d,meshgrid:()=>yE,metrics:()=>k4,min:()=>kl,minimum:()=>Il,mirrorPad:()=>Om,mod:()=>zm,model:()=>cae,models:()=>I4,moments:()=>Od,movingAverage:()=>JC,mul:()=>P,multiRNNCell:()=>IE,multinomial:()=>bb,neg:()=>kt,nextFrame:()=>op,norm:()=>Zd,notEqual:()=>vi,oneHot:()=>ml,ones:()=>Pn,onesLike:()=>Ln,op:()=>D,outerProduct:()=>CE,pad:()=>ha,pad1d:()=>FE,pad2d:()=>DE,pad3d:()=>zE,pad4d:()=>LE,pool:()=>_b,pow:()=>da,prelu:()=>ic,print:()=>kw,prod:()=>zd,profile:()=>an,rand:()=>XE,randomGamma:()=>JE,randomNormal:()=>vb,randomUniform:()=>Sl,range:()=>Pd,ready:()=>oN,real:()=>oc,reciprocal:()=>Wm,registerBackend:()=>yl,registerCallbackConstructor:()=>pae,registerGradient:()=>aw,registerKernel:()=>ui,registerOp:()=>qae,regularizers:()=>S4,relu:()=>Ur,relu6:()=>Ld,removeBackend:()=>uN,reshape:()=>H,reverse:()=>Wn,reverse1d:()=>oC,reverse2d:()=>uC,reverse3d:()=>hC,reverse4d:()=>pC,rfft:()=>hc,round:()=>Bm,rsqrt:()=>Wd,scalar:()=>xe,scatterND:()=>Tb,scatter_util:()=>nm,selu:()=>Bd,separableConv2d:()=>Vm,sequential:()=>hae,serialization:()=>re,setBackend:()=>iN,setPlatform:()=>hN,setWasmPath:()=>iQ,setWasmPaths:()=>oQ,setWebGLContext:()=>yp,setdiff1dAsync:()=>kb,shared:()=>nA,sigmoid:()=>Tn,sign:()=>jm,signal:()=>kM,sin:()=>Vd,sinh:()=>jd,slice:()=>Re,slice1d:()=>Ud,slice2d:()=>Um,slice3d:()=>Hd,slice4d:()=>lc,slice_util:()=>un,softmax:()=>uc,softplus:()=>bi,spaceToBatchND:()=>sc,sparse:()=>Ub,sparseToDense:()=>Zm,spectral:()=>vM,split:()=>Lt,sqrt:()=>en,square:()=>ot,squaredDifference:()=>qd,squeeze:()=>ja,stack:()=>cn,step:()=>Tl,stridedSlice:()=>Hm,sub:()=>ye,sum:()=>Te,sumOutType:()=>yd,tan:()=>Gm,tanh:()=>yi,tensor:()=>Ir,tensor1d:()=>sn,tensor2d:()=>er,tensor3d:()=>wd,tensor4d:()=>LC,tensor5d:()=>WC,tensor6d:()=>BC,tensor_util:()=>vr,test_util:()=>Gw,tidy:()=>z,tile:()=>Ba,time:()=>sN,topk:()=>qm,train:()=>Ii,transpose:()=>Je,truncatedNormal:()=>Xd,unique:()=>Kd,unregisterGradient:()=>pI,unregisterKernel:()=>dI,unsortedSegmentSum:()=>Xm,unstack:()=>mr,upcastType:()=>dr,util:()=>_,valueAndGrad:()=>ZT,valueAndGrads:()=>YT,variable:()=>Ib,variableGrads:()=>fb,version:()=>$ie,version_converter:()=>Xse,version_core:()=>eN,version_cpu:()=>v_,version_layers:()=>by,version_wasm:()=>zv,version_webgl:()=>G3,webgl:()=>uB,webgl_util:()=>H_,where:()=>Cn,whereAsync:()=>Km,zeros:()=>Rt,zerosLike:()=>He});var h9=Object.create,Ch=Object.defineProperty,d9=Object.getPrototypeOf,p9=Object.prototype.hasOwnProperty,f9=Object.getOwnPropertyNames,m9=Object.getOwnPropertyDescriptor,A9=e=>Ch(e,"__esModule",{value:!0}),_t=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Me=(e,t)=>{for(var n in t)Ch(e,n,{get:t[n],enumerable:!0})},y9=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of f9(t))!p9.call(e,r)&&r!=="default"&&Ch(e,r,{get:()=>t[r],enumerable:!(n=m9(t,r))||n.enumerable});return e},so=e=>y9(A9(Ch(e!=null?h9(d9(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),g9=_t(()=>{}),x9=_t((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=h.toString();for(var d=0;d>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),w9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),b9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),_9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,c.i=d+1&7,f};function u(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),v9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,f,m;return c.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,c.i=p,m+(h^h>>>16)|0};function u(h,d){var p,f,m,A,y,g=[],x=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,x=Math.max(x,d.length)),m=0,A=-32;A>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),k9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,f=c.d,m=c.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-f|0,c.d=f<<16^p>>>16^m,c.a=m-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),h5=_t(()=>{}),I9=_t((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",c=r.pow(s,i),u=r.pow(2,o),h=u*2,d=s-1,p;function f(w,b,k){var N=[];b=b==!0?{entropy:!0}:b||{};var C=g(y(b.entropy?[w,v(n)]:w==null?x():w,3),N),F=new m(N),O=function(){for(var L=F.g(i),V=c,j=0;L=h;)L/=2,V/=2,j>>>=1;return(L+j)/V};return O.int32=function(){return F.g(4)|0},O.quick=function(){return F.g(4)/4294967296},O.double=O,g(v(F.S),n),(b.pass||k||function(L,V,j,U){return U&&(U.S&&A(U,F),L.state=function(){return A(F,{})}),j?(r[l]=L,V):L})(O,C,"global"in b?b.global:this==r,b.state)}r["seed"+l]=f;function m(w){var b,k=w.length,N=this,C=0,F=N.i=N.j=0,O=N.S=[];for(k||(w=[k++]);C{var n=x9(),r=w9(),a=b9(),s=_9(),i=v9(),o=k9(),l=I9();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),xu=_t(()=>{}),S9=_t(()=>{}),N9=_t(()=>{}),T9=_t((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return Q.buffer!=je&&Yt(Q.buffer),_n}function i(){return Q.buffer!=je&&Yt(Q.buffer),bt}function o(){return Q.buffer!=je&&Yt(Q.buffer),vn}function l(){return Q.buffer!=je&&Yt(Q.buffer),Kn}function c(){return Q.buffer!=je&&Yt(Q.buffer),on}var u=typeof a!="undefined"?a:{},h,d;u.ready=new Promise(function(S,T){h=S,d=T});var p={},f;for(f in u)u.hasOwnProperty(f)&&(p[f]=u[f]);var m=[],A="./this.program",y=function(S,T){throw T},g=!1,x=!1,v=!1,w=!1;g=typeof window=="object",x=typeof importScripts=="function",v=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",w=!g&&!v&&!x;var b=u.ENVIRONMENT_IS_PTHREAD||!1;b&&(je=u.buffer);var k="";function N(S){return u.locateFile?u.locateFile(S,k):k+S}var C,F,O,L,V,j;if(v){x?k=xu().dirname(k)+"/":k=__dirname+"/",C=function(S,T){return V||(V=require("fs")),j||(j=xu()),S=j.normalize(S),V.readFileSync(S,T?null:"utf8")},O=function(S){var T=C(S,!0);return T.buffer||(T=new Uint8Array(T)),pe(T.buffer),T},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(S){if(!(S instanceof yu))throw S}),process.on("unhandledRejection",aa),y=function(S){process.exit(S)},u.inspect=function(){return"[Emscripten Module object]"};var U;try{U=S9()}catch(S){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),S}global.Worker=U.Worker}else w?(typeof read!="undefined"&&(C=function(S){return read(S)}),O=function(S){var T;return typeof readbuffer=="function"?new Uint8Array(readbuffer(S)):(T=read(S,"binary"),pe(typeof T=="object"),T)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(y=function(S){quit(S)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(g||x)&&(x?k=self.location.href:typeof document!="undefined"&&document.currentScript&&(k=document.currentScript.src),typeof r!="undefined"&&r&&(k=r),k.indexOf("blob:")!==0?k=k.substr(0,k.lastIndexOf("/")+1):k="",v?(C=function(S,T){return V||(V=require("fs")),j||(j=xu()),S=j.normalize(S),V.readFileSync(S,T?null:"utf8")},O=function(S){var T=C(S,!0);return T.buffer||(T=new Uint8Array(T)),pe(T.buffer),T}):(C=function(S){var T=new XMLHttpRequest;return T.open("GET",S,!1),T.send(null),T.responseText},x&&(O=function(S){var T=new XMLHttpRequest;return T.open("GET",S,!1),T.responseType="arraybuffer",T.send(null),new Uint8Array(T.response)}),F=function(S,T,W){var q=new XMLHttpRequest;q.open("GET",S,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){T(q.response);return}W()},q.onerror=W,q.send(null)}),L=function(S){document.title=S});v&&typeof performance=="undefined"&&(global.performance=N9().performance);var X=u.print||console.log.bind(console),G=u.printErr||console.warn.bind(console);for(f in p)p.hasOwnProperty(f)&&(u[f]=p[f]);p=null,u.arguments&&(m=u.arguments),u.thisProgram&&(A=u.thisProgram),u.quit&&(y=u.quit);var ee=Atomics.load,Y=Atomics.store,ae=Atomics.compareExchange,te;u.wasmBinary&&(te=u.wasmBinary);var ie=u.noExitRuntime||!0;typeof WebAssembly!="object"&&aa("no native wasm support detected");var Q,he,oe=!1,me;function pe(S,T){S||aa("Assertion failed: "+T)}function Ie(S){var T=u["_"+S];return pe(T,"Cannot call unknown function "+S+", make sure it is exported"),T}function Se(S,T,W,q,de){var ue={string:function(Sn){var ao=0;if(Sn!=null&&Sn!==0){var l5=(Sn.length<<2)+1;ao=to(l5),tt(Sn,ao,l5)}return ao},array:function(Sn){var ao=to(Sn.length);return Ke(Sn,ao),ao}};function ce(Sn){return T==="string"?$e(Sn):T==="boolean"?Boolean(Sn):Sn}var be=Ie(S),nt=[],jt=0;if(q)for(var Dt=0;Dt=q);){var ue=S[T++];if(!ue)return de;if(!(ue&128)){de+=String.fromCharCode(ue);continue}var ce=S[T++]&63;if((ue&224)==192){de+=String.fromCharCode((ue&31)<<6|ce);continue}var be=S[T++]&63;if((ue&240)==224?ue=(ue&15)<<12|ce<<6|be:ue=(ue&7)<<18|ce<<12|be<<6|S[T++]&63,ue<65536)de+=String.fromCharCode(ue);else{var nt=ue-65536;de+=String.fromCharCode(55296|nt>>10,56320|nt&1023)}}return de}function $e(S,T){return S?Oe(i(),S,T):""}function et(S,T,W,q){if(!(q>0))return 0;for(var de=W,ue=W+q-1,ce=0;ce=55296&&be<=57343){var nt=S.charCodeAt(++ce);be=65536+((be&1023)<<10)|nt&1023}if(be<=127){if(W>=ue)break;T[W++]=be}else if(be<=2047){if(W+1>=ue)break;T[W++]=192|be>>6,T[W++]=128|be&63}else if(be<=65535){if(W+2>=ue)break;T[W++]=224|be>>12,T[W++]=128|be>>6&63,T[W++]=128|be&63}else{if(W+3>=ue)break;T[W++]=240|be>>18,T[W++]=128|be>>12&63,T[W++]=128|be>>6&63,T[W++]=128|be&63}}return T[W]=0,W-de}function tt(S,T,W){return et(S,i(),T,W)}function it(S){for(var T=0,W=0;W=55296&&q<=57343&&(q=65536+((q&1023)<<10)|S.charCodeAt(++W)&1023),q<=127?++T:q<=2047?T+=2:q<=65535?T+=3:T+=4}return T}function Ke(S,T){s().set(S,T)}function dt(S,T){return S%T>0&&(S+=T-S%T),S}var je,_n,bt,Xn,Zt,vn,Kn,On,on;function Yt(S){je=S,u.HEAP8=_n=new Int8Array(S),u.HEAP16=Xn=new Int16Array(S),u.HEAP32=vn=new Int32Array(S),u.HEAPU8=bt=new Uint8Array(S),u.HEAPU16=Zt=new Uint16Array(S),u.HEAPU32=Kn=new Uint32Array(S),u.HEAPF32=On=new Float32Array(S),u.HEAPF64=on=new Float64Array(S)}var Or=u.INITIAL_MEMORY||16777216;if(b)Q=u.wasmMemory,je=u.buffer;else if(u.wasmMemory)Q=u.wasmMemory;else if(Q=new WebAssembly.Memory({initial:Or/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),v&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(je=Q.buffer),Or=je.byteLength,Yt(je);var ir,or=[],ba=[],na=[],_a=[],Xi=[],zr=!1,lh=!1;b||ba.push({func:function(){vh()}});function Q0(){if(!b){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)ch(u.preRun.shift());Zi(or)}}function ou(){zr=!0,!b&&Zi(ba)}function e1(){b||Zi(na)}function uh(){b||(lh=!0)}function kn(){if(!b){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)t1(u.postRun.shift());Zi(Xi)}}function ch(S){or.unshift(S)}function t1(S){Xi.unshift(S)}var ra=0,va=null,is=null;function n1(S){pe(!b,"addRunDependency cannot be used in a pthread worker"),ra++,u.monitorRunDependencies&&u.monitorRunDependencies(ra)}function r1(S){if(ra--,u.monitorRunDependencies&&u.monitorRunDependencies(ra),ra==0&&(va!==null&&(clearInterval(va),va=null),is)){var T=is;is=null,T()}}u.preloadedImages={},u.preloadedAudios={};function aa(S){u.onAbort&&u.onAbort(S),b&&console.error("Pthread aborting at "+new Error().stack),S+="",G(S),oe=!0,me=1,S="abort("+S+"). Build with -s ASSERTIONS=1 for more info.";var T=new WebAssembly.RuntimeError(S);throw d(T),T}function hh(S,T){return String.prototype.startsWith?S.startsWith(T):S.indexOf(T)===0}var Ki="data:application/octet-stream;base64,";function dh(S){return hh(S,Ki)}var a1="file://";function ph(S){return hh(S,a1)}var In="tfjs-backend-wasm-threaded-simd.wasm";dh(In)||(In=N(In));function fh(S){try{if(S==In&&te)return new Uint8Array(te);if(O)return O(S);throw"both async and sync fetching of the wasm failed"}catch(T){aa(T)}}function s1(){if(!te&&(g||x)){if(typeof fetch=="function"&&!ph(In))return fetch(In,{credentials:"same-origin"}).then(function(S){if(!S.ok)throw"failed to load wasm binary file at '"+In+"'";return S.arrayBuffer()}).catch(function(){return fh(In)});if(F)return new Promise(function(S,T){F(In,function(W){S(new Uint8Array(W))},T)})}return Promise.resolve().then(function(){return fh(In)})}function i1(){var S={a:Z1};function T(ce,be){var nt=ce.exports;if(u.asm=nt,ir=u.asm.F,he=be,!b){var jt=ke.unusedWorkers.length;ke.unusedWorkers.forEach(function(Dt){ke.loadWasmModuleToWorker(Dt,function(){--jt||r1("wasm-instantiate")})})}}b||n1("wasm-instantiate");function W(ce){T(ce.instance,ce.module)}function q(ce){return s1().then(function(be){return WebAssembly.instantiate(be,S)}).then(ce,function(be){G("failed to asynchronously prepare wasm: "+be),aa(be)})}function de(){return!te&&typeof WebAssembly.instantiateStreaming=="function"&&!dh(In)&&!ph(In)&&typeof fetch=="function"?fetch(In,{credentials:"same-origin"}).then(function(ce){var be=WebAssembly.instantiateStreaming(ce,S);return be.then(W,function(nt){return G("wasm streaming compile failed: "+nt),G("falling back to ArrayBuffer instantiation"),q(W)})}):q(W)}if(u.instantiateWasm)try{var ue=u.instantiateWasm(S,T);return ue}catch(ce){return G("Module.instantiateWasm callback failed with error: "+ce),!1}return de().catch(d),{}}var o1={9816:function(){throw"Canceled!"},9834:function(S,T){setTimeout(function(){n5(S,T)},0)}};function mh(){ke.initRuntime()}function Zi(S){for(;S.length>0;){var T=S.shift();if(typeof T=="function"){T(u);continue}var W=T.func;typeof W=="number"?T.arg===void 0?ir.get(W)():ir.get(W)(T.arg):W(T.arg===void 0?null:T.arg)}}function lu(S,T){if(S<=0||S>s().length||S&!0||T<0)return-28;if(T==0)return 0;T>=2147483647&&(T=Infinity);var W=Atomics.load(o(),no>>2),q=0;if(W==S){var de=Atomics.compareExchange(o(),no>>2,W,0);if(de==W&&(--T,q=1,T<=0))return 1}var ue=Atomics.notify(o(),S>>2,T);if(ue>=0)return ue+q;throw"Atomics.notify returned an unexpected value "+ue}u._emscripten_futex_wake=lu;function l1(S){if(b)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in killThread!";o()[S+12>>2]=0;var T=ke.pthreads[S];T.worker.terminate(),ke.freeThreadData(T),ke.runningWorkers.splice(ke.runningWorkers.indexOf(T.worker),1),T.worker.pthread=void 0}function u1(S){if(b)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cancelThread!";var T=ke.pthreads[S];T.worker.postMessage({cmd:"cancel"})}function c1(S){if(b)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cleanupThread!";var T=ke.pthreads[S];if(T){o()[S+12>>2]=0;var W=T.worker;ke.returnWorkerToPool(W)}}var ke={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var S=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),T=0;T>2]=S;var W=S+152;o()[W>>2]=W;for(var q=ls(512),T=0;T<128;++T)l()[q/4+T]=0;Atomics.store(l(),S+100>>2,q),Atomics.store(l(),S+40>>2,S),bf(S,!x,1),t5(S)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;ke.threadExitHandlers.length>0;)ke.threadExitHandlers.pop()();b&&Qi()&&e5()},runExitHandlersAndDeinitThread:function(S,T){Atomics.store(l(),S+56>>2,1),Atomics.store(l(),S+60>>2,0),ke.runExitHandlers(),Atomics.store(l(),S+4>>2,T),Atomics.store(l(),S+0>>2,1),lu(S+0,2147483647),bf(0,0,0)},threadExit:function(S){var T=Qi();T&&(ke.runExitHandlersAndDeinitThread(T,S),b&&postMessage({cmd:"exit"}))},threadCancel:function(){ke.runExitHandlersAndDeinitThread(Qi(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var S in ke.pthreads){var T=ke.pthreads[S];T&&T.worker&&ke.returnWorkerToPool(T.worker)}ke.pthreads={};for(var W=0;W>2];o()[S.threadInfoStruct+100>>2]=0,mu(T),mu(S.threadInfoStruct)}S.threadInfoStruct=0,S.allocatedOwnStack&&S.stackBase&&mu(S.stackBase),S.stackBase=0,S.worker&&(S.worker.pthread=null)}},returnWorkerToPool:function(S){ke.runWithoutMainThreadQueuedCalls(function(){delete ke.pthreads[S.pthread.threadInfoStruct],ke.unusedWorkers.push(S),ke.runningWorkers.splice(ke.runningWorkers.indexOf(S),1),ke.freeThreadData(S.pthread),S.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(S){o()[o5>>2]=0;try{S()}finally{o()[o5>>2]=1}},receiveObjectTransfer:function(S){},loadWasmModuleToWorker:function(S,T){S.onmessage=function(W){var q=W.data,de=q.cmd;if(S.pthread&&(ke.currentProxiedOperationCallerThread=S.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=Qi()){var ue=ke.pthreads[q.targetThread];ue?ue.worker.postMessage(W.data,q.transferList):console.error('Internal error! Worker sent a message "'+de+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),ke.currentProxiedOperationCallerThread=void 0;return}if(de==="processQueuedMainThreadWork")xf();else if(de==="spawnThread")bh(W.data);else if(de==="cleanupThread")c1(q.thread);else if(de==="killThread")l1(q.thread);else if(de==="cancelThread")u1(q.thread);else if(de==="loaded")S.loaded=!0,T&&T(S),S.runPthread&&(S.runPthread(),delete S.runPthread);else if(de==="print")X("Thread "+q.threadId+": "+q.text);else if(de==="printErr")G("Thread "+q.threadId+": "+q.text);else if(de==="alert")alert("Thread "+q.threadId+": "+q.text);else if(de==="exit"){var ce=S.pthread&&Atomics.load(l(),S.pthread.threadInfoStruct+64>>2);ce&&ke.returnWorkerToPool(S)}else if(de==="exitProcess")try{u9(q.returnCode)}catch(be){if(be instanceof yu)return;throw be}else de==="cancelDone"?ke.returnWorkerToPool(S):de==="objectTransfer"?ke.receiveObjectTransfer(W.data):W.data.target==="setimmediate"?S.postMessage(W.data):G("worker sent an unknown command "+de);ke.currentProxiedOperationCallerThread=void 0},S.onerror=function(W){G("pthread sent an error! "+W.filename+":"+W.lineno+": "+W.message)},v&&(S.on("message",function(W){S.onmessage({data:W})}),S.on("error",function(W){S.onerror(W)}),S.on("exit",function(W){})),S.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||r,wasmMemory:Q,wasmModule:he})},allocateUnusedWorker:function(){var S=N("tfjs-backend-wasm-threaded-simd.worker.js");ke.unusedWorkers.push(new Worker(S))},getNewWorker:function(){return ke.unusedWorkers.length==0&&(ke.allocateUnusedWorker(),ke.loadWasmModuleToWorker(ke.unusedWorkers[0])),ke.unusedWorkers.length>0?ke.unusedWorkers.pop():null},busySpinWait:function(S){for(var T=performance.now()+S;performance.now()>2]=S,S}function y1(S,T){if(b)return ka(1,1,S,T)}function g1(S,T){if(S==T)postMessage({cmd:"processQueuedMainThreadWork"});else if(b)postMessage({targetThread:S,cmd:"processThreadQueue"});else{var W=ke.pthreads[S],q=W&&W.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function x1(){aa()}function w1(S,T,W){var q=I1(T,W);return o1[S].apply(null,q)}function b1(S,T){}function _1(S,T,W){if(S<=0||S>s().length||S&!0)return-28;if(g){if(Atomics.load(o(),S>>2)!=T)return-6;for(var q=performance.now(),de=q+W,ue=Atomics.exchange(o(),no>>2,S);;){if(q=performance.now(),q>de)return ue=Atomics.exchange(o(),no>>2,0),-73;if(ue=Atomics.exchange(o(),no>>2,0),ue==0)break;if(xf(),Atomics.load(o(),S>>2)!=T)return-6;ue=Atomics.exchange(o(),no>>2,S)}return 0}else{var ce=Atomics.wait(o(),S>>2,T,W);if(ce==="timed-out")return-73;if(ce==="not-equal")return-6;if(ce==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ce}}function v1(S,T,W){i().copyWithin(S,T,T+W)}function k1(){return v?require("os").cpus().length:navigator.hardwareConcurrency}function ka(S,T){for(var W=arguments.length-2,q=Au(),de=W,ue=to(de*8),ce=ue>>3,be=0;be>=2;W=i()[S++];){var q=W<105;q&&T&1&&T++,cu.push(q?c()[T++>>1]:o()[T]),++T}return cu}function S1(S,T,W){uu.length=T;for(var q=W>>3,de=0;de>>16),Yt(Q.buffer),1}catch(T){}}function E1(S){var T=N1();if(S<=T)return!1;var W=2147483648;if(S>W)return!1;for(var q=1;q<=4;q*=2){var de=T*(1+.2/q);de=Math.min(de,S+100663296);var ue=Math.min(W,dt(Math.max(S,de),65536)),ce=T1(ue);if(ce)return!0}return!1}var We={inEventHandler:0,removeAllEventListeners:function(){for(var S=We.eventHandlers.length-1;S>=0;--S)We._removeHandler(S);We.eventHandlers=[],We.deferredCalls=[]},registerRemoveEventListeners:function(){We.removeEventListenersRegistered||(_a.push(We.removeAllEventListeners),We.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(S,T,W){function q(ce,be){if(ce.length!=be.length)return!1;for(var nt in ce)if(ce[nt]!=be[nt])return!1;return!0}for(var de in We.deferredCalls){var ue=We.deferredCalls[de];if(ue.targetFunction==S&&q(ue.argsList,W))return}We.deferredCalls.push({targetFunction:S,precedence:T,argsList:W}),We.deferredCalls.sort(function(ce,be){return ce.precedence>2]=W,o()[ce+4>>2]=q,o()[ce+8>>2]=de,wf(0,S,637534208,T,q,ce),eo(ue)},getTargetThreadForEventCallback:function(S){switch(S){case 1:return 0;case 2:return ke.currentProxiedOperationCallerThread;default:return S}},getNodeNameForTarget:function(S){return S?S==window?"#window":S==screen?"#screen":S&&S.nodeName?S.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function C1(S){var T=it(S)+1,W=ls(T);return tt(S,W,T),W}function R1(S,T,W,q){var de=Au(),ue=to(12),ce=0;T&&(ce=C1(T)),o()[ue>>2]=ce,o()[ue+4>>2]=W,o()[ue+8>>2]=q,wf(0,S,657457152,0,ce,ue),eo(de)}function M1(S,T,W,q){T=T?$e(T):"",R1(S,T,W,q)}function F1(S){return S>2?$e(S):S}var $1=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function D1(S){S=F1(S);var T=$1[S]||(typeof document!="undefined"?document.querySelector(S):void 0);return T}function hu(S){return D1(S)}function Ah(S,T,W){var q=hu(S);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=T,o()[q.canvasSharedPtr+4>>2]=W),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var de=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var ue=q.GLctxObject.GLctx.getParameter(2978);de=ue[0]===0&&ue[1]===0&&ue[2]===q.width&&ue[3]===q.height}q.width=T,q.height=W,de&&q.GLctxObject.GLctx.viewport(0,0,T,W)}else if(q.canvasSharedPtr){var ce=o()[q.canvasSharedPtr+8>>2];return M1(ce,S,T,W),1}else return-4;return 0}function yh(S,T,W){return b?ka(2,1,S,T,W):Ah(S,T,W)}function O1(S,T,W){var q=hu(S);return q?Ah(S,T,W):yh(S,T,W)}function z1(S){}function P1(S,T){}function L1(S){var T=S.getExtension("ANGLE_instanced_arrays");if(T)return S.vertexAttribDivisor=function(W,q){T.vertexAttribDivisorANGLE(W,q)},S.drawArraysInstanced=function(W,q,de,ue){T.drawArraysInstancedANGLE(W,q,de,ue)},S.drawElementsInstanced=function(W,q,de,ue,ce){T.drawElementsInstancedANGLE(W,q,de,ue,ce)},1}function W1(S){var T=S.getExtension("OES_vertex_array_object");if(T)return S.createVertexArray=function(){return T.createVertexArrayOES()},S.deleteVertexArray=function(W){T.deleteVertexArrayOES(W)},S.bindVertexArray=function(W){T.bindVertexArrayOES(W)},S.isVertexArray=function(W){return T.isVertexArrayOES(W)},1}function B1(S){var T=S.getExtension("WEBGL_draw_buffers");if(T)return S.drawBuffers=function(W,q){T.drawBuffersWEBGL(W,q)},1}function V1(S){return!!(S.multiDrawWebgl=S.getExtension("WEBGL_multi_draw"))}var Qe={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(S){Qe.lastError||(Qe.lastError=S)},getNewId:function(S){for(var T=Qe.counter++,W=S.length;W>2]:-1;de+=$e(o()[W+ue*4>>2],ce<0?void 0:ce)}return de},createContext:function(S,T){var W=S.getContext("webgl",T);if(!W)return 0;var q=Qe.registerContext(W,T);return q},registerContext:function(S,T){var W=ls(8);o()[W+4>>2]=Qi();var q={handle:W,attributes:T,version:T.majorVersion,GLctx:S};return S.canvas&&(S.canvas.GLctxObject=q),Qe.contexts[W]=q,(typeof T.enableExtensionsByDefault=="undefined"||T.enableExtensionsByDefault)&&Qe.initExtensions(q),W},makeContextCurrent:function(S){return Qe.currentContext=Qe.contexts[S],u.ctx=Ia=Qe.currentContext&&Qe.currentContext.GLctx,!(S&&!Ia)},getContext:function(S){return Qe.contexts[S]},deleteContext:function(S){Qe.currentContext===Qe.contexts[S]&&(Qe.currentContext=null),typeof We=="object"&&We.removeAllHandlersOnTarget(Qe.contexts[S].GLctx.canvas),Qe.contexts[S]&&Qe.contexts[S].GLctx.canvas&&(Qe.contexts[S].GLctx.canvas.GLctxObject=void 0),mu(Qe.contexts[S].handle),Qe.contexts[S]=null},initExtensions:function(S){if(S||(S=Qe.currentContext),!S.initExtensionsDone){S.initExtensionsDone=!0;var T=S.GLctx;L1(T),W1(T),B1(T),T.disjointTimerQueryExt=T.getExtension("EXT_disjoint_timer_query"),V1(T);var W=T.getSupportedExtensions()||[];W.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&T.getExtension(q)})}},populateUniformTable:function(S){for(var T=Qe.programs[S],W=Qe.programInfos[S]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=W.uniforms,de=Ia.getProgramParameter(T,35718),ue=0;ue>2,q=o()[W+(24>>2)],de={alpha:!!o()[W+(0>>2)],depth:!!o()[W+(4>>2)],stencil:!!o()[W+(8>>2)],antialias:!!o()[W+(12>>2)],premultipliedAlpha:!!o()[W+(16>>2)],preserveDrawingBuffer:!!o()[W+(20>>2)],powerPreference:j1[q],failIfMajorPerformanceCaveat:!!o()[W+(28>>2)],majorVersion:o()[W+(32>>2)],minorVersion:o()[W+(36>>2)],enableExtensionsByDefault:o()[W+(40>>2)],explicitSwapControl:o()[W+(44>>2)],proxyContextToMainThread:o()[W+(48>>2)],renderViaOffscreenBackBuffer:o()[W+(52>>2)]},ue=hu(S);if(!ue||de.explicitSwapControl)return 0;var ce=Qe.createContext(ue,de);return ce}function H1(S,T){return U1(S,T)}var Yi={mappings:{},buffers:[null,[],[]],printChar:function(S,T){var W=Yi.buffers[S];T===0||T===10?((S===1?X:G)(Oe(W,0)),W.length=0):W.push(T)},varargs:void 0,get:function(){Yi.varargs+=4;var S=o()[Yi.varargs-4>>2];return S},getStr:function(S){var T=$e(S);return T},get64:function(S,T){return S}};function gh(S){return b?ka(3,1,S):0}function xh(S,T,W,q,de){if(b)return ka(4,1,S,T,W,q,de)}function wh(S,T,W,q){if(b)return ka(5,1,S,T,W,q);for(var de=0,ue=0;ue>2],be=o()[T+(ue*8+4)>>2],nt=0;nt>2]=de,0}function G1(S){var T=ke.threadExitHandlers.pop();S&&T()}function q1(S,T){ke.threadExitHandlers.push(function(){ir.get(S)(T)})}function bh(S){if(b)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var T=ke.getNewWorker();if(T.pthread!==void 0)throw"Internal error!";if(!S.pthread_ptr)throw"Internal error, no pthread ptr!";ke.runningWorkers.push(T);for(var W=ls(128*4),q=0;q<128;++q)o()[W+q*4>>2]=0;var de=S.stackBase+S.stackSize,ue=ke.pthreads[S.pthread_ptr]={worker:T,stackBase:S.stackBase,stackSize:S.stackSize,allocatedOwnStack:S.allocatedOwnStack,threadInfoStruct:S.pthread_ptr},ce=ue.threadInfoStruct>>2;Atomics.store(l(),ce+(64>>2),S.detached),Atomics.store(l(),ce+(100>>2),W),Atomics.store(l(),ce+(40>>2),ue.threadInfoStruct),Atomics.store(l(),ce+(80>>2),S.stackSize),Atomics.store(l(),ce+(76>>2),de),Atomics.store(l(),ce+(104>>2),S.stackSize),Atomics.store(l(),ce+(104+8>>2),de),Atomics.store(l(),ce+(104+12>>2),S.detached);var be=Q2(),nt=be+40;Atomics.store(l(),ce+(172>>2),nt),T.pthread=ue;var jt={cmd:"run",start_routine:S.startRoutine,arg:S.arg,threadInfoStruct:S.pthread_ptr,stackBase:S.stackBase,stackSize:S.stackSize};T.runPthread=function(){jt.time=performance.now(),T.postMessage(jt,S.transferList)},T.loaded&&(T.runPthread(),delete T.runPthread)}function X1(S,T,W,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!S)return G("pthread_create called with a null thread pointer!"),28;var de=[],ue=0;if(b&&(de.length===0||ue))return r5(687865856,S,T,W,q);if(ue)return ue;var ce=0,be=0,nt=0;T&&T!=-1?(ce=o()[T>>2],ce+=81920,be=o()[T+8>>2],nt=o()[T+12>>2]!==0):ce=2097152;var jt=be==0;jt?be=i5(16,ce):(be-=ce,pe(be>0));for(var Dt=ls(228),Na=0;Na<228>>2;++Na)l()[(Dt>>2)+Na]=0;o()[S>>2]=Dt,o()[Dt+12>>2]=Dt;var ro=Dt+152;o()[ro>>2]=ro;var Sn={stackBase:be,stackSize:ce,allocatedOwnStack:jt,detached:nt,startRoutine:W,pthread_ptr:Dt,arg:q,transferList:de};return b?(Sn.cmd="spawnThread",postMessage(Sn,de)):bh(Sn),0}function _h(S){if(b)return ka(6,1,S);switch(S){case 30:return 16384;case 85:var T=2147483648;return T/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return A1(28),-1}b||ke.initMainThreadBlock();var Ia,K1=[null,y1,yh,gh,xh,wh,_h],Z1={e:f1,r:m1,x:g1,b:x1,y:w1,j:b1,c:_1,d:lu,f:os,p:v1,z:k1,u:S1,q:E1,v:O1,i:z1,t:P1,w:H1,m:gh,n:xh,g:wh,o:mh,a:Q||u.wasmMemory,k:G1,l:q1,h:X1,s:_h},Y2=i1(),vh=u.___wasm_call_ctors=function(){return(vh=u.___wasm_call_ctors=u.asm.A).apply(null,arguments)},Y1=u._init=function(){return(Y1=u._init=u.asm.B).apply(null,arguments)},J1=u._register_tensor=function(){return(J1=u._register_tensor=u.asm.C).apply(null,arguments)},Q1=u._dispose_data=function(){return(Q1=u._dispose_data=u.asm.D).apply(null,arguments)},ef=u._dispose=function(){return(ef=u._dispose=u.asm.E).apply(null,arguments)},tf=u._Abs=function(){return(tf=u._Abs=u.asm.G).apply(null,arguments)},nf=u._Add=function(){return(nf=u._Add=u.asm.H).apply(null,arguments)},rf=u._AddN=function(){return(rf=u._AddN=u.asm.I).apply(null,arguments)},af=u._All=function(){return(af=u._All=u.asm.J).apply(null,arguments)},sf=u._Any=function(){return(sf=u._Any=u.asm.K).apply(null,arguments)},of=u._ArgMax=function(){return(of=u._ArgMax=u.asm.L).apply(null,arguments)},lf=u._AvgPool=function(){return(lf=u._AvgPool=u.asm.M).apply(null,arguments)},uf=u._BatchMatMul=function(){return(uf=u._BatchMatMul=u.asm.N).apply(null,arguments)},cf=u._Ceil=function(){return(cf=u._Ceil=u.asm.O).apply(null,arguments)},hf=u._ClipByValue=function(){return(hf=u._ClipByValue=u.asm.P).apply(null,arguments)},df=u._Conv2D=function(){return(df=u._Conv2D=u.asm.Q).apply(null,arguments)},pf=u._Conv2DBackpropInput=function(){return(pf=u._Conv2DBackpropInput=u.asm.R).apply(null,arguments)},ff=u._Cos=function(){return(ff=u._Cos=u.asm.S).apply(null,arguments)},mf=u._CropAndResize=function(){return(mf=u._CropAndResize=u.asm.T).apply(null,arguments)},Af=u._Cumsum=function(){return(Af=u._Cumsum=u.asm.U).apply(null,arguments)},yf=u._DepthToSpace=function(){return(yf=u._DepthToSpace=u.asm.V).apply(null,arguments)},kh=u._DepthwiseConv2dNative=function(){return(kh=u._DepthwiseConv2dNative=u.asm.W).apply(null,arguments)},Ih=u._Equal=function(){return(Ih=u._Equal=u.asm.X).apply(null,arguments)},Sh=u._Exp=function(){return(Sh=u._Exp=u.asm.Y).apply(null,arguments)},du=u._FlipLeftRight=function(){return(du=u._FlipLeftRight=u.asm.Z).apply(null,arguments)},Ji=u._Floor=function(){return(Ji=u._Floor=u.asm._).apply(null,arguments)},gf=u._FloorDiv=function(){return(gf=u._FloorDiv=u.asm.$).apply(null,arguments)},pu=u._FusedBatchNorm=function(){return(pu=u._FusedBatchNorm=u.asm.aa).apply(null,arguments)},K=u._FusedConv2D=function(){return(K=u._FusedConv2D=u.asm.ba).apply(null,arguments)},ne=u._FusedDepthwiseConv2D=function(){return(ne=u._FusedDepthwiseConv2D=u.asm.ca).apply(null,arguments)},Ne=u._Gather=function(){return(Ne=u._Gather=u.asm.da).apply(null,arguments)},Ze=u._GatherNd=function(){return(Ze=u._GatherNd=u.asm.ea).apply(null,arguments)},Nt=u._Greater=function(){return(Nt=u._Greater=u.asm.fa).apply(null,arguments)},yt=u._GreaterEqual=function(){return(yt=u._GreaterEqual=u.asm.ga).apply(null,arguments)},Ue=u._LeakyRelu=function(){return(Ue=u._LeakyRelu=u.asm.ha).apply(null,arguments)},Ge=u._Less=function(){return(Ge=u._Less=u.asm.ia).apply(null,arguments)},Jt=u._LessEqual=function(){return(Jt=u._LessEqual=u.asm.ja).apply(null,arguments)},sa=u._Log=function(){return(sa=u._Log=u.asm.ka).apply(null,arguments)},ia=u._LogicalAnd=function(){return(ia=u._LogicalAnd=u.asm.la).apply(null,arguments)},Nh=u._Max=function(){return(Nh=u._Max=u.asm.ma).apply(null,arguments)},fu=u._MaxPool=function(){return(fu=u._MaxPool=u.asm.na).apply(null,arguments)},Zn=u._Maximum=function(){return(Zn=u._Maximum=u.asm.oa).apply(null,arguments)},Sa=u._Mean=function(){return(Sa=u._Mean=u.asm.pa).apply(null,arguments)},Th=u._Min=function(){return(Th=u._Min=u.asm.qa).apply(null,arguments)},_k=u._Minimum=function(){return(_k=u._Minimum=u.asm.ra).apply(null,arguments)},vk=u._MirrorPad=function(){return(vk=u._MirrorPad=u.asm.sa).apply(null,arguments)},kk=u._Multiply=function(){return(kk=u._Multiply=u.asm.ta).apply(null,arguments)},Ik=u._Neg=function(){return(Ik=u._Neg=u.asm.ua).apply(null,arguments)},Sk=u._NonMaxSuppressionV3=function(){return(Sk=u._NonMaxSuppressionV3=u.asm.va).apply(null,arguments)},Nk=u._NonMaxSuppressionV4=function(){return(Nk=u._NonMaxSuppressionV4=u.asm.wa).apply(null,arguments)},Tk=u._NonMaxSuppressionV5=function(){return(Tk=u._NonMaxSuppressionV5=u.asm.xa).apply(null,arguments)},Ek=u._NotEqual=function(){return(Ek=u._NotEqual=u.asm.ya).apply(null,arguments)},Ck=u._OneHot=function(){return(Ck=u._OneHot=u.asm.za).apply(null,arguments)},Rk=u._PadV2=function(){return(Rk=u._PadV2=u.asm.Aa).apply(null,arguments)},Mk=u._Pow=function(){return(Mk=u._Pow=u.asm.Ba).apply(null,arguments)},Fk=u._Prelu=function(){return(Fk=u._Prelu=u.asm.Ca).apply(null,arguments)},$k=u._Prod=function(){return($k=u._Prod=u.asm.Da).apply(null,arguments)},Dk=u._RealDiv=function(){return(Dk=u._RealDiv=u.asm.Ea).apply(null,arguments)},Ok=u._Relu=function(){return(Ok=u._Relu=u.asm.Fa).apply(null,arguments)},zk=u._Relu6=function(){return(zk=u._Relu6=u.asm.Ga).apply(null,arguments)},Pk=u._ResizeBilinear=function(){return(Pk=u._ResizeBilinear=u.asm.Ha).apply(null,arguments)},Lk=u._Reverse=function(){return(Lk=u._Reverse=u.asm.Ia).apply(null,arguments)},Wk=u._RotateWithOffset=function(){return(Wk=u._RotateWithOffset=u.asm.Ja).apply(null,arguments)},Bk=u._Round=function(){return(Bk=u._Round=u.asm.Ka).apply(null,arguments)},Vk=u._Rsqrt=function(){return(Vk=u._Rsqrt=u.asm.La).apply(null,arguments)},jk=u._ScatterNd=function(){return(jk=u._ScatterNd=u.asm.Ma).apply(null,arguments)},Uk=u._SelectV2=function(){return(Uk=u._SelectV2=u.asm.Na).apply(null,arguments)},Hk=u._Sigmoid=function(){return(Hk=u._Sigmoid=u.asm.Oa).apply(null,arguments)},Gk=u._Sin=function(){return(Gk=u._Sin=u.asm.Pa).apply(null,arguments)},qk=u._Softmax=function(){return(qk=u._Softmax=u.asm.Qa).apply(null,arguments)},Xk=u._Sqrt=function(){return(Xk=u._Sqrt=u.asm.Ra).apply(null,arguments)},Kk=u._Square=function(){return(Kk=u._Square=u.asm.Sa).apply(null,arguments)},Zk=u._SquaredDifference=function(){return(Zk=u._SquaredDifference=u.asm.Ta).apply(null,arguments)},Yk=u._Step=function(){return(Yk=u._Step=u.asm.Ua).apply(null,arguments)},Jk=u._StridedSlice=function(){return(Jk=u._StridedSlice=u.asm.Va).apply(null,arguments)},Qk=u._Sub=function(){return(Qk=u._Sub=u.asm.Wa).apply(null,arguments)},e9=u._Sum=function(){return(e9=u._Sum=u.asm.Xa).apply(null,arguments)},t9=u._Tan=function(){return(t9=u._Tan=u.asm.Ya).apply(null,arguments)},n9=u._Tanh=function(){return(n9=u._Tanh=u.asm.Za).apply(null,arguments)},r9=u._Tile=function(){return(r9=u._Tile=u.asm._a).apply(null,arguments)},a9=u._TopK=function(){return(a9=u._TopK=u.asm.$a).apply(null,arguments)},s9=u._Transpose=function(){return(s9=u._Transpose=u.asm.ab).apply(null,arguments)},i9=u.__FusedMatMul=function(){return(i9=u.__FusedMatMul=u.asm.bb).apply(null,arguments)},ls=u._malloc=function(){return(ls=u._malloc=u.asm.cb).apply(null,arguments)},mu=u._free=function(){return(mu=u._free=u.asm.db).apply(null,arguments)},J2=u.___errno_location=function(){return(J2=u.___errno_location=u.asm.eb).apply(null,arguments)},Q2=u._emscripten_get_global_libc=function(){return(Q2=u._emscripten_get_global_libc=u.asm.fb).apply(null,arguments)},Qi=u._pthread_self=function(){return(Qi=u._pthread_self=u.asm.gb).apply(null,arguments)},e5=u.___pthread_tsd_run_dtors=function(){return(e5=u.___pthread_tsd_run_dtors=u.asm.hb).apply(null,arguments)},xf=u._emscripten_main_thread_process_queued_calls=function(){return(xf=u._emscripten_main_thread_process_queued_calls=u.asm.ib).apply(null,arguments)},o9=u._emscripten_current_thread_process_queued_calls=function(){return(o9=u._emscripten_current_thread_process_queued_calls=u.asm.jb).apply(null,arguments)},t5=u._emscripten_register_main_browser_thread_id=function(){return(t5=u._emscripten_register_main_browser_thread_id=u.asm.kb).apply(null,arguments)},n5=u.__emscripten_do_dispatch_to_thread=function(){return(n5=u.__emscripten_do_dispatch_to_thread=u.asm.lb).apply(null,arguments)},r5=u._emscripten_sync_run_in_main_thread_4=function(){return(r5=u._emscripten_sync_run_in_main_thread_4=u.asm.mb).apply(null,arguments)},a5=u._emscripten_run_in_main_runtime_thread_js=function(){return(a5=u._emscripten_run_in_main_runtime_thread_js=u.asm.nb).apply(null,arguments)},wf=u.__emscripten_call_on_thread=function(){return(wf=u.__emscripten_call_on_thread=u.asm.ob).apply(null,arguments)},l9=u._emscripten_tls_init=function(){return(l9=u._emscripten_tls_init=u.asm.pb).apply(null,arguments)},bf=u.__emscripten_thread_init=function(){return(bf=u.__emscripten_thread_init=u.asm.qb).apply(null,arguments)},Au=u.stackSave=function(){return(Au=u.stackSave=u.asm.rb).apply(null,arguments)},eo=u.stackRestore=function(){return(eo=u.stackRestore=u.asm.sb).apply(null,arguments)},to=u.stackAlloc=function(){return(to=u.stackAlloc=u.asm.tb).apply(null,arguments)},s5=u._emscripten_stack_set_limits=function(){return(s5=u._emscripten_stack_set_limits=u.asm.ub).apply(null,arguments)},i5=u._memalign=function(){return(i5=u._memalign=u.asm.vb).apply(null,arguments)},o5=u.__emscripten_allow_main_runtime_queued_calls=9808,no=u.__emscripten_main_thread_futex=11432;u.cwrap=Fe,u.PThread=ke,u.PThread=ke,u.wasmMemory=Q,u.ExitStatus=yu;var Eh;function yu(S){this.name="ExitStatus",this.message="Program terminated with exit("+S+")",this.status=S}is=function S(){Eh||_f(),Eh||(is=S)};function _f(S){if(S=S||m,ra>0)return;if(b){h(u),ou(),postMessage({cmd:"loaded"});return}if(Q0(),ra>0)return;function T(){Eh||(Eh=!0,u.calledRun=!0,!oe&&(ou(),e1(),h(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),kn()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),T()},1)):T()}u.run=_f;function u9(S,T){if(!(T&&ie&&S===0)){if(!T&&b)throw postMessage({cmd:"exitProcess",returnCode:S}),new yu(S);ie||(ke.terminateAllThreads(),me=S,uh(),u.onExit&&u.onExit(S),oe=!0),y(S,new yu(S))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return b&&(ie=!1,ke.initWorker()),_f(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),E9=_t((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i,o;s.ready=new Promise(function(K,ne){i=K,o=ne});var l={},c;for(c in s)s.hasOwnProperty(c)&&(l[c]=s[c]);var u=[],h="./this.program",d=function(K,ne){throw ne},p=!1,f=!1,m=!1,A=!1;p=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!p&&!m&&!f;var y="";function g(K){return s.locateFile?s.locateFile(K,y):y+K}var x,v,w,b,k,N;m?(f?y=xu().dirname(y)+"/":y=__dirname+"/",x=function(K,ne){return k||(k=require("fs")),N||(N=xu()),K=N.normalize(K),k.readFileSync(K,ne?null:"utf8")},w=function(K){var ne=x(K,!0);return ne.buffer||(ne=new Uint8Array(ne)),X(ne.buffer),ne},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof gf))throw K}),process.on("unhandledRejection",zr),d=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(x=function(K){return read(K)}),w=function(K){var ne;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(ne=read(K,"binary"),X(typeof ne=="object"),ne)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(d=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||f)&&(f?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),r&&(y=r),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.send(null),ne.responseText},f&&(w=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.responseType="arraybuffer",ne.send(null),new Uint8Array(ne.response)}),v=function(K,ne,Ne){var Ze=new XMLHttpRequest;Ze.open("GET",K,!0),Ze.responseType="arraybuffer",Ze.onload=function(){if(Ze.status==200||Ze.status==0&&Ze.response){ne(Ze.response);return}Ne()},Ze.onerror=Ne,Ze.send(null)},b=function(K){document.title=K});var C=s.print||console.log.bind(console),F=s.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(s[c]=l[c]);l=null,s.arguments&&(u=s.arguments),s.thisProgram&&(h=s.thisProgram),s.quit&&(d=s.quit);var O;s.wasmBinary&&(O=s.wasmBinary);var L=s.noExitRuntime||!0;typeof WebAssembly!="object"&&zr("no native wasm support detected");var V,j=!1,U;function X(K,ne){K||zr("Assertion failed: "+ne)}function G(K){var ne=s["_"+K];return X(ne,"Cannot call unknown function "+K+", make sure it is exported"),ne}function ee(K,ne,Ne,Ze,Nt){var yt={string:function(Zn){var Sa=0;if(Zn!=null&&Zn!==0){var Th=(Zn.length<<2)+1;Sa=du(Th),he(Zn,Sa,Th)}return Sa},array:function(Zn){var Sa=du(Zn.length);return oe(Zn,Sa),Sa}};function Ue(Zn){return ne==="string"?ie(Zn):ne==="boolean"?Boolean(Zn):Zn}var Ge=G(K),Jt=[],sa=0;if(Ze)for(var ia=0;ia=Ze);)++Nt;if(Nt-ne>16&&K.subarray&&ae)return ae.decode(K.subarray(ne,Nt));for(var yt="";ne>10,56320|sa&1023)}}return yt}function ie(K,ne){return K?te(Se,K,ne):""}function Q(K,ne,Ne,Ze){if(!(Ze>0))return 0;for(var Nt=Ne,yt=Ne+Ze-1,Ue=0;Ue=55296&&Ge<=57343){var Jt=K.charCodeAt(++Ue);Ge=65536+((Ge&1023)<<10)|Jt&1023}if(Ge<=127){if(Ne>=yt)break;ne[Ne++]=Ge}else if(Ge<=2047){if(Ne+1>=yt)break;ne[Ne++]=192|Ge>>6,ne[Ne++]=128|Ge&63}else if(Ge<=65535){if(Ne+2>=yt)break;ne[Ne++]=224|Ge>>12,ne[Ne++]=128|Ge>>6&63,ne[Ne++]=128|Ge&63}else{if(Ne+3>=yt)break;ne[Ne++]=240|Ge>>18,ne[Ne++]=128|Ge>>12&63,ne[Ne++]=128|Ge>>6&63,ne[Ne++]=128|Ge&63}}return ne[Ne]=0,Ne-Nt}function he(K,ne,Ne){return Q(K,Se,ne,Ne)}function oe(K,ne){Ie.set(K,ne)}function me(K,ne){return K%ne>0&&(K+=ne-K%ne),K}var pe,Ie,Se,Fe,Oe,$e,et,tt,it;function Ke(K){pe=K,s.HEAP8=Ie=new Int8Array(K),s.HEAP16=Fe=new Int16Array(K),s.HEAP32=$e=new Int32Array(K),s.HEAPU8=Se=new Uint8Array(K),s.HEAPU16=Oe=new Uint16Array(K),s.HEAPU32=et=new Uint32Array(K),s.HEAPF32=tt=new Float32Array(K),s.HEAPF64=it=new Float64Array(K)}var dt=s.INITIAL_MEMORY||16777216,je,_n=[],bt=[],Xn=[],Zt=[],vn=!1;bt.push({func:function(){mh()}});function Kn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Or(s.preRun.shift());va(_n)}function On(){vn=!0,va(bt)}function on(){va(Xn)}function Yt(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)ir(s.postRun.shift());va(Zt)}function Or(K){_n.unshift(K)}function ir(K){Zt.unshift(K)}var or=0,ba=null,na=null;function _a(K){or++,s.monitorRunDependencies&&s.monitorRunDependencies(or)}function Xi(K){if(or--,s.monitorRunDependencies&&s.monitorRunDependencies(or),or==0&&(ba!==null&&(clearInterval(ba),ba=null),na)){var ne=na;na=null,ne()}}s.preloadedImages={},s.preloadedAudios={};function zr(K){s.onAbort&&s.onAbort(K),K+="",F(K),j=!0,U=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var ne=new WebAssembly.RuntimeError(K);throw o(ne),ne}function lh(K,ne){return String.prototype.startsWith?K.startsWith(ne):K.indexOf(ne)===0}var Q0="data:application/octet-stream;base64,";function ou(K){return lh(K,Q0)}var e1="file://";function uh(K){return lh(K,e1)}var kn="tfjs-backend-wasm.wasm";ou(kn)||(kn=g(kn));function ch(K){try{if(K==kn&&O)return new Uint8Array(O);if(w)return w(K);throw"both async and sync fetching of the wasm failed"}catch(ne){zr(ne)}}function t1(){if(!O&&(p||f)){if(typeof fetch=="function"&&!uh(kn))return fetch(kn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+kn+"'";return K.arrayBuffer()}).catch(function(){return ch(kn)});if(v)return new Promise(function(K,ne){v(kn,function(Ne){K(new Uint8Array(Ne))},ne)})}return Promise.resolve().then(function(){return ch(kn)})}function ra(){var K={a:i1};function ne(Ue,Ge){var Jt=Ue.exports;s.asm=Jt,V=s.asm.i,Ke(V.buffer),je=s.asm.o,Xi("wasm-instantiate")}_a("wasm-instantiate");function Ne(Ue){ne(Ue.instance)}function Ze(Ue){return t1().then(function(Ge){return WebAssembly.instantiate(Ge,K)}).then(Ue,function(Ge){F("failed to asynchronously prepare wasm: "+Ge),zr(Ge)})}function Nt(){return!O&&typeof WebAssembly.instantiateStreaming=="function"&&!ou(kn)&&!uh(kn)&&typeof fetch=="function"?fetch(kn,{credentials:"same-origin"}).then(function(Ue){var Ge=WebAssembly.instantiateStreaming(Ue,K);return Ge.then(Ne,function(Jt){return F("wasm streaming compile failed: "+Jt),F("falling back to ArrayBuffer instantiation"),Ze(Ne)})}):Ze(Ne)}if(s.instantiateWasm)try{var yt=s.instantiateWasm(K,ne);return yt}catch(Ue){return F("Module.instantiateWasm callback failed with error: "+Ue),!1}return Nt().catch(o),{}}function va(K){for(;K.length>0;){var ne=K.shift();if(typeof ne=="function"){ne(s);continue}var Ne=ne.func;typeof Ne=="number"?ne.arg===void 0?je.get(Ne)():je.get(Ne)(ne.arg):Ne(ne.arg===void 0?null:ne.arg)}}function is(){zr()}function n1(K,ne,Ne){Se.copyWithin(K,ne,ne+Ne)}function r1(){return Se.length}function aa(K){try{return V.grow(K-pe.byteLength+65535>>>16),Ke(V.buffer),1}catch(ne){}}function hh(K){var ne=r1(),Ne=2147483648;if(K>Ne)return!1;for(var Ze=1;Ze<=4;Ze*=2){var Nt=ne*(1+.2/Ze);Nt=Math.min(Nt,K+100663296);var yt=Math.min(Ne,me(Math.max(K,Nt),65536)),Ue=aa(yt);if(Ue)return!0}return!1}var Ki={mappings:{},buffers:[null,[],[]],printChar:function(K,ne){var Ne=Ki.buffers[K];ne===0||ne===10?((K===1?C:F)(te(Ne,0)),Ne.length=0):Ne.push(ne)},varargs:void 0,get:function(){Ki.varargs+=4;var K=$e[Ki.varargs-4>>2];return K},getStr:function(K){var ne=ie(K);return ne},get64:function(K,ne){return K}};function dh(K){return 0}function a1(K,ne,Ne,Ze,Nt){}function ph(K,ne,Ne,Ze){for(var Nt=0,yt=0;yt>2],Ge=$e[ne+(yt*8+4)>>2],Jt=0;Jt>2]=Nt,0}function In(){return 6}function fh(K){return $e[kh()>>2]=K,K}function s1(K){switch(K){case 30:return 16384;case 85:var ne=2147483648;return ne/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return fh(28),-1}var i1={a:is,d:n1,e:hh,f:dh,c:a1,b:ph,g:In,h:s1},o1=ra(),mh=s.___wasm_call_ctors=function(){return(mh=s.___wasm_call_ctors=s.asm.j).apply(null,arguments)},Zi=s._init=function(){return(Zi=s._init=s.asm.k).apply(null,arguments)},lu=s._register_tensor=function(){return(lu=s._register_tensor=s.asm.l).apply(null,arguments)},l1=s._dispose_data=function(){return(l1=s._dispose_data=s.asm.m).apply(null,arguments)},u1=s._dispose=function(){return(u1=s._dispose=s.asm.n).apply(null,arguments)},c1=s._Abs=function(){return(c1=s._Abs=s.asm.p).apply(null,arguments)},ke=s._Add=function(){return(ke=s._Add=s.asm.q).apply(null,arguments)},h1=s._AddN=function(){return(h1=s._AddN=s.asm.r).apply(null,arguments)},d1=s._All=function(){return(d1=s._All=s.asm.s).apply(null,arguments)},p1=s._Any=function(){return(p1=s._Any=s.asm.t).apply(null,arguments)},f1=s._ArgMax=function(){return(f1=s._ArgMax=s.asm.u).apply(null,arguments)},m1=s._AvgPool=function(){return(m1=s._AvgPool=s.asm.v).apply(null,arguments)},os=s._BatchMatMul=function(){return(os=s._BatchMatMul=s.asm.w).apply(null,arguments)},A1=s._Ceil=function(){return(A1=s._Ceil=s.asm.x).apply(null,arguments)},y1=s._ClipByValue=function(){return(y1=s._ClipByValue=s.asm.y).apply(null,arguments)},g1=s._Conv2D=function(){return(g1=s._Conv2D=s.asm.z).apply(null,arguments)},x1=s._Conv2DBackpropInput=function(){return(x1=s._Conv2DBackpropInput=s.asm.A).apply(null,arguments)},w1=s._Cos=function(){return(w1=s._Cos=s.asm.B).apply(null,arguments)},b1=s._CropAndResize=function(){return(b1=s._CropAndResize=s.asm.C).apply(null,arguments)},_1=s._Cumsum=function(){return(_1=s._Cumsum=s.asm.D).apply(null,arguments)},v1=s._DepthToSpace=function(){return(v1=s._DepthToSpace=s.asm.E).apply(null,arguments)},k1=s._DepthwiseConv2dNative=function(){return(k1=s._DepthwiseConv2dNative=s.asm.F).apply(null,arguments)},ka=s._Equal=function(){return(ka=s._Equal=s.asm.G).apply(null,arguments)},uu=s._Exp=function(){return(uu=s._Exp=s.asm.H).apply(null,arguments)},cu=s._FlipLeftRight=function(){return(cu=s._FlipLeftRight=s.asm.I).apply(null,arguments)},I1=s._Floor=function(){return(I1=s._Floor=s.asm.J).apply(null,arguments)},S1=s._FloorDiv=function(){return(S1=s._FloorDiv=s.asm.K).apply(null,arguments)},N1=s._FusedBatchNorm=function(){return(N1=s._FusedBatchNorm=s.asm.L).apply(null,arguments)},T1=s._FusedConv2D=function(){return(T1=s._FusedConv2D=s.asm.M).apply(null,arguments)},E1=s._FusedDepthwiseConv2D=function(){return(E1=s._FusedDepthwiseConv2D=s.asm.N).apply(null,arguments)},We=s._Gather=function(){return(We=s._Gather=s.asm.O).apply(null,arguments)},C1=s._GatherNd=function(){return(C1=s._GatherNd=s.asm.P).apply(null,arguments)},R1=s._Greater=function(){return(R1=s._Greater=s.asm.Q).apply(null,arguments)},M1=s._GreaterEqual=function(){return(M1=s._GreaterEqual=s.asm.R).apply(null,arguments)},F1=s._LeakyRelu=function(){return(F1=s._LeakyRelu=s.asm.S).apply(null,arguments)},$1=s._Less=function(){return($1=s._Less=s.asm.T).apply(null,arguments)},D1=s._LessEqual=function(){return(D1=s._LessEqual=s.asm.U).apply(null,arguments)},hu=s._Log=function(){return(hu=s._Log=s.asm.V).apply(null,arguments)},Ah=s._LogicalAnd=function(){return(Ah=s._LogicalAnd=s.asm.W).apply(null,arguments)},yh=s._Max=function(){return(yh=s._Max=s.asm.X).apply(null,arguments)},O1=s._MaxPool=function(){return(O1=s._MaxPool=s.asm.Y).apply(null,arguments)},z1=s._Maximum=function(){return(z1=s._Maximum=s.asm.Z).apply(null,arguments)},P1=s._Mean=function(){return(P1=s._Mean=s.asm._).apply(null,arguments)},L1=s._Min=function(){return(L1=s._Min=s.asm.$).apply(null,arguments)},W1=s._Minimum=function(){return(W1=s._Minimum=s.asm.aa).apply(null,arguments)},B1=s._MirrorPad=function(){return(B1=s._MirrorPad=s.asm.ba).apply(null,arguments)},V1=s._Multiply=function(){return(V1=s._Multiply=s.asm.ca).apply(null,arguments)},Qe=s._Neg=function(){return(Qe=s._Neg=s.asm.da).apply(null,arguments)},j1=s._NonMaxSuppressionV3=function(){return(j1=s._NonMaxSuppressionV3=s.asm.ea).apply(null,arguments)},U1=s._NonMaxSuppressionV4=function(){return(U1=s._NonMaxSuppressionV4=s.asm.fa).apply(null,arguments)},H1=s._NonMaxSuppressionV5=function(){return(H1=s._NonMaxSuppressionV5=s.asm.ga).apply(null,arguments)},Yi=s._NotEqual=function(){return(Yi=s._NotEqual=s.asm.ha).apply(null,arguments)},gh=s._OneHot=function(){return(gh=s._OneHot=s.asm.ia).apply(null,arguments)},xh=s._PadV2=function(){return(xh=s._PadV2=s.asm.ja).apply(null,arguments)},wh=s._Pow=function(){return(wh=s._Pow=s.asm.ka).apply(null,arguments)},G1=s._Prelu=function(){return(G1=s._Prelu=s.asm.la).apply(null,arguments)},q1=s._Prod=function(){return(q1=s._Prod=s.asm.ma).apply(null,arguments)},bh=s._RealDiv=function(){return(bh=s._RealDiv=s.asm.na).apply(null,arguments)},X1=s._Relu=function(){return(X1=s._Relu=s.asm.oa).apply(null,arguments)},_h=s._Relu6=function(){return(_h=s._Relu6=s.asm.pa).apply(null,arguments)},Ia=s._ResizeBilinear=function(){return(Ia=s._ResizeBilinear=s.asm.qa).apply(null,arguments)},K1=s._Reverse=function(){return(K1=s._Reverse=s.asm.ra).apply(null,arguments)},Z1=s._RotateWithOffset=function(){return(Z1=s._RotateWithOffset=s.asm.sa).apply(null,arguments)},Y2=s._Round=function(){return(Y2=s._Round=s.asm.ta).apply(null,arguments)},vh=s._Rsqrt=function(){return(vh=s._Rsqrt=s.asm.ua).apply(null,arguments)},Y1=s._ScatterNd=function(){return(Y1=s._ScatterNd=s.asm.va).apply(null,arguments)},J1=s._SelectV2=function(){return(J1=s._SelectV2=s.asm.wa).apply(null,arguments)},Q1=s._Sigmoid=function(){return(Q1=s._Sigmoid=s.asm.xa).apply(null,arguments)},ef=s._Sin=function(){return(ef=s._Sin=s.asm.ya).apply(null,arguments)},tf=s._Softmax=function(){return(tf=s._Softmax=s.asm.za).apply(null,arguments)},nf=s._Sqrt=function(){return(nf=s._Sqrt=s.asm.Aa).apply(null,arguments)},rf=s._Square=function(){return(rf=s._Square=s.asm.Ba).apply(null,arguments)},af=s._SquaredDifference=function(){return(af=s._SquaredDifference=s.asm.Ca).apply(null,arguments)},sf=s._Step=function(){return(sf=s._Step=s.asm.Da).apply(null,arguments)},of=s._StridedSlice=function(){return(of=s._StridedSlice=s.asm.Ea).apply(null,arguments)},lf=s._Sub=function(){return(lf=s._Sub=s.asm.Fa).apply(null,arguments)},uf=s._Sum=function(){return(uf=s._Sum=s.asm.Ga).apply(null,arguments)},cf=s._Tan=function(){return(cf=s._Tan=s.asm.Ha).apply(null,arguments)},hf=s._Tanh=function(){return(hf=s._Tanh=s.asm.Ia).apply(null,arguments)},df=s._Tile=function(){return(df=s._Tile=s.asm.Ja).apply(null,arguments)},pf=s._TopK=function(){return(pf=s._TopK=s.asm.Ka).apply(null,arguments)},ff=s._Transpose=function(){return(ff=s._Transpose=s.asm.La).apply(null,arguments)},mf=s.__FusedMatMul=function(){return(mf=s.__FusedMatMul=s.asm.Ma).apply(null,arguments)},Af=s._malloc=function(){return(Af=s._malloc=s.asm.Na).apply(null,arguments)},yf=s._free=function(){return(yf=s._free=s.asm.Oa).apply(null,arguments)},kh=s.___errno_location=function(){return(kh=s.___errno_location=s.asm.Pa).apply(null,arguments)},Ih=s.stackSave=function(){return(Ih=s.stackSave=s.asm.Qa).apply(null,arguments)},Sh=s.stackRestore=function(){return(Sh=s.stackRestore=s.asm.Ra).apply(null,arguments)},du=s.stackAlloc=function(){return(du=s.stackAlloc=s.asm.Sa).apply(null,arguments)};s.cwrap=Y;var Ji;function gf(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}na=function K(){Ji||pu(),Ji||(na=K)};function pu(K){if(K=K||u,or>0||(Kn(),or>0))return;function ne(){Ji||(Ji=!0,s.calledRun=!0,!j&&(On(),on(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Yt()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ne()},1)):ne()}if(s.run=pu,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return pu(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),C9=_t((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=String(h);for(var d=0;d>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),R9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),M9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),F9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,c.i=d+1&7,f};function u(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),$9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,f,m;return c.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,c.i=p,m+(h^h>>>16)|0};function u(h,d){var p,f,m,A,y,g=[],x=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,x=Math.max(x,d.length)),m=0,A=-32;A>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),D9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,f=c.d,m=c.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-f|0,c.d=f<<16^p>>>16^m,c.a=m-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),O9=_t((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",c=a.pow(s,i),u=a.pow(2,o),h=u*2,d=s-1,p;function f(w,b,k){var N=[];b=b==!0?{entropy:!0}:b||{};var C=g(y(b.entropy?[w,v(r)]:w==null?x():w,3),N),F=new m(N),O=function(){for(var L=F.g(i),V=c,j=0;L=h;)L/=2,V/=2,j>>>=1;return(L+j)/V};return O.int32=function(){return F.g(4)|0},O.quick=function(){return F.g(4)/4294967296},O.double=O,g(v(F.S),r),(b.pass||k||function(L,V,j,U){return U&&(U.S&&A(U,F),L.state=function(){return A(F,{})}),j?(a[l]=L,V):L})(O,C,"global"in b?b.global:this==a,b.state)}function m(w){var b,k=w.length,N=this,C=0,F=N.i=N.j=0,O=N.S=[];for(k||(w=[k++]);C{var n=C9(),r=R9(),a=M9(),s=F9(),i=$9(),o=D9(),l=O9();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),z9=_t(()=>{}),vf={};Me(vf,{bin:()=>k5,browser:()=>C5,default:()=>P9,dependencies:()=>E5,description:()=>A5,devDependencies:()=>N5,jsdelivr:()=>w5,license:()=>S5,main:()=>g5,miniprogram:()=>v5,module:()=>x5,name:()=>f5,private:()=>y5,repository:()=>I5,scripts:()=>T5,types:()=>_5,unpkg:()=>b5,version:()=>m5});var f5="@tensorflow/tfjs",m5="3.5.0",A5="An open-source machine learning framework.",y5=!1,g5="dist/tf.node.js",x5="dist/index.js",w5="dist/tf.min.js",b5="dist/tf.min.js",_5="dist/index.d.ts",v5="dist/miniprogram",k5={"tfjs-custom-module":"dist/tools/custom_module/cli.js"},I5={type:"git",url:"https://github.com/tensorflow/tfjs.git"},S5="Apache-2.0",N5={"@babel/core":"^7.9.0","@babel/polyfill":"^7.10.4","@babel/preset-env":"^7.9.5","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@types/argparse":"^1.0.38","@types/jasmine":"2.8.7","@types/node":"~10.17.50","@types/shelljs":"^0.8.4","@types/yargs":"^15.0.7","clang-format":"~1.2.2",commander:"~2.14.1",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-babel":"^4.4.0","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~4.2.2",shelljs:"~0.8.1","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"1.0.0-pre.50"},T5={build:"tsc && yarn build-cli && yarn bundle","build-ci":"tsc && yarn build-cli && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-converter":"cd ../tfjs-converter && yarn && yarn build","build-converter-ci":"cd ../tfjs-converter && yarn && yarn build-ci","build-data":"cd ../tfjs-data && yarn && yarn build","build-data-ci":"cd ../tfjs-data && yarn && yarn build-ci","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-converter && yarn build-data && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-converter-ci && yarn build-data-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-cli":"tsc --project ./tools/custom_module/tsconfig.json && chmod +x ./dist/tools/custom_module/cli.js","run-custom-build":"ts-node -s ./tools/custom_module/cli.ts","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",test:"yarn && yarn build-deps && yarn build && karma start","test-dev":"karma start","test-tools":"ts-node --project ./tools/custom_module/tsconfig.json run_tools_tests.ts","test-ci":"./scripts/test-ci.sh"},E5={"@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-backend-webgl":"3.5.0","@tensorflow/tfjs-converter":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@tensorflow/tfjs-data":"3.5.0","@tensorflow/tfjs-layers":"3.5.0",argparse:"^1.0.10",chalk:"^4.1.0","core-js":"3","regenerator-runtime":"^0.13.5",yargs:"^16.0.3"},C5={"node-fetch":!1,util:!1,crypto:!1},P9={name:f5,version:m5,description:A5,private:y5,main:g5,module:x5,jsdelivr:w5,unpkg:b5,types:_5,miniprogram:v5,bin:k5,repository:I5,license:S5,devDependencies:N5,scripts:T5,dependencies:E5,browser:C5},kf={};Me(kf,{browser:()=>X5,default:()=>L9,dependencies:()=>q5,description:()=>F5,devDependencies:()=>H5,engines:()=>V5,jsdelivr:()=>O5,"jsnext:main":()=>L5,license:()=>U5,main:()=>D5,miniprogram:()=>B5,module:()=>W5,name:()=>R5,private:()=>$5,repository:()=>j5,scripts:()=>G5,sideEffects:()=>K5,types:()=>P5,unpkg:()=>z5,version:()=>M5});var R5="@tensorflow/tfjs-core",M5="3.5.0",F5="Hardware-accelerated JavaScript library for machine intelligence",$5=!1,D5="dist/tf-core.node.js",O5="dist/tf-core.min.js",z5="dist/tf-core.min.js",P5="dist/index.d.ts",L5="dist/index.js",W5="dist/index.js",B5="dist/miniprogram",V5={yarn:">= 1.3.2"},j5={type:"git",url:"https://github.com/tensorflow/tfjs-core.git"},U5="Apache-2.0",H5={"@bazel/bazelisk":"^1.3.0","@bazel/typescript":"^0.27.8","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"link:../tfjs-backend-cpu","@types/jasmine":"~3.0.0","@types/node":"~9.6.0","@types/node-fetch":"~2.1.2","clang-format":"~1.2.4",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-jasmine":"~1.1.0","karma-typescript":"~4.1.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2",shelljs:"~0.8.3","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21",yargs:"~13.2.2"},G5={"build-ci":"./scripts/enumerate-tests.js --ci && tsc && yarn bundle-ci && yarn build-test-snippets",build:"node ./scripts/enumerate-tests.js && tsc && yarn bundle",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-npm":"./scripts/build-npm.sh","build-deps":"yarn build && yarn build-cpu-backend","build-cpu-backend":"cd ../tfjs-backend-cpu && yarn && yarn build","build-cpu-backend-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build:bazel":"bazelisk build //...","build-test-snippets":"yarn tsc --project ./scripts/test_snippets/tsconfig.json","format-all":"clang-format -i -style=Google --glob=src/**/*.ts","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build && rollup -c && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-webworker":"karma start --worker","run-browserstack":"karma start --browserstack","test-bundle-size":"./scripts/test-bundle-size.js","test-node":"rimraf dist/ && yarn build-deps && yarn build && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-dev":"tsc && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_node.js","test-async-backends":"rimraf dist/ && yarn build && ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-async-backends-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-snippets":"yarn build && yarn build-cpu-backend && ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts","test-snippets-ci":"ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts"},q5={"@types/offscreencanvas":"~2019.3.0","@types/seedrandom":"2.4.27","@types/webgl-ext":"0.0.30","node-fetch":"~2.6.1",seedrandom:"2.4.3"},X5={"node-fetch":!1,util:!1,crypto:!1,worker_threads:!1},K5=["./dist/index.js","./dist/engine.js","./dist/tensor.js","./dist/base_side_effects.js","./dist/flags.js","./dist/platforms/*.js","./dist/register_all_gradients.js","./dist/public/chained_ops/*.js","./dist/io/*.js"],L9={name:R5,version:M5,description:F5,private:$5,main:D5,jsdelivr:O5,unpkg:z5,types:P5,"jsnext:main":L5,module:W5,miniprogram:B5,engines:V5,repository:j5,license:U5,devDependencies:H5,scripts:G5,dependencies:q5,browser:X5,sideEffects:K5},If={};Me(If,{browser:()=>dx,default:()=>W9,dependencies:()=>hx,description:()=>J5,devDependencies:()=>lx,jsdelivr:()=>tx,"jsnext:main":()=>ax,license:()=>ox,main:()=>ex,miniprogram:()=>ix,module:()=>sx,name:()=>Z5,peerDependencies:()=>cx,private:()=>Q5,scripts:()=>ux,types:()=>rx,unpkg:()=>nx,version:()=>Y5});var Z5="@tensorflow/tfjs-data",Y5="3.5.0",J5="TensorFlow Data API in JavaScript",Q5=!1,ex="dist/tf-data.node.js",tx="dist/tf-data.min.js",nx="dist/tf-data.min.js",rx="dist/index.d.ts",ax="dist/index.js",sx="dist/index.js",ix="dist/miniprogram",ox="Apache-2.0",lx={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@tensorflow/tfjs-layers":"3.5.0","@types/jasmine":"~2.5.53","@types/seedrandom":"^2.4.27","@types/utf8":"~2.1.6","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~7.0.0",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"^1.0.0-pre.50"},ux={build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-backend-cpu-ci","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-dev":"tsc && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-browsers":"karma start --browsers='Chrome,Firefox'","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/test_node.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose"},cx={"@tensorflow/tfjs-core":"3.5.0",seedrandom:"~2.4.3"},hx={"@types/node-fetch":"^2.1.2","node-fetch":"~2.6.1"},dx={fs:!1,"node-fetch":!1,string_decoder:!1,crypto:!1},W9={name:Z5,version:Y5,description:J5,private:Q5,main:ex,jsdelivr:tx,unpkg:nx,types:rx,"jsnext:main":ax,module:sx,miniprogram:ix,license:ox,devDependencies:lx,scripts:ux,peerDependencies:cx,dependencies:hx,browser:dx},Sf={};Me(Sf,{default:()=>B9,description:()=>mx,devDependencies:()=>Ix,jsdelivr:()=>_x,"jsnext:main":()=>wx,license:()=>Ax,main:()=>gx,miniprogram:()=>kx,module:()=>bx,name:()=>px,peerDependencies:()=>Nx,private:()=>yx,scripts:()=>Sx,types:()=>xx,unpkg:()=>vx,version:()=>fx});var px="@tensorflow/tfjs-layers",fx="3.5.0",mx="TensorFlow layers API in JavaScript",Ax="Apache-2.0 AND MIT",yx=!1,gx="dist/tf-layers.node.js",xx="dist/index.d.ts",wx="dist/index.js",bx="dist/index.js",_x="dist/tf-layers.min.js",vx="dist/tf-layers.min.js",kx="dist/miniprogram",Ix={"@babel/polyfill":"^7.8.7","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-backend-webgl":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@types/jasmine":"~2.5.53","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},Sx={prep:"yarn install && yarn build-ci",build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-npm":"./scripts/build-npm.sh",format:"./tools/clang_format_ts.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts","run-browserstack":"karma start --browsers='bs_chrome_mac' --singleRun --reporters='dots,karma-typescript'",lint:"tslint -p . -t verbose"},Nx={"@tensorflow/tfjs-core":"3.5.0"},B9={name:px,version:fx,description:mx,license:Ax,private:yx,main:gx,types:xx,"jsnext:main":wx,module:bx,jsdelivr:_x,unpkg:vx,miniprogram:kx,devDependencies:Ix,scripts:Sx,peerDependencies:Nx},Nf={};Me(Nf,{default:()=>V9,description:()=>Cx,devDependencies:()=>Bx,jsdelivr:()=>Ox,"jsnext:main":()=>Mx,license:()=>Lx,main:()=>Rx,miniprogram:()=>zx,module:()=>Fx,name:()=>Tx,peerDependencies:()=>Wx,repository:()=>Px,scripts:()=>Vx,types:()=>$x,unpkg:()=>Dx,version:()=>Ex});var Tx="@tensorflow/tfjs-converter",Ex="3.5.0",Cx="Tensorflow model converter for javascript",Rx="dist/tf-converter.node.js",Mx="dist/index.js",Fx="dist/index.js",$x="dist/index.d.ts",Dx="dist/tf-converter.min.js",Ox="dist/tf-converter.min.js",zx="dist/miniprogram",Px={type:"git",url:"https://github.com/tensorflow/tfjs-converter.git"},Lx="Apache-2.0",Wx={"@tensorflow/tfjs-core":"3.5.0"},Bx={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-replace":"^2.3.3","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@types/argparse":"^1.0.38","@types/deep-equal":"^1.0.1","@types/jasmine":"~2.8.6","@types/long":"~3.0.32","@types/node-fetch":"1.6.9",ajv:"~6.3.0",argparse:"^1.0.10","babel-core":"~6.26.3","babel-plugin-external-helpers":"~6.22.0","babel-preset-env":"~1.7.0","clang-format":"~1.2.2",copyfiles:"~1.2.0","deep-equal":"^1.0.1","jasmine-core":"~3.5.0","node-fetch":"~2.6.1",opn:"~5.1.0",protobufjs:"~6.8.6",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-morph":"^7.1.3","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"~0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},Vx={build:"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle","build-ci":"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && yarn gen-json --test && yarn gen-kernel2ops && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/run_tests.ts","test-dev":"tsc && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose","make-version":"sh -c ./scripts/make-version","gen-doc":"ts-node -s ./scripts/gen_doc.ts","gen-json":"ts-node -s ./scripts/gen_json.ts","model-summary":"ts-node -s ./tools/model_summary.ts",pb2json:"ts-node -s ./tools/pb2json_converter.ts","build-pip-package":"yarn gen-json --test && cd python && ./build-pip-package.sh --test /tmp/tfjs-pips","run-python-tests":"yarn gen-json --test && cd python && ./run-python-tests.sh","gen-kernel2ops":"ts-node -s scripts/kernels_to_ops.ts --out metadata/kernel2op.json"},V9={name:Tx,version:Ex,description:Cx,main:Rx,"jsnext:main":Mx,module:Fx,types:$x,unpkg:Dx,jsdelivr:Ox,miniprogram:zx,repository:Px,license:Lx,peerDependencies:Wx,devDependencies:Bx,scripts:Vx},j9=1e-7,U9=1e-4,Rh=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},wu=class{refCount(e){return cr("refCount")}incRef(e){return cr("incRef")}timerAvailable(){return!0}time(e){return cr("time")}read(e){return cr("read")}readSync(e){return cr("readSync")}numDataIds(){return cr("numDataIds")}disposeData(e,t){return cr("disposeData")}write(e,t,n){return cr("write")}move(e,t,n,r,a){return cr("move")}memory(){return cr("memory")}floatPrecision(){return cr("floatPrecision")}epsilon(){return this.floatPrecision()===32?j9:U9}dispose(){return cr("dispose")}};function cr(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function jx(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function H9(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r,a,s=0;for(;n>0;)s=Math.random()*n|0,n--,r=e[n],a=t[n],e[n]=e[s],t[n]=t[s],e[s]=r,t[s]=a}function bu(e,t,n){return Math.max(e,Math.min(t,n))}function G9(e){return e%2==0?e:e+1}function q9(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function cs(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function hs(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||rn(e)&&!n)for(let r=0;r0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function tI(e,t){let n=1,r=-1;for(let s=0;s=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function hr(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),M(e.every(r=>r>=-n&&r`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(r=>Ut(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function Ux(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:hr(t,e).sort(),i=0;for(let o=0;oo)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function Hx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Gx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function qx(e,t){for(let n=0;nt+=n.length),t}function Ta(e){return typeof e=="string"||e instanceof String}function Zx(e){return typeof e=="boolean"}function Yx(e){return typeof e=="number"}function Mh(e){return Array.isArray(e)?Mh(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":Yx(e)?"float32":Ta(e)?"string":Zx(e)?"bool":"float32"}function Ea(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Fh(e,t){for(let n=t;n=0;--r)n[r]=n[r+1]*e[r+1];return n}function Jx(e,t,n,r=!1){let a=new Array;if(t.length===1){let s=t[0]*(r?2:1);for(let i=0;il*c)*(r?2:1);for(let l=0;la*s)*(n?2:1);if(r===0)return[];if(r!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return Jx(0,e,t,n)}function Ef(e,t){let n=$h(e,t);for(let r=0;rr*a,1);if(t==null||t==="float32")return oo(e,new Float32Array(n));if(t==="int32")return oo(e,new Int32Array(n));if(t==="bool")return oo(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Cf(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function aI(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a{let[n,r]=t.split(":");this.urlFlags[n]=oI(n,r)})}};function iI(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(lI(t,r[0],r[1]),r.join("="))),t}function lI(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function oI(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return _r}var _r=null;function uI(e){_r=e}var Mf;function tw(){if(Mf==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Mf=e}return Mf}function cI(){let e=tw();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Ff(e,t){let n=cI();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var lo="Abs",uo="Acos",co="Acosh",Ca="Add",ds="AddN",ho="All",po="Any",ps="ArgMax",vu="ArgMin",fo="Asin",mo="Asinh",Ao="Atan",yo="Atanh",go="Atan2",fs="AvgPool",Dh="AvgPoolGrad",ku="AvgPool3D",Oh="AvgPool3DGrad",ms="BatchMatMul",Iu="BatchToSpaceND",zh="Bincount",nw="BroadcastTo",As="Cast",ys="Ceil",Ra="ClipByValue",Ph="Complex",Su="ComplexAbs",xo="Concat",gs="Conv2D",Lh="Conv2DBackpropFilter",xs="Conv2DBackpropInput",Nu="Conv3D",Wh="Conv3DBackpropFilterV2",Bh="Conv3DBackpropInputV2",ws="Cos",wo="Cosh",bs="Cumsum",bo="CropAndResize",Vh="DenseBincount",_o="DepthToSpace",_s="DepthwiseConv2dNative",jh="DepthwiseConv2dNativeBackpropFilter",Uh="DepthwiseConv2dNativeBackpropInput",Hh="Diag",Tu="Dilation2D",Gh="Dilation2DBackpropInput",qh="Dilation2DBackpropFilter",vs="RealDiv",Xh="Einsum",vo="Elu",Kh="EluGrad",ko="Erf",Io="Equal",ks="Exp",So="ExpandDims",No="Expm1",Zh="FFT",Eu="Fill",To="FlipLeftRight",Is="Floor",Ss="FloorDiv",Ns="FusedBatchNorm",Eo="GatherV2",Co="GatherNd",Ro="Greater",Ts="GreaterEqual",Es="Identity",Yh="IFFT",Jh="Imag",Mo="IsFinite",Fo="IsInf",$o="IsNan",Cs="LeakyRelu",Do="Less",Oo="LessEqual",Qh="LinSpace",Rs="Log",zo="Log1p",Po="LogicalAnd",Cu="LogicalNot",Ru="LogicalOr",rw="LogSoftmax",Mu="LRN",ed="LRNGrad",Ms="Max",Fs="Maximum",$s="MaxPool",td="MaxPoolGrad",Fu="MaxPool3D",nd="MaxPool3DGrad",rd="MaxPoolWithArgmax",Ds="Mean",Os="Min",zs="Minimum",Ps="MirrorPad",Lo="Mod",ad="Multinomial",Ls="Multiply",Wo="Neg",Bo="NotEqual",Vo="NonMaxSuppressionV3",jo="NonMaxSuppressionV4",Uo="NonMaxSuppressionV5",Ho="OnesLike",Ws="OneHot",Go="Pack",Bs="PadV2",hI="Pool",Vs="Pow",js="Prelu",qo="Prod",$u="Range",sd="Real",Xo="Reciprocal",Us="Relu",Ko="Reshape",Du="ResizeNearestNeighbor",id="ResizeNearestNeighborGrad",Hs="ResizeBilinear",od="ResizeBilinearGrad",Gs="Relu6",qs="Reverse",Xs="Round",Ks="Rsqrt",Zo="ScatterNd",Yo="Select",Jo="Selu",Qo="Slice",Zs="Sin",el="Sinh",tl="Sign",Ys="Sigmoid",nl="Softplus",Js="Sqrt",Qs="Sum",Ou="SpaceToBatchND",rl="SplitV",ei="Softmax",ld="SparseReshape",ud="SparseToDense",ti="SquaredDifference",zu="Square",al="StridedSlice",ni="Sub",ri="Tan",ai="Tanh",Ma="Tile",sl="TopK",cd="Transform",si="Transpose",hd="Unique",il="Unpack",Pu="UnsortedSegmentSum",ol="ZerosLike",Fa="Step",dd="FromPixels",ll="RotateWithOffset",ii="_FusedMatMul",oi="FusedConv2D",li="FusedDepthwiseConv2D",ul=Ff("kernelRegistry",()=>new Map),Lu=Ff("gradRegistry",()=>new Map);function pd(e,t){let n=$f(e,t);return ul.get(n)}function Df(e){return Lu.get(e)}function cl(e){let t=ul.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function ui(e){let{kernelName:t,backendName:n}=e,r=$f(t,n);ul.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),ul.set(r,e)}function aw(e){let{kernelName:t}=e;Lu.has(t)&&J().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Lu.set(t,e)}function dI(e,t){let n=$f(e,t);if(!ul.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);ul.delete(n)}function pI(e){if(!Lu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Lu.delete(e)}function fI(e,t){cl(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});ui(r)})}function $f(e,t){return`${t}_${e}`}var _={};Me(_,{arraysEqual:()=>oa,assert:()=>M,assertNonNegativeIntegerDimensions:()=>Cf,assertNonNull:()=>cs,assertShapesMatch:()=>ln,bytesFromStringArray:()=>Kx,bytesPerElement:()=>Tf,checkConversionForErrors:()=>qx,clamp:()=>bu,computeStrides:()=>io,createScalarValue:()=>mI,createShuffledIndices:()=>Q9,decodeString:()=>md,distSquared:()=>K9,encodeString:()=>Bu,fetch:()=>AI,flatten:()=>hs,getArrayFromDType:()=>Gx,getTypedArrayFromDType:()=>Hx,hasEncodingLoss:()=>nI,indexToLoc:()=>sI,inferDtype:()=>Mh,inferFromImplicitShape:()=>tI,isBoolean:()=>Zx,isFunction:()=>Ea,isInt:()=>Ut,isNumber:()=>Yx,isPromise:()=>Rf,isScalarShape:()=>Z9,isString:()=>Ta,isTypedArray:()=>rn,isValidDtype:()=>Xx,locToIndex:()=>aI,makeOnesTypedArray:()=>Ef,makeZerosNestedTypedArray:()=>rI,makeZerosTypedArray:()=>$h,nearestDivisor:()=>Fh,nearestLargerEven:()=>G9,now:()=>Wu,parseAxisParam:()=>hr,randUniform:()=>X9,repeatedTry:()=>eI,rightPad:()=>_u,shuffle:()=>jx,shuffleCombo:()=>H9,sizeFromShape:()=>Et,sizeToSquarishShape:()=>J9,squeezeShape:()=>Ux,sum:()=>q9,tanh:()=>Y9,toNestedArray:()=>oo,toTypedArray:()=>fd});function mI(e,t){return t==="string"?Bu(e):fd([e],t)}function yI(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function fd(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=hs(e)),J().getBool("DEBUG")&&qx(e,t),yI(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r{r=n()},s,i=Wu();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(a);else{a();for(let o of r)o.dataSync();s=Promise.resolve({kernelMs:Wu()-i})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o{gI(c,l.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function gI(e,t,n){if(t!=="float32")return!1;for(let r=0;r0?f:""} `}}console.log(`%c${o} %c${i} %c${l}D ${u} %c${c} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function bI(e,t,n){let r={},a={};for(let l=0;lr[m.id]=!0),p=!0,a[c.id]=!0;break}if(p)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let h=0;h=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let c=e[l.id];c!=null?i.push(c):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let c=n(()=>o[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=s.inputs[l];if(!oa(c.shape,u.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let h=e[u.id];e[u.id]=r(h,c),h.dispose()}}}}var sw=20,Vu=3,Of=7;function kI(e,t,n,r){let a=io(t),s=vI(e,t,n,a),i=t.length,o=Ad(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(c=>" "+c).join(` +var t9=Object.defineProperty;var lr=(e,t)=>{for(var n in t)t9(e,n,{get:t[n],enumerable:!0})};var a5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var ur=(e,t,n)=>(a5(e,t,"read from private field"),n?n.call(e):t.get(e)),cs=(e,t,n,r)=>(a5(e,t,"write to private field"),r?r.call(e,n):t.set(e,n),n);function pt(e,t){let n=e.endsWith("/")?"":"/",a=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!a.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${a} Expecting JSON file`);return a}function le(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var Ye=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Yn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(a=>{let s=n[a],i=r[a];Array.isArray(s)&&Array.isArray(i)?n[a]=s.concat(...i):t(s)&&t(i)?n[a]=Yn(s,i):n[a]=i}),n),{})}function s5(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let r=n[0].match(/\(([^()]+)\)/g);e=r?r[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var Au={};lr(Au,{Abs:()=>lo,Acos:()=>uo,Acosh:()=>co,AdadeltaOptimizer:()=>ep,AdagradOptimizer:()=>tp,AdamOptimizer:()=>np,AdamaxOptimizer:()=>rp,Add:()=>Ra,AddN:()=>ps,All:()=>ho,Any:()=>po,ArgMax:()=>fs,ArgMin:()=>wu,Asin:()=>fo,Asinh:()=>mo,Atan:()=>Ao,Atan2:()=>go,Atanh:()=>yo,AvgPool:()=>ms,AvgPool3D:()=>_u,AvgPool3DGrad:()=>Dh,AvgPoolGrad:()=>$h,BackendWasm:()=>Cv,BatchMatMul:()=>As,BatchToSpaceND:()=>vu,Bincount:()=>Oh,BroadcastTo:()=>Yx,Callback:()=>_4,CallbackList:()=>x6,Cast:()=>ys,Ceil:()=>gs,ClipByValue:()=>Ma,Complex:()=>zh,ComplexAbs:()=>ku,Concat:()=>xo,Conv2D:()=>xs,Conv2DBackpropFilter:()=>Ph,Conv2DBackpropInput:()=>bs,Conv3D:()=>Iu,Conv3DBackpropFilterV2:()=>Lh,Conv3DBackpropInputV2:()=>Wh,Cos:()=>ws,Cosh:()=>bo,CropAndResize:()=>wo,Cumsum:()=>_s,CustomCallback:()=>w6,DataStorage:()=>Ch,DenseBincount:()=>Bh,DepthToSpace:()=>_o,DepthwiseConv2dNative:()=>vs,DepthwiseConv2dNativeBackpropFilter:()=>Vh,DepthwiseConv2dNativeBackpropInput:()=>jh,Diag:()=>Uh,Dilation2D:()=>Su,Dilation2DBackpropFilter:()=>Gh,Dilation2DBackpropInput:()=>Hh,ENV:()=>vr,EarlyStopping:()=>k4,Einsum:()=>qh,Elu:()=>vo,EluGrad:()=>Xh,Environment:()=>Kx,Equal:()=>Io,Erf:()=>ko,Exp:()=>Is,ExpandDims:()=>So,Expm1:()=>No,FFT:()=>Kh,Fill:()=>Nu,FlipLeftRight:()=>To,Floor:()=>Ss,FloorDiv:()=>Ns,FromPixels:()=>hd,FusedBatchNorm:()=>Ts,FusedConv2D:()=>li,FusedDepthwiseConv2D:()=>ui,GPGPUContext:()=>bp,GatherNd:()=>Co,GatherV2:()=>Eo,GraphModel:()=>e8,Greater:()=>Ro,GreaterEqual:()=>Es,History:()=>b6,IFFT:()=>Zh,Identity:()=>Cs,Imag:()=>Yh,InputSpec:()=>Ft,IsFinite:()=>Mo,IsInf:()=>Fo,IsNan:()=>$o,KernelBackend:()=>gu,LRN:()=>Cu,LRNGrad:()=>Qh,LayerVariable:()=>f6,LayersModel:()=>xa,LeakyRelu:()=>Rs,Less:()=>Do,LessEqual:()=>Oo,LinSpace:()=>Jh,Log:()=>Ms,Log1p:()=>zo,LogSoftmax:()=>Jx,LogicalAnd:()=>Po,LogicalNot:()=>Tu,LogicalOr:()=>Eu,MathBackendCPU:()=>op,MathBackendWebGL:()=>Bl,Max:()=>Fs,MaxPool:()=>Ds,MaxPool3D:()=>Ru,MaxPool3DGrad:()=>td,MaxPoolGrad:()=>ed,MaxPoolWithArgmax:()=>nd,Maximum:()=>$s,Mean:()=>Os,Min:()=>zs,Minimum:()=>Ps,MirrorPad:()=>Ls,Mod:()=>Lo,MomentumOptimizer:()=>ap,Multinomial:()=>rd,Multiply:()=>Ws,Neg:()=>Wo,NonMaxSuppressionV3:()=>Vo,NonMaxSuppressionV4:()=>jo,NonMaxSuppressionV5:()=>Uo,NotEqual:()=>Bo,OP_SCOPE_SUFFIX:()=>ub,OneHot:()=>Bs,OnesLike:()=>Ho,Optimizer:()=>ma,Pack:()=>Go,PadV2:()=>Vs,Pool:()=>nI,Pow:()=>js,Prelu:()=>Us,Prod:()=>qo,RMSPropOptimizer:()=>sp,RNN:()=>Yr,Range:()=>Mu,Rank:()=>Of,Real:()=>ad,RealDiv:()=>ks,Reciprocal:()=>Xo,Reduction:()=>hn,Relu:()=>Hs,Relu6:()=>qs,Reshape:()=>Ko,ResizeBilinear:()=>Gs,ResizeBilinearGrad:()=>id,ResizeNearestNeighbor:()=>Fu,ResizeNearestNeighborGrad:()=>sd,Reverse:()=>Xs,RotateWithOffset:()=>ll,Round:()=>Ks,Rsqrt:()=>Zs,SGDOptimizer:()=>cc,ScatterNd:()=>Zo,Select:()=>Yo,Selu:()=>Jo,Sequential:()=>Zl,Sigmoid:()=>Js,Sign:()=>tl,Sin:()=>Ys,Sinh:()=>el,Slice:()=>Qo,Softmax:()=>ti,Softplus:()=>nl,SpaceToBatchND:()=>$u,SparseReshape:()=>od,SparseToDense:()=>ld,SplitV:()=>rl,Sqrt:()=>Qs,Square:()=>Du,SquaredDifference:()=>ni,Step:()=>$a,StridedSlice:()=>al,Sub:()=>ri,Sum:()=>ei,SymbolicTensor:()=>Fr,Tan:()=>ai,Tanh:()=>si,Tensor:()=>Pe,TensorBuffer:()=>Ot,Tile:()=>Fa,TopK:()=>sl,Transform:()=>ud,Transpose:()=>ii,Unique:()=>cd,Unpack:()=>il,UnsortedSegmentSum:()=>Ou,Variable:()=>ju,ZerosLike:()=>ol,_FusedMatMul:()=>oi,abs:()=>zt,acos:()=>lm,acosh:()=>um,add:()=>se,addN:()=>La,all:()=>vd,any:()=>Xu,argMax:()=>Ai,argMin:()=>cm,asin:()=>hm,asinh:()=>dm,atan:()=>pm,atan2:()=>fm,atanh:()=>mm,avgPool:()=>Zu,avgPool3d:()=>gm,backend:()=>Ub,backend_util:()=>E,basicLSTMCell:()=>$N,batchNorm:()=>xi,batchNorm2d:()=>Xb,batchNorm3d:()=>Kb,batchNorm4d:()=>Zb,batchToSpaceND:()=>Yu,bincount:()=>Yb,booleanMaskAsync:()=>WC,broadcastTo:()=>xl,browser:()=>fi,buffer:()=>Be,callbacks:()=>zae,cast:()=>ge,ceil:()=>xm,clipByValue:()=>En,clone:()=>Br,complex:()=>Da,concat:()=>ot,concat1d:()=>Jb,concat2d:()=>bl,concat3d:()=>Qb,concat4d:()=>ew,constraints:()=>Bv,conv1d:()=>Id,conv2d:()=>ha,conv2dTranspose:()=>Sd,conv3d:()=>wm,conv3dTranspose:()=>nw,copyRegisteredKernels:()=>sI,cos:()=>Ju,cosh:()=>Nd,cosineWindow:()=>Km,cumsum:()=>Td,customGrad:()=>jr,data:()=>t8,denseBincount:()=>rw,deprecationWarn:()=>im,depthToSpace:()=>_m,depthwiseConv2d:()=>wl,deregisterOp:()=>Lae,device_util:()=>Hu,diag:()=>uT,dilation2d:()=>vm,disableDeprecationWarnings:()=>XS,dispose:()=>we,disposeVariables:()=>KS,div:()=>Ae,divNoNan:()=>km,dot:()=>aw,dropout:()=>Iw,einsum:()=>sw,elu:()=>_l,enableDebugMode:()=>qS,enableProdMode:()=>GS,enclosingPowerOfTwo:()=>Sw,engine:()=>ca,env:()=>J,equal:()=>Ba,erf:()=>Im,exp:()=>Qn,expandDims:()=>Qt,expm1:()=>Sm,eye:()=>Nm,fft:()=>lc,fill:()=>Qu,findBackend:()=>om,findBackendFactory:()=>tN,floor:()=>vl,floorDiv:()=>_d,forceHalfFloat:()=>V3,fused:()=>Ha,gather:()=>bi,gatherND:()=>kw,gather_util:()=>Qf,getBackend:()=>QS,getGradient:()=>Ff,getKernel:()=>dd,getKernelsForBackend:()=>cl,gpgpu_util:()=>d3,grad:()=>LT,grads:()=>WT,greater:()=>pr,greaterEqual:()=>ja,ifft:()=>Nl,imag:()=>Ed,image:()=>Le,inTopKAsync:()=>YC,initializers:()=>Xv,input:()=>o6,io:()=>Nn,irfft:()=>Hd,isFinite:()=>iw,isInf:()=>ow,isNaN:()=>Tm,keep:()=>Ht,kernel_impls:()=>Gr,layers:()=>i6,leakyRelu:()=>ec,less:()=>Cd,lessEqual:()=>wi,linalg:()=>Pw,linspace:()=>lw,loadGraphModel:()=>ct,loadLayersModel:()=>rae,localResponseNormalization:()=>Em,log:()=>zn,log1p:()=>Rd,logSigmoid:()=>cw,logSoftmax:()=>Fd,logSumExp:()=>Mm,logicalAnd:()=>fr,logicalNot:()=>tc,logicalOr:()=>$d,logicalXor:()=>fw,losses:()=>AM,matMul:()=>Ve,math:()=>Ib,max:()=>Rn,maxPool:()=>nc,maxPool3d:()=>Fm,maxPoolWithArgmax:()=>mw,maximum:()=>Ur,mean:()=>It,memory:()=>wd,meshgrid:()=>lE,metrics:()=>x4,min:()=>kl,minimum:()=>Il,mirrorPad:()=>$m,mod:()=>Dm,model:()=>tae,models:()=>b4,moments:()=>Dd,movingAverage:()=>jC,mul:()=>z,multiRNNCell:()=>AE,multinomial:()=>Aw,neg:()=>kt,nextFrame:()=>ip,norm:()=>Kd,notEqual:()=>ki,oneHot:()=>ml,ones:()=>Pn,onesLike:()=>Ln,op:()=>D,outerProduct:()=>wE,pad:()=>da,pad1d:()=>kE,pad2d:()=>SE,pad3d:()=>TE,pad4d:()=>CE,pool:()=>yw,pow:()=>pa,prelu:()=>ac,print:()=>xb,prod:()=>Od,profile:()=>an,rand:()=>LE,randomGamma:()=>jE,randomNormal:()=>gw,randomUniform:()=>Sl,range:()=>zd,ready:()=>JS,real:()=>sc,reciprocal:()=>Pm,registerBackend:()=>yl,registerCallbackConstructor:()=>aae,registerGradient:()=>Qx,registerKernel:()=>ci,registerOp:()=>Pae,regularizers:()=>w4,relu:()=>Hr,relu6:()=>Pd,removeBackend:()=>eN,reshape:()=>H,reverse:()=>Wn,reverse1d:()=>JE,reverse2d:()=>eC,reverse3d:()=>nC,reverse4d:()=>aC,rfft:()=>uc,round:()=>Lm,rsqrt:()=>Ld,scalar:()=>ve,scatterND:()=>vw,scatter_util:()=>em,selu:()=>Wd,separableConv2d:()=>Wm,sequential:()=>nae,serialization:()=>re,setBackend:()=>YS,setPlatform:()=>nN,setWasmPath:()=>YJ,setWasmPaths:()=>JJ,setWebGLContext:()=>Ap,setdiff1dAsync:()=>xw,shared:()=>eA,sigmoid:()=>Tn,sign:()=>Bm,signal:()=>mM,sin:()=>Bd,sinh:()=>Vd,slice:()=>Re,slice1d:()=>jd,slice2d:()=>Vm,slice3d:()=>Ud,slice4d:()=>ic,slice_util:()=>un,softmax:()=>oc,softplus:()=>_i,spaceToBatchND:()=>rc,sparse:()=>Lw,sparseToDense:()=>Xm,spectral:()=>fM,split:()=>Lt,sqrt:()=>en,square:()=>it,squaredDifference:()=>Gd,squeeze:()=>Ua,stack:()=>cn,step:()=>Tl,stridedSlice:()=>jm,sub:()=>ye,sum:()=>Te,sumOutType:()=>Ad,tan:()=>Um,tanh:()=>gi,tensor:()=>Sr,tensor1d:()=>sn,tensor2d:()=>er,tensor3d:()=>xd,tensor4d:()=>CC,tensor5d:()=>RC,tensor6d:()=>MC,tensor_util:()=>kr,test_util:()=>Bb,tidy:()=>P,tile:()=>Va,time:()=>ZS,topk:()=>Hm,train:()=>Si,transpose:()=>Je,truncatedNormal:()=>qd,unique:()=>Xd,unregisterGradient:()=>aI,unregisterKernel:()=>rI,unsortedSegmentSum:()=>Gm,unstack:()=>mr,upcastType:()=>dr,util:()=>_,valueAndGrad:()=>BT,valueAndGrads:()=>VT,variable:()=>bw,variableGrads:()=>uw,version:()=>Iie,version_converter:()=>Lse,version_core:()=>HS,version_cpu:()=>g_,version_layers:()=>xy,version_wasm:()=>Mv,version_webgl:()=>B3,webgl:()=>eB,webgl_util:()=>W_,where:()=>Cn,whereAsync:()=>qm,zeros:()=>Rt,zerosLike:()=>He});var n9=Object.create,Eh=Object.defineProperty,r9=Object.getPrototypeOf,a9=Object.prototype.hasOwnProperty,s9=Object.getOwnPropertyNames,i9=Object.getOwnPropertyDescriptor,o9=e=>Eh(e,"__esModule",{value:!0}),_t=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Me=(e,t)=>{for(var n in t)Eh(e,n,{get:t[n],enumerable:!0})},l9=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of s9(t))!a9.call(e,r)&&r!=="default"&&Eh(e,r,{get:()=>t[r],enumerable:!(n=i9(t,r))||n.enumerable});return e},so=e=>l9(o9(Eh(e!=null?n9(r9(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),u9=_t(()=>{}),c9=_t((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=h.toString();for(var d=0;d>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),h9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),d9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),p9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,m,f;return p=h[d],p^=p>>>7,m=p^p<<24,p=h[d+1&7],m^=p^p>>>10,p=h[d+3&7],m^=p^p>>>3,p=h[d+4&7],m^=p^p<<7,p=h[d+7&7],p=p^p<<13,m^=p^p<<9,h[d]=m,c.i=d+1&7,m};function u(h,d){var p,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),f9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,m,f;return c.w=h=h+1640531527|0,f=d[p+34&127],m=d[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[p]=f^m,c.i=p,f+(h^h>>>16)|0};function u(h,d){var p,m,f,A,y,g=[],x=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,x=Math.max(x,d.length)),f=0,A=-32;A>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=m+y,f=p==0?f+1:0);for(f>=128&&(g[(d&&d.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;h.w=y,h.X=g,h.i=f}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),m9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,m=c.d,f=c.a;return d=d<<25^d>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-m|0,c.d=m<<16^p>>>16^f,c.a=f-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),i5=_t(()=>{}),A9=_t((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",c=r.pow(s,i),u=r.pow(2,o),h=u*2,d=s-1,p;function m(b,w,k){var N=[];w=w==!0?{entropy:!0}:w||{};var C=g(y(w.entropy?[b,v(n)]:b==null?x():b,3),N),F=new f(N),O=function(){for(var L=F.g(i),V=c,j=0;L=h;)L/=2,V/=2,j>>>=1;return(L+j)/V};return O.int32=function(){return F.g(4)|0},O.quick=function(){return F.g(4)/4294967296},O.double=O,g(v(F.S),n),(w.pass||k||function(L,V,j,U){return U&&(U.S&&A(U,F),L.state=function(){return A(F,{})}),j?(r[l]=L,V):L})(O,C,"global"in w?w.global:this==r,w.state)}r["seed"+l]=m;function f(b){var w,k=b.length,N=this,C=0,F=N.i=N.j=0,O=N.S=[];for(k||(b=[k++]);C{var n=c9(),r=h9(),a=d9(),s=p9(),i=f9(),o=m9(),l=A9();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),yu=_t(()=>{}),y9=_t(()=>{}),g9=_t(()=>{}),x9=_t((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return Q.buffer!=je&&Yt(Q.buffer),_n}function i(){return Q.buffer!=je&&Yt(Q.buffer),wt}function o(){return Q.buffer!=je&&Yt(Q.buffer),vn}function l(){return Q.buffer!=je&&Yt(Q.buffer),Kn}function c(){return Q.buffer!=je&&Yt(Q.buffer),on}var u=typeof a!="undefined"?a:{},h,d;u.ready=new Promise(function(S,T){h=S,d=T});var p={},m;for(m in u)u.hasOwnProperty(m)&&(p[m]=u[m]);var f=[],A="./this.program",y=function(S,T){throw T},g=!1,x=!1,v=!1,b=!1;g=typeof window=="object",x=typeof importScripts=="function",v=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!g&&!v&&!x;var w=u.ENVIRONMENT_IS_PTHREAD||!1;w&&(je=u.buffer);var k="";function N(S){return u.locateFile?u.locateFile(S,k):k+S}var C,F,O,L,V,j;if(v){x?k=yu().dirname(k)+"/":k=__dirname+"/",C=function(S,T){return V||(V=require("fs")),j||(j=yu()),S=j.normalize(S),V.readFileSync(S,T?null:"utf8")},O=function(S){var T=C(S,!0);return T.buffer||(T=new Uint8Array(T)),pe(T.buffer),T},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(S){if(!(S instanceof mu))throw S}),process.on("unhandledRejection",sa),y=function(S){process.exit(S)},u.inspect=function(){return"[Emscripten Module object]"};var U;try{U=y9()}catch(S){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),S}global.Worker=U.Worker}else b?(typeof read!="undefined"&&(C=function(S){return read(S)}),O=function(S){var T;return typeof readbuffer=="function"?new Uint8Array(readbuffer(S)):(T=read(S,"binary"),pe(typeof T=="object"),T)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(y=function(S){quit(S)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(g||x)&&(x?k=self.location.href:typeof document!="undefined"&&document.currentScript&&(k=document.currentScript.src),typeof r!="undefined"&&r&&(k=r),k.indexOf("blob:")!==0?k=k.substr(0,k.lastIndexOf("/")+1):k="",v?(C=function(S,T){return V||(V=require("fs")),j||(j=yu()),S=j.normalize(S),V.readFileSync(S,T?null:"utf8")},O=function(S){var T=C(S,!0);return T.buffer||(T=new Uint8Array(T)),pe(T.buffer),T}):(C=function(S){var T=new XMLHttpRequest;return T.open("GET",S,!1),T.send(null),T.responseText},x&&(O=function(S){var T=new XMLHttpRequest;return T.open("GET",S,!1),T.responseType="arraybuffer",T.send(null),new Uint8Array(T.response)}),F=function(S,T,W){var q=new XMLHttpRequest;q.open("GET",S,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){T(q.response);return}W()},q.onerror=W,q.send(null)}),L=function(S){document.title=S});v&&typeof performance=="undefined"&&(global.performance=g9().performance);var X=u.print||console.log.bind(console),G=u.printErr||console.warn.bind(console);for(m in p)p.hasOwnProperty(m)&&(u[m]=p[m]);p=null,u.arguments&&(f=u.arguments),u.thisProgram&&(A=u.thisProgram),u.quit&&(y=u.quit);var ee=Atomics.load,Y=Atomics.store,ae=Atomics.compareExchange,te;u.wasmBinary&&(te=u.wasmBinary);var ie=u.noExitRuntime||!0;typeof WebAssembly!="object"&&sa("no native wasm support detected");var Q,he,oe=!1,me;function pe(S,T){S||sa("Assertion failed: "+T)}function Ie(S){var T=u["_"+S];return pe(T,"Cannot call unknown function "+S+", make sure it is exported"),T}function Se(S,T,W,q,de){var ue={string:function(Sn){var ao=0;if(Sn!=null&&Sn!==0){var r5=(Sn.length<<2)+1;ao=to(r5),tt(Sn,ao,r5)}return ao},array:function(Sn){var ao=to(Sn.length);return Ke(Sn,ao),ao}};function ce(Sn){return T==="string"?$e(Sn):T==="boolean"?Boolean(Sn):Sn}var be=Ie(S),nt=[],jt=0;if(q)for(var Dt=0;Dt=q);){var ue=S[T++];if(!ue)return de;if(!(ue&128)){de+=String.fromCharCode(ue);continue}var ce=S[T++]&63;if((ue&224)==192){de+=String.fromCharCode((ue&31)<<6|ce);continue}var be=S[T++]&63;if((ue&240)==224?ue=(ue&15)<<12|ce<<6|be:ue=(ue&7)<<18|ce<<12|be<<6|S[T++]&63,ue<65536)de+=String.fromCharCode(ue);else{var nt=ue-65536;de+=String.fromCharCode(55296|nt>>10,56320|nt&1023)}}return de}function $e(S,T){return S?Oe(i(),S,T):""}function et(S,T,W,q){if(!(q>0))return 0;for(var de=W,ue=W+q-1,ce=0;ce=55296&&be<=57343){var nt=S.charCodeAt(++ce);be=65536+((be&1023)<<10)|nt&1023}if(be<=127){if(W>=ue)break;T[W++]=be}else if(be<=2047){if(W+1>=ue)break;T[W++]=192|be>>6,T[W++]=128|be&63}else if(be<=65535){if(W+2>=ue)break;T[W++]=224|be>>12,T[W++]=128|be>>6&63,T[W++]=128|be&63}else{if(W+3>=ue)break;T[W++]=240|be>>18,T[W++]=128|be>>12&63,T[W++]=128|be>>6&63,T[W++]=128|be&63}}return T[W]=0,W-de}function tt(S,T,W){return et(S,i(),T,W)}function st(S){for(var T=0,W=0;W=55296&&q<=57343&&(q=65536+((q&1023)<<10)|S.charCodeAt(++W)&1023),q<=127?++T:q<=2047?T+=2:q<=65535?T+=3:T+=4}return T}function Ke(S,T){s().set(S,T)}function dt(S,T){return S%T>0&&(S+=T-S%T),S}var je,_n,wt,Xn,Zt,vn,Kn,On,on;function Yt(S){je=S,u.HEAP8=_n=new Int8Array(S),u.HEAP16=Xn=new Int16Array(S),u.HEAP32=vn=new Int32Array(S),u.HEAPU8=wt=new Uint8Array(S),u.HEAPU16=Zt=new Uint16Array(S),u.HEAPU32=Kn=new Uint32Array(S),u.HEAPF32=On=new Float32Array(S),u.HEAPF64=on=new Float64Array(S)}var zr=u.INITIAL_MEMORY||16777216;if(w)Q=u.wasmMemory,je=u.buffer;else if(u.wasmMemory)Q=u.wasmMemory;else if(Q=new WebAssembly.Memory({initial:zr/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),v&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(je=Q.buffer),zr=je.byteLength,Yt(je);var ir,or=[],_a=[],ra=[],va=[],Xi=[],Pr=!1,oh=!1;w||_a.push({func:function(){_h()}});function Y0(){if(!w){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)uh(u.preRun.shift());Zi(or)}}function su(){Pr=!0,!w&&Zi(_a)}function J0(){w||Zi(ra)}function lh(){w||(oh=!0)}function kn(){if(!w){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)Q0(u.postRun.shift());Zi(Xi)}}function uh(S){or.unshift(S)}function Q0(S){Xi.unshift(S)}var aa=0,ka=null,os=null;function e1(S){pe(!w,"addRunDependency cannot be used in a pthread worker"),aa++,u.monitorRunDependencies&&u.monitorRunDependencies(aa)}function t1(S){if(aa--,u.monitorRunDependencies&&u.monitorRunDependencies(aa),aa==0&&(ka!==null&&(clearInterval(ka),ka=null),os)){var T=os;os=null,T()}}u.preloadedImages={},u.preloadedAudios={};function sa(S){u.onAbort&&u.onAbort(S),w&&console.error("Pthread aborting at "+new Error().stack),S+="",G(S),oe=!0,me=1,S="abort("+S+"). Build with -s ASSERTIONS=1 for more info.";var T=new WebAssembly.RuntimeError(S);throw d(T),T}function ch(S,T){return String.prototype.startsWith?S.startsWith(T):S.indexOf(T)===0}var Ki="data:application/octet-stream;base64,";function hh(S){return ch(S,Ki)}var n1="file://";function dh(S){return ch(S,n1)}var In="tfjs-backend-wasm-threaded-simd.wasm";hh(In)||(In=N(In));function ph(S){try{if(S==In&&te)return new Uint8Array(te);if(O)return O(S);throw"both async and sync fetching of the wasm failed"}catch(T){sa(T)}}function r1(){if(!te&&(g||x)){if(typeof fetch=="function"&&!dh(In))return fetch(In,{credentials:"same-origin"}).then(function(S){if(!S.ok)throw"failed to load wasm binary file at '"+In+"'";return S.arrayBuffer()}).catch(function(){return ph(In)});if(F)return new Promise(function(S,T){F(In,function(W){S(new Uint8Array(W))},T)})}return Promise.resolve().then(function(){return ph(In)})}function a1(){var S={a:X1};function T(ce,be){var nt=ce.exports;if(u.asm=nt,ir=u.asm.F,he=be,!w){var jt=ke.unusedWorkers.length;ke.unusedWorkers.forEach(function(Dt){ke.loadWasmModuleToWorker(Dt,function(){--jt||t1("wasm-instantiate")})})}}w||e1("wasm-instantiate");function W(ce){T(ce.instance,ce.module)}function q(ce){return r1().then(function(be){return WebAssembly.instantiate(be,S)}).then(ce,function(be){G("failed to asynchronously prepare wasm: "+be),sa(be)})}function de(){return!te&&typeof WebAssembly.instantiateStreaming=="function"&&!hh(In)&&!dh(In)&&typeof fetch=="function"?fetch(In,{credentials:"same-origin"}).then(function(ce){var be=WebAssembly.instantiateStreaming(ce,S);return be.then(W,function(nt){return G("wasm streaming compile failed: "+nt),G("falling back to ArrayBuffer instantiation"),q(W)})}):q(W)}if(u.instantiateWasm)try{var ue=u.instantiateWasm(S,T);return ue}catch(ce){return G("Module.instantiateWasm callback failed with error: "+ce),!1}return de().catch(d),{}}var s1={9816:function(){throw"Canceled!"},9834:function(S,T){setTimeout(function(){Yg(S,T)},0)}};function fh(){ke.initRuntime()}function Zi(S){for(;S.length>0;){var T=S.shift();if(typeof T=="function"){T(u);continue}var W=T.func;typeof W=="number"?T.arg===void 0?ir.get(W)():ir.get(W)(T.arg):W(T.arg===void 0?null:T.arg)}}function iu(S,T){if(S<=0||S>s().length||S&!0||T<0)return-28;if(T==0)return 0;T>=2147483647&&(T=Infinity);var W=Atomics.load(o(),no>>2),q=0;if(W==S){var de=Atomics.compareExchange(o(),no>>2,W,0);if(de==W&&(--T,q=1,T<=0))return 1}var ue=Atomics.notify(o(),S>>2,T);if(ue>=0)return ue+q;throw"Atomics.notify returned an unexpected value "+ue}u._emscripten_futex_wake=iu;function i1(S){if(w)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in killThread!";o()[S+12>>2]=0;var T=ke.pthreads[S];T.worker.terminate(),ke.freeThreadData(T),ke.runningWorkers.splice(ke.runningWorkers.indexOf(T.worker),1),T.worker.pthread=void 0}function o1(S){if(w)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cancelThread!";var T=ke.pthreads[S];T.worker.postMessage({cmd:"cancel"})}function l1(S){if(w)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cleanupThread!";var T=ke.pthreads[S];if(T){o()[S+12>>2]=0;var W=T.worker;ke.returnWorkerToPool(W)}}var ke={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var S=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),T=0;T>2]=S;var W=S+152;o()[W>>2]=W;for(var q=us(512),T=0;T<128;++T)l()[q/4+T]=0;Atomics.store(l(),S+100>>2,q),Atomics.store(l(),S+40>>2,S),xf(S,!x,1),Zg(S)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;ke.threadExitHandlers.length>0;)ke.threadExitHandlers.pop()();w&&Qi()&&Kg()},runExitHandlersAndDeinitThread:function(S,T){Atomics.store(l(),S+56>>2,1),Atomics.store(l(),S+60>>2,0),ke.runExitHandlers(),Atomics.store(l(),S+4>>2,T),Atomics.store(l(),S+0>>2,1),iu(S+0,2147483647),xf(0,0,0)},threadExit:function(S){var T=Qi();T&&(ke.runExitHandlersAndDeinitThread(T,S),w&&postMessage({cmd:"exit"}))},threadCancel:function(){ke.runExitHandlersAndDeinitThread(Qi(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var S in ke.pthreads){var T=ke.pthreads[S];T&&T.worker&&ke.returnWorkerToPool(T.worker)}ke.pthreads={};for(var W=0;W>2];o()[S.threadInfoStruct+100>>2]=0,pu(T),pu(S.threadInfoStruct)}S.threadInfoStruct=0,S.allocatedOwnStack&&S.stackBase&&pu(S.stackBase),S.stackBase=0,S.worker&&(S.worker.pthread=null)}},returnWorkerToPool:function(S){ke.runWithoutMainThreadQueuedCalls(function(){delete ke.pthreads[S.pthread.threadInfoStruct],ke.unusedWorkers.push(S),ke.runningWorkers.splice(ke.runningWorkers.indexOf(S),1),ke.freeThreadData(S.pthread),S.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(S){o()[n5>>2]=0;try{S()}finally{o()[n5>>2]=1}},receiveObjectTransfer:function(S){},loadWasmModuleToWorker:function(S,T){S.onmessage=function(W){var q=W.data,de=q.cmd;if(S.pthread&&(ke.currentProxiedOperationCallerThread=S.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=Qi()){var ue=ke.pthreads[q.targetThread];ue?ue.worker.postMessage(W.data,q.transferList):console.error('Internal error! Worker sent a message "'+de+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),ke.currentProxiedOperationCallerThread=void 0;return}if(de==="processQueuedMainThreadWork")yf();else if(de==="spawnThread")bh(W.data);else if(de==="cleanupThread")l1(q.thread);else if(de==="killThread")i1(q.thread);else if(de==="cancelThread")o1(q.thread);else if(de==="loaded")S.loaded=!0,T&&T(S),S.runPthread&&(S.runPthread(),delete S.runPthread);else if(de==="print")X("Thread "+q.threadId+": "+q.text);else if(de==="printErr")G("Thread "+q.threadId+": "+q.text);else if(de==="alert")alert("Thread "+q.threadId+": "+q.text);else if(de==="exit"){var ce=S.pthread&&Atomics.load(l(),S.pthread.threadInfoStruct+64>>2);ce&&ke.returnWorkerToPool(S)}else if(de==="exitProcess")try{e9(q.returnCode)}catch(be){if(be instanceof mu)return;throw be}else de==="cancelDone"?ke.returnWorkerToPool(S):de==="objectTransfer"?ke.receiveObjectTransfer(W.data):W.data.target==="setimmediate"?S.postMessage(W.data):G("worker sent an unknown command "+de);ke.currentProxiedOperationCallerThread=void 0},S.onerror=function(W){G("pthread sent an error! "+W.filename+":"+W.lineno+": "+W.message)},v&&(S.on("message",function(W){S.onmessage({data:W})}),S.on("error",function(W){S.onerror(W)}),S.on("exit",function(W){})),S.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||r,wasmMemory:Q,wasmModule:he})},allocateUnusedWorker:function(){var S=N("tfjs-backend-wasm-threaded-simd.worker.js");ke.unusedWorkers.push(new Worker(S))},getNewWorker:function(){return ke.unusedWorkers.length==0&&(ke.allocateUnusedWorker(),ke.loadWasmModuleToWorker(ke.unusedWorkers[0])),ke.unusedWorkers.length>0?ke.unusedWorkers.pop():null},busySpinWait:function(S){for(var T=performance.now()+S;performance.now()>2]=S,S}function m1(S,T){if(w)return Ia(1,1,S,T)}function A1(S,T){if(S==T)postMessage({cmd:"processQueuedMainThreadWork"});else if(w)postMessage({targetThread:S,cmd:"processThreadQueue"});else{var W=ke.pthreads[S],q=W&&W.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function y1(){sa()}function g1(S,T,W){var q=v1(T,W);return s1[S].apply(null,q)}function x1(S,T){}function b1(S,T,W){if(S<=0||S>s().length||S&!0)return-28;if(g){if(Atomics.load(o(),S>>2)!=T)return-6;for(var q=performance.now(),de=q+W,ue=Atomics.exchange(o(),no>>2,S);;){if(q=performance.now(),q>de)return ue=Atomics.exchange(o(),no>>2,0),-73;if(ue=Atomics.exchange(o(),no>>2,0),ue==0)break;if(yf(),Atomics.load(o(),S>>2)!=T)return-6;ue=Atomics.exchange(o(),no>>2,S)}return 0}else{var ce=Atomics.wait(o(),S>>2,T,W);if(ce==="timed-out")return-73;if(ce==="not-equal")return-6;if(ce==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ce}}function w1(S,T,W){i().copyWithin(S,T,T+W)}function _1(){return v?require("os").cpus().length:navigator.hardwareConcurrency}function Ia(S,T){for(var W=arguments.length-2,q=fu(),de=W,ue=to(de*8),ce=ue>>3,be=0;be>=2;W=i()[S++];){var q=W<105;q&&T&1&&T++,lu.push(q?c()[T++>>1]:o()[T]),++T}return lu}function k1(S,T,W){ou.length=T;for(var q=W>>3,de=0;de>>16),Yt(Q.buffer),1}catch(T){}}function N1(S){var T=I1();if(S<=T)return!1;var W=2147483648;if(S>W)return!1;for(var q=1;q<=4;q*=2){var de=T*(1+.2/q);de=Math.min(de,S+100663296);var ue=Math.min(W,dt(Math.max(S,de),65536)),ce=S1(ue);if(ce)return!0}return!1}var We={inEventHandler:0,removeAllEventListeners:function(){for(var S=We.eventHandlers.length-1;S>=0;--S)We._removeHandler(S);We.eventHandlers=[],We.deferredCalls=[]},registerRemoveEventListeners:function(){We.removeEventListenersRegistered||(va.push(We.removeAllEventListeners),We.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(S,T,W){function q(ce,be){if(ce.length!=be.length)return!1;for(var nt in ce)if(ce[nt]!=be[nt])return!1;return!0}for(var de in We.deferredCalls){var ue=We.deferredCalls[de];if(ue.targetFunction==S&&q(ue.argsList,W))return}We.deferredCalls.push({targetFunction:S,precedence:T,argsList:W}),We.deferredCalls.sort(function(ce,be){return ce.precedence>2]=W,o()[ce+4>>2]=q,o()[ce+8>>2]=de,gf(0,S,637534208,T,q,ce),eo(ue)},getTargetThreadForEventCallback:function(S){switch(S){case 1:return 0;case 2:return ke.currentProxiedOperationCallerThread;default:return S}},getNodeNameForTarget:function(S){return S?S==window?"#window":S==screen?"#screen":S&&S.nodeName?S.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function T1(S){var T=st(S)+1,W=us(T);return tt(S,W,T),W}function E1(S,T,W,q){var de=fu(),ue=to(12),ce=0;T&&(ce=T1(T)),o()[ue>>2]=ce,o()[ue+4>>2]=W,o()[ue+8>>2]=q,gf(0,S,657457152,0,ce,ue),eo(de)}function C1(S,T,W,q){T=T?$e(T):"",E1(S,T,W,q)}function R1(S){return S>2?$e(S):S}var M1=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function F1(S){S=R1(S);var T=M1[S]||(typeof document!="undefined"?document.querySelector(S):void 0);return T}function uu(S){return F1(S)}function mh(S,T,W){var q=uu(S);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=T,o()[q.canvasSharedPtr+4>>2]=W),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var de=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var ue=q.GLctxObject.GLctx.getParameter(2978);de=ue[0]===0&&ue[1]===0&&ue[2]===q.width&&ue[3]===q.height}q.width=T,q.height=W,de&&q.GLctxObject.GLctx.viewport(0,0,T,W)}else if(q.canvasSharedPtr){var ce=o()[q.canvasSharedPtr+8>>2];return C1(ce,S,T,W),1}else return-4;return 0}function Ah(S,T,W){return w?Ia(2,1,S,T,W):mh(S,T,W)}function $1(S,T,W){var q=uu(S);return q?mh(S,T,W):Ah(S,T,W)}function D1(S){}function O1(S,T){}function z1(S){var T=S.getExtension("ANGLE_instanced_arrays");if(T)return S.vertexAttribDivisor=function(W,q){T.vertexAttribDivisorANGLE(W,q)},S.drawArraysInstanced=function(W,q,de,ue){T.drawArraysInstancedANGLE(W,q,de,ue)},S.drawElementsInstanced=function(W,q,de,ue,ce){T.drawElementsInstancedANGLE(W,q,de,ue,ce)},1}function P1(S){var T=S.getExtension("OES_vertex_array_object");if(T)return S.createVertexArray=function(){return T.createVertexArrayOES()},S.deleteVertexArray=function(W){T.deleteVertexArrayOES(W)},S.bindVertexArray=function(W){T.bindVertexArrayOES(W)},S.isVertexArray=function(W){return T.isVertexArrayOES(W)},1}function L1(S){var T=S.getExtension("WEBGL_draw_buffers");if(T)return S.drawBuffers=function(W,q){T.drawBuffersWEBGL(W,q)},1}function W1(S){return!!(S.multiDrawWebgl=S.getExtension("WEBGL_multi_draw"))}var Qe={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(S){Qe.lastError||(Qe.lastError=S)},getNewId:function(S){for(var T=Qe.counter++,W=S.length;W>2]:-1;de+=$e(o()[W+ue*4>>2],ce<0?void 0:ce)}return de},createContext:function(S,T){var W=S.getContext("webgl",T);if(!W)return 0;var q=Qe.registerContext(W,T);return q},registerContext:function(S,T){var W=us(8);o()[W+4>>2]=Qi();var q={handle:W,attributes:T,version:T.majorVersion,GLctx:S};return S.canvas&&(S.canvas.GLctxObject=q),Qe.contexts[W]=q,(typeof T.enableExtensionsByDefault=="undefined"||T.enableExtensionsByDefault)&&Qe.initExtensions(q),W},makeContextCurrent:function(S){return Qe.currentContext=Qe.contexts[S],u.ctx=Sa=Qe.currentContext&&Qe.currentContext.GLctx,!(S&&!Sa)},getContext:function(S){return Qe.contexts[S]},deleteContext:function(S){Qe.currentContext===Qe.contexts[S]&&(Qe.currentContext=null),typeof We=="object"&&We.removeAllHandlersOnTarget(Qe.contexts[S].GLctx.canvas),Qe.contexts[S]&&Qe.contexts[S].GLctx.canvas&&(Qe.contexts[S].GLctx.canvas.GLctxObject=void 0),pu(Qe.contexts[S].handle),Qe.contexts[S]=null},initExtensions:function(S){if(S||(S=Qe.currentContext),!S.initExtensionsDone){S.initExtensionsDone=!0;var T=S.GLctx;z1(T),P1(T),L1(T),T.disjointTimerQueryExt=T.getExtension("EXT_disjoint_timer_query"),W1(T);var W=T.getSupportedExtensions()||[];W.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&T.getExtension(q)})}},populateUniformTable:function(S){for(var T=Qe.programs[S],W=Qe.programInfos[S]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=W.uniforms,de=Sa.getProgramParameter(T,35718),ue=0;ue>2,q=o()[W+(24>>2)],de={alpha:!!o()[W+(0>>2)],depth:!!o()[W+(4>>2)],stencil:!!o()[W+(8>>2)],antialias:!!o()[W+(12>>2)],premultipliedAlpha:!!o()[W+(16>>2)],preserveDrawingBuffer:!!o()[W+(20>>2)],powerPreference:B1[q],failIfMajorPerformanceCaveat:!!o()[W+(28>>2)],majorVersion:o()[W+(32>>2)],minorVersion:o()[W+(36>>2)],enableExtensionsByDefault:o()[W+(40>>2)],explicitSwapControl:o()[W+(44>>2)],proxyContextToMainThread:o()[W+(48>>2)],renderViaOffscreenBackBuffer:o()[W+(52>>2)]},ue=uu(S);if(!ue||de.explicitSwapControl)return 0;var ce=Qe.createContext(ue,de);return ce}function j1(S,T){return V1(S,T)}var Yi={mappings:{},buffers:[null,[],[]],printChar:function(S,T){var W=Yi.buffers[S];T===0||T===10?((S===1?X:G)(Oe(W,0)),W.length=0):W.push(T)},varargs:void 0,get:function(){Yi.varargs+=4;var S=o()[Yi.varargs-4>>2];return S},getStr:function(S){var T=$e(S);return T},get64:function(S,T){return S}};function yh(S){return w?Ia(3,1,S):0}function gh(S,T,W,q,de){if(w)return Ia(4,1,S,T,W,q,de)}function xh(S,T,W,q){if(w)return Ia(5,1,S,T,W,q);for(var de=0,ue=0;ue>2],be=o()[T+(ue*8+4)>>2],nt=0;nt>2]=de,0}function U1(S){var T=ke.threadExitHandlers.pop();S&&T()}function H1(S,T){ke.threadExitHandlers.push(function(){ir.get(S)(T)})}function bh(S){if(w)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var T=ke.getNewWorker();if(T.pthread!==void 0)throw"Internal error!";if(!S.pthread_ptr)throw"Internal error, no pthread ptr!";ke.runningWorkers.push(T);for(var W=us(128*4),q=0;q<128;++q)o()[W+q*4>>2]=0;var de=S.stackBase+S.stackSize,ue=ke.pthreads[S.pthread_ptr]={worker:T,stackBase:S.stackBase,stackSize:S.stackSize,allocatedOwnStack:S.allocatedOwnStack,threadInfoStruct:S.pthread_ptr},ce=ue.threadInfoStruct>>2;Atomics.store(l(),ce+(64>>2),S.detached),Atomics.store(l(),ce+(100>>2),W),Atomics.store(l(),ce+(40>>2),ue.threadInfoStruct),Atomics.store(l(),ce+(80>>2),S.stackSize),Atomics.store(l(),ce+(76>>2),de),Atomics.store(l(),ce+(104>>2),S.stackSize),Atomics.store(l(),ce+(104+8>>2),de),Atomics.store(l(),ce+(104+12>>2),S.detached);var be=Xg(),nt=be+40;Atomics.store(l(),ce+(172>>2),nt),T.pthread=ue;var jt={cmd:"run",start_routine:S.startRoutine,arg:S.arg,threadInfoStruct:S.pthread_ptr,stackBase:S.stackBase,stackSize:S.stackSize};T.runPthread=function(){jt.time=performance.now(),T.postMessage(jt,S.transferList)},T.loaded&&(T.runPthread(),delete T.runPthread)}function G1(S,T,W,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!S)return G("pthread_create called with a null thread pointer!"),28;var de=[],ue=0;if(w&&(de.length===0||ue))return Jg(687865856,S,T,W,q);if(ue)return ue;var ce=0,be=0,nt=0;T&&T!=-1?(ce=o()[T>>2],ce+=81920,be=o()[T+8>>2],nt=o()[T+12>>2]!==0):ce=2097152;var jt=be==0;jt?be=t5(16,ce):(be-=ce,pe(be>0));for(var Dt=us(228),Ta=0;Ta<228>>2;++Ta)l()[(Dt>>2)+Ta]=0;o()[S>>2]=Dt,o()[Dt+12>>2]=Dt;var ro=Dt+152;o()[ro>>2]=ro;var Sn={stackBase:be,stackSize:ce,allocatedOwnStack:jt,detached:nt,startRoutine:W,pthread_ptr:Dt,arg:q,transferList:de};return w?(Sn.cmd="spawnThread",postMessage(Sn,de)):bh(Sn),0}function wh(S){if(w)return Ia(6,1,S);switch(S){case 30:return 16384;case 85:var T=2147483648;return T/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return f1(28),-1}w||ke.initMainThreadBlock();var Sa,q1=[null,m1,Ah,yh,gh,xh,wh],X1={e:d1,r:p1,x:A1,b:y1,y:g1,j:x1,c:b1,d:iu,f:ls,p:w1,z:_1,u:k1,q:N1,v:$1,i:D1,t:O1,w:j1,m:yh,n:gh,g:xh,o:fh,a:Q||u.wasmMemory,k:U1,l:H1,h:G1,s:wh},Gg=a1(),_h=u.___wasm_call_ctors=function(){return(_h=u.___wasm_call_ctors=u.asm.A).apply(null,arguments)},K1=u._init=function(){return(K1=u._init=u.asm.B).apply(null,arguments)},Z1=u._register_tensor=function(){return(Z1=u._register_tensor=u.asm.C).apply(null,arguments)},Y1=u._dispose_data=function(){return(Y1=u._dispose_data=u.asm.D).apply(null,arguments)},J1=u._dispose=function(){return(J1=u._dispose=u.asm.E).apply(null,arguments)},Q1=u._Abs=function(){return(Q1=u._Abs=u.asm.G).apply(null,arguments)},ef=u._Add=function(){return(ef=u._Add=u.asm.H).apply(null,arguments)},tf=u._AddN=function(){return(tf=u._AddN=u.asm.I).apply(null,arguments)},nf=u._All=function(){return(nf=u._All=u.asm.J).apply(null,arguments)},rf=u._Any=function(){return(rf=u._Any=u.asm.K).apply(null,arguments)},af=u._ArgMax=function(){return(af=u._ArgMax=u.asm.L).apply(null,arguments)},sf=u._AvgPool=function(){return(sf=u._AvgPool=u.asm.M).apply(null,arguments)},of=u._BatchMatMul=function(){return(of=u._BatchMatMul=u.asm.N).apply(null,arguments)},lf=u._Ceil=function(){return(lf=u._Ceil=u.asm.O).apply(null,arguments)},uf=u._ClipByValue=function(){return(uf=u._ClipByValue=u.asm.P).apply(null,arguments)},cf=u._Conv2D=function(){return(cf=u._Conv2D=u.asm.Q).apply(null,arguments)},hf=u._Conv2DBackpropInput=function(){return(hf=u._Conv2DBackpropInput=u.asm.R).apply(null,arguments)},df=u._Cos=function(){return(df=u._Cos=u.asm.S).apply(null,arguments)},pf=u._CropAndResize=function(){return(pf=u._CropAndResize=u.asm.T).apply(null,arguments)},ff=u._Cumsum=function(){return(ff=u._Cumsum=u.asm.U).apply(null,arguments)},mf=u._DepthToSpace=function(){return(mf=u._DepthToSpace=u.asm.V).apply(null,arguments)},vh=u._DepthwiseConv2dNative=function(){return(vh=u._DepthwiseConv2dNative=u.asm.W).apply(null,arguments)},kh=u._Equal=function(){return(kh=u._Equal=u.asm.X).apply(null,arguments)},Ih=u._Exp=function(){return(Ih=u._Exp=u.asm.Y).apply(null,arguments)},cu=u._FlipLeftRight=function(){return(cu=u._FlipLeftRight=u.asm.Z).apply(null,arguments)},Ji=u._Floor=function(){return(Ji=u._Floor=u.asm._).apply(null,arguments)},Af=u._FloorDiv=function(){return(Af=u._FloorDiv=u.asm.$).apply(null,arguments)},hu=u._FusedBatchNorm=function(){return(hu=u._FusedBatchNorm=u.asm.aa).apply(null,arguments)},K=u._FusedConv2D=function(){return(K=u._FusedConv2D=u.asm.ba).apply(null,arguments)},ne=u._FusedDepthwiseConv2D=function(){return(ne=u._FusedDepthwiseConv2D=u.asm.ca).apply(null,arguments)},Ne=u._Gather=function(){return(Ne=u._Gather=u.asm.da).apply(null,arguments)},Ze=u._GatherNd=function(){return(Ze=u._GatherNd=u.asm.ea).apply(null,arguments)},Nt=u._Greater=function(){return(Nt=u._Greater=u.asm.fa).apply(null,arguments)},yt=u._GreaterEqual=function(){return(yt=u._GreaterEqual=u.asm.ga).apply(null,arguments)},Ue=u._LeakyRelu=function(){return(Ue=u._LeakyRelu=u.asm.ha).apply(null,arguments)},Ge=u._Less=function(){return(Ge=u._Less=u.asm.ia).apply(null,arguments)},Jt=u._LessEqual=function(){return(Jt=u._LessEqual=u.asm.ja).apply(null,arguments)},ia=u._Log=function(){return(ia=u._Log=u.asm.ka).apply(null,arguments)},oa=u._LogicalAnd=function(){return(oa=u._LogicalAnd=u.asm.la).apply(null,arguments)},Sh=u._Max=function(){return(Sh=u._Max=u.asm.ma).apply(null,arguments)},du=u._MaxPool=function(){return(du=u._MaxPool=u.asm.na).apply(null,arguments)},Zn=u._Maximum=function(){return(Zn=u._Maximum=u.asm.oa).apply(null,arguments)},Na=u._Mean=function(){return(Na=u._Mean=u.asm.pa).apply(null,arguments)},Nh=u._Min=function(){return(Nh=u._Min=u.asm.qa).apply(null,arguments)},pk=u._Minimum=function(){return(pk=u._Minimum=u.asm.ra).apply(null,arguments)},fk=u._MirrorPad=function(){return(fk=u._MirrorPad=u.asm.sa).apply(null,arguments)},mk=u._Multiply=function(){return(mk=u._Multiply=u.asm.ta).apply(null,arguments)},Ak=u._Neg=function(){return(Ak=u._Neg=u.asm.ua).apply(null,arguments)},yk=u._NonMaxSuppressionV3=function(){return(yk=u._NonMaxSuppressionV3=u.asm.va).apply(null,arguments)},gk=u._NonMaxSuppressionV4=function(){return(gk=u._NonMaxSuppressionV4=u.asm.wa).apply(null,arguments)},xk=u._NonMaxSuppressionV5=function(){return(xk=u._NonMaxSuppressionV5=u.asm.xa).apply(null,arguments)},bk=u._NotEqual=function(){return(bk=u._NotEqual=u.asm.ya).apply(null,arguments)},wk=u._OneHot=function(){return(wk=u._OneHot=u.asm.za).apply(null,arguments)},_k=u._PadV2=function(){return(_k=u._PadV2=u.asm.Aa).apply(null,arguments)},vk=u._Pow=function(){return(vk=u._Pow=u.asm.Ba).apply(null,arguments)},kk=u._Prelu=function(){return(kk=u._Prelu=u.asm.Ca).apply(null,arguments)},Ik=u._Prod=function(){return(Ik=u._Prod=u.asm.Da).apply(null,arguments)},Sk=u._RealDiv=function(){return(Sk=u._RealDiv=u.asm.Ea).apply(null,arguments)},Nk=u._Relu=function(){return(Nk=u._Relu=u.asm.Fa).apply(null,arguments)},Tk=u._Relu6=function(){return(Tk=u._Relu6=u.asm.Ga).apply(null,arguments)},Ek=u._ResizeBilinear=function(){return(Ek=u._ResizeBilinear=u.asm.Ha).apply(null,arguments)},Ck=u._Reverse=function(){return(Ck=u._Reverse=u.asm.Ia).apply(null,arguments)},Rk=u._RotateWithOffset=function(){return(Rk=u._RotateWithOffset=u.asm.Ja).apply(null,arguments)},Mk=u._Round=function(){return(Mk=u._Round=u.asm.Ka).apply(null,arguments)},Fk=u._Rsqrt=function(){return(Fk=u._Rsqrt=u.asm.La).apply(null,arguments)},$k=u._ScatterNd=function(){return($k=u._ScatterNd=u.asm.Ma).apply(null,arguments)},Dk=u._SelectV2=function(){return(Dk=u._SelectV2=u.asm.Na).apply(null,arguments)},Ok=u._Sigmoid=function(){return(Ok=u._Sigmoid=u.asm.Oa).apply(null,arguments)},zk=u._Sin=function(){return(zk=u._Sin=u.asm.Pa).apply(null,arguments)},Pk=u._Softmax=function(){return(Pk=u._Softmax=u.asm.Qa).apply(null,arguments)},Lk=u._Sqrt=function(){return(Lk=u._Sqrt=u.asm.Ra).apply(null,arguments)},Wk=u._Square=function(){return(Wk=u._Square=u.asm.Sa).apply(null,arguments)},Bk=u._SquaredDifference=function(){return(Bk=u._SquaredDifference=u.asm.Ta).apply(null,arguments)},Vk=u._Step=function(){return(Vk=u._Step=u.asm.Ua).apply(null,arguments)},jk=u._StridedSlice=function(){return(jk=u._StridedSlice=u.asm.Va).apply(null,arguments)},Uk=u._Sub=function(){return(Uk=u._Sub=u.asm.Wa).apply(null,arguments)},Hk=u._Sum=function(){return(Hk=u._Sum=u.asm.Xa).apply(null,arguments)},Gk=u._Tan=function(){return(Gk=u._Tan=u.asm.Ya).apply(null,arguments)},qk=u._Tanh=function(){return(qk=u._Tanh=u.asm.Za).apply(null,arguments)},Xk=u._Tile=function(){return(Xk=u._Tile=u.asm._a).apply(null,arguments)},Kk=u._TopK=function(){return(Kk=u._TopK=u.asm.$a).apply(null,arguments)},Zk=u._Transpose=function(){return(Zk=u._Transpose=u.asm.ab).apply(null,arguments)},Yk=u.__FusedMatMul=function(){return(Yk=u.__FusedMatMul=u.asm.bb).apply(null,arguments)},us=u._malloc=function(){return(us=u._malloc=u.asm.cb).apply(null,arguments)},pu=u._free=function(){return(pu=u._free=u.asm.db).apply(null,arguments)},qg=u.___errno_location=function(){return(qg=u.___errno_location=u.asm.eb).apply(null,arguments)},Xg=u._emscripten_get_global_libc=function(){return(Xg=u._emscripten_get_global_libc=u.asm.fb).apply(null,arguments)},Qi=u._pthread_self=function(){return(Qi=u._pthread_self=u.asm.gb).apply(null,arguments)},Kg=u.___pthread_tsd_run_dtors=function(){return(Kg=u.___pthread_tsd_run_dtors=u.asm.hb).apply(null,arguments)},yf=u._emscripten_main_thread_process_queued_calls=function(){return(yf=u._emscripten_main_thread_process_queued_calls=u.asm.ib).apply(null,arguments)},Jk=u._emscripten_current_thread_process_queued_calls=function(){return(Jk=u._emscripten_current_thread_process_queued_calls=u.asm.jb).apply(null,arguments)},Zg=u._emscripten_register_main_browser_thread_id=function(){return(Zg=u._emscripten_register_main_browser_thread_id=u.asm.kb).apply(null,arguments)},Yg=u.__emscripten_do_dispatch_to_thread=function(){return(Yg=u.__emscripten_do_dispatch_to_thread=u.asm.lb).apply(null,arguments)},Jg=u._emscripten_sync_run_in_main_thread_4=function(){return(Jg=u._emscripten_sync_run_in_main_thread_4=u.asm.mb).apply(null,arguments)},Qg=u._emscripten_run_in_main_runtime_thread_js=function(){return(Qg=u._emscripten_run_in_main_runtime_thread_js=u.asm.nb).apply(null,arguments)},gf=u.__emscripten_call_on_thread=function(){return(gf=u.__emscripten_call_on_thread=u.asm.ob).apply(null,arguments)},Qk=u._emscripten_tls_init=function(){return(Qk=u._emscripten_tls_init=u.asm.pb).apply(null,arguments)},xf=u.__emscripten_thread_init=function(){return(xf=u.__emscripten_thread_init=u.asm.qb).apply(null,arguments)},fu=u.stackSave=function(){return(fu=u.stackSave=u.asm.rb).apply(null,arguments)},eo=u.stackRestore=function(){return(eo=u.stackRestore=u.asm.sb).apply(null,arguments)},to=u.stackAlloc=function(){return(to=u.stackAlloc=u.asm.tb).apply(null,arguments)},e5=u._emscripten_stack_set_limits=function(){return(e5=u._emscripten_stack_set_limits=u.asm.ub).apply(null,arguments)},t5=u._memalign=function(){return(t5=u._memalign=u.asm.vb).apply(null,arguments)},n5=u.__emscripten_allow_main_runtime_queued_calls=9808,no=u.__emscripten_main_thread_futex=11432;u.cwrap=Fe,u.PThread=ke,u.PThread=ke,u.wasmMemory=Q,u.ExitStatus=mu;var Th;function mu(S){this.name="ExitStatus",this.message="Program terminated with exit("+S+")",this.status=S}os=function S(){Th||bf(),Th||(os=S)};function bf(S){if(S=S||f,aa>0)return;if(w){h(u),su(),postMessage({cmd:"loaded"});return}if(Y0(),aa>0)return;function T(){Th||(Th=!0,u.calledRun=!0,!oe&&(su(),J0(),h(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),kn()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),T()},1)):T()}u.run=bf;function e9(S,T){if(!(T&&ie&&S===0)){if(!T&&w)throw postMessage({cmd:"exitProcess",returnCode:S}),new mu(S);ie||(ke.terminateAllThreads(),me=S,lh(),u.onExit&&u.onExit(S),oe=!0),y(S,new mu(S))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return w&&(ie=!1,ke.initWorker()),bf(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),b9=_t((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i,o;s.ready=new Promise(function(K,ne){i=K,o=ne});var l={},c;for(c in s)s.hasOwnProperty(c)&&(l[c]=s[c]);var u=[],h="./this.program",d=function(K,ne){throw ne},p=!1,m=!1,f=!1,A=!1;p=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!p&&!f&&!m;var y="";function g(K){return s.locateFile?s.locateFile(K,y):y+K}var x,v,b,w,k,N;f?(m?y=yu().dirname(y)+"/":y=__dirname+"/",x=function(K,ne){return k||(k=require("fs")),N||(N=yu()),K=N.normalize(K),k.readFileSync(K,ne?null:"utf8")},b=function(K){var ne=x(K,!0);return ne.buffer||(ne=new Uint8Array(ne)),X(ne.buffer),ne},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof Af))throw K}),process.on("unhandledRejection",Pr),d=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(x=function(K){return read(K)}),b=function(K){var ne;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(ne=read(K,"binary"),X(typeof ne=="object"),ne)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(d=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),r&&(y=r),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.send(null),ne.responseText},m&&(b=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.responseType="arraybuffer",ne.send(null),new Uint8Array(ne.response)}),v=function(K,ne,Ne){var Ze=new XMLHttpRequest;Ze.open("GET",K,!0),Ze.responseType="arraybuffer",Ze.onload=function(){if(Ze.status==200||Ze.status==0&&Ze.response){ne(Ze.response);return}Ne()},Ze.onerror=Ne,Ze.send(null)},w=function(K){document.title=K});var C=s.print||console.log.bind(console),F=s.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(s[c]=l[c]);l=null,s.arguments&&(u=s.arguments),s.thisProgram&&(h=s.thisProgram),s.quit&&(d=s.quit);var O;s.wasmBinary&&(O=s.wasmBinary);var L=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Pr("no native wasm support detected");var V,j=!1,U;function X(K,ne){K||Pr("Assertion failed: "+ne)}function G(K){var ne=s["_"+K];return X(ne,"Cannot call unknown function "+K+", make sure it is exported"),ne}function ee(K,ne,Ne,Ze,Nt){var yt={string:function(Zn){var Na=0;if(Zn!=null&&Zn!==0){var Nh=(Zn.length<<2)+1;Na=cu(Nh),he(Zn,Na,Nh)}return Na},array:function(Zn){var Na=cu(Zn.length);return oe(Zn,Na),Na}};function Ue(Zn){return ne==="string"?ie(Zn):ne==="boolean"?Boolean(Zn):Zn}var Ge=G(K),Jt=[],ia=0;if(Ze)for(var oa=0;oa=Ze);)++Nt;if(Nt-ne>16&&K.subarray&&ae)return ae.decode(K.subarray(ne,Nt));for(var yt="";ne>10,56320|ia&1023)}}return yt}function ie(K,ne){return K?te(Se,K,ne):""}function Q(K,ne,Ne,Ze){if(!(Ze>0))return 0;for(var Nt=Ne,yt=Ne+Ze-1,Ue=0;Ue=55296&&Ge<=57343){var Jt=K.charCodeAt(++Ue);Ge=65536+((Ge&1023)<<10)|Jt&1023}if(Ge<=127){if(Ne>=yt)break;ne[Ne++]=Ge}else if(Ge<=2047){if(Ne+1>=yt)break;ne[Ne++]=192|Ge>>6,ne[Ne++]=128|Ge&63}else if(Ge<=65535){if(Ne+2>=yt)break;ne[Ne++]=224|Ge>>12,ne[Ne++]=128|Ge>>6&63,ne[Ne++]=128|Ge&63}else{if(Ne+3>=yt)break;ne[Ne++]=240|Ge>>18,ne[Ne++]=128|Ge>>12&63,ne[Ne++]=128|Ge>>6&63,ne[Ne++]=128|Ge&63}}return ne[Ne]=0,Ne-Nt}function he(K,ne,Ne){return Q(K,Se,ne,Ne)}function oe(K,ne){Ie.set(K,ne)}function me(K,ne){return K%ne>0&&(K+=ne-K%ne),K}var pe,Ie,Se,Fe,Oe,$e,et,tt,st;function Ke(K){pe=K,s.HEAP8=Ie=new Int8Array(K),s.HEAP16=Fe=new Int16Array(K),s.HEAP32=$e=new Int32Array(K),s.HEAPU8=Se=new Uint8Array(K),s.HEAPU16=Oe=new Uint16Array(K),s.HEAPU32=et=new Uint32Array(K),s.HEAPF32=tt=new Float32Array(K),s.HEAPF64=st=new Float64Array(K)}var dt=s.INITIAL_MEMORY||16777216,je,_n=[],wt=[],Xn=[],Zt=[],vn=!1;wt.push({func:function(){fh()}});function Kn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)zr(s.preRun.shift());ka(_n)}function On(){vn=!0,ka(wt)}function on(){ka(Xn)}function Yt(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)ir(s.postRun.shift());ka(Zt)}function zr(K){_n.unshift(K)}function ir(K){Zt.unshift(K)}var or=0,_a=null,ra=null;function va(K){or++,s.monitorRunDependencies&&s.monitorRunDependencies(or)}function Xi(K){if(or--,s.monitorRunDependencies&&s.monitorRunDependencies(or),or==0&&(_a!==null&&(clearInterval(_a),_a=null),ra)){var ne=ra;ra=null,ne()}}s.preloadedImages={},s.preloadedAudios={};function Pr(K){s.onAbort&&s.onAbort(K),K+="",F(K),j=!0,U=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var ne=new WebAssembly.RuntimeError(K);throw o(ne),ne}function oh(K,ne){return String.prototype.startsWith?K.startsWith(ne):K.indexOf(ne)===0}var Y0="data:application/octet-stream;base64,";function su(K){return oh(K,Y0)}var J0="file://";function lh(K){return oh(K,J0)}var kn="tfjs-backend-wasm.wasm";su(kn)||(kn=g(kn));function uh(K){try{if(K==kn&&O)return new Uint8Array(O);if(b)return b(K);throw"both async and sync fetching of the wasm failed"}catch(ne){Pr(ne)}}function Q0(){if(!O&&(p||m)){if(typeof fetch=="function"&&!lh(kn))return fetch(kn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+kn+"'";return K.arrayBuffer()}).catch(function(){return uh(kn)});if(v)return new Promise(function(K,ne){v(kn,function(Ne){K(new Uint8Array(Ne))},ne)})}return Promise.resolve().then(function(){return uh(kn)})}function aa(){var K={a:a1};function ne(Ue,Ge){var Jt=Ue.exports;s.asm=Jt,V=s.asm.i,Ke(V.buffer),je=s.asm.o,Xi("wasm-instantiate")}va("wasm-instantiate");function Ne(Ue){ne(Ue.instance)}function Ze(Ue){return Q0().then(function(Ge){return WebAssembly.instantiate(Ge,K)}).then(Ue,function(Ge){F("failed to asynchronously prepare wasm: "+Ge),Pr(Ge)})}function Nt(){return!O&&typeof WebAssembly.instantiateStreaming=="function"&&!su(kn)&&!lh(kn)&&typeof fetch=="function"?fetch(kn,{credentials:"same-origin"}).then(function(Ue){var Ge=WebAssembly.instantiateStreaming(Ue,K);return Ge.then(Ne,function(Jt){return F("wasm streaming compile failed: "+Jt),F("falling back to ArrayBuffer instantiation"),Ze(Ne)})}):Ze(Ne)}if(s.instantiateWasm)try{var yt=s.instantiateWasm(K,ne);return yt}catch(Ue){return F("Module.instantiateWasm callback failed with error: "+Ue),!1}return Nt().catch(o),{}}function ka(K){for(;K.length>0;){var ne=K.shift();if(typeof ne=="function"){ne(s);continue}var Ne=ne.func;typeof Ne=="number"?ne.arg===void 0?je.get(Ne)():je.get(Ne)(ne.arg):Ne(ne.arg===void 0?null:ne.arg)}}function os(){Pr()}function e1(K,ne,Ne){Se.copyWithin(K,ne,ne+Ne)}function t1(){return Se.length}function sa(K){try{return V.grow(K-pe.byteLength+65535>>>16),Ke(V.buffer),1}catch(ne){}}function ch(K){var ne=t1(),Ne=2147483648;if(K>Ne)return!1;for(var Ze=1;Ze<=4;Ze*=2){var Nt=ne*(1+.2/Ze);Nt=Math.min(Nt,K+100663296);var yt=Math.min(Ne,me(Math.max(K,Nt),65536)),Ue=sa(yt);if(Ue)return!0}return!1}var Ki={mappings:{},buffers:[null,[],[]],printChar:function(K,ne){var Ne=Ki.buffers[K];ne===0||ne===10?((K===1?C:F)(te(Ne,0)),Ne.length=0):Ne.push(ne)},varargs:void 0,get:function(){Ki.varargs+=4;var K=$e[Ki.varargs-4>>2];return K},getStr:function(K){var ne=ie(K);return ne},get64:function(K,ne){return K}};function hh(K){return 0}function n1(K,ne,Ne,Ze,Nt){}function dh(K,ne,Ne,Ze){for(var Nt=0,yt=0;yt>2],Ge=$e[ne+(yt*8+4)>>2],Jt=0;Jt>2]=Nt,0}function In(){return 6}function ph(K){return $e[vh()>>2]=K,K}function r1(K){switch(K){case 30:return 16384;case 85:var ne=2147483648;return ne/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return ph(28),-1}var a1={a:os,d:e1,e:ch,f:hh,c:n1,b:dh,g:In,h:r1},s1=aa(),fh=s.___wasm_call_ctors=function(){return(fh=s.___wasm_call_ctors=s.asm.j).apply(null,arguments)},Zi=s._init=function(){return(Zi=s._init=s.asm.k).apply(null,arguments)},iu=s._register_tensor=function(){return(iu=s._register_tensor=s.asm.l).apply(null,arguments)},i1=s._dispose_data=function(){return(i1=s._dispose_data=s.asm.m).apply(null,arguments)},o1=s._dispose=function(){return(o1=s._dispose=s.asm.n).apply(null,arguments)},l1=s._Abs=function(){return(l1=s._Abs=s.asm.p).apply(null,arguments)},ke=s._Add=function(){return(ke=s._Add=s.asm.q).apply(null,arguments)},u1=s._AddN=function(){return(u1=s._AddN=s.asm.r).apply(null,arguments)},c1=s._All=function(){return(c1=s._All=s.asm.s).apply(null,arguments)},h1=s._Any=function(){return(h1=s._Any=s.asm.t).apply(null,arguments)},d1=s._ArgMax=function(){return(d1=s._ArgMax=s.asm.u).apply(null,arguments)},p1=s._AvgPool=function(){return(p1=s._AvgPool=s.asm.v).apply(null,arguments)},ls=s._BatchMatMul=function(){return(ls=s._BatchMatMul=s.asm.w).apply(null,arguments)},f1=s._Ceil=function(){return(f1=s._Ceil=s.asm.x).apply(null,arguments)},m1=s._ClipByValue=function(){return(m1=s._ClipByValue=s.asm.y).apply(null,arguments)},A1=s._Conv2D=function(){return(A1=s._Conv2D=s.asm.z).apply(null,arguments)},y1=s._Conv2DBackpropInput=function(){return(y1=s._Conv2DBackpropInput=s.asm.A).apply(null,arguments)},g1=s._Cos=function(){return(g1=s._Cos=s.asm.B).apply(null,arguments)},x1=s._CropAndResize=function(){return(x1=s._CropAndResize=s.asm.C).apply(null,arguments)},b1=s._Cumsum=function(){return(b1=s._Cumsum=s.asm.D).apply(null,arguments)},w1=s._DepthToSpace=function(){return(w1=s._DepthToSpace=s.asm.E).apply(null,arguments)},_1=s._DepthwiseConv2dNative=function(){return(_1=s._DepthwiseConv2dNative=s.asm.F).apply(null,arguments)},Ia=s._Equal=function(){return(Ia=s._Equal=s.asm.G).apply(null,arguments)},ou=s._Exp=function(){return(ou=s._Exp=s.asm.H).apply(null,arguments)},lu=s._FlipLeftRight=function(){return(lu=s._FlipLeftRight=s.asm.I).apply(null,arguments)},v1=s._Floor=function(){return(v1=s._Floor=s.asm.J).apply(null,arguments)},k1=s._FloorDiv=function(){return(k1=s._FloorDiv=s.asm.K).apply(null,arguments)},I1=s._FusedBatchNorm=function(){return(I1=s._FusedBatchNorm=s.asm.L).apply(null,arguments)},S1=s._FusedConv2D=function(){return(S1=s._FusedConv2D=s.asm.M).apply(null,arguments)},N1=s._FusedDepthwiseConv2D=function(){return(N1=s._FusedDepthwiseConv2D=s.asm.N).apply(null,arguments)},We=s._Gather=function(){return(We=s._Gather=s.asm.O).apply(null,arguments)},T1=s._GatherNd=function(){return(T1=s._GatherNd=s.asm.P).apply(null,arguments)},E1=s._Greater=function(){return(E1=s._Greater=s.asm.Q).apply(null,arguments)},C1=s._GreaterEqual=function(){return(C1=s._GreaterEqual=s.asm.R).apply(null,arguments)},R1=s._LeakyRelu=function(){return(R1=s._LeakyRelu=s.asm.S).apply(null,arguments)},M1=s._Less=function(){return(M1=s._Less=s.asm.T).apply(null,arguments)},F1=s._LessEqual=function(){return(F1=s._LessEqual=s.asm.U).apply(null,arguments)},uu=s._Log=function(){return(uu=s._Log=s.asm.V).apply(null,arguments)},mh=s._LogicalAnd=function(){return(mh=s._LogicalAnd=s.asm.W).apply(null,arguments)},Ah=s._Max=function(){return(Ah=s._Max=s.asm.X).apply(null,arguments)},$1=s._MaxPool=function(){return($1=s._MaxPool=s.asm.Y).apply(null,arguments)},D1=s._Maximum=function(){return(D1=s._Maximum=s.asm.Z).apply(null,arguments)},O1=s._Mean=function(){return(O1=s._Mean=s.asm._).apply(null,arguments)},z1=s._Min=function(){return(z1=s._Min=s.asm.$).apply(null,arguments)},P1=s._Minimum=function(){return(P1=s._Minimum=s.asm.aa).apply(null,arguments)},L1=s._MirrorPad=function(){return(L1=s._MirrorPad=s.asm.ba).apply(null,arguments)},W1=s._Multiply=function(){return(W1=s._Multiply=s.asm.ca).apply(null,arguments)},Qe=s._Neg=function(){return(Qe=s._Neg=s.asm.da).apply(null,arguments)},B1=s._NonMaxSuppressionV3=function(){return(B1=s._NonMaxSuppressionV3=s.asm.ea).apply(null,arguments)},V1=s._NonMaxSuppressionV4=function(){return(V1=s._NonMaxSuppressionV4=s.asm.fa).apply(null,arguments)},j1=s._NonMaxSuppressionV5=function(){return(j1=s._NonMaxSuppressionV5=s.asm.ga).apply(null,arguments)},Yi=s._NotEqual=function(){return(Yi=s._NotEqual=s.asm.ha).apply(null,arguments)},yh=s._OneHot=function(){return(yh=s._OneHot=s.asm.ia).apply(null,arguments)},gh=s._PadV2=function(){return(gh=s._PadV2=s.asm.ja).apply(null,arguments)},xh=s._Pow=function(){return(xh=s._Pow=s.asm.ka).apply(null,arguments)},U1=s._Prelu=function(){return(U1=s._Prelu=s.asm.la).apply(null,arguments)},H1=s._Prod=function(){return(H1=s._Prod=s.asm.ma).apply(null,arguments)},bh=s._RealDiv=function(){return(bh=s._RealDiv=s.asm.na).apply(null,arguments)},G1=s._Relu=function(){return(G1=s._Relu=s.asm.oa).apply(null,arguments)},wh=s._Relu6=function(){return(wh=s._Relu6=s.asm.pa).apply(null,arguments)},Sa=s._ResizeBilinear=function(){return(Sa=s._ResizeBilinear=s.asm.qa).apply(null,arguments)},q1=s._Reverse=function(){return(q1=s._Reverse=s.asm.ra).apply(null,arguments)},X1=s._RotateWithOffset=function(){return(X1=s._RotateWithOffset=s.asm.sa).apply(null,arguments)},Gg=s._Round=function(){return(Gg=s._Round=s.asm.ta).apply(null,arguments)},_h=s._Rsqrt=function(){return(_h=s._Rsqrt=s.asm.ua).apply(null,arguments)},K1=s._ScatterNd=function(){return(K1=s._ScatterNd=s.asm.va).apply(null,arguments)},Z1=s._SelectV2=function(){return(Z1=s._SelectV2=s.asm.wa).apply(null,arguments)},Y1=s._Sigmoid=function(){return(Y1=s._Sigmoid=s.asm.xa).apply(null,arguments)},J1=s._Sin=function(){return(J1=s._Sin=s.asm.ya).apply(null,arguments)},Q1=s._Softmax=function(){return(Q1=s._Softmax=s.asm.za).apply(null,arguments)},ef=s._Sqrt=function(){return(ef=s._Sqrt=s.asm.Aa).apply(null,arguments)},tf=s._Square=function(){return(tf=s._Square=s.asm.Ba).apply(null,arguments)},nf=s._SquaredDifference=function(){return(nf=s._SquaredDifference=s.asm.Ca).apply(null,arguments)},rf=s._Step=function(){return(rf=s._Step=s.asm.Da).apply(null,arguments)},af=s._StridedSlice=function(){return(af=s._StridedSlice=s.asm.Ea).apply(null,arguments)},sf=s._Sub=function(){return(sf=s._Sub=s.asm.Fa).apply(null,arguments)},of=s._Sum=function(){return(of=s._Sum=s.asm.Ga).apply(null,arguments)},lf=s._Tan=function(){return(lf=s._Tan=s.asm.Ha).apply(null,arguments)},uf=s._Tanh=function(){return(uf=s._Tanh=s.asm.Ia).apply(null,arguments)},cf=s._Tile=function(){return(cf=s._Tile=s.asm.Ja).apply(null,arguments)},hf=s._TopK=function(){return(hf=s._TopK=s.asm.Ka).apply(null,arguments)},df=s._Transpose=function(){return(df=s._Transpose=s.asm.La).apply(null,arguments)},pf=s.__FusedMatMul=function(){return(pf=s.__FusedMatMul=s.asm.Ma).apply(null,arguments)},ff=s._malloc=function(){return(ff=s._malloc=s.asm.Na).apply(null,arguments)},mf=s._free=function(){return(mf=s._free=s.asm.Oa).apply(null,arguments)},vh=s.___errno_location=function(){return(vh=s.___errno_location=s.asm.Pa).apply(null,arguments)},kh=s.stackSave=function(){return(kh=s.stackSave=s.asm.Qa).apply(null,arguments)},Ih=s.stackRestore=function(){return(Ih=s.stackRestore=s.asm.Ra).apply(null,arguments)},cu=s.stackAlloc=function(){return(cu=s.stackAlloc=s.asm.Sa).apply(null,arguments)};s.cwrap=Y;var Ji;function Af(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}ra=function K(){Ji||hu(),Ji||(ra=K)};function hu(K){if(K=K||u,or>0||(Kn(),or>0))return;function ne(){Ji||(Ji=!0,s.calledRun=!0,!j&&(On(),on(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Yt()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ne()},1)):ne()}if(s.run=hu,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return hu(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),w9=_t((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=String(h);for(var d=0;d>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),_9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),v9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),k9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,m,f;return p=h[d],p^=p>>>7,m=p^p<<24,p=h[d+1&7],m^=p^p>>>10,p=h[d+3&7],m^=p^p>>>3,p=h[d+4&7],m^=p^p<<7,p=h[d+7&7],p=p^p<<13,m^=p^p<<9,h[d]=m,c.i=d+1&7,m};function u(h,d){var p,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),I9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,m,f;return c.w=h=h+1640531527|0,f=d[p+34&127],m=d[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[p]=f^m,c.i=p,f+(h^h>>>16)|0};function u(h,d){var p,m,f,A,y,g=[],x=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,x=Math.max(x,d.length)),f=0,A=-32;A>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=m+y,f=p==0?f+1:0);for(f>=128&&(g[(d&&d.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;h.w=y,h.X=g,h.i=f}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),S9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,m=c.d,f=c.a;return d=d<<25^d>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-m|0,c.d=m<<16^p>>>16^f,c.a=f-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),N9=_t((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",c=a.pow(s,i),u=a.pow(2,o),h=u*2,d=s-1,p;function m(b,w,k){var N=[];w=w==!0?{entropy:!0}:w||{};var C=g(y(w.entropy?[b,v(r)]:b==null?x():b,3),N),F=new f(N),O=function(){for(var L=F.g(i),V=c,j=0;L=h;)L/=2,V/=2,j>>>=1;return(L+j)/V};return O.int32=function(){return F.g(4)|0},O.quick=function(){return F.g(4)/4294967296},O.double=O,g(v(F.S),r),(w.pass||k||function(L,V,j,U){return U&&(U.S&&A(U,F),L.state=function(){return A(F,{})}),j?(a[l]=L,V):L})(O,C,"global"in w?w.global:this==a,w.state)}function f(b){var w,k=b.length,N=this,C=0,F=N.i=N.j=0,O=N.S=[];for(k||(b=[k++]);C{var n=w9(),r=_9(),a=v9(),s=k9(),i=I9(),o=S9(),l=N9();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),T9=_t(()=>{}),wf={};Me(wf,{bin:()=>x5,browser:()=>I5,default:()=>E9,dependencies:()=>k5,description:()=>h5,devDependencies:()=>_5,jsdelivr:()=>m5,license:()=>w5,main:()=>p5,miniprogram:()=>g5,module:()=>f5,name:()=>u5,private:()=>d5,repository:()=>b5,scripts:()=>v5,types:()=>y5,unpkg:()=>A5,version:()=>c5});var u5="@tensorflow/tfjs",c5="3.5.0",h5="An open-source machine learning framework.",d5=!1,p5="dist/tf.node.js",f5="dist/index.js",m5="dist/tf.min.js",A5="dist/tf.min.js",y5="dist/index.d.ts",g5="dist/miniprogram",x5={"tfjs-custom-module":"dist/tools/custom_module/cli.js"},b5={type:"git",url:"https://github.com/tensorflow/tfjs.git"},w5="Apache-2.0",_5={"@babel/core":"^7.9.0","@babel/polyfill":"^7.10.4","@babel/preset-env":"^7.9.5","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@types/argparse":"^1.0.38","@types/jasmine":"2.8.7","@types/node":"~10.17.50","@types/shelljs":"^0.8.4","@types/yargs":"^15.0.7","clang-format":"~1.2.2",commander:"~2.14.1",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-babel":"^4.4.0","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~4.2.2",shelljs:"~0.8.1","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"1.0.0-pre.50"},v5={build:"tsc && yarn build-cli && yarn bundle","build-ci":"tsc && yarn build-cli && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-converter":"cd ../tfjs-converter && yarn && yarn build","build-converter-ci":"cd ../tfjs-converter && yarn && yarn build-ci","build-data":"cd ../tfjs-data && yarn && yarn build","build-data-ci":"cd ../tfjs-data && yarn && yarn build-ci","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-converter && yarn build-data && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-converter-ci && yarn build-data-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-cli":"tsc --project ./tools/custom_module/tsconfig.json && chmod +x ./dist/tools/custom_module/cli.js","run-custom-build":"ts-node -s ./tools/custom_module/cli.ts","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",test:"yarn && yarn build-deps && yarn build && karma start","test-dev":"karma start","test-tools":"ts-node --project ./tools/custom_module/tsconfig.json run_tools_tests.ts","test-ci":"./scripts/test-ci.sh"},k5={"@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-backend-webgl":"3.5.0","@tensorflow/tfjs-converter":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@tensorflow/tfjs-data":"3.5.0","@tensorflow/tfjs-layers":"3.5.0",argparse:"^1.0.10",chalk:"^4.1.0","core-js":"3","regenerator-runtime":"^0.13.5",yargs:"^16.0.3"},I5={"node-fetch":!1,util:!1,crypto:!1},E9={name:u5,version:c5,description:h5,private:d5,main:p5,module:f5,jsdelivr:m5,unpkg:A5,types:y5,miniprogram:g5,bin:x5,repository:b5,license:w5,devDependencies:_5,scripts:v5,dependencies:k5,browser:I5},_f={};Me(_f,{browser:()=>j5,default:()=>C9,dependencies:()=>V5,description:()=>T5,devDependencies:()=>W5,engines:()=>z5,jsdelivr:()=>R5,"jsnext:main":()=>$5,license:()=>L5,main:()=>C5,miniprogram:()=>O5,module:()=>D5,name:()=>S5,private:()=>E5,repository:()=>P5,scripts:()=>B5,sideEffects:()=>U5,types:()=>F5,unpkg:()=>M5,version:()=>N5});var S5="@tensorflow/tfjs-core",N5="3.5.0",T5="Hardware-accelerated JavaScript library for machine intelligence",E5=!1,C5="dist/tf-core.node.js",R5="dist/tf-core.min.js",M5="dist/tf-core.min.js",F5="dist/index.d.ts",$5="dist/index.js",D5="dist/index.js",O5="dist/miniprogram",z5={yarn:">= 1.3.2"},P5={type:"git",url:"https://github.com/tensorflow/tfjs-core.git"},L5="Apache-2.0",W5={"@bazel/bazelisk":"^1.3.0","@bazel/typescript":"^0.27.8","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"link:../tfjs-backend-cpu","@types/jasmine":"~3.0.0","@types/node":"~9.6.0","@types/node-fetch":"~2.1.2","clang-format":"~1.2.4",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-jasmine":"~1.1.0","karma-typescript":"~4.1.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2",shelljs:"~0.8.3","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21",yargs:"~13.2.2"},B5={"build-ci":"./scripts/enumerate-tests.js --ci && tsc && yarn bundle-ci && yarn build-test-snippets",build:"node ./scripts/enumerate-tests.js && tsc && yarn bundle",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-npm":"./scripts/build-npm.sh","build-deps":"yarn build && yarn build-cpu-backend","build-cpu-backend":"cd ../tfjs-backend-cpu && yarn && yarn build","build-cpu-backend-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build:bazel":"bazelisk build //...","build-test-snippets":"yarn tsc --project ./scripts/test_snippets/tsconfig.json","format-all":"clang-format -i -style=Google --glob=src/**/*.ts","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build && rollup -c && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-webworker":"karma start --worker","run-browserstack":"karma start --browserstack","test-bundle-size":"./scripts/test-bundle-size.js","test-node":"rimraf dist/ && yarn build-deps && yarn build && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-dev":"tsc && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_node.js","test-async-backends":"rimraf dist/ && yarn build && ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-async-backends-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-snippets":"yarn build && yarn build-cpu-backend && ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts","test-snippets-ci":"ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts"},V5={"@types/offscreencanvas":"~2019.3.0","@types/seedrandom":"2.4.27","@types/webgl-ext":"0.0.30","node-fetch":"~2.6.1",seedrandom:"2.4.3"},j5={"node-fetch":!1,util:!1,crypto:!1,worker_threads:!1},U5=["./dist/index.js","./dist/engine.js","./dist/tensor.js","./dist/base_side_effects.js","./dist/flags.js","./dist/platforms/*.js","./dist/register_all_gradients.js","./dist/public/chained_ops/*.js","./dist/io/*.js"],C9={name:S5,version:N5,description:T5,private:E5,main:C5,jsdelivr:R5,unpkg:M5,types:F5,"jsnext:main":$5,module:D5,miniprogram:O5,engines:z5,repository:P5,license:L5,devDependencies:W5,scripts:B5,dependencies:V5,browser:j5,sideEffects:U5},vf={};Me(vf,{browser:()=>ox,default:()=>R9,dependencies:()=>ix,description:()=>q5,devDependencies:()=>rx,jsdelivr:()=>Z5,"jsnext:main":()=>Q5,license:()=>nx,main:()=>K5,miniprogram:()=>tx,module:()=>ex,name:()=>H5,peerDependencies:()=>sx,private:()=>X5,scripts:()=>ax,types:()=>J5,unpkg:()=>Y5,version:()=>G5});var H5="@tensorflow/tfjs-data",G5="3.5.0",q5="TensorFlow Data API in JavaScript",X5=!1,K5="dist/tf-data.node.js",Z5="dist/tf-data.min.js",Y5="dist/tf-data.min.js",J5="dist/index.d.ts",Q5="dist/index.js",ex="dist/index.js",tx="dist/miniprogram",nx="Apache-2.0",rx={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@tensorflow/tfjs-layers":"3.5.0","@types/jasmine":"~2.5.53","@types/seedrandom":"^2.4.27","@types/utf8":"~2.1.6","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~7.0.0",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"^1.0.0-pre.50"},ax={build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-backend-cpu-ci","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-dev":"tsc && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-browsers":"karma start --browsers='Chrome,Firefox'","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/test_node.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose"},sx={"@tensorflow/tfjs-core":"3.5.0",seedrandom:"~2.4.3"},ix={"@types/node-fetch":"^2.1.2","node-fetch":"~2.6.1"},ox={fs:!1,"node-fetch":!1,string_decoder:!1,crypto:!1},R9={name:H5,version:G5,description:q5,private:X5,main:K5,jsdelivr:Z5,unpkg:Y5,types:J5,"jsnext:main":Q5,module:ex,miniprogram:tx,license:nx,devDependencies:rx,scripts:ax,peerDependencies:sx,dependencies:ix,browser:ox},kf={};Me(kf,{default:()=>M9,description:()=>cx,devDependencies:()=>bx,jsdelivr:()=>yx,"jsnext:main":()=>mx,license:()=>hx,main:()=>px,miniprogram:()=>xx,module:()=>Ax,name:()=>lx,peerDependencies:()=>_x,private:()=>dx,scripts:()=>wx,types:()=>fx,unpkg:()=>gx,version:()=>ux});var lx="@tensorflow/tfjs-layers",ux="3.5.0",cx="TensorFlow layers API in JavaScript",hx="Apache-2.0 AND MIT",dx=!1,px="dist/tf-layers.node.js",fx="dist/index.d.ts",mx="dist/index.js",Ax="dist/index.js",yx="dist/tf-layers.min.js",gx="dist/tf-layers.min.js",xx="dist/miniprogram",bx={"@babel/polyfill":"^7.8.7","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-backend-webgl":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@types/jasmine":"~2.5.53","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},wx={prep:"yarn install && yarn build-ci",build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-npm":"./scripts/build-npm.sh",format:"./tools/clang_format_ts.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts","run-browserstack":"karma start --browsers='bs_chrome_mac' --singleRun --reporters='dots,karma-typescript'",lint:"tslint -p . -t verbose"},_x={"@tensorflow/tfjs-core":"3.5.0"},M9={name:lx,version:ux,description:cx,license:hx,private:dx,main:px,types:fx,"jsnext:main":mx,module:Ax,jsdelivr:yx,unpkg:gx,miniprogram:xx,devDependencies:bx,scripts:wx,peerDependencies:_x},If={};Me(If,{default:()=>F9,description:()=>Ix,devDependencies:()=>Ox,jsdelivr:()=>Rx,"jsnext:main":()=>Nx,license:()=>$x,main:()=>Sx,miniprogram:()=>Mx,module:()=>Tx,name:()=>vx,peerDependencies:()=>Dx,repository:()=>Fx,scripts:()=>zx,types:()=>Ex,unpkg:()=>Cx,version:()=>kx});var vx="@tensorflow/tfjs-converter",kx="3.5.0",Ix="Tensorflow model converter for javascript",Sx="dist/tf-converter.node.js",Nx="dist/index.js",Tx="dist/index.js",Ex="dist/index.d.ts",Cx="dist/tf-converter.min.js",Rx="dist/tf-converter.min.js",Mx="dist/miniprogram",Fx={type:"git",url:"https://github.com/tensorflow/tfjs-converter.git"},$x="Apache-2.0",Dx={"@tensorflow/tfjs-core":"3.5.0"},Ox={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-replace":"^2.3.3","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@types/argparse":"^1.0.38","@types/deep-equal":"^1.0.1","@types/jasmine":"~2.8.6","@types/long":"~3.0.32","@types/node-fetch":"1.6.9",ajv:"~6.3.0",argparse:"^1.0.10","babel-core":"~6.26.3","babel-plugin-external-helpers":"~6.22.0","babel-preset-env":"~1.7.0","clang-format":"~1.2.2",copyfiles:"~1.2.0","deep-equal":"^1.0.1","jasmine-core":"~3.5.0","node-fetch":"~2.6.1",opn:"~5.1.0",protobufjs:"~6.8.6",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-morph":"^7.1.3","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"~0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},zx={build:"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle","build-ci":"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && yarn gen-json --test && yarn gen-kernel2ops && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/run_tests.ts","test-dev":"tsc && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose","make-version":"sh -c ./scripts/make-version","gen-doc":"ts-node -s ./scripts/gen_doc.ts","gen-json":"ts-node -s ./scripts/gen_json.ts","model-summary":"ts-node -s ./tools/model_summary.ts",pb2json:"ts-node -s ./tools/pb2json_converter.ts","build-pip-package":"yarn gen-json --test && cd python && ./build-pip-package.sh --test /tmp/tfjs-pips","run-python-tests":"yarn gen-json --test && cd python && ./run-python-tests.sh","gen-kernel2ops":"ts-node -s scripts/kernels_to_ops.ts --out metadata/kernel2op.json"},F9={name:vx,version:kx,description:Ix,main:Sx,"jsnext:main":Nx,module:Tx,types:Ex,unpkg:Cx,jsdelivr:Rx,miniprogram:Mx,repository:Fx,license:$x,peerDependencies:Dx,devDependencies:Ox,scripts:zx},$9=1e-7,D9=1e-4,Ch=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},gu=class{refCount(e){return cr("refCount")}incRef(e){return cr("incRef")}timerAvailable(){return!0}time(e){return cr("time")}read(e){return cr("read")}readSync(e){return cr("readSync")}numDataIds(){return cr("numDataIds")}disposeData(e,t){return cr("disposeData")}write(e,t,n){return cr("write")}move(e,t,n,r,a){return cr("move")}memory(){return cr("memory")}floatPrecision(){return cr("floatPrecision")}epsilon(){return this.floatPrecision()===32?$9:D9}dispose(){return cr("dispose")}};function cr(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function Px(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function O9(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r,a,s=0;for(;n>0;)s=Math.random()*n|0,n--,r=e[n],a=t[n],e[n]=e[s],t[n]=t[s],e[s]=r,t[s]=a}function xu(e,t,n){return Math.max(e,Math.min(t,n))}function z9(e){return e%2==0?e:e+1}function P9(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function hs(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ds(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||rn(e)&&!n)for(let r=0;r0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function G9(e,t){let n=1,r=-1;for(let s=0;s=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function hr(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),M(e.every(r=>r>=-n&&r`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(r=>Ut(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function Lx(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:hr(t,e).sort(),i=0;for(let o=0;oo)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function Wx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Bx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Vx(e,t){for(let n=0;nt+=n.length),t}function Ea(e){return typeof e=="string"||e instanceof String}function Hx(e){return typeof e=="boolean"}function Gx(e){return typeof e=="number"}function Rh(e){return Array.isArray(e)?Rh(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":Gx(e)?"float32":Ea(e)?"string":Hx(e)?"bool":"float32"}function Ca(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Mh(e,t){for(let n=t;n=0;--r)n[r]=n[r+1]*e[r+1];return n}function qx(e,t,n,r=!1){let a=new Array;if(t.length===1){let s=t[0]*(r?2:1);for(let i=0;il*c)*(r?2:1);for(let l=0;la*s)*(n?2:1);if(r===0)return[];if(r!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return qx(0,e,t,n)}function Nf(e,t){let n=Fh(e,t);for(let r=0;rr*a,1);if(t==null||t==="float32")return oo(e,new Float32Array(n));if(t==="int32")return oo(e,new Int32Array(n));if(t==="bool")return oo(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Tf(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function K9(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a{let[n,r]=t.split(":");this.urlFlags[n]=J9(n,r)})}};function Y9(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(Q9(t,r[0],r[1]),r.join("="))),t}function Q9(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function J9(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return vr}var vr=null;function eI(e){vr=e}var Cf;function Zx(){if(Cf==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Cf=e}return Cf}function tI(){let e=Zx();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Rf(e,t){let n=tI();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var lo="Abs",uo="Acos",co="Acosh",Ra="Add",ps="AddN",ho="All",po="Any",fs="ArgMax",wu="ArgMin",fo="Asin",mo="Asinh",Ao="Atan",yo="Atanh",go="Atan2",ms="AvgPool",$h="AvgPoolGrad",_u="AvgPool3D",Dh="AvgPool3DGrad",As="BatchMatMul",vu="BatchToSpaceND",Oh="Bincount",Yx="BroadcastTo",ys="Cast",gs="Ceil",Ma="ClipByValue",zh="Complex",ku="ComplexAbs",xo="Concat",xs="Conv2D",Ph="Conv2DBackpropFilter",bs="Conv2DBackpropInput",Iu="Conv3D",Lh="Conv3DBackpropFilterV2",Wh="Conv3DBackpropInputV2",ws="Cos",bo="Cosh",_s="Cumsum",wo="CropAndResize",Bh="DenseBincount",_o="DepthToSpace",vs="DepthwiseConv2dNative",Vh="DepthwiseConv2dNativeBackpropFilter",jh="DepthwiseConv2dNativeBackpropInput",Uh="Diag",Su="Dilation2D",Hh="Dilation2DBackpropInput",Gh="Dilation2DBackpropFilter",ks="RealDiv",qh="Einsum",vo="Elu",Xh="EluGrad",ko="Erf",Io="Equal",Is="Exp",So="ExpandDims",No="Expm1",Kh="FFT",Nu="Fill",To="FlipLeftRight",Ss="Floor",Ns="FloorDiv",Ts="FusedBatchNorm",Eo="GatherV2",Co="GatherNd",Ro="Greater",Es="GreaterEqual",Cs="Identity",Zh="IFFT",Yh="Imag",Mo="IsFinite",Fo="IsInf",$o="IsNan",Rs="LeakyRelu",Do="Less",Oo="LessEqual",Jh="LinSpace",Ms="Log",zo="Log1p",Po="LogicalAnd",Tu="LogicalNot",Eu="LogicalOr",Jx="LogSoftmax",Cu="LRN",Qh="LRNGrad",Fs="Max",$s="Maximum",Ds="MaxPool",ed="MaxPoolGrad",Ru="MaxPool3D",td="MaxPool3DGrad",nd="MaxPoolWithArgmax",Os="Mean",zs="Min",Ps="Minimum",Ls="MirrorPad",Lo="Mod",rd="Multinomial",Ws="Multiply",Wo="Neg",Bo="NotEqual",Vo="NonMaxSuppressionV3",jo="NonMaxSuppressionV4",Uo="NonMaxSuppressionV5",Ho="OnesLike",Bs="OneHot",Go="Pack",Vs="PadV2",nI="Pool",js="Pow",Us="Prelu",qo="Prod",Mu="Range",ad="Real",Xo="Reciprocal",Hs="Relu",Ko="Reshape",Fu="ResizeNearestNeighbor",sd="ResizeNearestNeighborGrad",Gs="ResizeBilinear",id="ResizeBilinearGrad",qs="Relu6",Xs="Reverse",Ks="Round",Zs="Rsqrt",Zo="ScatterNd",Yo="Select",Jo="Selu",Qo="Slice",Ys="Sin",el="Sinh",tl="Sign",Js="Sigmoid",nl="Softplus",Qs="Sqrt",ei="Sum",$u="SpaceToBatchND",rl="SplitV",ti="Softmax",od="SparseReshape",ld="SparseToDense",ni="SquaredDifference",Du="Square",al="StridedSlice",ri="Sub",ai="Tan",si="Tanh",Fa="Tile",sl="TopK",ud="Transform",ii="Transpose",cd="Unique",il="Unpack",Ou="UnsortedSegmentSum",ol="ZerosLike",$a="Step",hd="FromPixels",ll="RotateWithOffset",oi="_FusedMatMul",li="FusedConv2D",ui="FusedDepthwiseConv2D",ul=Rf("kernelRegistry",()=>new Map),zu=Rf("gradRegistry",()=>new Map);function dd(e,t){let n=Mf(e,t);return ul.get(n)}function Ff(e){return zu.get(e)}function cl(e){let t=ul.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function ci(e){let{kernelName:t,backendName:n}=e,r=Mf(t,n);ul.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),ul.set(r,e)}function Qx(e){let{kernelName:t}=e;zu.has(t)&&J().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),zu.set(t,e)}function rI(e,t){let n=Mf(e,t);if(!ul.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);ul.delete(n)}function aI(e){if(!zu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);zu.delete(e)}function sI(e,t){cl(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});ci(r)})}function Mf(e,t){return`${t}_${e}`}var _={};Me(_,{arraysEqual:()=>la,assert:()=>M,assertNonNegativeIntegerDimensions:()=>Tf,assertNonNull:()=>hs,assertShapesMatch:()=>ln,bytesFromStringArray:()=>Ux,bytesPerElement:()=>Sf,checkConversionForErrors:()=>Vx,clamp:()=>xu,computeStrides:()=>io,createScalarValue:()=>iI,createShuffledIndices:()=>U9,decodeString:()=>fd,distSquared:()=>W9,encodeString:()=>Lu,fetch:()=>oI,flatten:()=>ds,getArrayFromDType:()=>Bx,getTypedArrayFromDType:()=>Wx,hasEncodingLoss:()=>q9,indexToLoc:()=>Z9,inferDtype:()=>Rh,inferFromImplicitShape:()=>G9,isBoolean:()=>Hx,isFunction:()=>Ca,isInt:()=>Ut,isNumber:()=>Gx,isPromise:()=>Ef,isScalarShape:()=>B9,isString:()=>Ea,isTypedArray:()=>rn,isValidDtype:()=>jx,locToIndex:()=>K9,makeOnesTypedArray:()=>Nf,makeZerosNestedTypedArray:()=>X9,makeZerosTypedArray:()=>Fh,nearestDivisor:()=>Mh,nearestLargerEven:()=>z9,now:()=>Pu,parseAxisParam:()=>hr,randUniform:()=>L9,repeatedTry:()=>H9,rightPad:()=>bu,shuffle:()=>Px,shuffleCombo:()=>O9,sizeFromShape:()=>Et,sizeToSquarishShape:()=>j9,squeezeShape:()=>Lx,sum:()=>P9,tanh:()=>V9,toNestedArray:()=>oo,toTypedArray:()=>pd});function iI(e,t){return t==="string"?Lu(e):pd([e],t)}function lI(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function pd(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ds(e)),J().getBool("DEBUG")&&Vx(e,t),lI(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r{r=n()},s,i=Pu();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(a);else{a();for(let o of r)o.dataSync();s=Promise.resolve({kernelMs:Pu()-i})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o{uI(c,l.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function uI(e,t,n){if(t!=="float32")return!1;for(let r=0;r0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${u} %c${c} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function dI(e,t,n){let r={},a={};for(let l=0;lr[f.id]=!0),p=!0,a[c.id]=!0;break}if(p)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let h=0;h=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let c=e[l.id];c!=null?i.push(c):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let c=n(()=>o[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=s.inputs[l];if(!la(c.shape,u.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let h=e[u.id];e[u.id]=r(h,c),h.dispose()}}}}var eb=20,Wu=3,$f=7;function mI(e,t,n,r){let a=io(t),s=fI(e,t,n,a),i=t.length,o=md(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(c=>" "+c).join(` `)),l.join(` -`)}function vI(e,t,n,r){let a=Et(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Uu(e):e;if(o>1)for(let c=0;csw){let A=Vu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-Vu)*i,o*i));return n==="complex64"&&(y=Uu(y),g=Uu(g)),["["+y.map((x,v)=>ju(x,a[v],n)).join(", ")+", ..., "+g.map((x,v)=>ju(x,a[o-Vu+v],n)).join(", ")+"]"]}let m=n==="complex64"?Uu(e):Array.from(e);return["["+m.map((A,y)=>ju(A,a[y],n)).join(", ")+"]"]}let c=t.slice(1),u=r.slice(1),h=r[0]*i,d=[];if(o>sw){for(let m=0;m`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Gx(t,this.size),this.strides=io(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;rmd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Pr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>md(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Pr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Pr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return hl.print(this,e)}clone(){return this.throwIfDisposed(),hl.clone(this)}toString(e=!1){let t=this.dataSync();return kI(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),hl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Pr().makeVariable(this,e,t,n)}};Object.defineProperty(Pe,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return Ff("Tensor",()=>Pe)}Z();var Hu=class extends Pe{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!oa(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Pr().disposeTensor(this),this.dataId=e.dataId,Pr().incRef(this,null)}dispose(){Pr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Hu,Symbol.hasInstance,{value:e=>e instanceof Pe&&e.assign!=null&&e.assign instanceof Function});var vr={};Me(vr,{assertTypesMatch:()=>ow,getTensorsInContainer:()=>zf,isTensorInList:()=>EI,makeTypesMatch:()=>vt});var Pf;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Pf||(Pf={}));var Lf;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Lf||(Lf={}));var Wf;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Wf||(Wf={}));var Bf;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Bf||(Bf={}));var Vf;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Vf||(Vf={}));var CI={float32:Bf,int32:Lf,bool:Wf,complex64:Vf};function dr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return CI[e][t]}function yd(e){return dr(e,"int32")}function vt(e,t){if(e.dtype===t.dtype)return[e,t];let n=dr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function ow(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function EI(e,t){return t.some(n=>n.id===e.id)}function zf(e){let t=[],n=new Set;return lw(e,t,n),t}function lw(e,t,n){if(e==null)return;if(e instanceof Pe){t.push(e);return}if(!RI(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),lw(s,t,n))}}function RI(e){return Array.isArray(e)||typeof e=="object"}function jf(e){return e.kernelName!=null}var uw=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Gu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new uw}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){cl(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof wu)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Gu.nextTensorId++}nextVariableId(){return Gu.nextVariableId++}clone(e){let t=$.runKernel(Es,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernel(As,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(pd(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=jf(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(jf(e)){let{kernelName:p,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let A=pd(p,this.backendName);M(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:f,attrs:m,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let x=g.map(v=>{if(v.rank!=null)return v;let{dataId:w,shape:b,dtype:k}=v;return this.makeTensorFromDataId(w,b,k)});if(r){let v=this.getTensorsForGradient(p,f,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:p}=e,f=m=>{!r||(n=m.map(A=>this.keep(this.clone(A))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,f));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,A),A}}let{inputs:c,attrs:u}=e,h=jf(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,c,t,h,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(p=>c[p]!=null?c[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=Df(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&Ta(e[0])&&(a=e.map(o=>Bu(o)));let s=r.write(a,t,n),i=new Pe(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=Kx(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new Pe(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new Hu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Tf(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Hu||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Tf(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=Df(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let h=n[u],d=$h(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return c}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=zf(e),n=new Set(t.map(a=>a.id));for(let a=0;a{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(a instanceof Pe,()=>"The result y returned by f() must be a tensor.");let s=bI(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?MI(a.shape):n,_I(i,s,l=>this.tidy(l),FI);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return M(Ea(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(i=>i instanceof Pe),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),M(n.value instanceof Pe,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Ea(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];M(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(c.every(h=>h instanceof Pe),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((h,d)=>{u[d]=()=>h}),u};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Wu(),n=await this.backend.time(e);return n.wallMs=Wu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new uw;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Gu.nextTensorId=0;Gu.nextVariableId=0;function MI(e){let t=Ef(Et(e),"float32");return $.makeTensor(t,e,"float32")}function cw(){let e=tw();if(e._tfengine==null){let t=new ew(e);e._tfengine=new Gu(t)}return uI(e._tfengine.ENV),SI(()=>e._tfengine),e._tfengine}var $=cw();function FI(e,t){let n={a:e,b:t};return $.runKernel(Ca,n)}var qu={};Me(qu,{isBrowser:()=>hw,isMobile:()=>$I});function DI(){return typeof navigator!="undefined"&&navigator!=null}function $I(e){if(e||DI()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function hw(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var kr=J();kr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});kr.registerFlag("IS_BROWSER",()=>hw());kr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");kr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));kr.registerFlag("PROD",()=>!1);kr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>kr.getBool("DEBUG"));kr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);kr.registerFlag("IS_TEST",()=>!1);kr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);kr.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Lr(e,t){let n=e;if(rn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||rn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&dw(e,r,[]),r}function dw(e,t,n){if(n=n||[],!Array.isArray(e)&&!rn(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a=0&&(a=r),pw(r,a,t,n),e==null||!rn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Lr(e,a);!rn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?fd(e,a):hs(e,[],!0);return $.makeTensor(i,s,a)}function Xu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var fw="__op";function D(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+fw;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return Rf(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function OI(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");ln(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel(Ph,a)}var $a=D({complex_:OI});function Da(e,t,n,r){if(r==null&&(r=Mh(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!rn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Cf(t);let a=Et(t),s=Et(n);M(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!rn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?fd(e,r):hs(e,[],!0),$.makeTensor(e,t,r)}function Ir(e,t,n){let r=Lr(e,n);return Da(e,t,r,n)}var Uf={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},gd=4;async function PI(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+gd*d.length,f=new Uint8Array(p),m=0;for(let A=0;A{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var Hf=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Aw(e){return Hf?Buffer.byteLength(e):new Blob([e]).size}function WI(e){if(Hf)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function yw(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Ku(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Aw(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Aw(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function VI(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function jI(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function UI(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function LI(){let e=VI(),t=jI(),n=UI();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Tt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Tt.instance==null&&(Tt.instance=new Tt),Tt.instance}static registerSaveRouter(e){Tt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Tt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Tt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Tt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Tt.getInstance().loadRouters:Tt.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},HI=e=>Tt.registerSaveRouter(e),GI=e=>Tt.registerLoadRouter(e),qI=e=>Tt.getSaveHandlers(e),XI=(e,t)=>Tt.getLoadHandlers(e,t),qf="tensorflowjs",Xf=1,ci="models_store",Oa="model_info_store";function gw(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Kf(e){let t=e.result;t.createObjectStore(ci,{keyPath:"modelPath"}),t.createObjectStore(Oa,{keyPath:"modelPath"})}var hi=class{constructor(e){if(this.indexedDB=gw(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(qf,Xf);a.onupgradeneeded=()=>Kf(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(ci,"readonly"),o=i.objectStore(ci).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=Ku(t),o=s.transaction(Oa,"readwrite"),l=o.objectStore(Oa),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(ci,"readwrite");let h=u.objectStore(ci).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(Oa);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=f=>(s.close(),r(h.error))}},c.onerror=h=>(s.close(),r(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};hi.URL_SCHEME="indexeddb://";var xw=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(hi.URL_SCHEME)?KI(e.slice(hi.URL_SCHEME.length)):null;Tt.registerSaveRouter(xw);Tt.registerLoadRouter(xw);function KI(e){return new hi(e)}function ZI(e){return e.startsWith(hi.URL_SCHEME)?e.slice(hi.URL_SCHEME.length):e}var YI=class{constructor(){this.indexedDB=gw()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(qf,Xf);n.onupgradeneeded=()=>Kf(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(Oa,"readonly"),s=a.objectStore(Oa).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=ZI(e),new Promise((t,n)=>{let r=this.indexedDB.open(qf,Xf);r.onupgradeneeded=()=>Kf(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(Oa,"readwrite"),i=s.objectStore(Oa),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=a.transaction(ci,"readwrite");let h=l.objectStore(ci).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=h=>(u(),a.close(),n(o.error))}},o.onerror=c=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},la="/",dl="tensorflowjs_models",ww="info",JI="model_topology",QI="weight_specs",eS="weight_data",tS="model_metadata";function bw(e){return{info:[dl,e,ww].join(la),topology:[dl,e,JI].join(la),weightSpecs:[dl,e,QI].join(la),weightData:[dl,e,eS].join(la),modelMetadata:[dl,e,tS].join(la)}}function nS(e){let t=e.split(la);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(la)}function rS(e){return e.startsWith(di.URL_SCHEME)?e.slice(di.URL_SCHEME.length):e}var di=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=bw(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=Ku(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,WI(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=BI(s),t}};di.URL_SCHEME="localstorage://";var _w=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(di.URL_SCHEME)?aS(e.slice(di.URL_SCHEME.length)):null;Tt.registerSaveRouter(_w);Tt.registerLoadRouter(_w);function aS(e){return new di(e)}var sS=class{constructor(){M(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=dl+la,n=la+ww;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(pl)&&(e=e.slice(0,e.indexOf(pl))),M(e.length>0,()=>"scheme must not be an empty string.");let n=Jn.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function xd(e){if(e.indexOf(pl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Jn.getSchemes().join(",")}`);return{scheme:e.split(pl)[0],path:e.split(pl)[1]}}async function vw(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Tt.getLoadHandlers(e);M(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=Tt.getSaveHandlers(t);M(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=xd(e).scheme,l=xd(e).path,c=o===xd(e).scheme,u=await a.load();n&&c&&await Jn.getManager(o).removeModel(l);let h=await i.save(u);return n&&!c&&await Jn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function iS(){let e=Jn.getSchemes(),t={};for(let n of e){let r=await Jn.getManager(n).listModels();for(let a in r){let s=n+pl+a;t[s]=r[a]}}return t}async function oS(e){let t=xd(e);return Jn.getManager(t.scheme).removeModel(t.path)}async function lS(e,t){return vw(e,t,!1)}async function uS(e,t){return vw(e,t,!0)}var cS=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new cS);try{Jn.registerManager(di.URL_SCHEME,new sS)}catch(e){}try{Jn.registerManager(hi.URL_SCHEME,new YI)}catch(e){}}var hS={importFetch:()=>g9()},Zf,dS=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(Zf==null&&(Zf=hS.importFetch()),Zf(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new dS);function Be(e,t="float32",n){return t=t||"float32",Cf(e),new Ot(e,t,n)}function pS(e,t){let n=R(e,"x","cast");if(!Xx(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(As,r,a)}var ge=D({cast_:pS});function fS(e){let t={x:R(e,"x","clone","string_or_numeric")};return $.runKernel(Es,t)}var Wr=D({clone_:fS});function kw(e,t=!1){console.log(e.toString(t))}cw();var mS={buffer:Be,cast:ge,clone:Wr,print:kw};NI(mS);var Nn={};Me(Nn,{browserFiles:()=>AS,browserHTTPRequest:()=>gS,concatenateArrayBuffers:()=>Gf,copyModel:()=>lS,decodeWeights:()=>mw,encodeWeights:()=>PI,fromMemory:()=>xS,getLoadHandlers:()=>XI,getModelArtifactsInfoForJSON:()=>Ku,getSaveHandlers:()=>qI,http:()=>Jf,isHTTPScheme:()=>Yf,listModels:()=>iS,loadWeights:()=>yS,moveModel:()=>uS,registerLoadRouter:()=>GI,registerSaveRouter:()=>HI,removeModel:()=>oS,weightsLoaderFactory:()=>Iw,withSaveHandler:()=>wS});var bS="model",_S=".json",vS=".weights.bin";function Sw(e){return new Promise(t=>setTimeout(t)).then(e)}var fl=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(fl.URL_SCHEME)&&(e=e.slice(fl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=bS),this.modelTopologyFileName=e+_S,this.weightDataFileName=e+vS}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await Sw(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Sw(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Ku(e)}}}};fl.URL_SCHEME="downloads://";var kS=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let u=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(f=>{h.push(f),d.push(null)}),u.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(f=>{let m=new FileReader;m.onload=A=>{let y=A.target.result,g=h.indexOf(f);if(d[g]=y,d.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:u,weightData:Gf(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},m.onerror=A=>r(`Failed to weights data from file of path '${f}'.`),m.readAsArrayBuffer(c[f])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>yw(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=yw(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},SS=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(fl.URL_SCHEME)?IS(e.slice(fl.URL_SCHEME.length)):null;Tt.registerSaveRouter(SS);function IS(e="model"){return new fl(e)}function AS(e){return new kS(e)}function Nw(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(c=>{let u=n+ ++a/e.length*(r-n);return t(u),c}),l);function i(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),M(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function Tw(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,r=e.map(c=>n(c,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await Nw(r,t.onProgress,a,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await Nw(i,t.onProgress,o,l)}async function yS(e,t="",n,r){return Iw(a=>Tw(a,{requestInit:r}))(e,t,n)}function Iw(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=Uf[y]*Et(A.shape),x=()=>{a[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:A,groupOffset:m,sizeBytes:g})};r!=null?r.forEach((v,w)=>{v===A.name&&(x(),i[w]=!0)}):x(),o.push(A.name),m+=g})}),!i.every(p=>p)){let p=r.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. -Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,f,m)=>(f&&p.push(m),p),[]),c=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),h={},d=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let x=0;x{let v=A.slice(x.groupOffset,x.groupOffset+x.sizeBytes),w=mw(v,[x.manifestEntry]);for(let b in w)h[b]=w[b]}),d+=f}),h}}var NS="application/octet-stream",TS="application/json",Qf=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:TS}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:NS}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:Ku(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let f=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?f+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":f+=" Please make sure the server is serving valid JSON for this request.",new Error(f)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;r!=null&&([c,u]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=ES(t),a=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(a+u+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await Tw(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Gf(l)]}};Qf.URL_SCHEME_REGEX=/^https?:\/\//;function ES(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Yf(e){return e.match(Qf.URL_SCHEME_REGEX)!=null}var Ew=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Yf(r)):n=Yf(e),n)return Jf(e,t)}return null};Tt.registerSaveRouter(Ew);Tt.registerLoadRouter(Ew);function Jf(e,t){return new Qf(e,t)}function gS(e,t){return Jf(e,t)}var em=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},CS=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function xS(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new em(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new em({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new em({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function wS(e){return new CS(e)}var Cw={};Me(Cw,{confusionMatrix:()=>RS});function MS(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=vt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(ms,i,o)}var Ve=D({matMul_:MS});function FS(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(Ws,a,s)}var ml=D({oneHot_:FS});function $S(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{M(s>=0&&s`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(si,r,a)}var Je=D({transpose_:$S});function DS(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),M(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),M(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=ml(ge(r,"int32"),n),i=ml(ge(a,"int32"),n),o=Je(s),l=Ve(o,i);return ge(l,"int32")}var RS=D({confusionMatrix_:DS}),pi={};Me(pi,{fromPixels:()=>PS,fromPixelsAsync:()=>OS,toPixels:()=>zS});function wd(e,t,n){if(cs(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Lr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Da(e,t,r,n)}var Al;function Rw(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState element.")}if(pd(dd,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(dd,d,p)}let[l,c]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:r||n?u=e.data:(s||a||o)&&(Al==null&&(Al=document.createElement("canvas").getContext("2d")),Al.canvas.width=l,Al.canvas.height=c,Al.drawImage(e,0,0,l,c),u=Al.getImageData(0,0,l,c).data);let h;if(t===4)h=new Int32Array(u);else{let d=l*c;h=new Int32Array(d*t);for(let p=0;p4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let c=0;c1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(u[0]=p*o,u[1]=p*o,u[2]=p*o):u[d]=p*o}let h=c*4;l[h+0]=Math.round(u[0]),l[h+1]=Math.round(u[1]),l[h+2]=Math.round(u[2]),l[h+3]=Math.round(u[3])}if(t!=null){t.width=a,t.height=r;let c=t.getContext("2d"),u=new ImageData(l,a,r);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var PS=D({fromPixels_:Rw}),tm={};Me(tm,{prepareAndValidate:()=>Mw});function Mw(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Et(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;hh/c),1].slice(0,s);return[l,i,c,u]}var nm={};Me(nm,{calculateShapes:()=>Fw,validateInput:()=>am,validateUpdateShape:()=>rm});function rm(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;hjS,computeFlatOffset:()=>HS,computeOutShape:()=>$w,getNormalizedAxes:()=>Ow,isSliceContinous:()=>US,maskToAxes:()=>bd,parseSliceParams:()=>Vw,sliceInfo:()=>GS,startForAxis:()=>Ww,startIndicesWithElidedDims:()=>zw,stopForAxis:()=>Bw,stopIndicesWithElidedDims:()=>Pw,stridesForAxis:()=>Lw,stridesWithElidedDims:()=>Dw});function jS(e,t,n){let r=e.shape.length;M(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),M(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function bd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function $w(e,t,n){let r=[];for(let a=0;a0){let p=t[0],f=n+1;u=zw(i,p,f,r,e),h=Pw(o,p,f,a,e),d=Dw(s,p,f,e)}else for(let p=0;p-1)s[o]=0;else{let l=jw(t,n,o),c=r[l];e&1<-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=jw(t,n,o),c=r[l];e&1<0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=bu(0,i,l-1),i}function Bw(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=bu(0,i,l):i=bu(-1,i,l-1),i}function US(e,t,n){let r=n.length;for(let a=0;a1){r=a;break}for(let a=r+1;a0||n[a]!==e[a])return!1;return!0}function HS(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{M(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.lengthi>=0?i:(M(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function GS(e,t,n,r,a,s,i,o,l){let c=t.slice(),u=n.slice(),h=r;r==null&&(h=new Array(c.length));let d=bd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-c.length,f=bd(o),m=e.slice();f.forEach(b=>{c[b]=0,u[b]=1,m.splice(b,0,1)});let{begin:A,end:y,strides:g}=Ow(m,d,p,c,u,h,a,s,i);c=A,u=y,h=g;let x=bd(l);x.forEach(b=>{u[b]=c[b]+1,h[b]=1});let v=$w(c,u,h),w=v.filter((b,k)=>x.indexOf(k)===-1);return{nonStrided:h.every(b=>b===1),$begin:c,$end:u,$strides:h,size:v,newShape:m,outShape:w}}var re={};Me(re,{Serializable:()=>Hw,SerializationMap:()=>fi,registerClass:()=>za});var Hw=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},fi=class{constructor(){this.classNameMap={}}static getMap(){return fi.instance==null&&(fi.instance=new fi),fi.instance}static register(e){fi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function za(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),fi.register(e)}var Gw={};Me(Gw,{TEST_EPSILON_FLOAT16:()=>qw,encodeStrings:()=>Xw,expectArrayBuffersEqual:()=>JS,expectArraysClose:()=>qS,expectArraysEqual:()=>KS,expectNumbersClose:()=>ZS,expectPromiseToFail:()=>XS,expectValuesInRange:()=>YS,testEpsilon:()=>sm});var QS=.001,qw=.1;function qS(e,t,n){return n==null&&(n=sm()),im(e,t,(r,a)=>om(r,a,n))}function sm(){return $.backend.floatPrecision()===32?QS:qw}function im(e,t,n){let r=!0;if((rn(e)||rn(t))&&(r=!1),rn(e)&&rn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Lr(e),o=Lr(t);if(!oa(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=rn(e)?e:hs(e),s=rn(t)?t:hs(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}. +`)}function fI(e,t,n,r){let a=Et(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Vu(e):e;if(o>1)for(let c=0;ceb){let A=Wu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-Wu)*i,o*i));return n==="complex64"&&(y=Vu(y),g=Vu(g)),["["+y.map((x,v)=>Bu(x,a[v],n)).join(", ")+", ..., "+g.map((x,v)=>Bu(x,a[o-Wu+v],n)).join(", ")+"]"]}let f=n==="complex64"?Vu(e):Array.from(e);return["["+f.map((A,y)=>Bu(A,a[y],n)).join(", ")+"]"]}let c=t.slice(1),u=r.slice(1),h=r[0]*i,d=[];if(o>eb){for(let f=0;f`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Bx(t,this.size),this.strides=io(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;rfd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Lr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>fd(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Lr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Lr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return hl.print(this,e)}clone(){return this.throwIfDisposed(),hl.clone(this)}toString(e=!1){let t=this.dataSync();return mI(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),hl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Lr().makeVariable(this,e,t,n)}};Object.defineProperty(Pe,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return Rf("Tensor",()=>Pe)}Z();var ju=class extends Pe{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!la(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Lr().disposeTensor(this),this.dataId=e.dataId,Lr().incRef(this,null)}dispose(){Lr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ju,Symbol.hasInstance,{value:e=>e instanceof Pe&&e.assign!=null&&e.assign instanceof Function});var kr={};Me(kr,{assertTypesMatch:()=>nb,getTensorsInContainer:()=>Df,isTensorInList:()=>bI,makeTypesMatch:()=>vt});var Of;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Of||(Of={}));var zf;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(zf||(zf={}));var Pf;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Pf||(Pf={}));var Lf;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Lf||(Lf={}));var Wf;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Wf||(Wf={}));var wI={float32:Lf,int32:zf,bool:Pf,complex64:Wf};function dr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return wI[e][t]}function Ad(e){return dr(e,"int32")}function vt(e,t){if(e.dtype===t.dtype)return[e,t];let n=dr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function nb(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function bI(e,t){return t.some(n=>n.id===e.id)}function Df(e){let t=[],n=new Set;return rb(e,t,n),t}function rb(e,t,n){if(e==null)return;if(e instanceof Pe){t.push(e);return}if(!_I(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),rb(s,t,n))}}function _I(e){return Array.isArray(e)||typeof e=="object"}function Bf(e){return e.kernelName!=null}var ab=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Uu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new ab}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){cl(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof gu)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Uu.nextTensorId++}nextVariableId(){return Uu.nextVariableId++}clone(e){let t=$.runKernel(Cs,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernel(ys,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(dd(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Bf(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Bf(e)){let{kernelName:p,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let A=dd(p,this.backendName);M(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:m,attrs:f,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let x=g.map(v=>{if(v.rank!=null)return v;let{dataId:b,shape:w,dtype:k}=v;return this.makeTensorFromDataId(b,w,k)});if(r){let v=this.getTensorsForGradient(p,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:p}=e,m=f=>{!r||(n=f.map(A=>this.keep(this.clone(A))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,m));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,A),A}}let{inputs:c,attrs:u}=e,h=Bf(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,c,t,h,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(p=>c[p]!=null?c[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=Ff(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&Ea(e[0])&&(a=e.map(o=>Lu(o)));let s=r.write(a,t,n),i=new Pe(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=Ux(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new Pe(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new ju(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Sf(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof ju||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Sf(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=Ff(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let h=n[u],d=Fh(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return c}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Df(e),n=new Set(t.map(a=>a.id));for(let a=0;a{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(a instanceof Pe,()=>"The result y returned by f() must be a tensor.");let s=dI(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?vI(a.shape):n,pI(i,s,l=>this.tidy(l),kI);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return M(Ca(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(i=>i instanceof Pe),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),M(n.value instanceof Pe,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Ca(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];M(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(c.every(h=>h instanceof Pe),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((h,d)=>{u[d]=()=>h}),u};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Pu(),n=await this.backend.time(e);return n.wallMs=Pu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new ab;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Uu.nextTensorId=0;Uu.nextVariableId=0;function vI(e){let t=Nf(Et(e),"float32");return $.makeTensor(t,e,"float32")}function sb(){let e=Zx();if(e._tfengine==null){let t=new Kx(e);e._tfengine=new Uu(t)}return eI(e._tfengine.ENV),yI(()=>e._tfengine),e._tfengine}var $=sb();function kI(e,t){let n={a:e,b:t};return $.runKernel(Ra,n)}var Hu={};Me(Hu,{isBrowser:()=>ib,isMobile:()=>II});function SI(){return typeof navigator!="undefined"&&navigator!=null}function II(e){if(e||SI()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function ib(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ir=J();Ir.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ir.registerFlag("IS_BROWSER",()=>ib());Ir.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ir.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ir.registerFlag("PROD",()=>!1);Ir.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ir.getBool("DEBUG"));Ir.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ir.registerFlag("IS_TEST",()=>!1);Ir.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ir.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Wr(e,t){let n=e;if(rn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||rn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&ob(e,r,[]),r}function ob(e,t,n){if(n=n||[],!Array.isArray(e)&&!rn(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a=0&&(a=r),lb(r,a,t,n),e==null||!rn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Wr(e,a);!rn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?pd(e,a):ds(e,[],!0);return $.makeTensor(i,s,a)}function Gu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var ub="__op";function D(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+ub;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return Ef(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function NI(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");ln(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel(zh,a)}var Da=D({complex_:NI});function Oa(e,t,n,r){if(r==null&&(r=Rh(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!rn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Tf(t);let a=Et(t),s=Et(n);M(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!rn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?pd(e,r):ds(e,[],!0),$.makeTensor(e,t,r)}function Sr(e,t,n){let r=Wr(e,n);return Oa(e,t,r,n)}var Vf={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},yd=4;async function EI(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+yd*d.length,m=new Uint8Array(p),f=0;for(let A=0;A{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var jf=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function hb(e){return jf?Buffer.byteLength(e):new Blob([e]).size}function RI(e){if(jf)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function db(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function qu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:hb(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:hb(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function FI(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function $I(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function DI(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function CI(){let e=FI(),t=$I(),n=DI();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Tt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Tt.instance==null&&(Tt.instance=new Tt),Tt.instance}static registerSaveRouter(e){Tt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Tt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Tt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Tt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Tt.getInstance().loadRouters:Tt.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},OI=e=>Tt.registerSaveRouter(e),zI=e=>Tt.registerLoadRouter(e),PI=e=>Tt.getSaveHandlers(e),LI=(e,t)=>Tt.getLoadHandlers(e,t),Hf="tensorflowjs",Gf=1,hi="models_store",za="model_info_store";function pb(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function qf(e){let t=e.result;t.createObjectStore(hi,{keyPath:"modelPath"}),t.createObjectStore(za,{keyPath:"modelPath"})}var di=class{constructor(e){if(this.indexedDB=pb(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(Hf,Gf);a.onupgradeneeded=()=>qf(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(hi,"readonly"),o=i.objectStore(hi).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=qu(t),o=s.transaction(za,"readwrite"),l=o.objectStore(za),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(hi,"readwrite");let h=u.objectStore(hi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(za);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=m=>(s.close(),r(h.error))}},c.onerror=h=>(s.close(),r(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};di.URL_SCHEME="indexeddb://";var fb=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(di.URL_SCHEME)?WI(e.slice(di.URL_SCHEME.length)):null;Tt.registerSaveRouter(fb);Tt.registerLoadRouter(fb);function WI(e){return new di(e)}function BI(e){return e.startsWith(di.URL_SCHEME)?e.slice(di.URL_SCHEME.length):e}var VI=class{constructor(){this.indexedDB=pb()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Hf,Gf);n.onupgradeneeded=()=>qf(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(za,"readonly"),s=a.objectStore(za).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=BI(e),new Promise((t,n)=>{let r=this.indexedDB.open(Hf,Gf);r.onupgradeneeded=()=>qf(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(za,"readwrite"),i=s.objectStore(za),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=a.transaction(hi,"readwrite");let h=l.objectStore(hi).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=h=>(u(),a.close(),n(o.error))}},o.onerror=c=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},ua="/",dl="tensorflowjs_models",mb="info",jI="model_topology",UI="weight_specs",HI="weight_data",GI="model_metadata";function Ab(e){return{info:[dl,e,mb].join(ua),topology:[dl,e,jI].join(ua),weightSpecs:[dl,e,UI].join(ua),weightData:[dl,e,HI].join(ua),modelMetadata:[dl,e,GI].join(ua)}}function qI(e){let t=e.split(ua);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ua)}function XI(e){return e.startsWith(pi.URL_SCHEME)?e.slice(pi.URL_SCHEME.length):e}var pi=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Ab(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=qu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,RI(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=MI(s),t}};pi.URL_SCHEME="localstorage://";var yb=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(pi.URL_SCHEME)?KI(e.slice(pi.URL_SCHEME.length)):null;Tt.registerSaveRouter(yb);Tt.registerLoadRouter(yb);function KI(e){return new pi(e)}var ZI=class{constructor(){M(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=dl+ua,n=ua+mb;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(pl)&&(e=e.slice(0,e.indexOf(pl))),M(e.length>0,()=>"scheme must not be an empty string.");let n=Jn.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function gd(e){if(e.indexOf(pl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Jn.getSchemes().join(",")}`);return{scheme:e.split(pl)[0],path:e.split(pl)[1]}}async function gb(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Tt.getLoadHandlers(e);M(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=Tt.getSaveHandlers(t);M(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=gd(e).scheme,l=gd(e).path,c=o===gd(e).scheme,u=await a.load();n&&c&&await Jn.getManager(o).removeModel(l);let h=await i.save(u);return n&&!c&&await Jn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function YI(){let e=Jn.getSchemes(),t={};for(let n of e){let r=await Jn.getManager(n).listModels();for(let a in r){let s=n+pl+a;t[s]=r[a]}}return t}async function JI(e){let t=gd(e);return Jn.getManager(t.scheme).removeModel(t.path)}async function QI(e,t){return gb(e,t,!1)}async function eS(e,t){return gb(e,t,!0)}var tS=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new tS);try{Jn.registerManager(pi.URL_SCHEME,new ZI)}catch(e){}try{Jn.registerManager(di.URL_SCHEME,new VI)}catch(e){}}var nS={importFetch:()=>u9()},Xf,rS=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(Xf==null&&(Xf=nS.importFetch()),Xf(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new rS);function Be(e,t="float32",n){return t=t||"float32",Tf(e),new Ot(e,t,n)}function aS(e,t){let n=R(e,"x","cast");if(!jx(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(ys,r,a)}var ge=D({cast_:aS});function sS(e){let t={x:R(e,"x","clone","string_or_numeric")};return $.runKernel(Cs,t)}var Br=D({clone_:sS});function xb(e,t=!1){console.log(e.toString(t))}sb();var iS={buffer:Be,cast:ge,clone:Br,print:xb};gI(iS);var Nn={};Me(Nn,{browserFiles:()=>oS,browserHTTPRequest:()=>uS,concatenateArrayBuffers:()=>Uf,copyModel:()=>QI,decodeWeights:()=>cb,encodeWeights:()=>EI,fromMemory:()=>cS,getLoadHandlers:()=>LI,getModelArtifactsInfoForJSON:()=>qu,getSaveHandlers:()=>PI,http:()=>Zf,isHTTPScheme:()=>Kf,listModels:()=>YI,loadWeights:()=>lS,moveModel:()=>eS,registerLoadRouter:()=>zI,registerSaveRouter:()=>OI,removeModel:()=>JI,weightsLoaderFactory:()=>bb,withSaveHandler:()=>hS});var dS="model",pS=".json",fS=".weights.bin";function wb(e){return new Promise(t=>setTimeout(t)).then(e)}var fl=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(fl.URL_SCHEME)&&(e=e.slice(fl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=dS),this.modelTopologyFileName=e+pS,this.weightDataFileName=e+fS}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await wb(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await wb(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:qu(e)}}}};fl.URL_SCHEME="downloads://";var mS=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let u=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(m=>{h.push(m),d.push(null)}),u.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(m=>{let f=new FileReader;f.onload=A=>{let y=A.target.result,g=h.indexOf(m);if(d[g]=y,d.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:u,weightData:Uf(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=A=>r(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(c[m])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>db(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=db(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},yS=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(fl.URL_SCHEME)?AS(e.slice(fl.URL_SCHEME.length)):null;Tt.registerSaveRouter(yS);function AS(e="model"){return new fl(e)}function oS(e){return new mS(e)}function _b(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(c=>{let u=n+ ++a/e.length*(r-n);return t(u),c}),l);function i(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),M(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function vb(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,r=e.map(c=>n(c,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await _b(r,t.onProgress,a,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await _b(i,t.onProgress,o,l)}async function lS(e,t="",n,r){return bb(a=>vb(a,{requestInit:r}))(e,t,n)}function bb(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,m)=>{let f=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=Vf[y]*Et(A.shape),x=()=>{a[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:A,groupOffset:f,sizeBytes:g})};r!=null?r.forEach((v,b)=>{v===A.name&&(x(),i[b]=!0)}):x(),o.push(A.name),f+=g})}),!i.every(p=>p)){let p=r.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. +Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,m,f)=>(m&&p.push(f),p),[]),c=[];l.forEach(p=>{t[p].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;c.push(f)})});let u=await e(c),h={},d=0;return l.forEach(p=>{let m=t[p].paths.length,f=0;for(let x=0;x{let v=A.slice(x.groupOffset,x.groupOffset+x.sizeBytes),b=cb(v,[x.manifestEntry]);for(let w in b)h[w]=b[w]}),d+=m}),h}}var gS="application/octet-stream",xS="application/json",Yf=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:xS}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:gS}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:qu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;r!=null&&([c,u]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=bS(t),a=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(a+u+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await vb(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Uf(l)]}};Yf.URL_SCHEME_REGEX=/^https?:\/\//;function bS(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Kf(e){return e.match(Yf.URL_SCHEME_REGEX)!=null}var kb=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Kf(r)):n=Kf(e),n)return Zf(e,t)}return null};Tt.registerSaveRouter(kb);Tt.registerLoadRouter(kb);function Zf(e,t){return new Yf(e,t)}function uS(e,t){return Zf(e,t)}var Jf=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},wS=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function cS(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Jf(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Jf({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Jf({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function hS(e){return new wS(e)}var Ib={};Me(Ib,{confusionMatrix:()=>_S});function vS(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=vt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(As,i,o)}var Ve=D({matMul_:vS});function kS(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(Bs,a,s)}var ml=D({oneHot_:kS});function IS(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{M(s>=0&&s`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(ii,r,a)}var Je=D({transpose_:IS});function SS(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),M(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),M(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=ml(ge(r,"int32"),n),i=ml(ge(a,"int32"),n),o=Je(s),l=Ve(o,i);return ge(l,"int32")}var _S=D({confusionMatrix_:SS}),fi={};Me(fi,{fromPixels:()=>ES,fromPixelsAsync:()=>NS,toPixels:()=>TS});function xd(e,t,n){if(hs(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Wr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Oa(e,t,r,n)}var Al;function Sb(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState element.")}if(dd(hd,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(hd,d,p)}let[l,c]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:r||n?u=e.data:(s||a||o)&&(Al==null&&(Al=document.createElement("canvas").getContext("2d")),Al.canvas.width=l,Al.canvas.height=c,Al.drawImage(e,0,0,l,c),u=Al.getImageData(0,0,l,c).data);let h;if(t===4)h=new Int32Array(u);else{let d=l*c;h=new Int32Array(d*t);for(let p=0;p4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let c=0;c1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(u[0]=p*o,u[1]=p*o,u[2]=p*o):u[d]=p*o}let h=c*4;l[h+0]=Math.round(u[0]),l[h+1]=Math.round(u[1]),l[h+2]=Math.round(u[2]),l[h+3]=Math.round(u[3])}if(t!=null){t.width=a,t.height=r;let c=t.getContext("2d"),u=new ImageData(l,a,r);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var ES=D({fromPixels_:Sb}),Qf={};Me(Qf,{prepareAndValidate:()=>Nb});function Nb(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Et(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;hh/c),1].slice(0,s);return[l,i,c,u]}var em={};Me(em,{calculateShapes:()=>Tb,validateInput:()=>nm,validateUpdateShape:()=>tm});function tm(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;h$S,computeFlatOffset:()=>OS,computeOutShape:()=>Eb,getNormalizedAxes:()=>Rb,isSliceContinous:()=>DS,maskToAxes:()=>bd,parseSliceParams:()=>zb,sliceInfo:()=>zS,startForAxis:()=>Db,startIndicesWithElidedDims:()=>Mb,stopForAxis:()=>Ob,stopIndicesWithElidedDims:()=>Fb,stridesForAxis:()=>$b,stridesWithElidedDims:()=>Cb});function $S(e,t,n){let r=e.shape.length;M(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),M(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function bd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function Eb(e,t,n){let r=[];for(let a=0;a0){let p=t[0],m=n+1;u=Mb(i,p,m,r,e),h=Fb(o,p,m,a,e),d=Cb(s,p,m,e)}else for(let p=0;p-1)s[o]=0;else{let l=Pb(t,n,o),c=r[l];e&1<-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=Pb(t,n,o),c=r[l];e&1<0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=xu(0,i,l-1),i}function Ob(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=xu(0,i,l):i=xu(-1,i,l-1),i}function DS(e,t,n){let r=n.length;for(let a=0;a1){r=a;break}for(let a=r+1;a0||n[a]!==e[a])return!1;return!0}function OS(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{M(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.lengthi>=0?i:(M(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function zS(e,t,n,r,a,s,i,o,l){let c=t.slice(),u=n.slice(),h=r;r==null&&(h=new Array(c.length));let d=bd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-c.length,m=bd(o),f=e.slice();m.forEach(w=>{c[w]=0,u[w]=1,f.splice(w,0,1)});let{begin:A,end:y,strides:g}=Rb(f,d,p,c,u,h,a,s,i);c=A,u=y,h=g;let x=bd(l);x.forEach(w=>{u[w]=c[w]+1,h[w]=1});let v=Eb(c,u,h),b=v.filter((w,k)=>x.indexOf(k)===-1);return{nonStrided:h.every(w=>w===1),$begin:c,$end:u,$strides:h,size:v,newShape:f,outShape:b}}var re={};Me(re,{Serializable:()=>Wb,SerializationMap:()=>mi,registerClass:()=>Pa});var Wb=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},mi=class{constructor(){this.classNameMap={}}static getMap(){return mi.instance==null&&(mi.instance=new mi),mi.instance}static register(e){mi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Pa(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),mi.register(e)}var Bb={};Me(Bb,{TEST_EPSILON_FLOAT16:()=>Vb,encodeStrings:()=>jb,expectArrayBuffersEqual:()=>jS,expectArraysClose:()=>PS,expectArraysEqual:()=>WS,expectNumbersClose:()=>BS,expectPromiseToFail:()=>LS,expectValuesInRange:()=>VS,testEpsilon:()=>rm});var US=.001,Vb=.1;function PS(e,t,n){return n==null&&(n=rm()),am(e,t,(r,a)=>sm(r,a,n))}function rm(){return $.backend.floatPrecision()===32?US:Vb}function am(e,t,n){let r=!0;if((rn(e)||rn(t))&&(r=!1),rn(e)&&rn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Wr(e),o=Wr(t);if(!la(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=rn(e)?e:ds(e),s=rn(t)?t:ds(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}. Actual: ${a}. Expected: ${s}.`);for(let i=0;it.fail(),()=>t())}function KS(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ta(e)||Ta(e[0])||Ta(t)||Ta(t[0])?im(e,n,(r,a)=>r==a):im(e,t,(r,a)=>om(r,a,0))}function ZS(e,t,n){if(n==null&&(n=sm()),!om(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function om(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function YS(e,t,n){for(let r=0;rn)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function JS(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function Xw(e){for(let t=0;tt.dispose())}function Ht(e){return $.keep(e)}function sN(e){return $.time(e)}function iN(e){return $.setBackend(e)}function oN(){return $.ready()}function lN(){return $.backendName}function uN(e){$.removeBackend(e)}function um(e){return $.findBackend(e)}function cN(e){return $.findBackendFactory(e)}function yl(e,t,n=1){return $.registerBackend(e,t,n)}function Kw(){return $.backend}function hN(e,t){J().setPlatform(e,t)}function dN(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ca,a)}var se=D({add_:dN});function pN(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ss,a)}var vd=D({floorDiv_:pN});function fN(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=vt(n,r),n.dtype==="int32"&&r.dtype==="int32")return vd(n,r);let a={a:n,b:r},s={};return $.runKernel(vs,a,s)}var Ae=D({div_:fN});function mN(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ls,a)}var P=D({mul_:mN});function AN(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(Su,n)}else{let n={x:t};return $.runKernel(lo,n)}}var zt=D({abs_:AN});function yN(e){let t={x:R(e,"x","acos")};return $.runKernel(uo,t)}var cm=D({acos_:yN});function gN(e){let t={x:R(e,"x","acosh")};return $.runKernel(co,t)}var hm=D({acosh_:gN});function xN(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!oa(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(ds,r)}var Pa=D({addN_:xN});function wN(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(ho,r,a)}var kd=D({all_:wN});function bN(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(po,r,a)}var Zu=D({any_:bN});function _N(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return $.runKernel(ps,n,r)}var mi=D({argMax_:_N});function vN(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return $.runKernel(vu,n,r)}var dm=D({argMin_:vN});function kN(e){let t={x:R(e,"x","asin")};return $.runKernel(fo,t)}var pm=D({asin_:kN});function IN(e){let t={x:R(e,"x","asinh")};return $.runKernel(mo,t)}var fm=D({asinh_:IN});function SN(e){let t={x:R(e,"x","atan")};return $.runKernel(Ao,t)}var mm=D({atan_:SN});function NN(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(go,a)}var Am=D({atan2_:NN});function TN(e){let t={x:R(e,"x","atanh")};return $.runKernel(yo,t)}var ym=D({atanh_:TN});function EN(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=Zw(a);return Yu(e,o,n,s,r,null,null,l)}function Yw(e,t,n,r,a,s,i="channelsLast"){let[o,l]=Id(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Yu(e,c,n,r,a,s,!1,i)}function CN(e,t,n,r,a,s,i="NDHWC"){let[o,l,c]=gm(t),u,h;if(i==="NDHWC")h="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Jw(e,u,n,r,a,!1,h,s)}function Yu(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,c,u,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,h]=e;else if(o==="channelsFirst")[l,h,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,f]=t,[m,A]=Id(n),[y,g]=Id(r),x=gl(d,y),v=gl(p,g),{padInfo:w,outHeight:b,outWidth:k}=RN(a,c,u,m,A,x,v,s,o),N=i?f*h:f,C;return o==="channelsFirst"?C=[l,N,b,k]:o==="channelsLast"&&(C=[l,b,k,N]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:h,outHeight:b,outWidth:k,outChannels:N,padInfo:w,strideHeight:m,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:g,inShape:e,outShape:C,filterShape:t}}function Jw(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,c,u,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,h,d]=e;else if(i==="channelsFirst")[l,d,c,u,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,f,m,,A]=t,[y,g,x]=gm(n),[v,w,b]=gm(r),k=gl(p,v),N=gl(f,w),C=gl(m,b),{padInfo:F,outDepth:O,outHeight:L,outWidth:V}=MN(a,c,u,h,y,g,x,k,N,C,o),j=s?A*d:A,U;return i==="channelsFirst"?U=[l,j,O,L,V]:i==="channelsLast"&&(U=[l,O,L,V,j]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:h,inChannels:d,outDepth:O,outHeight:L,outWidth:V,outChannels:j,padInfo:F,strideDepth:y,strideHeight:g,strideWidth:x,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:k,effectiveFilterHeight:N,effectiveFilterWidth:C,dilationDepth:v,dilationHeight:w,dilationWidth:b,inShape:e,outShape:U,filterShape:t}}function FN(e,t,n,r,a){r==null&&(r=xm(e,t,n));let s=e[0],i=e[1],o=Ai((s-t+2*r)/n+1,a),l=Ai((i-t+2*r)/n+1,a);return[o,l]}function $N(e,t,n,r,a,s){a==null&&(a=xm(e,t,r));let i=e[0],o=e[1],l=e[2],c=Ai((i-t+2*a)/r+1,s),u=Ai((o-t+2*a)/r+1,s),h=Ai((l-t+2*a)/r+1,s);return[c,u,h,n]}function xm(e,t,n,r=1){let a=gl(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function Id(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function gm(e){return typeof e=="number"?[e,e,e]:e}function gl(e,t){return t<=1?e:e+(e-1)*(t-1)}function RN(e,t,n,r,a,s,i,o,l){let c,u,h;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=FN([t,n],s,r,e,o);u=d[0],h=d[1]}else if(e==="same"){u=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(u-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),f=Math.floor(d/2),m=d-f,A=Math.floor(p/2),y=p-A;c={top:f,bottom:m,left:A,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:p,left:f,right:m,type:d===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=Ai((t-s+d+p)/r+1,o),h=Ai((n-i+f+m)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:h}}function MN(e,t,n,r,a,s,i,o,l,c,u){let h,d,p,f;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=$N([t,n,r,1],o,1,a,e,u);d=m[0],p=m[1],f=m[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),f=Math.ceil(r/i);let m=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(f-1)*i+c-r,g=Math.floor(m/2),x=m-g,v=Math.floor(A/2),w=A-v,b=Math.floor(y/2),k=y-b;h={top:v,bottom:w,left:b,right:k,front:g,back:x,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),f=Math.ceil((r-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:f}}function Ai(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function La(e){let[t,n,r]=Id(e);return t===1&&n===1&&r===1}function Br(e,t){return La(e)||La(t)}function Zw(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function DN(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(Ko,n,r)}var H=D({reshape_:DN});function ON(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;M(Br(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&M(Ut(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(fs,c,u);return h=ge(h,s.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Ju=D({avgPool_:ON});function zN(e,t,n,r,a,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Ut(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(ku,c,u);return h=ge(h,o.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var wm=D({avgPool3d_:zN});function PN(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=Xu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor - with dtype ${s.dtype}. `)}),n.length===1)return Wr(n[0]);let r=n,a={axis:t};return $.runKernel(xo,r,a)}var rt=D({concat_:PN});function LN(e){let t={x:R(e,"x","sigmoid")};return $.runKernel(Ys,t)}var Tn=D({sigmoid_:LN});function WN(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(Qo,a,s)}var Re=D({slice_:WN});function BN(e){let t={x:R(e,"x","tanh")};return $.runKernel(ai,t)}var yi=D({tanh_:BN});function VN(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),c=R(r,"data","basicLSTMCell"),u=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),d=rt([c,h],1),p=Ve(d,o),f=se(p,l),m=f.shape[0],A=f.shape[1]/4,y=[m,A],g=Re(f,[0,0],y),x=Re(f,[0,A],y),v=Re(f,[0,A*2],y),w=Re(f,[0,A*3],y),b=se(P(Tn(g),yi(x)),P(u,Tn(se(i,v)))),k=P(yi(b),Tn(w));return[b,k]}var jN=D({basicLSTMCell_:VN});function UN(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);M(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(Iu,s,i)}var Qu=D({batchToSpaceND_:UN});function HN(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function GN(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;r!=null&&(u=R(r,"offset","batchNorm")),M(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:HN(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(Ns,h,d);return H(p,i.shape)}var gi=D({batchNorm_:GN});function qN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),M(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),gi(i,o,l,u,c,s)}var Qw=D({batchNorm2d_:qN});function XN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),M(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),gi(i,o,l,u,c,s)}var eb=D({batchNorm3d_:XN});function KN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),M(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),gi(i,o,l,u,c,s)}var tb=D({batchNorm4d_:KN});function ZN(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");M(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel(zh,s,i)}var nb=D({bincount_:ZN});function YN(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let l=n.shape.slice();for(;l.length=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Wr(n);let i={x:n},o={reps:s};return $.runKernel(Ma,i,o)}var xl=D({broadcastTo_:YN});function JN(e){let t={x:R(e,"x","ceil")};return $.runKernel(ys,t)}var bm=D({ceil_:JN});function QN(e,t,n){let r=R(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(Ra,a,s)}var En=D({clipByValue_:QN});function eT(e){return rt(e,0)}var rb=D({concat1d_:eT});function tT(e,t){return rt(e,t)}var wl=D({concat2d_:tT});function nT(e,t){return rt(e,t)}var ab=D({concat3d_:nT});function rT(e,t){return rt(e,t)}var sb=D({concat4d_:rT});function aT(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&M(Ut(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?c.shape[3]:c.shape[1];M(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),M(Br(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},f=$.runKernel(gs,d,p);return u?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var ca=D({conv2d_:aT});function sT(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1]])),M(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&M(Ut(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(Br(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),M(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=H(c,[c.shape[0],1,c.shape[1],c.shape[2]]),p=ca(d,h,[1,n],r,"NHWC",[1,s],i);return u?H(p,[p.shape[2],p.shape[3]]):H(p,[p.shape[0],p.shape[2],p.shape[3]])}var Sd=D({conv1d_:sT});function iT(e,t,n,r,a,s="NHWC",i){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),M(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];M(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),M(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&M(Ut(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},f=$.runKernel(xs,d,p);return c?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var _m=D({conv2DBackpropInput_:iT});function oT(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return _m(n,i,o,r,a,"NHWC",s)}var Nd=D({conv2dTranspose_:oT});function lT(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),M(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),M(Br(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let u={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(Nu,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var vm=D({conv3d_:lT});function uT(e,t,n,r,a){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];M(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),M(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel(Bh,u,h);return o?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var ib=D({conv3DBackpropInput_:uT});function cT(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return ib(n,s,i,r,a)}var ob=D({conv3dTranspose_:cT});function hT(e){let t={x:R(e,"x","cos")};return $.runKernel(ws,t)}var ec=D({cos_:hT});function dT(e){let t={x:R(e,"x","cosh")};return $.runKernel(wo,t)}var Td=D({cosh_:dT});function pT(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(bs,a,s)}var Ed=D({cumsum_:pT});function fT(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");M(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),M(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(Vh,i,o)}var lb=D({denseBincount_:fT});function mT(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying +Expected: ${s}.`)}}function LS(e,t){e().then(()=>t.fail(),()=>t())}function WS(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ea(e)||Ea(e[0])||Ea(t)||Ea(t[0])?am(e,n,(r,a)=>r==a):am(e,t,(r,a)=>sm(r,a,0))}function BS(e,t,n){if(n==null&&(n=rm()),!sm(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function sm(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function VS(e,t,n){for(let r=0;rn)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function jS(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function jb(e){for(let t=0;tt.dispose())}function Ht(e){return $.keep(e)}function ZS(e){return $.time(e)}function YS(e){return $.setBackend(e)}function JS(){return $.ready()}function QS(){return $.backendName}function eN(e){$.removeBackend(e)}function om(e){return $.findBackend(e)}function tN(e){return $.findBackendFactory(e)}function yl(e,t,n=1){return $.registerBackend(e,t,n)}function Ub(){return $.backend}function nN(e,t){J().setPlatform(e,t)}function rN(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ra,a)}var se=D({add_:rN});function aN(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ns,a)}var _d=D({floorDiv_:aN});function sN(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=vt(n,r),n.dtype==="int32"&&r.dtype==="int32")return _d(n,r);let a={a:n,b:r},s={};return $.runKernel(ks,a,s)}var Ae=D({div_:sN});function iN(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ws,a)}var z=D({mul_:iN});function oN(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(ku,n)}else{let n={x:t};return $.runKernel(lo,n)}}var zt=D({abs_:oN});function lN(e){let t={x:R(e,"x","acos")};return $.runKernel(uo,t)}var lm=D({acos_:lN});function uN(e){let t={x:R(e,"x","acosh")};return $.runKernel(co,t)}var um=D({acosh_:uN});function cN(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!la(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(ps,r)}var La=D({addN_:cN});function hN(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(ho,r,a)}var vd=D({all_:hN});function dN(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(po,r,a)}var Xu=D({any_:dN});function pN(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return $.runKernel(fs,n,r)}var Ai=D({argMax_:pN});function fN(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return $.runKernel(wu,n,r)}var cm=D({argMin_:fN});function mN(e){let t={x:R(e,"x","asin")};return $.runKernel(fo,t)}var hm=D({asin_:mN});function AN(e){let t={x:R(e,"x","asinh")};return $.runKernel(mo,t)}var dm=D({asinh_:AN});function yN(e){let t={x:R(e,"x","atan")};return $.runKernel(Ao,t)}var pm=D({atan_:yN});function gN(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(go,a)}var fm=D({atan2_:gN});function xN(e){let t={x:R(e,"x","atanh")};return $.runKernel(yo,t)}var mm=D({atanh_:xN});function bN(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=Hb(a);return Ku(e,o,n,s,r,null,null,l)}function Gb(e,t,n,r,a,s,i="channelsLast"){let[o,l]=kd(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Ku(e,c,n,r,a,s,!1,i)}function wN(e,t,n,r,a,s,i="NDHWC"){let[o,l,c]=Am(t),u,h;if(i==="NDHWC")h="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return qb(e,u,n,r,a,!1,h,s)}function Ku(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,c,u,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,h]=e;else if(o==="channelsFirst")[l,h,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,m]=t,[f,A]=kd(n),[y,g]=kd(r),x=gl(d,y),v=gl(p,g),{padInfo:b,outHeight:w,outWidth:k}=_N(a,c,u,f,A,x,v,s,o),N=i?m*h:m,C;return o==="channelsFirst"?C=[l,N,w,k]:o==="channelsLast"&&(C=[l,w,k,N]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:h,outHeight:w,outWidth:k,outChannels:N,padInfo:b,strideHeight:f,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:g,inShape:e,outShape:C,filterShape:t}}function qb(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,c,u,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,h,d]=e;else if(i==="channelsFirst")[l,d,c,u,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,m,f,,A]=t,[y,g,x]=Am(n),[v,b,w]=Am(r),k=gl(p,v),N=gl(m,b),C=gl(f,w),{padInfo:F,outDepth:O,outHeight:L,outWidth:V}=vN(a,c,u,h,y,g,x,k,N,C,o),j=s?A*d:A,U;return i==="channelsFirst"?U=[l,j,O,L,V]:i==="channelsLast"&&(U=[l,O,L,V,j]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:h,inChannels:d,outDepth:O,outHeight:L,outWidth:V,outChannels:j,padInfo:F,strideDepth:y,strideHeight:g,strideWidth:x,filterDepth:p,filterHeight:m,filterWidth:f,effectiveFilterDepth:k,effectiveFilterHeight:N,effectiveFilterWidth:C,dilationDepth:v,dilationHeight:b,dilationWidth:w,inShape:e,outShape:U,filterShape:t}}function kN(e,t,n,r,a){r==null&&(r=ym(e,t,n));let s=e[0],i=e[1],o=yi((s-t+2*r)/n+1,a),l=yi((i-t+2*r)/n+1,a);return[o,l]}function IN(e,t,n,r,a,s){a==null&&(a=ym(e,t,r));let i=e[0],o=e[1],l=e[2],c=yi((i-t+2*a)/r+1,s),u=yi((o-t+2*a)/r+1,s),h=yi((l-t+2*a)/r+1,s);return[c,u,h,n]}function ym(e,t,n,r=1){let a=gl(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function kd(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Am(e){return typeof e=="number"?[e,e,e]:e}function gl(e,t){return t<=1?e:e+(e-1)*(t-1)}function _N(e,t,n,r,a,s,i,o,l){let c,u,h;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=kN([t,n],s,r,e,o);u=d[0],h=d[1]}else if(e==="same"){u=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(u-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),m=Math.floor(d/2),f=d-m,A=Math.floor(p/2),y=p-A;c={top:m,bottom:f,left:A,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:p,left:m,right:f,type:d===0&&p===0&&m===0&&f===0?"VALID":"EXPLICIT"},u=yi((t-s+d+p)/r+1,o),h=yi((n-i+m+f)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:h}}function vN(e,t,n,r,a,s,i,o,l,c,u){let h,d,p,m;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=IN([t,n,r,1],o,1,a,e,u);d=f[0],p=f[1],m=f[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),m=Math.ceil(r/i);let f=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(m-1)*i+c-r,g=Math.floor(f/2),x=f-g,v=Math.floor(A/2),b=A-v,w=Math.floor(y/2),k=y-w;h={top:v,bottom:b,left:w,right:k,front:g,back:x,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),m=Math.ceil((r-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:m}}function yi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Wa(e){let[t,n,r]=kd(e);return t===1&&n===1&&r===1}function Vr(e,t){return Wa(e)||Wa(t)}function Hb(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function SN(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(Ko,n,r)}var H=D({reshape_:SN});function NN(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;M(Vr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&M(Ut(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(ms,c,u);return h=ge(h,s.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Zu=D({avgPool_:NN});function TN(e,t,n,r,a,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Ut(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(_u,c,u);return h=ge(h,o.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var gm=D({avgPool3d_:TN});function EN(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=Gu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor + with dtype ${s.dtype}. `)}),n.length===1)return Br(n[0]);let r=n,a={axis:t};return $.runKernel(xo,r,a)}var ot=D({concat_:EN});function CN(e){let t={x:R(e,"x","sigmoid")};return $.runKernel(Js,t)}var Tn=D({sigmoid_:CN});function RN(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(Qo,a,s)}var Re=D({slice_:RN});function MN(e){let t={x:R(e,"x","tanh")};return $.runKernel(si,t)}var gi=D({tanh_:MN});function FN(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),c=R(r,"data","basicLSTMCell"),u=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),d=ot([c,h],1),p=Ve(d,o),m=se(p,l),f=m.shape[0],A=m.shape[1]/4,y=[f,A],g=Re(m,[0,0],y),x=Re(m,[0,A],y),v=Re(m,[0,A*2],y),b=Re(m,[0,A*3],y),w=se(z(Tn(g),gi(x)),z(u,Tn(se(i,v)))),k=z(gi(w),Tn(b));return[w,k]}var $N=D({basicLSTMCell_:FN});function DN(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);M(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(vu,s,i)}var Yu=D({batchToSpaceND_:DN});function ON(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function zN(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;r!=null&&(u=R(r,"offset","batchNorm")),M(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:ON(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(Ts,h,d);return H(p,i.shape)}var xi=D({batchNorm_:zN});function PN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),M(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),xi(i,o,l,u,c,s)}var Xb=D({batchNorm2d_:PN});function LN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),M(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),xi(i,o,l,u,c,s)}var Kb=D({batchNorm3d_:LN});function WN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),M(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),xi(i,o,l,u,c,s)}var Zb=D({batchNorm4d_:WN});function BN(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");M(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel(Oh,s,i)}var Yb=D({bincount_:BN});function VN(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let l=n.shape.slice();for(;l.length=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Br(n);let i={x:n},o={reps:s};return $.runKernel(Fa,i,o)}var xl=D({broadcastTo_:VN});function jN(e){let t={x:R(e,"x","ceil")};return $.runKernel(gs,t)}var xm=D({ceil_:jN});function UN(e,t,n){let r=R(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(Ma,a,s)}var En=D({clipByValue_:UN});function HN(e){return ot(e,0)}var Jb=D({concat1d_:HN});function GN(e,t){return ot(e,t)}var bl=D({concat2d_:GN});function qN(e,t){return ot(e,t)}var Qb=D({concat3d_:qN});function XN(e,t){return ot(e,t)}var ew=D({concat4d_:XN});function KN(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&M(Ut(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?c.shape[3]:c.shape[1];M(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),M(Vr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},m=$.runKernel(xs,d,p);return u?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var ha=D({conv2d_:KN});function ZN(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1]])),M(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&M(Ut(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(Vr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),M(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=H(c,[c.shape[0],1,c.shape[1],c.shape[2]]),p=ha(d,h,[1,n],r,"NHWC",[1,s],i);return u?H(p,[p.shape[2],p.shape[3]]):H(p,[p.shape[0],p.shape[2],p.shape[3]])}var Id=D({conv1d_:ZN});function YN(e,t,n,r,a,s="NHWC",i){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),M(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];M(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),M(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&M(Ut(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},m=$.runKernel(bs,d,p);return c?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var bm=D({conv2DBackpropInput_:YN});function JN(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return bm(n,i,o,r,a,"NHWC",s)}var Sd=D({conv2dTranspose_:JN});function QN(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),M(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),M(Vr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let u={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(Iu,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var wm=D({conv3d_:QN});function eT(e,t,n,r,a){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];M(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),M(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel(Wh,u,h);return o?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var tw=D({conv3DBackpropInput_:eT});function tT(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return tw(n,s,i,r,a)}var nw=D({conv3dTranspose_:tT});function nT(e){let t={x:R(e,"x","cos")};return $.runKernel(ws,t)}var Ju=D({cos_:nT});function rT(e){let t={x:R(e,"x","cosh")};return $.runKernel(bo,t)}var Nd=D({cosh_:rT});function aT(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(_s,a,s)}var Td=D({cumsum_:aT});function sT(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");M(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),M(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(Bh,i,o)}var rw=D({denseBincount_:sT});function iT(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${a} and ${t} for depthToSpace with input shape ${r.shape}`),M(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${s} and ${t} for depthToSpace with input shape - ${r.shape}`),M(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(_o,o,l)}var km=D({depthToSpace_:mT});function AT(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&M(Ut(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:c,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(_s,h,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var bl=D({depthwiseConv2d_:AT});function yT(e){let t={x:R(e,"x","diag")};return $.runKernel(Hh,t)}var gT=D({diag_:yT});function xT(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");M(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),M(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),M(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(Tu,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Im=D({dilation2d_:xT});function wT(e,t){let n=e.length,r=[];for(let a=0;a1&&i===1&&r.unshift(s)}return r}function Pt(e,t){let n=[];for(let r=0;r1)&&n.unshift(s)}return n}function ft(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(M(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=H(n,[1,-1]),o=H(r,[-1,1]),l=Ve(i,o);return H(l,[])}else if(n.rank===1&&r.rank===2){let i=H(n,[1,-1]),o=H(r,[r.shape[0],r.shape[1]]),l=Ve(i,o);return H(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=H(r,[-1,1]),o=Ve(n,i);return H(o,[o.size])}else{let i=H(r,[r.shape[0],r.shape[1]]);return Ve(n,i)}}var ub=D({dot_:IT});function ST(e,...t){let n=t.map((a,s)=>R(a,`tensors${s}`,"einsum")),r={equation:e};return $.runKernel(Xh,n,r)}var cb=D({einsum_:ST});function NT(e){let t={x:R(e,"x","elu")};return $.runKernel(vo,t)}var _l=D({elu_:NT});function TT(e){let t=R(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ge(t,"float32"));let n={x:t};return $.runKernel(ko,n)}var Nm=D({erf_:TT});function ET(e){let t={x:R(e,"x","exp")};return $.runKernel(ks,t)}var Qn=D({exp_:ET});function CT(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(So,r,a)}var Qt=D({expandDims_:CT});function RT(e){let t={x:R(e,"x","expm1")};return $.runKernel(No,t)}var Tm=D({expm1_:RT});function MT(e,t){let n=R(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel(Ma,r,a)}var Ba=D({tile_:MT});function FT(e,t,n,r="float32"){t==null&&(t=e);let a=Be([e,t],r),s=e<=t?e:t;for(let o=0;o`Error in localResponseNormalization: x must be rank 3 or 4 but got - rank ${s.rank}.`),M(Ut(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:r,beta:a},u=$.runKernel(Mu,l,c);return o?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Rm=D({localResponseNormalization_:HT});function GT(e){let t={x:R(e,"x","log")};return $.runKernel(Rs,t)}var zn=D({log_:GT});function qT(e){let t={x:R(e,"x","log1p")};return $.runKernel(zo,t)}var Md=D({log1p_:qT});function XT(e){return M(Ea(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&ln(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Fd(i),i[0]})}}function KT(e){return M(Ea(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Xu(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&ln(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Fd(i),i})}}function ZT(e){return M(Ea(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof Pe,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof Pe,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return Fd(r),{grad:r[0],value:a}}}function YT(e){return M(Ea(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(a=>a instanceof Pe),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof Pe,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&ln(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Fd(r.grads),r}}function fb(e,t){M(Ea(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(c=>c instanceof Hu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in $.registeredVariables)t.push($.registeredVariables[c])}let r=n?t.filter(c=>!c.trainable):null,a=t.length;t=t.filter(c=>c.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);M(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),r!=null&&r.forEach(c=>l[c.name]=null),{value:i,grads:l}}function Vr(e){return $.customGrad(e)}function Fd(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that - the f you passed encloses all operations that lead from x to y.`)}function JT(e){let t={x:R(e,"x","neg")};return $.runKernel(Wo,t)}var kt=D({neg_:JT});function QT(e){let t={x:R(e,"x","softplus")};return $.runKernel(nl,t)}var bi=D({softplus_:QT});function eE(e){let t=R(e,"x","logSigmoid");return Vr(n=>({value:kt(bi(kt(n))),gradFunc:r=>P(r,Tn(kt(n)))}))(t)}var mb=D({logSigmoid_:eE});function tE(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel(Ms,r,a)}var Rn=D({max_:tE});function nE(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(ni,a)}var ye=D({sub_:nE});function rE(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=ge(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(Qs,a,s)}var Te=D({sum_:rE});function aE(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Vr((r,a)=>{let s=!0,i=Rn(r,t,!0),o=ye(r,i),l=ye(ge(o,"float32"),zn(Te(Qn(o),t,s)));return a([l]),{value:l,gradFunc:(c,u)=>{let[h]=u,d=!0,p=Qn(h);return ye(c,P(Te(c,t,d),p))}}})(n)}var $d=D({logSoftmax_:aE});function Mm(e,t){for(let n=0;ne[s]);return[n,a]}function _i(e,t){let n=t.map(r=>1);return Ab(e,n,t)}function sE(e,t,n){M(Mm(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function gb(e,t){if(Mm(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function Fm(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function iE(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),M(Br(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&M(Ut(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel($s,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var ac=D({maxPool_:dE});function pE(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Ut(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(Fu,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Dm=D({maxPool3d_:pE});function fE(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(rd,s,i);return{result:o[0],indexes:o[1]}}var wb=D({maxPoolWithArgmax_:fE});function mE(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=vt(n,r),n.dtype==="bool"&&(n=ge(n,"int32"),r=ge(r,"int32")),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Fs,a)}var jr=D({maximum_:mE});function AE(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(Ds,r,a)}var It=D({mean_:AE});function Rt(e,t="float32"){if(t==="complex64"){let r=Rt(e,"float32"),a=Rt(e,"float32");return $a(r,a)}let n=$h(Et(e),t);return $.makeTensor(n,e,t)}function Pn(e,t="float32"){if(t==="complex64"){let r=Pn(e,"float32"),a=Rt(e,"float32");return $a(r,a)}let n=Ef(Et(e),t);return $.makeTensor(n,e,t)}function yE(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let r=R(e,"x","meshgrid",e instanceof Pe?e.dtype:"float32");if(t===void 0)return[r];let a=R(t,"y","meshgrid",t instanceof Pe?t.dtype:"float32"),s=Et(r.shape),i=Et(a.shape);return n==="xy"?(r=H(r,[1,-1]),a=H(a,[-1,1]),[Ve(Pn([i,1],r.dtype),r),Ve(a,Pn([1,s],a.dtype))]):(r=H(r,[-1,1]),a=H(a,[1,-1]),[Ve(r,Pn([1,i],r.dtype)),Ve(Pn([s,1],a.dtype),a)])}function gE(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(Os,r,a)}var kl=D({min_:gE});function xE(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=vt(n,r),n.dtype==="bool"&&(n=ge(n,"int32"),r=ge(r,"int32")),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(zs,a)}var Il=D({minimum_:xE});function wE(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o"Invalid number of paddings. Must be length of 2 each."),M(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel(Ps,i,s)}var Om=D({mirrorPad_:wE});function bE(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Lo,a)}var zm=D({mod_:bE});function _E(e){let t=R(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var ot=D({square_:_E});function vE(e,t=null,n=!1){e=R(e,"x","moments");let r=hr(t,e.shape),a=It(e,r,n),s=a.shape;n||(s=_i(a.shape,r));let i=ot(ye(ge(e,"float32"),H(a,s))),o=It(i,r,n);return{mean:a,variance:o}}var Od=D({moments_:vE});function kE(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=Xu(n,"c","multiRNNCell"),i=Xu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},c=$.runKernel(ad,o,l);return i===1?H(c,[c.size]):c}var bb=D({multinomial_:SE});function NE(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Bo,a)}var vi=D({notEqual_:NE});function TE(e){let t={x:R(e,"x","onesLike")};return $.runKernel(Ho,t)}var Ln=D({onesLike_:TE});function EE(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");M(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=H(n,[-1,1]),s=H(r,[1,-1]);return Ve(a,s)}var CE=D({outerProduct_:EE});function RE(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(Bs,s,a)}var ha=D({pad_:RE});function ME(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ha(e,[t],n)}var FE=D({pad1d_:ME});function $E(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ha(e,t,n)}var DE=D({pad2d_:$E});function OE(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ha(e,t,n)}var zE=D({pad3d_:OE});function PE(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ha(e,t,n)}var LE=D({pad4d_:PE});function WE(e,t,n){let r=R(e,"x","spaceToBatchND");M(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel(Ou,a,s)}var sc=D({spaceToBatchND_:WE});function jE(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(Br(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let c=Yw(o.shape,t,s,a,r),u=[c.dilationHeight,c.dilationWidth],h;r==="same"?h=VE([c.filterHeight,c.filterWidth],u):h=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[p,f]=BE([c.inHeight,c.inWidth],u,h),m=d?r:"valid",A=d?o:sc(o,u,p),y=(n==="avg"?()=>Ju(A,t,s,m):()=>ac(A,t,s,m))(),g=d?y:Qu(y,u,f);return l?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function BE(e,t,n){let r=n.map(u=>u[0]),a=n.map(u=>u[1]),s=e.concat(r,a),i=t.map((u,h)=>(u-s[h]%u)%u),o=a.map((u,h)=>u+i[h]),l=t.map((u,h)=>[r[h],o[h]]),c=t.map((u,h)=>[0,i[h]]);return[l,c]}function VE(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var _b=D({pool_:jE});function UE(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Vs,a)}var da=D({pow_:UE});function HE(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel(js,a)}var ic=D({prelu_:HE});function GE(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=ge(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(qo,a,s)}var zd=D({prod_:GE});function qE(e,t,n){let r=Et(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},KE=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Pm.alea(a.toString()),this.randn=new Lm(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),athis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Pm.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function YE(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new KE(t,n,r,a),i=Be(e,r);for(let o=0;o`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Wn(t,0)}var oC=D({reverse1d_:iC});function lC(e,t){let n=R(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Wn(n,t)}var uC=D({reverse2d_:lC});function cC(e,t){let n=R(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Wn(n,t)}var hC=D({reverse3d_:cC});function dC(e,t){let n=R(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Wn(n,t)}var pC=D({reverse4d_:dC});function fC(e){let t={x:R(e,"x","round")};return $.runKernel(Xs,t)}var Bm=D({round_:fC});function mC(e){let t={x:R(e,"x","rsqrt")};return $.runKernel(Ks,t)}var Wd=D({rsqrt_:mC});function xe(e,t){if((rn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&rn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Da(e,[],[],t)}function AC(e){let t={x:R(e,"x","selu")};return $.runKernel(Jo,t)}var Bd=D({selu_:AC});function yC(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),c=R(n,"pointwiseFilter","separableConv2d"),u=o,h=!1;if(o.rank===3&&(h=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),M(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],p=l.shape[3];M(c.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${c.shape[2]}.`);let f=bl(u,l,r,a,i,s),m=ca(f,c,1,"valid",i);return h?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Vm=D({separableConv2d_:yC});async function gC(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");M(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let u=0;u`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Re(r,[t],[n])}var Ud=D({slice1d_:_C});function vC(e,t,n){let r=R(e,"x","slice2d");return M(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var Um=D({slice2d_:vC});function kC(e,t,n){let r=R(e,"x","slice3d");return M(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var Hd=D({slice3d_:kC});function IC(e,t,n){let r=R(e,"x","slice4d");return M(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var lc=D({slice4d_:IC});function SC(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(ei,r,a)}var uc=D({softmax_:SC});function NC(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Zh,t)}var cc=D({fft_:NC});function TC(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Yh,t)}var Nl=D({ifft_:TC});function EC(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=H(e,[n,t]);r=Nl(a)}else{let a=[n,2*(t-1)],s=H(oc(e),[n,t]),i=H(Cd(e),[n,t]),o=Wn(Re(s,[0,1],[n,t-2]),1),l=P(Wn(Re(i,[0,1],[n,t-2]),1),xe(-1)),c=rt([s,o],1),u=rt([i,l],1),h=H($a(c,u),[a[0],a[1]]);r=Nl(h)}if(r=oc(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=H(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var Gd=D({irfft_:EC});function CC(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel(rl,r,a)}var Lt=D({split_:CC});function RC(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t0),m=e.shape.map(A=>A);m[e.shape.length-1]=t,a=Re(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,a=rt([e,Rt(f)],e.shape.length-1),n=t}else a=e;let s=He(a),i=H($a(a,s),[r,n]),o=cc(i),l=Math.floor(n/2)+1,c=oc(o),u=Cd(o),h=Lt(c,[l,n-l],c.shape.length-1),d=Lt(u,[l,n-l],u.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,H($a(h[0],d[0]),p)}var hc=D({rfft_:RC});function MC(e){let t={x:R(e,"x","sqrt")};return $.runKernel(Js,t)}var en=D({sqrt_:MC});function FC(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(ti,a,s)}var qd=D({squaredDifference_:FC});function $C(e,t){let n=R(e,"x","squeeze");return H(n,Ux(n.shape,t).newShape)}var ja=D({squeeze_:$C});function DC(e,t=0){let n=Xu(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel(Go,r,a)}var cn=D({stack_:DC});function OC(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return $.runKernel(Fa,n,r)}var Tl=D({step_:OC});function zC(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let c={x:R(e,"x","stridedSlice")},u={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel(al,c,u)}var Hm=D({stridedSlice_:zC});function PC(e){let t={x:R(e,"x","tan")};return $.runKernel(ri,t)}var Gm=D({tan_:PC});function sn(e,t){cs(e);let n=Lr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Da(e,null,n,t)}function er(e,t,n){if(cs(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Lr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Da(e,t,r,n)}function LC(e,t,n){if(cs(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Lr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Da(e,t,r,n)}function WC(e,t,n){if(cs(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Lr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Da(e,t,r,n)}function BC(e,t,n){if(cs(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Lr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,Da(e,t,r,n)}function VC(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(sl,s,i);return{values:o,indices:l}}var qm=D({topk_:VC});function jC(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Lm(t,n,r,!0,a),i=Be(e,r);for(let o=0;o0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(hd,r,a);return{values:s,indices:i}}var Kd=D({unique_:UC});function HC(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");M(Ut(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel(Pu,s,i)}var Xm=D({unsortedSegmentSum_:HC});function GC(e,t=0){let n=R(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(il,r,a)}var mr=D({unstack_:GC});function Ib(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function Sb(e,t){let n=[];for(let s=0;s0,()=>"mask cannot be scalar"),ln(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m"Shape mismatch in v and x");let l=xe(1),c=ye(l,o),u=P(ye(i,s),c);if(a){M(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");u=Ae(u,ye(l,da(o,h)))}return se(s,u)}var JC=D({movingAverage_:YC});function QC(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");am(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(Zo,s,i)}var Tb=D({scatterND_:QC});function eR(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function tR(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);eR(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(ud,o,l)}var Zm=D({sparseToDense_:tR});function nR(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return $.runKernel(Co,r)}var Eb=D({gatherND_:nR});function rR(e,t){if(t==null)return e.shape.slice();if(oa(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Pe?a.clone():a;let s=rR(a,n),i=1-t,o=Ae(vl(se(Sl(s,0,1,"float32",r),i)),i);return P(a,o)}var Cb=D({dropout_:aR});function Rb(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Ym(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),M(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),ln(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];M(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,c]=[i.length/s,s],u=Hx("bool",l);for(let h=0;hA.value-m.value),u[h]=0;for(let m=0;moR,depthwiseConv2d:()=>lR,matMul:()=>uR});function cR(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];M(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),M(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&M(Ut(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(Lh,h,d)}var Jm=D({conv2DBackpropFilter_:cR});function Yd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return P(e,Tl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Jd(e,t){let n=t,r=Pt(e.shape,t.shape);return r.length>0&&(n=Te(n,r)),H(n,e.shape)}function Qd(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Ur(e);if(t==="elu")return _l(e);if(t==="relu6")return Ld(e);if(t==="prelu")return ic(e,n);if(t==="leakyrelu")return nc(e,r);if(t==="sigmoid")return Tn(e);throw new Error(`Unknown fused activation ${t}.`)}var ep=(e,t)=>!(e>0)||t==="linear";function hR({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",ep($.state.gradientDepth,l)===!1){let w=ca(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),Qd(w,l,c,u)}let h=R(e,"x","conv2d"),d=R(t,"filter","conv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&M(Ut(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),M(Br(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let m=Yu(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=vt(A,h),ft(m.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused conv2d"));let g=(w,b)=>{let[k,N,C,F]=b,O=Yd(w,C,l);M(La(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let L=_m(N.shape,O,k,n,r),V=Jm(N,O,k.shape,n,r),j=[L,V];if(F!=null){let U=Jd(F,O);j.push(U)}return j},x={x:p,filter:d,bias:A,preluActivationWeights:y},v={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Vr((w,b,k)=>{let N=$.runKernel(oi,x,v);return k([b,w,N]),f&&(N=H(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d):Vr((w,b,k,N)=>{let C=$.runKernel(oi,x,v);return N([b,w,C,k]),f&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(p,d,A)}var oR=D({fusedConv2d_:hR});function dR(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(jh,c,u)}var Mb=D({depthwiseConv2dNativeBackpropFilter_:dR});function pR(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(Uh,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Fb=D({depthwiseConv2dNativeBackpropInput_:pR});function fR({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(ep($.state.gradientDepth,l)===!1){let w=bl(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),Qd(w,l,c,u)}let h=R(e,"x","depthwiseConv2d"),d=R(t,"filter","depthwiseConv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),M(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),M(Br(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&M(Ut(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let m=Yu(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=vt(A,h),ft(m.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused depthwiseConv2d"));let g=(w,b)=>{M(La(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[k,N,C,F]=b,O=Yd(w,C,l),L=Fb(N.shape,O,k,n,r,s,i),V=Mb(N,O,k.shape,n,r,s,i);if(F!=null){let j=Jd(A,O);return[L,V,j]}return[L,V]},x={x:p,filter:d,bias:A,preluActivationWeights:y},v={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Vr((w,b,k)=>{let N=$.runKernel(li,x,v);return k([b,w,N]),f&&(N=H(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d):Vr((w,b,k,N)=>{let C=$.runKernel(li,x,v);return N([b,w,C,k]),f&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(p,d,A)}var lR=D({fusedDepthwiseConv2d_:fR});function mR({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(ep($.state.gradientDepth,s)===!1){let F=Ve(e,t,n,r);return a!=null&&(F=se(F,a)),Qd(F,s,i,o)}let l=R(e,"a","fused matMul"),c=R(t,"b","fused matMul");[l,c]=vt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),A=Et(f),y=Et(m);M(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),M(oa(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),M(u===h,()=>`Error in fused matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),x=n?H(l,[A,u,d]):H(l,[A,d,u]),v=r?H(c,[y,p,h]):H(c,[y,h,p]),w;a!=null&&(w=R(a,"bias","fused matMul"),[w]=vt(w,l),ft(g,w.shape));let b;i!=null&&(b=R(i,"prelu weights","fused matMul"));let k=(F,O)=>{let[L,V,j,U]=O,X=Yd(H(F,j.shape),j,s),G,ee;if(!n&&!r?(G=Ve(X,V,!1,!0),ee=Ve(L,X,!0,!1)):!n&&r?(G=Ve(X,V,!1,!1),ee=Ve(X,L,!0,!1)):n&&!r?(G=Ve(V,X,!1,!0),ee=Ve(L,X,!1,!1)):(G=Ve(V,X,!0,!0),ee=Ve(X,L,!0,!0)),a!=null){let Y=Jd(U,X);return[G,ee,Y]}else return[G,ee]},N={a:x,b:v,bias:w,preluActivationWeights:b},C={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Vr((F,O,L)=>{let V=$.runKernel(ii,N,C);return L([F,O,V]),{value:H(V,g),gradFunc:k}})(x,v):Vr((F,O,L,V)=>{let j=$.runKernel(ii,N,C);return V([F,O,j,L]),{value:H(j,g),gradFunc:k}})(x,v,w)}var uR=D({fusedMatMul_:mR});function AR(e){return Ym(e,.54,.46)}var yR=D({hammingWindow_:AR});function gR(e){return Ym(e,.5,.5)}var $b=D({hannWindow_:gR});function xR(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Re(e,s,t)),s+=n;if(r)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),M(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),M(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),M(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),M(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let u={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(bo,u,h)}var vR=D({cropAndResize_:_R});function kR(e){let t=R(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(To,n,{})}var IR=D({flipLeftRight_:kR});function SR(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");M(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(ll,s,i)}var NR=D({rotateWithOffset_:SR});function El(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),M(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),M(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function TR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=El(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(Vo,{boxes:s,scores:i},l)}var ER=D({nonMaxSuppression_:TR});function RR(e,t,n){let r=CR(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function CR(e,t,n){return FR(e,t,n||MR)}function MR(e,t){return e>t?1:e>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function Ob(e,t,n,r,a){return Qm(e,t,n,r,a,0)}function zb(e,t,n,r,a,s){return Qm(e,t,n,r,a,0,!1,s,!0)}function Pb(e,t,n,r,a,s){return Qm(e,t,n,r,a,s,!0)}function Qm(e,t,n,r,a,s,i=!1,o=!1,l=!1){let c=[];for(let A=0;Aa&&c.push({score:t[A],boxIndex:A,suppressBeginIndex:0});c.sort(Lb);let u=s>0?-.5/s:0,h=[],d=[];for(;h.length0;){let A=c.pop(),{score:y,boxIndex:g,suppressBeginIndex:x}=A;if(y=x;--w){let b=$R(e,g,h[w]);if(b>=r){v=!0;break}if(A.score=A.score*DR(r,u,b),A.score<=a)break}A.suppressBeginIndex=h.length,v||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&RR(c,A,Lb))}let p=h.length,f=n-p;o&&f>0&&(h.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:h};return i&&(m.selectedScores=d),l&&(m.validOutputs=p),m}function $R(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),c=Math.min(a[0],a[2]),u=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),f=(h-c)*(d-u);if(p<=0||f<=0)return 0;let m=Math.max(s,c),A=Math.max(i,u),y=Math.min(o,h),g=Math.min(l,d),x=Math.max(y-m,0)*Math.max(g-A,0);return x/(p+f-x)}function DR(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function Lb(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function OR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=El(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:h}=Ob(c,u,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),sn(h,"int32")}var zR=OR;function PR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=El(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(Uo,c,u);return{selectedIndices:h[0],selectedScores:h[1]}}var LR=D({nonMaxSuppressionWithScore_:PR});async function WR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=El(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],h=c[1],{selectedIndices:d,selectedScores:p}=Pb(u,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:sn(d,"int32"),selectedScores:sn(p)}}var BR=WR;function VR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=El(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:c,iouThreshold:u,scoreThreshold:h,padToMaxOutputSize:s},f=$.runKernel(jo,d,p);return{selectedIndices:f[0],validOutputs:f[1]}}var jR=D({nonMaxSuppressionPadded_:VR});async function UR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=El(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=zb(d,p,c,u,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:sn(f,"int32"),validOutputs:xe(m,"int32")}}var HR=UR;function GR(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");M(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=$.runKernel(Hs,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Wb=D({resizeBilinear_:GR});function qR(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");M(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=$.runKernel(Du,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Bb=D({resizeNearestNeighbor_:qR});function XR(e,t,n="nearest",r="constant",a=0,s){let i=R(e,"image","transform","float32"),o=R(t,"transforms","transform","float32");M(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},c={interpolation:n,fillMode:r,fillValue:a,outputShape:s};return $.runKernel(cd,l,c)}var KR=D({transform_:XR});function ZR(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");M(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(Pd(0,s,1,"int32"),[-1,1]),l=Pd(0,i,1,"int32"),c=ye(o,l),u=fr(wi(c,xe(+t,"int32")),Va(c,xe(-n,"int32"))),h=Rt([s,i],r.dtype);return H(cn(mr(H(r,[-1,s,i])).map(d=>Cn(u,d,h))),a)}var YR=D({bandPart_:ZR});function JR(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Lt(e,e.shape[0],0).map(a=>ja(a,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a{let s=r[a];if(a>0)for(let i=0;i=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Vb(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),r=mr(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[c,u]=Vb(l,t);a.push(c),s.push(u)});let i=H(cn(a,0),e.shape),o=H(cn(s,0),e.shape);return[i,o]}}function Vb(e,t=!1){return $.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Em(n),s=Wr(e),i=er([[1]],[1,1]),o=Wr(i),l=n>=r?r:n;for(let c=0;c{let p=Re(s,[c,c],[n-c,1]),f=Zd(p),m=Re(s,[c,c],[1,1]),A=Cn(pr(m,0),er([[-1]]),er([[1]])),y=ye(m,P(A,f)),g=Ae(p,y);g.shape[0]===1?o=Wr(i):o=rt([i,Re(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let x=kt(Ae(Ve(A,y),f)),v=Re(s,[c,0],[n-c,r]),w=P(x,o),b=Je(o);if(c===0)s=ye(v,Ve(w,Ve(b,v)));else{let C=ye(v,Ve(w,Ve(b,v)));s=rt([Re(s,[0,0],[c,r]),C],0)}let k=Je(w),N=Re(a,[0,c],[n,a.shape[1]-c]);if(c===0)a=ye(N,Ve(Ve(N,o),k));else{let C=ye(N,Ve(Ve(N,o),k));a=rt([Re(a,[0,0],[n,c]),C],1)}return[o,s,a]}),_e([u,h,d])}return!t&&n>r&&(a=Re(a,[0,0],[n,r]),s=Re(s,[0,0],[r,r])),[a,s]})}var tM=D({qr_:eM}),hn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(hn||(hn={}));function nM(e,t,n=hn.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:P(r,a);if(n===hn.NONE)return s;if(n===hn.SUM)return Te(s);if(n===hn.MEAN){if(a==null)return It(s);{let i=r.size/a.size,o=Ae(Te(s),Te(a));return i>1?Ae(o,xe(i)):o}}if(n===hn.SUM_BY_NONZERO_WEIGHTS){if(a==null)return Ae(Te(s),xe(r.size));{let i=P(a,Pn(r.shape)),o=ge(Te(vi(i,xe(0))),"float32");return Ae(Te(s),o)}}throw Error(`Unknown reduction: ${n}`)}var pa=D({computeWeightedLoss_:nM});function rM(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),ln(a.shape,s.shape,"Error in absoluteDifference: ");let o=zt(ye(a,s));return pa(o,i,r)}var aM=D({absoluteDifference_:rM});function sM(e,t,n,r,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),ln(s.shape,i.shape,"Error in cosineDistance: ");let l=xe(1),c=ye(l,Te(P(s,i),n,!0));return pa(c,o,a)}var iM=D({cosineDistance_:sM});function oM(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),ln(a.shape,s.shape,"Error in hingeLoss: ");let o=xe(1);a=ye(P(xe(2),a),o);let l=Ur(ye(o,P(a,s)));return pa(l,i,r)}var lM=D({hingeLoss_:oM});function uM(e,t,n,r=1,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),ln(s.shape,i.shape,"Error in huberLoss: ");let l=xe(r),c=zt(ye(i,s)),u=Il(c,l),h=ye(c,u),d=se(P(xe(.5),ot(u)),P(l,h));return pa(d,o,a)}var cM=D({huberLoss_:uM});function hM(e,t,n,r=1e-7,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),ln(s.shape,i.shape,"Error in logLoss: ");let l=xe(1),c=xe(r),u=kt(P(s,zn(se(i,c)))),h=P(ye(l,s),zn(se(ye(l,i),c))),d=ye(u,h);return pa(d,o,a)}var dM=D({logLoss_:hM});function pM(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),ln(a.shape,s.shape,"Error in meanSquaredError: ");let o=qd(a,s);return pa(o,i,r)}var fM=D({meanSquaredError_:pM});function mM(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");ln(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Ur(r),s=P(r,n),i=Md(Qn(kt(zt(r))));return se(ye(a,s),i)}function AM(e,t,n,r=0,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),ln(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let c=xe(r),u=xe(1),h=xe(.5);s=se(P(s,ye(u,c)),P(h,c))}let l=mM(s,i);return pa(l,o,a)}var yM=D({sigmoidCrossEntropy_:AM});function gM(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Vr((r,a,s)=>{let i=$m(a,[n],!0),o=ye(ge(a,"float32"),i);s([r,o]);let l=kt(P(o,r));return{value:Te(l,[n]),gradFunc:(c,u)=>{let[h,d]=u,p=_i(c.shape,[n]);return[P(H(c,p),ye(ge(h,"float32"),Qn(d))),P(H(c,p),ye(Qn(d),ge(h,"float32")))]}}})(e,t)}function xM(e,t,n,r=0,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),ln(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let c=xe(r),u=xe(1),h=xe(s.shape[1]);s=se(P(s,ye(u,c)),Ae(c,h))}let l=gM(s,i);return pa(l,o,a)}var wM=D({softmaxCrossEntropy_:xM});function bM(e,t,n){let r=R(e,"inputIndices","sparseReshape"),a=R(t,"inputShape","sparseReshape"),s=R(n,"newShape","sparseReshape");if(r.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape - ${r.shape}`);if(a.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${a.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:r,inputShape:a,newShape:s},o=$.runKernel(ld,i);return{outputIndices:o[0],outputShape:o[1]}}var _M=D({sparseReshape_:bM}),vM={fft:cc,ifft:Nl,rfft:hc,irfft:Gd},kM={hammingWindow:yR,hannWindow:$b,frame:Db,stft:bR},Le={flipLeftRight:IR,resizeNearestNeighbor:Bb,resizeBilinear:Wb,rotateWithOffset:NR,cropAndResize:vR,nonMaxSuppression:ER,nonMaxSuppressionAsync:zR,nonMaxSuppressionWithScore:LR,nonMaxSuppressionWithScoreAsync:BR,nonMaxSuppressionPadded:jR,nonMaxSuppressionPaddedAsync:HR,transform:KR},jb={bandPart:YR,gramSchmidt:QR,qr:tM},IM={absoluteDifference:aM,computeWeightedLoss:pa,cosineDistance:iM,hingeLoss:lM,huberLoss:cM,logLoss:dM,meanSquaredError:fM,sigmoidCrossEntropy:yM,softmaxCrossEntropy:wM},Ub={sparseReshape:_M},fa=class extends Hw{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return _e(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return fb(e,t)}dispose(){this.iterations_!=null&&_e(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:xe(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(fa,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var tp=class extends fa{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:z(()=>He(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:z(()=>He(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;z(()=>{let l=se(P(i,this.rho),P(ot(s),1-this.rho)),c=P(Ae(en(se(o,this.epsilon)),en(se(i,this.epsilon))),s),u=se(P(o,this.rho),P(ot(c),1-this.rho));i.assign(l),o.assign(u);let h=se(P(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(_e(this.accumulatedGrads.map(e=>e.variable)),_e(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};tp.className="Adadelta";za(tp);var np=class extends fa{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:z(()=>tc(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;z(()=>{let i=se(s,ot(a));s.assign(i);let o=se(P(Ae(a,en(se(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&_e(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};np.className="Adagrad";za(np);var rp=class extends fa{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],z(()=>{this.accBeta1=xe(t).variable(),this.accBeta2=xe(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);z(()=>{let n=ye(1,this.accBeta1),r=ye(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:z(()=>He(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:z(()=>He(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,h=se(P(c,this.beta1),P(l,1-this.beta1)),d=se(P(u,this.beta2),P(ot(l),1-this.beta2)),p=Ae(h,n),f=Ae(d,r);c.assign(h),u.assign(d);let m=se(P(Ae(p,se(en(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(P(this.accBeta1,this.beta1)),this.accBeta2.assign(P(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&_e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&_e(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),z(()=>{this.accBeta1.assign(da(this.beta1,this.iterations_+1)),this.accBeta2.assign(da(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};rp.className="Adam";za(rp);var ap=class extends fa{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],z(()=>{this.iteration=xe(0).variable(),this.accBeta1=xe(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);z(()=>{let n=ye(1,this.accBeta1),r=Ae(-this.learningRate,se(P(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:He(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:He(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,h=se(P(c,this.beta1),P(l,1-this.beta1)),d=P(u,this.beta2),p=zt(l),f=jr(d,p);c.assign(h),u.assign(f);let m=se(P(Ae(r,n),Ae(h,se(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(P(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&_e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&_e(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};ap.className="Adamax";za(ap);var dc=class extends fa{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];z(()=>{let s=se(P(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Ht(xe(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};dc.className="SGD";za(dc);var sp=class extends dc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=xe(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:z(()=>He(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&z(()=>{let i,o=se(P(this.m,a),s);this.useNesterov?i=se(P(this.c,se(s,P(o,this.m))),r):i=se(P(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&_e(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};sp.className="Momentum";za(sp);var ip=class extends fa{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:z(()=>He(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:z(()=>He(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:z(()=>He(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;z(()=>{let l=se(P(i,this.decay),P(ot(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=se(P(c,this.decay),P(s,1-this.decay)),h=Ae(P(s,this.learningRate),en(ye(l,se(ot(u),this.epsilon)))),d=se(P(o,this.momentum),h);i.assign(l),c.assign(u),o.assign(d);let p=ye(r,d);r.assign(p)}else{let c=se(P(i,this.decay),P(ot(s),1-this.decay)),u=se(P(o,this.momentum),Ae(P(s,this.learningRate),en(se(c,this.epsilon))));i.assign(c),o.assign(u);let h=ye(r,u);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&_e(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&_e(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&_e(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};ip.className="RMSProp";za(ip);var ki=class{static sgd(e){return new dc(e)}static momentum(e,t,n=!1){return new sp(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new ip(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new rp(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new tp(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new ap(e,t,n,r,a)}static adagrad(e,t=.1){return new np(e,t)}},Ii={sgd:ki.sgd,momentum:ki.momentum,adadelta:ki.adadelta,adagrad:ki.adagrad,rmsprop:ki.rmsprop,adamax:ki.adamax,adam:ki.adam},SM=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function op(){return new Promise(e=>SM(()=>e()))}var E={};Me(E,{ERF_A1:()=>zM,ERF_A2:()=>PM,ERF_A3:()=>LM,ERF_A4:()=>WM,ERF_A5:()=>BM,ERF_P:()=>OM,PARALLELIZE_THRESHOLD:()=>eA,SELU_SCALE:()=>Gb,SELU_SCALEALPHA:()=>Hb,applyActivation:()=>Qd,assertAndGetBroadcastShape:()=>ft,assertAxesAreInnerMostDims:()=>sE,assertParamsConsistent:()=>NM,assignToTypedArray:()=>KM,axesAreInnerMostDims:()=>Mm,calculateShapes:()=>Fw,checkEinsumDimSizes:()=>eF,combineLocations:()=>Ab,complexWithEvenIndex:()=>GM,complexWithOddIndex:()=>qM,computeConv2DInfo:()=>Yu,computeConv3DInfo:()=>Jw,computeDefaultPad:()=>xm,computeDilation2DInfo:()=>EN,computeOptimalWindowSize:()=>EM,computeOutAndReduceShapes:()=>yb,computeOutShape:()=>TM,computePool2DInfo:()=>Yw,computePool3DInfo:()=>CN,convertConv2DDataFormat:()=>Zw,decodeEinsumEquation:()=>JM,eitherStridesOrDilationsAreOne:()=>Br,expandShapeToKeepDim:()=>_i,exponent:()=>YM,exponents:()=>ZM,fromStringArrayToUint8:()=>sF,fromUint8ToStringArray:()=>aF,getAxesPermutation:()=>gb,getBroadcastDims:()=>wT,getComplexWithIndex:()=>XM,getEinsumComputePath:()=>tF,getEinsumPermutation:()=>QM,getFusedBiasGradient:()=>Jd,getFusedDyActivation:()=>Yd,getImageCenter:()=>CM,getInnerMostAxes:()=>iE,getPermuted:()=>MM,getReductionAxes:()=>Pt,getReshaped:()=>RM,getReshapedPermuted:()=>FM,getSliceBeginCoords:()=>$M,getSliceSize:()=>DM,getUndoAxesPermutation:()=>Fm,isIdentityPermutation:()=>nF,log:()=>jM,mergeRealAndImagArrays:()=>UM,prepareAndValidate:()=>Mw,prepareSplitSize:()=>rF,segment_util:()=>qb,shouldFuse:()=>ep,slice_util:()=>un,splitRealAndImagArrays:()=>HM,tupleValuesAreOne:()=>La,upcastType:()=>dr,validateInput:()=>am,validateUpdateShape:()=>rm,warn:()=>VM});function NM(e,t){let n=e[0].length;e.forEach((a,s)=>{M(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function TM(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function FM(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s/g,Xb=",",Kb="...";function JM(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(iF,"").length)/tA.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${tA}").`);let[r,a]=e.split(tA);M(r.indexOf(Kb)===-1,()=>`The ellipsis notation ("${Kb}") is not supported yet.`);let s=r.split(Xb),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let d=0;df.indexOf(p)!==-1))throw new Error(`Output subscripts contain the label ${p} not present in the input subscripts.`);o.indexOf(p)===-1&&o.push(p)}for(let d=0;da!==-1),{permutationIndices:n,expandDims:r}}function eF(e,t,n){let r=new Array(e);for(let a=0;a`Expected dimension ${r[t[a][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function tF(e,t){let n=e,r=[],a=0;e.length===0&&n.push(-1),a=e.length+1;for(let i=0;it===n)}function oF(e,t){let n=[];for(let r=0;r"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);M(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}M(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var qb={};Me(qb,{collectGatherOpShapeInfo:()=>cF,computeOutShape:()=>uF,segOpComputeOptimalWindowSize:()=>lF});function lF(e,t){let n=!1,r;for(e<=eA?(r=e,n=!0):r=Fh(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Fh(e,r+1);return r}function uF(e,t,n){let r=[],a=e.length;for(let s=0;sa))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) ( - ${s}).`);if(nmd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function sF(e){return e.map(t=>Bu(t))}var Hr={};Me(Hr,{nonMaxSuppressionV3Impl:()=>Ob,nonMaxSuppressionV4Impl:()=>zb,nonMaxSuppressionV5Impl:()=>Pb,whereImpl:()=>Sb});function ve(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&_.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var hF=Hr.whereImpl,lp=class extends wu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Rh(this,ua())}nextDataId(){return lp.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&E.warn(` + ${r.shape}`),M(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(_o,o,l)}var _m=D({depthToSpace_:iT});function oT(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&M(Ut(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:c,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(vs,h,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var wl=D({depthwiseConv2d_:oT});function lT(e){let t={x:R(e,"x","diag")};return $.runKernel(Uh,t)}var uT=D({diag_:lT});function cT(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");M(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),M(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),M(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(Su,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var vm=D({dilation2d_:cT});function hT(e,t){let n=e.length,r=[];for(let a=0;a1&&i===1&&r.unshift(s)}return r}function Pt(e,t){let n=[];for(let r=0;r1)&&n.unshift(s)}return n}function ft(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(M(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=H(n,[1,-1]),o=H(r,[-1,1]),l=Ve(i,o);return H(l,[])}else if(n.rank===1&&r.rank===2){let i=H(n,[1,-1]),o=H(r,[r.shape[0],r.shape[1]]),l=Ve(i,o);return H(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=H(r,[-1,1]),o=Ve(n,i);return H(o,[o.size])}else{let i=H(r,[r.shape[0],r.shape[1]]);return Ve(n,i)}}var aw=D({dot_:AT});function yT(e,...t){let n=t.map((a,s)=>R(a,`tensors${s}`,"einsum")),r={equation:e};return $.runKernel(qh,n,r)}var sw=D({einsum_:yT});function gT(e){let t={x:R(e,"x","elu")};return $.runKernel(vo,t)}var _l=D({elu_:gT});function xT(e){let t=R(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ge(t,"float32"));let n={x:t};return $.runKernel(ko,n)}var Im=D({erf_:xT});function bT(e){let t={x:R(e,"x","exp")};return $.runKernel(Is,t)}var Qn=D({exp_:bT});function wT(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(So,r,a)}var Qt=D({expandDims_:wT});function _T(e){let t={x:R(e,"x","expm1")};return $.runKernel(No,t)}var Sm=D({expm1_:_T});function vT(e,t){let n=R(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel(Fa,r,a)}var Va=D({tile_:vT});function kT(e,t,n,r="float32"){t==null&&(t=e);let a=Be([e,t],r),s=e<=t?e:t;for(let o=0;o`Error in localResponseNormalization: x must be rank 3 or 4 but got + rank ${s.rank}.`),M(Ut(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:r,beta:a},u=$.runKernel(Cu,l,c);return o?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Em=D({localResponseNormalization_:OT});function zT(e){let t={x:R(e,"x","log")};return $.runKernel(Ms,t)}var zn=D({log_:zT});function PT(e){let t={x:R(e,"x","log1p")};return $.runKernel(zo,t)}var Rd=D({log1p_:PT});function LT(e){return M(Ca(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&ln(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Md(i),i[0]})}}function WT(e){return M(Ca(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Gu(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&ln(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Md(i),i})}}function BT(e){return M(Ca(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof Pe,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof Pe,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return Md(r),{grad:r[0],value:a}}}function VT(e){return M(Ca(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(a=>a instanceof Pe),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof Pe,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&ln(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Md(r.grads),r}}function uw(e,t){M(Ca(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(c=>c instanceof ju),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in $.registeredVariables)t.push($.registeredVariables[c])}let r=n?t.filter(c=>!c.trainable):null,a=t.length;t=t.filter(c=>c.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);M(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),r!=null&&r.forEach(c=>l[c.name]=null),{value:i,grads:l}}function jr(e){return $.customGrad(e)}function Md(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that + the f you passed encloses all operations that lead from x to y.`)}function jT(e){let t={x:R(e,"x","neg")};return $.runKernel(Wo,t)}var kt=D({neg_:jT});function UT(e){let t={x:R(e,"x","softplus")};return $.runKernel(nl,t)}var _i=D({softplus_:UT});function HT(e){let t=R(e,"x","logSigmoid");return jr(n=>({value:kt(_i(kt(n))),gradFunc:r=>z(r,Tn(kt(n)))}))(t)}var cw=D({logSigmoid_:HT});function GT(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel(Fs,r,a)}var Rn=D({max_:GT});function qT(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(ri,a)}var ye=D({sub_:qT});function XT(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=ge(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(ei,a,s)}var Te=D({sum_:XT});function KT(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return jr((r,a)=>{let s=!0,i=Rn(r,t,!0),o=ye(r,i),l=ye(ge(o,"float32"),zn(Te(Qn(o),t,s)));return a([l]),{value:l,gradFunc:(c,u)=>{let[h]=u,d=!0,p=Qn(h);return ye(c,z(Te(c,t,d),p))}}})(n)}var Fd=D({logSoftmax_:KT});function Cm(e,t){for(let n=0;ne[s]);return[n,a]}function vi(e,t){let n=t.map(r=>1);return hw(e,n,t)}function ZT(e,t,n){M(Cm(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function pw(e,t){if(Cm(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function Rm(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function YT(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),M(Vr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&M(Ut(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(Ds,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var nc=D({maxPool_:rE});function aE(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Ut(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(Ru,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Fm=D({maxPool3d_:aE});function sE(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(nd,s,i);return{result:o[0],indexes:o[1]}}var mw=D({maxPoolWithArgmax_:sE});function iE(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=vt(n,r),n.dtype==="bool"&&(n=ge(n,"int32"),r=ge(r,"int32")),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel($s,a)}var Ur=D({maximum_:iE});function oE(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(Os,r,a)}var It=D({mean_:oE});function Rt(e,t="float32"){if(t==="complex64"){let r=Rt(e,"float32"),a=Rt(e,"float32");return Da(r,a)}let n=Fh(Et(e),t);return $.makeTensor(n,e,t)}function Pn(e,t="float32"){if(t==="complex64"){let r=Pn(e,"float32"),a=Rt(e,"float32");return Da(r,a)}let n=Nf(Et(e),t);return $.makeTensor(n,e,t)}function lE(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let r=R(e,"x","meshgrid",e instanceof Pe?e.dtype:"float32");if(t===void 0)return[r];let a=R(t,"y","meshgrid",t instanceof Pe?t.dtype:"float32"),s=Et(r.shape),i=Et(a.shape);return n==="xy"?(r=H(r,[1,-1]),a=H(a,[-1,1]),[Ve(Pn([i,1],r.dtype),r),Ve(a,Pn([1,s],a.dtype))]):(r=H(r,[-1,1]),a=H(a,[1,-1]),[Ve(r,Pn([1,i],r.dtype)),Ve(Pn([s,1],a.dtype),a)])}function uE(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(zs,r,a)}var kl=D({min_:uE});function cE(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=vt(n,r),n.dtype==="bool"&&(n=ge(n,"int32"),r=ge(r,"int32")),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Ps,a)}var Il=D({minimum_:cE});function hE(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o"Invalid number of paddings. Must be length of 2 each."),M(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel(Ls,i,s)}var $m=D({mirrorPad_:hE});function dE(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Lo,a)}var Dm=D({mod_:dE});function pE(e){let t=R(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var it=D({square_:pE});function fE(e,t=null,n=!1){e=R(e,"x","moments");let r=hr(t,e.shape),a=It(e,r,n),s=a.shape;n||(s=vi(a.shape,r));let i=it(ye(ge(e,"float32"),H(a,s))),o=It(i,r,n);return{mean:a,variance:o}}var Dd=D({moments_:fE});function mE(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=Gu(n,"c","multiRNNCell"),i=Gu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},c=$.runKernel(rd,o,l);return i===1?H(c,[c.size]):c}var Aw=D({multinomial_:yE});function gE(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Bo,a)}var ki=D({notEqual_:gE});function xE(e){let t={x:R(e,"x","onesLike")};return $.runKernel(Ho,t)}var Ln=D({onesLike_:xE});function bE(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");M(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=H(n,[-1,1]),s=H(r,[1,-1]);return Ve(a,s)}var wE=D({outerProduct_:bE});function _E(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(Vs,s,a)}var da=D({pad_:_E});function vE(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),da(e,[t],n)}var kE=D({pad1d_:vE});function IE(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),da(e,t,n)}var SE=D({pad2d_:IE});function NE(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),da(e,t,n)}var TE=D({pad3d_:NE});function EE(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),da(e,t,n)}var CE=D({pad4d_:EE});function RE(e,t,n){let r=R(e,"x","spaceToBatchND");M(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel($u,a,s)}var rc=D({spaceToBatchND_:RE});function $E(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(Vr(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let c=Gb(o.shape,t,s,a,r),u=[c.dilationHeight,c.dilationWidth],h;r==="same"?h=FE([c.filterHeight,c.filterWidth],u):h=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[p,m]=ME([c.inHeight,c.inWidth],u,h),f=d?r:"valid",A=d?o:rc(o,u,p),y=(n==="avg"?()=>Zu(A,t,s,f):()=>nc(A,t,s,f))(),g=d?y:Yu(y,u,m);return l?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function ME(e,t,n){let r=n.map(u=>u[0]),a=n.map(u=>u[1]),s=e.concat(r,a),i=t.map((u,h)=>(u-s[h]%u)%u),o=a.map((u,h)=>u+i[h]),l=t.map((u,h)=>[r[h],o[h]]),c=t.map((u,h)=>[0,i[h]]);return[l,c]}function FE(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var yw=D({pool_:$E});function DE(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(js,a)}var pa=D({pow_:DE});function OE(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel(Us,a)}var ac=D({prelu_:OE});function zE(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=ge(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(qo,a,s)}var Od=D({prod_:zE});function PE(e,t,n){let r=Et(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},WE=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Om.alea(a.toString()),this.randn=new zm(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),athis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Om.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function VE(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new WE(t,n,r,a),i=Be(e,r);for(let o=0;o`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Wn(t,0)}var JE=D({reverse1d_:YE});function QE(e,t){let n=R(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Wn(n,t)}var eC=D({reverse2d_:QE});function tC(e,t){let n=R(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Wn(n,t)}var nC=D({reverse3d_:tC});function rC(e,t){let n=R(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Wn(n,t)}var aC=D({reverse4d_:rC});function sC(e){let t={x:R(e,"x","round")};return $.runKernel(Ks,t)}var Lm=D({round_:sC});function iC(e){let t={x:R(e,"x","rsqrt")};return $.runKernel(Zs,t)}var Ld=D({rsqrt_:iC});function ve(e,t){if((rn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&rn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Oa(e,[],[],t)}function oC(e){let t={x:R(e,"x","selu")};return $.runKernel(Jo,t)}var Wd=D({selu_:oC});function lC(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),c=R(n,"pointwiseFilter","separableConv2d"),u=o,h=!1;if(o.rank===3&&(h=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),M(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],p=l.shape[3];M(c.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${c.shape[2]}.`);let m=wl(u,l,r,a,i,s),f=ha(m,c,1,"valid",i);return h?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Wm=D({separableConv2d_:lC});async function uC(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");M(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let u=0;u`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Re(r,[t],[n])}var jd=D({slice1d_:pC});function fC(e,t,n){let r=R(e,"x","slice2d");return M(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var Vm=D({slice2d_:fC});function mC(e,t,n){let r=R(e,"x","slice3d");return M(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var Ud=D({slice3d_:mC});function AC(e,t,n){let r=R(e,"x","slice4d");return M(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var ic=D({slice4d_:AC});function yC(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(ti,r,a)}var oc=D({softmax_:yC});function gC(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Kh,t)}var lc=D({fft_:gC});function xC(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Zh,t)}var Nl=D({ifft_:xC});function bC(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=H(e,[n,t]);r=Nl(a)}else{let a=[n,2*(t-1)],s=H(sc(e),[n,t]),i=H(Ed(e),[n,t]),o=Wn(Re(s,[0,1],[n,t-2]),1),l=z(Wn(Re(i,[0,1],[n,t-2]),1),ve(-1)),c=ot([s,o],1),u=ot([i,l],1),h=H(Da(c,u),[a[0],a[1]]);r=Nl(h)}if(r=sc(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=H(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var Hd=D({irfft_:bC});function wC(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel(rl,r,a)}var Lt=D({split_:wC});function _C(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t0),f=e.shape.map(A=>A);f[e.shape.length-1]=t,a=Re(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,a=ot([e,Rt(m)],e.shape.length-1),n=t}else a=e;let s=He(a),i=H(Da(a,s),[r,n]),o=lc(i),l=Math.floor(n/2)+1,c=sc(o),u=Ed(o),h=Lt(c,[l,n-l],c.shape.length-1),d=Lt(u,[l,n-l],u.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,H(Da(h[0],d[0]),p)}var uc=D({rfft_:_C});function vC(e){let t={x:R(e,"x","sqrt")};return $.runKernel(Qs,t)}var en=D({sqrt_:vC});function kC(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(ni,a,s)}var Gd=D({squaredDifference_:kC});function IC(e,t){let n=R(e,"x","squeeze");return H(n,Lx(n.shape,t).newShape)}var Ua=D({squeeze_:IC});function SC(e,t=0){let n=Gu(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel(Go,r,a)}var cn=D({stack_:SC});function NC(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return $.runKernel($a,n,r)}var Tl=D({step_:NC});function TC(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let c={x:R(e,"x","stridedSlice")},u={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel(al,c,u)}var jm=D({stridedSlice_:TC});function EC(e){let t={x:R(e,"x","tan")};return $.runKernel(ai,t)}var Um=D({tan_:EC});function sn(e,t){hs(e);let n=Wr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Oa(e,null,n,t)}function er(e,t,n){if(hs(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Wr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Oa(e,t,r,n)}function CC(e,t,n){if(hs(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Wr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Oa(e,t,r,n)}function RC(e,t,n){if(hs(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Wr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Oa(e,t,r,n)}function MC(e,t,n){if(hs(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Wr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,Oa(e,t,r,n)}function FC(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(sl,s,i);return{values:o,indices:l}}var Hm=D({topk_:FC});function $C(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new zm(t,n,r,!0,a),i=Be(e,r);for(let o=0;o0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(cd,r,a);return{values:s,indices:i}}var Xd=D({unique_:DC});function OC(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");M(Ut(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel(Ou,s,i)}var Gm=D({unsortedSegmentSum_:OC});function zC(e,t=0){let n=R(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(il,r,a)}var mr=D({unstack_:zC});function bw(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function ww(e,t){let n=[];for(let s=0;s0,()=>"mask cannot be scalar"),ln(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f"Shape mismatch in v and x");let l=ve(1),c=ye(l,o),u=z(ye(i,s),c);if(a){M(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");u=Ae(u,ye(l,pa(o,h)))}return se(s,u)}var jC=D({movingAverage_:VC});function UC(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");nm(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(Zo,s,i)}var vw=D({scatterND_:UC});function HC(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function GC(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);HC(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(ld,o,l)}var Xm=D({sparseToDense_:GC});function qC(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return $.runKernel(Co,r)}var kw=D({gatherND_:qC});function XC(e,t){if(t==null)return e.shape.slice();if(la(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Pe?a.clone():a;let s=XC(a,n),i=1-t,o=Ae(vl(se(Sl(s,0,1,"float32",r),i)),i);return z(a,o)}var Iw=D({dropout_:KC});function Sw(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Km(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),M(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),ln(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];M(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,c]=[i.length/s,s],u=Wx("bool",l);for(let h=0;hA.value-f.value),u[h]=0;for(let f=0;fJC,depthwiseConv2d:()=>QC,matMul:()=>eR});function tR(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];M(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),M(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&M(Ut(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(Ph,h,d)}var Zm=D({conv2DBackpropFilter_:tR});function Zd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,Tl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Yd(e,t){let n=t,r=Pt(e.shape,t.shape);return r.length>0&&(n=Te(n,r)),H(n,e.shape)}function Jd(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Hr(e);if(t==="elu")return _l(e);if(t==="relu6")return Pd(e);if(t==="prelu")return ac(e,n);if(t==="leakyrelu")return ec(e,r);if(t==="sigmoid")return Tn(e);throw new Error(`Unknown fused activation ${t}.`)}var Qd=(e,t)=>!(e>0)||t==="linear";function nR({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",Qd($.state.gradientDepth,l)===!1){let b=ha(e,t,n,r,a,s,i);return o!=null&&(b=se(b,o)),Jd(b,l,c,u)}let h=R(e,"x","conv2d"),d=R(t,"filter","conv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&M(Ut(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),M(Vr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let f=Ku(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=vt(A,h),ft(f.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused conv2d"));let g=(b,w)=>{let[k,N,C,F]=w,O=Zd(b,C,l);M(Wa(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let L=bm(N.shape,O,k,n,r),V=Zm(N,O,k.shape,n,r),j=[L,V];if(F!=null){let U=Yd(F,O);j.push(U)}return j},x={x:p,filter:d,bias:A,preluActivationWeights:y},v={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?jr((b,w,k)=>{let N=$.runKernel(li,x,v);return k([w,b,N]),m&&(N=H(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d):jr((b,w,k,N)=>{let C=$.runKernel(li,x,v);return N([w,b,C,k]),m&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(p,d,A)}var JC=D({fusedConv2d_:nR});function rR(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(Vh,c,u)}var Nw=D({depthwiseConv2dNativeBackpropFilter_:rR});function aR(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(jh,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Tw=D({depthwiseConv2dNativeBackpropInput_:aR});function sR({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(Qd($.state.gradientDepth,l)===!1){let b=wl(e,t,n,r,a,s,i);return o!=null&&(b=se(b,o)),Jd(b,l,c,u)}let h=R(e,"x","depthwiseConv2d"),d=R(t,"filter","depthwiseConv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),M(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),M(Vr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&M(Ut(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let f=Ku(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=vt(A,h),ft(f.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused depthwiseConv2d"));let g=(b,w)=>{M(Wa(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[k,N,C,F]=w,O=Zd(b,C,l),L=Tw(N.shape,O,k,n,r,s,i),V=Nw(N,O,k.shape,n,r,s,i);if(F!=null){let j=Yd(A,O);return[L,V,j]}return[L,V]},x={x:p,filter:d,bias:A,preluActivationWeights:y},v={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?jr((b,w,k)=>{let N=$.runKernel(ui,x,v);return k([w,b,N]),m&&(N=H(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d):jr((b,w,k,N)=>{let C=$.runKernel(ui,x,v);return N([w,b,C,k]),m&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(p,d,A)}var QC=D({fusedDepthwiseConv2d_:sR});function iR({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Qd($.state.gradientDepth,s)===!1){let F=Ve(e,t,n,r);return a!=null&&(F=se(F,a)),Jd(F,s,i,o)}let l=R(e,"a","fused matMul"),c=R(t,"b","fused matMul");[l,c]=vt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?c.shape[c.rank-2]:c.shape[c.rank-1],m=l.shape.slice(0,-2),f=c.shape.slice(0,-2),A=Et(m),y=Et(f);M(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),M(la(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),M(u===h,()=>`Error in fused matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),x=n?H(l,[A,u,d]):H(l,[A,d,u]),v=r?H(c,[y,p,h]):H(c,[y,h,p]),b;a!=null&&(b=R(a,"bias","fused matMul"),[b]=vt(b,l),ft(g,b.shape));let w;i!=null&&(w=R(i,"prelu weights","fused matMul"));let k=(F,O)=>{let[L,V,j,U]=O,X=Zd(H(F,j.shape),j,s),G,ee;if(!n&&!r?(G=Ve(X,V,!1,!0),ee=Ve(L,X,!0,!1)):!n&&r?(G=Ve(X,V,!1,!1),ee=Ve(X,L,!0,!1)):n&&!r?(G=Ve(V,X,!1,!0),ee=Ve(L,X,!1,!1)):(G=Ve(V,X,!0,!0),ee=Ve(X,L,!0,!0)),a!=null){let Y=Yd(U,X);return[G,ee,Y]}else return[G,ee]},N={a:x,b:v,bias:b,preluActivationWeights:w},C={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?jr((F,O,L)=>{let V=$.runKernel(oi,N,C);return L([F,O,V]),{value:H(V,g),gradFunc:k}})(x,v):jr((F,O,L,V)=>{let j=$.runKernel(oi,N,C);return V([F,O,j,L]),{value:H(j,g),gradFunc:k}})(x,v,b)}var eR=D({fusedMatMul_:iR});function oR(e){return Km(e,.54,.46)}var lR=D({hammingWindow_:oR});function uR(e){return Km(e,.5,.5)}var Ew=D({hannWindow_:uR});function cR(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Re(e,s,t)),s+=n;if(r)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),M(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),M(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),M(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),M(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let u={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(wo,u,h)}var fR=D({cropAndResize_:pR});function mR(e){let t=R(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(To,n,{})}var AR=D({flipLeftRight_:mR});function yR(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");M(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(ll,s,i)}var gR=D({rotateWithOffset_:yR});function El(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),M(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),M(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function xR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=El(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(Vo,{boxes:s,scores:i},l)}var bR=D({nonMaxSuppression_:xR});function _R(e,t,n){let r=wR(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function wR(e,t,n){return kR(e,t,n||vR)}function vR(e,t){return e>t?1:e>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function Rw(e,t,n,r,a){return Ym(e,t,n,r,a,0)}function Mw(e,t,n,r,a,s){return Ym(e,t,n,r,a,0,!1,s,!0)}function Fw(e,t,n,r,a,s){return Ym(e,t,n,r,a,s,!0)}function Ym(e,t,n,r,a,s,i=!1,o=!1,l=!1){let c=[];for(let A=0;Aa&&c.push({score:t[A],boxIndex:A,suppressBeginIndex:0});c.sort($w);let u=s>0?-.5/s:0,h=[],d=[];for(;h.length0;){let A=c.pop(),{score:y,boxIndex:g,suppressBeginIndex:x}=A;if(y=x;--b){let w=IR(e,g,h[b]);if(w>=r){v=!0;break}if(A.score=A.score*SR(r,u,w),A.score<=a)break}A.suppressBeginIndex=h.length,v||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&_R(c,A,$w))}let p=h.length,m=n-p;o&&m>0&&(h.push(...new Array(m).fill(0)),d.push(...new Array(m).fill(0)));let f={selectedIndices:h};return i&&(f.selectedScores=d),l&&(f.validOutputs=p),f}function IR(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),c=Math.min(a[0],a[2]),u=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),m=(h-c)*(d-u);if(p<=0||m<=0)return 0;let f=Math.max(s,c),A=Math.max(i,u),y=Math.min(o,h),g=Math.min(l,d),x=Math.max(y-f,0)*Math.max(g-A,0);return x/(p+m-x)}function SR(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function $w(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function NR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=El(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:h}=Rw(c,u,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),sn(h,"int32")}var TR=NR;function ER(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=El(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(Uo,c,u);return{selectedIndices:h[0],selectedScores:h[1]}}var CR=D({nonMaxSuppressionWithScore_:ER});async function RR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=El(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],h=c[1],{selectedIndices:d,selectedScores:p}=Fw(u,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:sn(d,"int32"),selectedScores:sn(p)}}var MR=RR;function FR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=El(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:c,iouThreshold:u,scoreThreshold:h,padToMaxOutputSize:s},m=$.runKernel(jo,d,p);return{selectedIndices:m[0],validOutputs:m[1]}}var $R=D({nonMaxSuppressionPadded_:FR});async function DR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=El(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=Mw(d,p,c,u,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:sn(m,"int32"),validOutputs:ve(f,"int32")}}var OR=DR;function zR(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");M(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=$.runKernel(Gs,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Dw=D({resizeBilinear_:zR});function PR(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");M(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=$.runKernel(Fu,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Ow=D({resizeNearestNeighbor_:PR});function LR(e,t,n="nearest",r="constant",a=0,s){let i=R(e,"image","transform","float32"),o=R(t,"transforms","transform","float32");M(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},c={interpolation:n,fillMode:r,fillValue:a,outputShape:s};return $.runKernel(ud,l,c)}var WR=D({transform_:LR});function BR(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");M(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(zd(0,s,1,"int32"),[-1,1]),l=zd(0,i,1,"int32"),c=ye(o,l),u=fr(wi(c,ve(+t,"int32")),ja(c,ve(-n,"int32"))),h=Rt([s,i],r.dtype);return H(cn(mr(H(r,[-1,s,i])).map(d=>Cn(u,d,h))),a)}var VR=D({bandPart_:BR});function jR(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Lt(e,e.shape[0],0).map(a=>Ua(a,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a{let s=r[a];if(a>0)for(let i=0;i=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return zw(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),r=mr(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[c,u]=zw(l,t);a.push(c),s.push(u)});let i=H(cn(a,0),e.shape),o=H(cn(s,0),e.shape);return[i,o]}}function zw(e,t=!1){return $.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Nm(n),s=Br(e),i=er([[1]],[1,1]),o=Br(i),l=n>=r?r:n;for(let c=0;c{let p=Re(s,[c,c],[n-c,1]),m=Kd(p),f=Re(s,[c,c],[1,1]),A=Cn(pr(f,0),er([[-1]]),er([[1]])),y=ye(f,z(A,m)),g=Ae(p,y);g.shape[0]===1?o=Br(i):o=ot([i,Re(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let x=kt(Ae(Ve(A,y),m)),v=Re(s,[c,0],[n-c,r]),b=z(x,o),w=Je(o);if(c===0)s=ye(v,Ve(b,Ve(w,v)));else{let C=ye(v,Ve(b,Ve(w,v)));s=ot([Re(s,[0,0],[c,r]),C],0)}let k=Je(b),N=Re(a,[0,c],[n,a.shape[1]-c]);if(c===0)a=ye(N,Ve(Ve(N,o),k));else{let C=ye(N,Ve(Ve(N,o),k));a=ot([Re(a,[0,0],[n,c]),C],1)}return[o,s,a]}),we([u,h,d])}return!t&&n>r&&(a=Re(a,[0,0],[n,r]),s=Re(s,[0,0],[r,r])),[a,s]})}var GR=D({qr_:HR}),hn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(hn||(hn={}));function qR(e,t,n=hn.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:z(r,a);if(n===hn.NONE)return s;if(n===hn.SUM)return Te(s);if(n===hn.MEAN){if(a==null)return It(s);{let i=r.size/a.size,o=Ae(Te(s),Te(a));return i>1?Ae(o,ve(i)):o}}if(n===hn.SUM_BY_NONZERO_WEIGHTS){if(a==null)return Ae(Te(s),ve(r.size));{let i=z(a,Pn(r.shape)),o=ge(Te(ki(i,ve(0))),"float32");return Ae(Te(s),o)}}throw Error(`Unknown reduction: ${n}`)}var fa=D({computeWeightedLoss_:qR});function XR(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),ln(a.shape,s.shape,"Error in absoluteDifference: ");let o=zt(ye(a,s));return fa(o,i,r)}var KR=D({absoluteDifference_:XR});function ZR(e,t,n,r,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),ln(s.shape,i.shape,"Error in cosineDistance: ");let l=ve(1),c=ye(l,Te(z(s,i),n,!0));return fa(c,o,a)}var YR=D({cosineDistance_:ZR});function JR(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),ln(a.shape,s.shape,"Error in hingeLoss: ");let o=ve(1);a=ye(z(ve(2),a),o);let l=Hr(ye(o,z(a,s)));return fa(l,i,r)}var QR=D({hingeLoss_:JR});function eM(e,t,n,r=1,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),ln(s.shape,i.shape,"Error in huberLoss: ");let l=ve(r),c=zt(ye(i,s)),u=Il(c,l),h=ye(c,u),d=se(z(ve(.5),it(u)),z(l,h));return fa(d,o,a)}var tM=D({huberLoss_:eM});function nM(e,t,n,r=1e-7,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),ln(s.shape,i.shape,"Error in logLoss: ");let l=ve(1),c=ve(r),u=kt(z(s,zn(se(i,c)))),h=z(ye(l,s),zn(se(ye(l,i),c))),d=ye(u,h);return fa(d,o,a)}var rM=D({logLoss_:nM});function aM(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),ln(a.shape,s.shape,"Error in meanSquaredError: ");let o=Gd(a,s);return fa(o,i,r)}var sM=D({meanSquaredError_:aM});function iM(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");ln(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Hr(r),s=z(r,n),i=Rd(Qn(kt(zt(r))));return se(ye(a,s),i)}function oM(e,t,n,r=0,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),ln(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let c=ve(r),u=ve(1),h=ve(.5);s=se(z(s,ye(u,c)),z(h,c))}let l=iM(s,i);return fa(l,o,a)}var lM=D({sigmoidCrossEntropy_:oM});function uM(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return jr((r,a,s)=>{let i=Mm(a,[n],!0),o=ye(ge(a,"float32"),i);s([r,o]);let l=kt(z(o,r));return{value:Te(l,[n]),gradFunc:(c,u)=>{let[h,d]=u,p=vi(c.shape,[n]);return[z(H(c,p),ye(ge(h,"float32"),Qn(d))),z(H(c,p),ye(Qn(d),ge(h,"float32")))]}}})(e,t)}function cM(e,t,n,r=0,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),ln(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let c=ve(r),u=ve(1),h=ve(s.shape[1]);s=se(z(s,ye(u,c)),Ae(c,h))}let l=uM(s,i);return fa(l,o,a)}var hM=D({softmaxCrossEntropy_:cM});function dM(e,t,n){let r=R(e,"inputIndices","sparseReshape"),a=R(t,"inputShape","sparseReshape"),s=R(n,"newShape","sparseReshape");if(r.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape + ${r.shape}`);if(a.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${a.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:r,inputShape:a,newShape:s},o=$.runKernel(od,i);return{outputIndices:o[0],outputShape:o[1]}}var pM=D({sparseReshape_:dM}),fM={fft:lc,ifft:Nl,rfft:uc,irfft:Hd},mM={hammingWindow:lR,hannWindow:Ew,frame:Cw,stft:dR},Le={flipLeftRight:AR,resizeNearestNeighbor:Ow,resizeBilinear:Dw,rotateWithOffset:gR,cropAndResize:fR,nonMaxSuppression:bR,nonMaxSuppressionAsync:TR,nonMaxSuppressionWithScore:CR,nonMaxSuppressionWithScoreAsync:MR,nonMaxSuppressionPadded:$R,nonMaxSuppressionPaddedAsync:OR,transform:WR},Pw={bandPart:VR,gramSchmidt:UR,qr:GR},AM={absoluteDifference:KR,computeWeightedLoss:fa,cosineDistance:YR,hingeLoss:QR,huberLoss:tM,logLoss:rM,meanSquaredError:sM,sigmoidCrossEntropy:lM,softmaxCrossEntropy:hM},Lw={sparseReshape:pM},ma=class extends Wb{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return we(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return uw(e,t)}dispose(){this.iterations_!=null&&we(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ve(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(ma,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var ep=class extends ma{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:P(()=>He(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:P(()=>He(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;P(()=>{let l=se(z(i,this.rho),z(it(s),1-this.rho)),c=z(Ae(en(se(o,this.epsilon)),en(se(i,this.epsilon))),s),u=se(z(o,this.rho),z(it(c),1-this.rho));i.assign(l),o.assign(u);let h=se(z(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(we(this.accumulatedGrads.map(e=>e.variable)),we(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};ep.className="Adadelta";Pa(ep);var tp=class extends ma{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:P(()=>Qu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;P(()=>{let i=se(s,it(a));s.assign(i);let o=se(z(Ae(a,en(se(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&we(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};tp.className="Adagrad";Pa(tp);var np=class extends ma{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],P(()=>{this.accBeta1=ve(t).variable(),this.accBeta2=ve(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=ye(1,this.accBeta1),r=ye(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:P(()=>He(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:P(()=>He(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,h=se(z(c,this.beta1),z(l,1-this.beta1)),d=se(z(u,this.beta2),z(it(l),1-this.beta2)),p=Ae(h,n),m=Ae(d,r);c.assign(h),u.assign(d);let f=se(z(Ae(p,se(en(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&we(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&we(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),P(()=>{this.accBeta1.assign(pa(this.beta1,this.iterations_+1)),this.accBeta2.assign(pa(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};np.className="Adam";Pa(np);var rp=class extends ma{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],P(()=>{this.iteration=ve(0).variable(),this.accBeta1=ve(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=ye(1,this.accBeta1),r=Ae(-this.learningRate,se(z(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:He(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:He(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,h=se(z(c,this.beta1),z(l,1-this.beta1)),d=z(u,this.beta2),p=zt(l),m=Ur(d,p);c.assign(h),u.assign(m);let f=se(z(Ae(r,n),Ae(h,se(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&we(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&we(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};rp.className="Adamax";Pa(rp);var cc=class extends ma{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];P(()=>{let s=se(z(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Ht(ve(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};cc.className="SGD";Pa(cc);var ap=class extends cc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ve(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:P(()=>He(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&P(()=>{let i,o=se(z(this.m,a),s);this.useNesterov?i=se(z(this.c,se(s,z(o,this.m))),r):i=se(z(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&we(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};ap.className="Momentum";Pa(ap);var sp=class extends ma{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:P(()=>He(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:P(()=>He(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:P(()=>He(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;P(()=>{let l=se(z(i,this.decay),z(it(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=se(z(c,this.decay),z(s,1-this.decay)),h=Ae(z(s,this.learningRate),en(ye(l,se(it(u),this.epsilon)))),d=se(z(o,this.momentum),h);i.assign(l),c.assign(u),o.assign(d);let p=ye(r,d);r.assign(p)}else{let c=se(z(i,this.decay),z(it(s),1-this.decay)),u=se(z(o,this.momentum),Ae(z(s,this.learningRate),en(se(c,this.epsilon))));i.assign(c),o.assign(u);let h=ye(r,u);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&we(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&we(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&we(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};sp.className="RMSProp";Pa(sp);var Ii=class{static sgd(e){return new cc(e)}static momentum(e,t,n=!1){return new ap(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new sp(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new np(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new ep(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new rp(e,t,n,r,a)}static adagrad(e,t=.1){return new tp(e,t)}},Si={sgd:Ii.sgd,momentum:Ii.momentum,adadelta:Ii.adadelta,adagrad:Ii.adagrad,rmsprop:Ii.rmsprop,adamax:Ii.adamax,adam:Ii.adam},yM=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function ip(){return new Promise(e=>yM(()=>e()))}var E={};Me(E,{ERF_A1:()=>TM,ERF_A2:()=>EM,ERF_A3:()=>CM,ERF_A4:()=>RM,ERF_A5:()=>MM,ERF_P:()=>NM,PARALLELIZE_THRESHOLD:()=>Jm,SELU_SCALE:()=>Bw,SELU_SCALEALPHA:()=>Ww,applyActivation:()=>Jd,assertAndGetBroadcastShape:()=>ft,assertAxesAreInnerMostDims:()=>ZT,assertParamsConsistent:()=>gM,assignToTypedArray:()=>WM,axesAreInnerMostDims:()=>Cm,calculateShapes:()=>Tb,checkEinsumDimSizes:()=>HM,combineLocations:()=>hw,complexWithEvenIndex:()=>zM,complexWithOddIndex:()=>PM,computeConv2DInfo:()=>Ku,computeConv3DInfo:()=>qb,computeDefaultPad:()=>ym,computeDilation2DInfo:()=>bN,computeOptimalWindowSize:()=>bM,computeOutAndReduceShapes:()=>dw,computeOutShape:()=>xM,computePool2DInfo:()=>Gb,computePool3DInfo:()=>wN,convertConv2DDataFormat:()=>Hb,decodeEinsumEquation:()=>jM,eitherStridesOrDilationsAreOne:()=>Vr,expandShapeToKeepDim:()=>vi,exponent:()=>VM,exponents:()=>BM,fromStringArrayToUint8:()=>ZM,fromUint8ToStringArray:()=>KM,getAxesPermutation:()=>pw,getBroadcastDims:()=>hT,getComplexWithIndex:()=>LM,getEinsumComputePath:()=>GM,getEinsumPermutation:()=>UM,getFusedBiasGradient:()=>Yd,getFusedDyActivation:()=>Zd,getImageCenter:()=>wM,getInnerMostAxes:()=>YT,getPermuted:()=>vM,getReductionAxes:()=>Pt,getReshaped:()=>_M,getReshapedPermuted:()=>kM,getSliceBeginCoords:()=>IM,getSliceSize:()=>SM,getUndoAxesPermutation:()=>Rm,isIdentityPermutation:()=>qM,log:()=>$M,mergeRealAndImagArrays:()=>DM,prepareAndValidate:()=>Nb,prepareSplitSize:()=>XM,segment_util:()=>Vw,shouldFuse:()=>Qd,slice_util:()=>un,splitRealAndImagArrays:()=>OM,tupleValuesAreOne:()=>Wa,upcastType:()=>dr,validateInput:()=>nm,validateUpdateShape:()=>tm,warn:()=>FM});function gM(e,t){let n=e[0].length;e.forEach((a,s)=>{M(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function xM(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function kM(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s/g,jw=",",Uw="...";function jM(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(YM,"").length)/Qm.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${Qm}").`);let[r,a]=e.split(Qm);M(r.indexOf(Uw)===-1,()=>`The ellipsis notation ("${Uw}") is not supported yet.`);let s=r.split(jw),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let d=0;dm.indexOf(p)!==-1))throw new Error(`Output subscripts contain the label ${p} not present in the input subscripts.`);o.indexOf(p)===-1&&o.push(p)}for(let d=0;da!==-1),{permutationIndices:n,expandDims:r}}function HM(e,t,n){let r=new Array(e);for(let a=0;a`Expected dimension ${r[t[a][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function GM(e,t){let n=e,r=[],a=0;e.length===0&&n.push(-1),a=e.length+1;for(let i=0;it===n)}function JM(e,t){let n=[];for(let r=0;r"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);M(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}M(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var Vw={};Me(Vw,{collectGatherOpShapeInfo:()=>tF,computeOutShape:()=>eF,segOpComputeOptimalWindowSize:()=>QM});function QM(e,t){let n=!1,r;for(e<=Jm?(r=e,n=!0):r=Mh(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Mh(e,r+1);return r}function eF(e,t,n){let r=[],a=e.length;for(let s=0;sa))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) ( + ${s}).`);if(nfd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function ZM(e){return e.map(t=>Lu(t))}var Gr={};Me(Gr,{nonMaxSuppressionV3Impl:()=>Rw,nonMaxSuppressionV4Impl:()=>Mw,nonMaxSuppressionV5Impl:()=>Fw,whereImpl:()=>ww});function _e(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&_.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var nF=Gr.whereImpl,op=class extends gu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Ch(this,ca())}nextDataId(){return op.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&E.warn(` ============================ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details. -============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&_.isString(n[0])){let a=n.map(s=>_.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return E.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>_.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return ua().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=_.now();return e(),{kernelMs:_.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ve([e],"where");let t=this.readSync(e.dataId);return hF(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};lp.nextDataId=0;var nA={};Me(nA,{addImpl:()=>Yb,bincountImpl:()=>rA,bincountReduceImpl:()=>Jb,ceilImpl:()=>Qb,concatImpl:()=>aA,expImpl:()=>e_,expm1Impl:()=>t_,floorImpl:()=>n_,gatherV2Impl:()=>r_,greaterImpl:()=>a_,lessImpl:()=>s_,linSpaceImpl:()=>i_,logImpl:()=>o_,maxImpl:()=>l_,maximumImpl:()=>u_,minimumImpl:()=>c_,multiplyImpl:()=>sA,negImpl:()=>h_,notEqualImpl:()=>d_,prodImpl:()=>p_,rangeImpl:()=>oA,rsqrtImpl:()=>f_,simpleAbsImpl:()=>Zb,sliceImpl:()=>up,sparseReshapeImpl:()=>m_,squaredDifferenceImpl:()=>A_,stridedSliceImpl:()=>y_,subImpl:()=>g_,tileImpl:()=>x_,topKImpl:()=>w_,transposeImpl:()=>iA,uniqueImpl:()=>b_});function Zb(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;ve(t,"abs");let r=new Float32Array(_.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=Zb(a),n.makeOutput(r,t.shape,"float32")},pF={kernelName:lo,backendName:"cpu",kernelFunc:dF};function Mt(e){return(t,n,r,a,s)=>{let i=E.assertAndGetBroadcastShape(t,n),o=i.length,l=_.computeStrides(i),c=_.sizeFromShape(i),u=_.getTypedArrayFromDType(s,c),h=t.length,d=n.length,p=_.computeStrides(t),f=_.computeStrides(n),m=E.getBroadcastDims(t,i),A=E.getBroadcastDims(n,i);if(m.length+A.length===0)for(let y=0;yx[k]=0);let v=_.locToIndex(x,h,p),w=g.slice(-d);A.forEach(k=>w[k]=0);let b=_.locToIndex(w,d,f);u[y]=e(r[v],a[b])}return[u,i]}}function Bn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var fF={kernelName:Ph,backendName:"cpu",kernelFunc:Bn};function cp(e,t,n="float32"){if(n==="complex64"){let a=cp(e,t,"float32"),s=cp(e,t,"float32");return Bn({inputs:{real:a,imag:s},backend:e})}let r=_.makeZerosTypedArray(_.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Gr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var mF={kernelName:Es,backendName:"cpu",kernelFunc:Gr};function Si(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var AF={kernelName:sd,backendName:"cpu",kernelFunc:Si};function Ha(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Gr({inputs:{x:a},backend:n});let i=cp(n,a.shape,a.dtype),o=Ha({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Bn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Si({inputs:{input:a},backend:n}),o=Ha({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!_.hasEncodingLoss(a.dtype,s)){let i=Gr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=_.toTypedArray([0],a.dtype),[l,c]=Mt((u,h)=>u!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var yF={kernelName:As,backendName:"cpu",kernelFunc:Ha};function Gt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;ve([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=Ha({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),h=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,p=l.data.get(h.dataId).values,f=l.data.get(d.dataId).values,m=Ha({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(m.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(g.dataId).values,[w,b,k]=n(i.shape,o.shape,p,f,x,v),N=l.makeTensorInfo(k,"float32",w),C=l.makeTensorInfo(k,"float32",b),F=Bn({inputs:{real:N,imag:C},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(N),l.disposeIntermediateTensorInfo(C),F}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}}}function lA(e){return(t,n,r,a,s,i)=>{let o=E.assertAndGetBroadcastShape(t,n),l=_.sizeFromShape(o),c=o.length,u=_.computeStrides(o),h=_.getTypedArrayFromDType("float32",l),d=_.getTypedArrayFromDType("float32",l),p=E.getBroadcastDims(t,o),f=E.getBroadcastDims(n,o),m=E.mergeRealAndImagArrays(r,a),A=E.mergeRealAndImagArrays(s,i),y=t.length,g=_.computeStrides(t),x=n.length,v=_.computeStrides(n);if(p.length+f.length===0)for(let w=0;wk[L]=0);let N=_.locToIndex(k,y,g),C=b.slice(-x);f.forEach(L=>C[L]=0);let F=_.locToIndex(C,x,v),O=e(m[N*2],m[N*2+1],A[F*2],A[F*2+1]);h[w]=O.real,d[w]=O.imag}return[h,d,o]}}var Yb=Mt((e,t)=>e+t),gF=lA((e,t,n,r)=>({real:e+n,imag:t+r})),pc=Gt(Ca,Yb,gF),xF={kernelName:Ca,backendName:"cpu",kernelFunc:pc};function rA(e,t,n,r,a){let s=_.sizeFromShape(r),i=_.makeZerosTypedArray(a,n);for(let o=0;o=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function Jb(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Be([a,n],t.dtype);for(let o=0;o=n||(r?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function Cl(e){return(t,n,r)=>{let a=_.getTypedArrayFromDType(n,t.length);for(let s=0;s{let{x:i}=r;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=_.sizeFromShape(i.shape),u=n||i.dtype,h=_.getArrayFromDType(u,c);for(let d=0;d{let{x:i}=r;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,a);return o.makeTensorInfo(i.shape,c,u)}}var Qb=Cl(e=>Math.ceil(e)),wF=Rl(ys,Qb),bF={kernelName:ys,backendName:"cpu",kernelFunc:wF};function aA(e,t,n,r){let a=_.getArrayFromDType(n,_.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=_.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?E.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;cMath.exp(e)),__=Rl(ks,e_),_F={kernelName:ks,backendName:"cpu",kernelFunc:__},t_=Cl(e=>Math.expm1(e)),vF=Rl(No,t_),kF={kernelName:No,backendName:"cpu",kernelFunc:vF},n_=Cl(e=>Math.floor(e)),IF=Rl(Is,n_),SF={kernelName:Is,backendName:"cpu",kernelFunc:IF};function r_(e,t,n){let r=Be(n,e.dtype);for(let a=0;ae>t?1:0),NF=Gt(Ro,a_,null,"bool"),TF={kernelName:Ro,backendName:"cpu",kernelFunc:NF},s_=Mt((e,t)=>eMath.log(e)),RF=Rl(Rs,o_),MF={kernelName:Rs,backendName:"cpu",kernelFunc:RF};function l_(e,t,n,r){let a=_.getTypedArrayFromDType(r,_.sizeFromShape(n));for(let s=0;so&&(o=c)}a[s]=o}return a}var u_=Mt((e,t)=>Math.max(e,t)),FF=Gt(Fs,u_),$F={kernelName:Fs,backendName:"cpu",kernelFunc:FF},c_=Mt((e,t)=>Math.min(e,t)),DF=Gt(zs,c_),OF={kernelName:zs,backendName:"cpu",kernelFunc:DF},sA=Mt((e,t)=>e*t),zF=lA((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),hp=Gt(Ls,sA,zF),PF={kernelName:Ls,backendName:"cpu",kernelFunc:hp};function h_(e,t,n){let r=_.createScalarValue(-1,n);return sA([],t,r,e,n)}function LF(e){let{inputs:t,backend:n}=e,{x:r}=t;ve(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=h_(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var WF={kernelName:Wo,backendName:"cpu",kernelFunc:LF},d_=Mt((e,t)=>e!==t?1:0),BF=Gt(Bo,d_,null,"bool"),VF={kernelName:Bo,backendName:"cpu",kernelFunc:BF};function iA(e,t,n,r,a){let s=t.length,i=_.sizeFromShape(t),o=_.computeStrides(t),l=_.computeStrides(a),c=_.getTypedArrayFromDType(n,_.sizeFromShape(a));for(let u=0;un.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,f)}var HF={kernelName:qo,backendName:"cpu",kernelFunc:UF};function oA(e,t,n,r){let a=e===t,s=e1;if(a||s||i)return _.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=_.makeZerosTypedArray(o,r);t1/Math.sqrt(e)),GF=Rl(Ks,f_),qF={kernelName:Ks,backendName:"cpu",kernelFunc:GF};function up(e,t,n,r,a){let s=un.isSliceContinous(r,t,n),i=_.sizeFromShape(n),o=_.computeStrides(r);if(s){let h=un.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?E.fromUint8ToStringArray(e):e,c=Be(r,a,l),u=Be(n,a);for(let h=0;hf+t[m]);u.set(c.get(...p),...d)}return a==="string"?E.fromStringArrayToUint8(u.values):u.values}function Ni(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;ve(a,"slice");let[o,l]=un.parseSliceParams(a,s,i);un.assertParamsValid(a,o,l);let c=n.data.get(a.dataId).values,u=up(c,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,u)}var XF={kernelName:Qo,backendName:"cpu",kernelFunc:Ni};function m_(e,t,n,r,a){let s=_.sizeFromShape(r),i=t[0],o=a.length,l=[],c=1,u=-1;for(let A=0;A0){p[d-1]=1;for(let A=d-2;A>=0;--A)p[A]=p[A+1]*r[A+1]}let f=[];if(o>0){f[o-1]=1;for(let A=o-2;A>=0;--A)f[A]=f[A+1]*l[A+1]}let m=_.getArrayFromDType(n,i*o);for(let A=0;A{let n=e-t;return n*n}),KF=Gt(ti,A_),ZF={kernelName:ti,backendName:"cpu",kernelFunc:KF};function y_(e,t,n,r){let a=Be(e,t.dtype);for(let s=0;se-t),YF=lA((e,t,n,r)=>({real:e-n,imag:t-r})),uA=Gt(ni,g_,YF),JF={kernelName:ni,backendName:"cpu",kernelFunc:uA};function x_(e,t){let n=new Array(e.rank);for(let a=0;ax.value-g.value);let m=h*r,A=l.subarray(m,m+r),y=c.subarray(m,m+r);for(let g=0;g{for(let A=0;Anew lp,1);var k_=at(vo,e=>e>=0?e:Math.exp(e)-1),QF={kernelName:vo,backendName:"cpu",kernelFunc:k_};function I_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;ve([a],"leakyRelu");let i=_.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=_.getTypedArrayFromDType("float32",i);for(let c=0;ce<0?t*e:e);function S_(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;ve([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=t$(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var n$={kernelName:js,backendName:"cpu",kernelFunc:S_},N_=at(Us,e=>Math.max(0,e)),r$={kernelName:Us,backendName:"cpu",kernelFunc:N_},T_=at(Gs,e=>Math.min(Math.max(0,e),6)),a$={kernelName:Gs,backendName:"cpu",kernelFunc:T_},E_=at(Ys,e=>1/(1+Math.exp(-e))),s$={kernelName:Ys,backendName:"cpu",kernelFunc:E_};function cA(e,t,n,r,a){if(n==="linear")return Gr({inputs:{x:t},backend:e});if(n==="relu")return N_({inputs:{x:t},backend:e});if(n==="elu")return k_({inputs:{x:t},backend:e});if(n==="relu6")return T_({inputs:{x:t},backend:e});if(n==="prelu")return S_({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return I_({inputs:{x:t},backend:e,attrs:{alpha:a}});if(n==="sigmoid")return E_({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function mt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=_.sizeFromShape(a.shape),o=_.inferFromImplicitShape(s,i),l=_.sizeFromShape(o);_.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let c=n.data.get(a.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,h=c.complexTensorInfos.imag;u.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var i$={kernelName:Ko,backendName:"cpu",kernelFunc:mt};function C_(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;ve([a,s],"matMul");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=_.sizeFromShape(f),y=_.sizeFromShape(m),g=A===y||A===1||y===1;_.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let x=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);_.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[A,u,d]:[A,d,u],w=o?[y,p,h]:[y,h,p],b=mt({inputs:{x:a},backend:n,attrs:{shape:v}}),k=mt({inputs:{x:s},backend:n,attrs:{shape:w}}),N=i?b.shape[1]:b.shape[2],C=i?b.shape[2]:b.shape[1],F=o?k.shape[1]:k.shape[2],O=Math.max(A,y),L=n.data.get(b.dataId).values,V=n.data.get(k.dataId).values,j=_.computeStrides(b.shape),U=_.computeStrides(k.shape),[X,G,ee]=i?[j[0],1,j[1]]:[j[0],j[1],1],[Y,ae,te]=o?[1,U[1],U[0]]:[U[1],1,U[0]],ie=C*F,Q=Be([O,C,F],b.dtype),he=Q.values,oe=n.blockSize;for(let me=0;meMath.acos(e)),h$={kernelName:uo,backendName:"cpu",kernelFunc:c$},d$=at(co,e=>Math.acosh(e)),p$={kernelName:co,backendName:"cpu",kernelFunc:d$};function f$(e){let{inputs:t,backend:n}=e,r=t;ve(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Be(r[0].shape,r[0].dtype),i=s.values;for(let o=0;og&&(g=w,x=v)}p[A]=x}return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var b$={kernelName:ps,backendName:"cpu",kernelFunc:w$};function _$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;ve(a,"argMin");let i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=tr({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],E.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,h]=E.computeOutAndReduceShapes(l.shape,i),d=_.sizeFromShape(u),p=_.makeZerosTypedArray(d,"int32"),f=_.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;An.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var v$={kernelName:vu,backendName:"cpu",kernelFunc:_$},k$=at(fo,e=>Math.asin(e)),I$={kernelName:fo,backendName:"cpu",kernelFunc:k$},S$=at(mo,e=>Math.asinh(e)),N$={kernelName:mo,backendName:"cpu",kernelFunc:S$},T$=at(Ao,e=>Math.atan(e)),E$={kernelName:Ao,backendName:"cpu",kernelFunc:T$},C$=Mt((e,t)=>Math.atan2(e,t)),R$=Gt(go,C$),M$={kernelName:go,backendName:"cpu",kernelFunc:R$},F$=at(yo,e=>Math.atanh(e)),$$={kernelName:yo,backendName:"cpu",kernelFunc:F$};function hA(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,c=a.dilationWidth,u=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Be(a.outShape,n),A=m.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],x=a.outShape[3];for(let v=0;vG?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let ae=L+V*x+k;A[ae]=s==="avg"?ee/Y:G}}}return m}function R_(e,t,n,r,a=!1,s=!1){let i=Be(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,c=r.dilationHeight,u=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,f=r.padInfo.left,m=Be(t,n,e);for(let A=0;AF&&(F=X,a?O=s?((A*r.inHeight+L)*r.inWidth+j)*r.inChannels+y:(L*r.inWidth+j)*r.inChannels+y:O=V*d+U)}}i.set(O,A,g,b,y)}}return i}function M_(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,c=a.dilationDepth,u=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,f=a.effectiveFilterWidth,m=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Be(a.outShape,n),v=x.values,w=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],b=a.outShape[2]*a.outShape[3]*a.outShape[4],k=a.outShape[3]*a.outShape[4],N=a.outShape[4];for(let C=0;CIe?Ie=je:s==="avg"&&(Se+=je,Fe++),isNaN(Ie))break}if(isNaN(Ie))break}if(isNaN(Ie))break}let Oe=pe+L;v[Oe]=s==="avg"?Se/Fe:Ie}}}}return x}function D$(e,t){let n=Be(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m=V&&(V=te,j=X*u*h+ee*u+ae)}}}n.set(j,m,y,w,C,A)}}}return n}function O$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ve(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))h=Gr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=_.computeStrides(a.shape),f=hA(d,a.shape,a.dtype,p,u,"avg");h=n.makeTensorInfo(u.outShape,a.dtype,f.values)}return h}var z$={kernelName:fs,backendName:"cpu",kernelFunc:O$};function P$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;ve(a,"avgPool3d");let u=E.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=M_(h,a.shape,a.dtype,_.computeStrides(a.shape),u,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var L$={kernelName:ku,backendName:"cpu",kernelFunc:P$};function W$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;ve([a,s],"avgPool3DGrad");let u=E.computePool3DInfo(s.shape,i,o,1,l,c),h=u.strideDepth,d=u.strideHeight,p=u.strideWidth,f=u.filterDepth,m=u.filterHeight,A=u.filterWidth,y=u.dilationDepth,g=u.dilationHeight,x=u.dilationWidth,v=u.effectiveFilterDepth,w=u.effectiveFilterHeight,b=u.effectiveFilterWidth,k=v-1-u.padInfo.front,N=b-1-u.padInfo.left,C=w-1-u.padInfo.top,F=Be(s.shape,"float32"),O=1/(f*m*A),L=n.bufferSync(a);for(let V=0;V=u.outDepth||Math.floor(Q)!==Q))for(let he=0;he=u.outHeight||Math.floor(oe)!==oe))for(let me=0;me=u.outWidth||Math.floor(pe)!==pe||(te+=L.get(V,Q,oe,pe,j))}}}F.set(te*O,V,U,X,G,j)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var B$={kernelName:Oh,backendName:"cpu",kernelFunc:W$};function V$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;ve([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=E.computePool2DInfo(i.shape,o,l,1,c),h=u.strideHeight,d=u.strideWidth,p=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,A=u.dilationWidth,y=u.effectiveFilterHeight,g=u.effectiveFilterWidth,x=g-1-u.padInfo.left,v=y-1-u.padInfo.top,w=Be(i.shape,"float32"),b=1/(p*f),k=n.data.get(a.dataId).values,N=Be(a.shape,"float32",k);for(let C=0;C=u.outHeight||Math.floor(G)!==G))for(let ee=0;ee=u.outWidth||Math.floor(Y)!==Y||(U+=N.get(C,G,Y,F))}}w.set(U*b,C,O,L,F)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var j$={kernelName:Dh,backendName:"cpu",kernelFunc:V$};function U$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;_.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ve([a,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=r;c==null&&(c=.001);let u=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),f=i?n.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),A=f.length,y=p.length,g=d.length,x=h.length,v=0,w=0,b=0,k=0;for(let N=0;N=A&&(v=0),w>=x&&(w=0),b>=y&&(b=0),k>=g&&(k=0);return n.makeTensorInfo(a.shape,a.dtype,m)}var H$={kernelName:Ns,backendName:"cpu",kernelFunc:U$};function G$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;ve([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=E.getReshaped(a.shape,s,o),c=E.getPermuted(l.length,s.length),u=E.getReshapedPermuted(a.shape,s,o),h=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(u,i,s.length),p=mt({inputs:{x:a},backend:n,attrs:{shape:l}}),f=tr({inputs:{x:p},backend:n,attrs:{perm:c}}),m=mt({inputs:{x:f},backend:n,attrs:{shape:u}}),A=Ni({inputs:{x:m},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var q$={kernelName:Iu,backendName:"cpu",kernelFunc:G$};function X$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,c=rA(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var K$={kernelName:zh,backendName:"cpu",kernelFunc:X$},Z$=at(Ra,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(_.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;cm.shape),s);if(_.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>_.sizeFromShape(m.shape)>0);if(o.length===1)return Gr({inputs:{x:o[0]},backend:n});let l=o.map(m=>m.shape);if(E.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let m=o.map(v=>Si({inputs:{input:v},backend:n})),A=o.map(v=>Ml({inputs:{input:v},backend:n})),y=Fl({inputs:m,backend:n,attrs:{axis:s}}),g=Fl({inputs:A,backend:n,attrs:{axis:s}}),x=Bn({inputs:{real:y,imag:g},backend:n});return m.forEach(v=>n.disposeIntermediateTensorInfo(v)),A.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),x}let c=o.map(m=>{let A=_.sizeFromShape(m.shape.slice(s));return mt({inputs:{x:m},backend:n,attrs:{shape:[-1,A]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));i=E.computeOutShape(c.map(m=>m.shape),1);let h=c[0].shape[0]===1,d=aA(u,i,t[0].dtype,h),p=E.computeOutShape(o.map(m=>m.shape),s),f=n.makeTensorInfo(p,t[0].dtype,d);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var tD={kernelName:xo,backendName:"cpu",kernelFunc:Fl};function F_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r;ve([a,s],"conv2d");let h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,x=d.dataFormat==="channelsLast",v=new Ot(d.outShape,a.dtype),w=_.computeStrides(a.shape),b=_.computeStrides(s.shape),k=w[0],N=x?w[1]:w[2],C=x?w[2]:1,F=x?1:w[1],O=v.strides[0],L=x?v.strides[1]:v.strides[2],V=x?v.strides[2]:1,j=x?1:v.strides[1],U=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,G=v.values;for(let ee=0;ee=d.inHeight)continue;let me=he*b[0],pe=Y+oe*N;for(let Ie=0;Ie=d.inWidth)continue;let et=me+Oe*b[1],tt=pe+$e*C,it=et;for(let Ke=0;Ke=c.inDepth)continue;let ee=X*C[0],Y=O+G*N[1];for(let ae=0;ae=c.inHeight)continue;let oe=ee+Q*C[1],me=Y+he*N[2];for(let pe=0;pe=c.inWidth)continue;let $e=oe+Fe*C[2],et=me+Oe*c.inChannels,tt=$e;for(let it=0;itMath.cos(e)),fD={kernelName:ws,backendName:"cpu",kernelFunc:pD},mD=at(wo,e=>Math.cosh(e)),AD={kernelName:wo,backendName:"cpu",kernelFunc:mD};function yD(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,[u,h,d,p]=a.shape,f=s.shape[0],[m,A]=o,y=Be([f,m,A,p],"float32"),g=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(a.dataId).values,w=_.computeStrides(a.shape),b=_.computeStrides(y.shape);for(let k=0;k=u)continue;let j=m>1?(O-C)*(h-1)/(m-1):0,U=A>1?(L-F)*(d-1)/(A-1):0;for(let X=0;X1?C*(h-1)+X*j:.5*(C+O)*(h-1);if(G<0||G>h-1){for(let ee=0;ee1?F*(d-1)+te*U:.5*(F+L)*(d-1);if(ie<0||ie>d-1){for(let me=0;me1?F*(d-1)+ee*U:.5*(F+L)*(d-1);if(Y<0||Y>d-1){for(let ie=0;iey+f-g-1:(y,g)=>y+g;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],c=a.shape[2],u=a.shape[3],h=l*s,d=c*s,p=u/(s*s),f=n.data.get(a.dataId).values,m=new Float32Array(o*h*d*p),A=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=E.computeConv2DInfo(a.shape,s.shape,i,d,o,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:A,dilationWidth:y,padInfo:g}=p,x=g.left,v=g.top,w=p.outChannels/p.inChannels,b=new Ot(p.outShape,a.dtype),k=n.data.get(a.dataId).values,N=n.data.get(s.dataId).values,C=b.values;for(let F=0;F=p.inHeight)continue;let ee=X*h[0],Y=O+G*u[1];for(let ae=0;ae=p.inWidth)continue;let oe=ee+Q*h[1],me=Y+he*p.inChannels,pe=te,Ie=oe;for(let Se=0;Se{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(r.dataId).values,u=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:A,outHeight:y,outWidth:g,padInfo:x,strideHeight:v,strideWidth:w,filterHeight:b,filterWidth:k,dilationHeight:N,dilationWidth:C,outShape:F}=E.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),O=_.sizeFromShape(F),L=F.length,V=_.getArrayFromDType(r.dtype,O);for(let j=0;j=0&&Q=0&&oeae&&(ae=Ie)}}}let te=_.locToIndex([j,U,G,Y],L,_.computeStrides(F));V[te]=ae}}}return{dataId:l.write(_.toTypedArray(V,r.dtype),F,r.dtype),shape:F,dtype:r.dtype}}},FD={kernelName:qh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=_.toNestedArray(r.shape,c.data.get(r.dataId).values),h=_.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:v,filterHeight:w,filterWidth:b,dilationHeight:k,dilationWidth:N,outShape:C}=E.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);_.assert(s.rank===C.length,()=>`Error in ${qh}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let F=_.toNestedArray(C,c.data.get(s.dataId).values),O=_.makeZerosNestedTypedArray(a.shape,a.dtype);for(let L=0;L=0&&ie=0&&heee&&(ee=oe,Y=te,ae=Q)}}}O[Y][ae][G]+=F[L][V][U][G]}}}return{dataId:c.write(_.toTypedArray(O,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},$D={kernelName:Gh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=_.toNestedArray(r.shape,c.data.get(r.dataId).values),h=_.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:v,filterHeight:w,filterWidth:b,dilationHeight:k,dilationWidth:N,outShape:C}=E.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);_.assert(s.rank===C.length,()=>`Error in ${Gh}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let F=_.toNestedArray(C,c.data.get(s.dataId).values),O=_.makeZerosNestedTypedArray(r.shape,r.dtype);for(let L=0;L=0&&ie=0&&heee&&(ee=oe,Y=ie,ae=he)}}}O[L][Y][ae][G]+=F[L][V][U][G]}}}return{dataId:c.write(_.toTypedArray(O,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function fc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"sum");let o;a.dtype==="bool"?o=Ha({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Gr({inputs:{x:a},backend:n});let l=o.shape.length,c=_.parseAxisParam(s,o.shape),u=E.getAxesPermutation(c,l),h=c,d=o;u!=null&&(d=tr({inputs:{x:o},backend:n,attrs:{perm:u}}),h=E.getInnerMostAxes(h.length,l)),E.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,f]=E.computeOutAndReduceShapes(d.shape,h),m=E.upcastType(d.dtype,"int32"),A=cp(n,p,m),y=_.sizeFromShape(f),g=n.data.get(A.dataId).values,x=n.data.get(d.dataId).values;for(let v=0;v=0&&(d=fc({inputs:{x:d},backend:n,attrs:{axis:c[m]-(i.length-p),keepDims:!1}}),f.push(d)),p--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var zD={kernelName:Xh,backendName:"cpu",kernelFunc:OD};function PD(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;ve([r,a],"eluGrad");let s=new Float32Array(_.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(a.shape,"float32",s)}var LD={kernelName:Kh,backendName:"cpu",kernelFunc:PD},WD=Mt((e,t)=>e===t?1:0),D_=Gt(Io,WD,null,"bool"),BD={kernelName:Io,backendName:"cpu",kernelFunc:D_},VD=E.ERF_P,jD=E.ERF_A1,UD=E.ERF_A2,HD=E.ERF_A3,GD=E.ERF_A4,qD=E.ERF_A5,XD=at(ko,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+VD*n);return t*(1-((((qD*r+GD)*r+HD)*r+UD)*r+jD)*r*Math.exp(-n*n))}),KD={kernelName:ko,backendName:"cpu",kernelFunc:XD};function dp(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(_.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),mt({inputs:{x:a},backend:n,attrs:{shape:o}})}var ZD={kernelName:So,backendName:"cpu",kernelFunc:dp},YD=Mt((e,t)=>e/t),dA=Gt(vs,YD),pA={kernelName:vs,backendName:"cpu",kernelFunc:dA};function O_(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[a,s],u=_.sizeFromShape(c),h=_.getTypedArrayFromDType("float32",u),d=_.getTypedArrayFromDType("float32",u);for(let A=0;A{let{image:r}=e,a=n,s=_.getTypedArrayFromDType(r.dtype,_.sizeFromShape(r.shape)),[i,o,l,c]=r.shape,u=a.data.get(r.dataId).values;for(let h=0;h=0&&xMath.floor(e/t)),oO=Gt(Ss,iO,null,"int32"),lO={kernelName:Ss,backendName:"cpu",kernelFunc:oO};function uO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=F_({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=pc({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=cA(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var cO={kernelName:oi,backendName:"cpu",kernelFunc:uO};function hO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=$_({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=pc({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=cA(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var dO={kernelName:li,backendName:"cpu",kernelFunc:hO};function pO(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=_.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,c,u,h]=E.prepareAndValidate(r,a);if(c===0)return n.makeTensorInfo(l,r.dtype,[]);let d=Be([c,u],r.dtype),p=n.data.get(a.dataId).values,f=n.data.get(r.dataId).values;for(let m=0;m=s/u)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;ge>=t?1:0),gO=Gt(Ts,yO,null,"bool"),xO={kernelName:Ts,backendName:"cpu",kernelFunc:gO};function wO(e){let{inputs:t,backend:n}=e,{input:r}=t,a=_.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=mt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=O_(o,!0,n),c=mt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var bO={kernelName:Yh,backendName:"cpu",kernelFunc:wO},_O=at(Mo,e=>Number.isFinite(e)?1:0,"bool"),vO={kernelName:Mo,backendName:"cpu",kernelFunc:_O},kO=at(Fo,e=>Math.abs(e)===Infinity?1:0,"bool"),IO={kernelName:Fo,backendName:"cpu",kernelFunc:kO},SO=at($o,e=>Number.isNaN(e)?1:0,"bool"),NO={kernelName:$o,backendName:"cpu",kernelFunc:SO},TO=Mt((e,t)=>e<=t?1:0),EO=Gt(Oo,TO,null,"bool"),CO={kernelName:Oo,backendName:"cpu",kernelFunc:EO};function RO(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=i_(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var MO={kernelName:Qh,backendName:"cpu",kernelFunc:RO},FO=at(zo,e=>Math.log1p(e)),$O={kernelName:zo,backendName:"cpu",kernelFunc:FO},DO=Mt((e,t)=>e&&t),OO=Gt(Po,DO,null,"bool"),zO={kernelName:Po,backendName:"cpu",kernelFunc:OO},PO=at(Cu,e=>e?0:1,"bool"),LO={kernelName:Cu,backendName:"cpu",kernelFunc:PO},WO=Mt((e,t)=>e||t),BO=Gt(Ru,WO,null,"bool"),VO={kernelName:Ru,backendName:"cpu",kernelFunc:BO};function jO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;ve(a,"LRN");let c=a.shape[3],u=c-1,h=n.data.get(a.dataId).values,d=_.sizeFromShape(a.shape),p=new Float32Array(d);function f(m){let A=m%c,y=m-A+Math.max(0,A-s),g=m-A+Math.min(A+s,u),x=0;for(;y<=g;y++){let v=h[y];x+=v*v}return x}for(let m=0;m`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))h=Gr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=_.computeStrides(a.shape),f=hA(d,a.shape,a.dtype,p,u,"max");h=n.makeTensorInfo(u.outShape,a.dtype,f.values)}return h}var KO={kernelName:$s,backendName:"cpu",kernelFunc:XO};function ZO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;ve(a,"maxPool3d");let u=E.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=M_(h,a.shape,a.dtype,_.computeStrides(a.shape),u,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var YO={kernelName:Fu,backendName:"cpu",kernelFunc:ZO};function JO(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;ve([a,s],"maxPool3DGrad");let u=E.computePool3DInfo(s.shape,i,o,1,l,c),h=n.bufferSync(s),d=D$(h,u),p=u.strideDepth,f=u.strideHeight,m=u.strideWidth,A=u.dilationDepth,y=u.dilationHeight,g=u.dilationWidth,x=u.effectiveFilterDepth,v=u.effectiveFilterHeight,w=u.effectiveFilterWidth,b=x-1-u.padInfo.front,k=w-1-u.padInfo.left,N=v-1-u.padInfo.top,C=Be(s.shape,"float32"),F=n.bufferSync(a);for(let O=0;O=u.outDepth||Math.floor(te)!==te))for(let ie=0;ie=u.outHeight||Math.floor(Q)!==Q))for(let he=0;he=u.outWidth||Math.floor(oe)!==oe)continue;let me=x*v*w-1-d.get(O,te,Q,oe,L),pe=ae*v*w+ie*w+he,Ie=me===pe?1:0;Ie!==0&&(Y+=F.get(O,te,Q,oe,L)*Ie)}}}C.set(Y,O,V,j,U,L)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var QO={kernelName:nd,backendName:"cpu",kernelFunc:JO};function ez(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;ve([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=E.computePool2DInfo(o.shape,l,c,1,u,h),p=n.data.get(o.dataId).values,f=Be(d.outShape,o.dtype,R_(p,o.shape,o.dtype,d).values),m=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,x=d.effectiveFilterHeight,v=d.effectiveFilterWidth,w=v-1-d.padInfo.left,b=x-1-d.padInfo.top,k=Be(o.shape,"float32"),N=n.data.get(a.dataId).values,C=Be(a.shape,"float32",N);for(let F=0;F=d.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y=d.outWidth||Math.floor(ae)!==ae)continue;let te=x*v-1-f.get(F,ee,ae,O),ie=G*v+Y,Q=te===ie?1:0;Q!==0&&(X+=C.get(F,ee,ae,O)*Q)}}k.set(X,F,L,V,O)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var tz={kernelName:td,backendName:"cpu",kernelFunc:ez};function nz(e,t,n,r,a){let s=_.computeStrides(t),i=hA(e,t,n,s,a,"max"),o=R_(e,t,n,a,!0,r);return[i.values,o.values]}var rz={kernelName:rd,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ve(r,"MaxPoolWithArgmax");let c=l.data.get(r.dataId).values,u=E.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=nz(c,r.shape,r.dtype,o,u),p=l.write(h,u.outShape,r.dtype),f=l.write(d,u.outShape,r.dtype);return[{dataId:p,shape:u.outShape,dtype:r.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function az(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=_.parseAxisParam(s,a.shape),l=E.computeOutAndReduceShapes(a.shape,o)[1],c=_.sizeFromShape(l),u=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));u.push(h);let d=Ha({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});u.push(d);let p=dA({inputs:{a:d,b:h},backend:n});u.push(p);let f=fc({inputs:{x:p},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var sz={kernelName:Ds,backendName:"cpu",kernelFunc:az};function iz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"min");let o=_.parseAxisParam(s,a.shape),l=o,c=E.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=tr({inputs:{x:a},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,a.shape.length)),E.assertAxesAreInnerMostDims("min",l,u.shape.length);let[h,d]=E.computeOutAndReduceShapes(u.shape,l),p=_.sizeFromShape(d),f=_.makeZerosTypedArray(_.sizeFromShape(h),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;yg[0]+a.shape[x]+g[1]),l=s.map(g=>g[0]),c=s.map((g,x)=>g[0]+a.shape[x]),u=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=_.computeStrides(a.shape),f=_.sizeFromShape(o),m=o.length,A=_.computeStrides(o),y=_.getTypedArrayFromDType(a.dtype,f);for(let g=0;g=c[w]&&(x[w]=(c[w]-1)*2-x[w]+u);x=x.map((w,b)=>w-l[b]);let v=_.locToIndex(x,d,p);y[g]=h[v]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var uz={kernelName:Ps,backendName:"cpu",kernelFunc:lz},cz=Mt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),hz=Gt(Lo,cz),dz={kernelName:Lo,backendName:"cpu",kernelFunc:hz},pz=so(d5());function P_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=_.parseAxisParam([o],a.shape),c=z_({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=E.expandShapeToKeepDim(c.shape,l),h=mt({inputs:{x:c},backend:n,attrs:{shape:u}}),d=uA({inputs:{a,b:h},backend:n}),p=__({inputs:{x:d},backend:n}),f=fc({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=mt({inputs:{x:f},backend:n,attrs:{shape:u}}),A=dA({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var fz={kernelName:ei,backendName:"cpu",kernelFunc:P_};function mz(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;ve(a,"multinomial");let l=o?a:P_({inputs:{logits:a},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],h=n.data.get(l.dataId).values,d=[c,s],p=_.makeZerosTypedArray(_.sizeFromShape(d),"int32");for(let f=0;f=0&&u[h]{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=dp({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=Fl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var Cz={kernelName:Go,backendName:"cpu",kernelFunc:W_};function Rz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;ve(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),c=n.data.get(a.dataId).values,u=_.sizeFromShape(a.shape),h=a.shape.length,d=_.computeStrides(a.shape),p=_.sizeFromShape(o),f=o.length,m=_.computeStrides(o),A=_.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;yv+l[w]),x=_.locToIndex(g,f,m);A[x]=c[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var B_={kernelName:Bs,backendName:"cpu",kernelFunc:Rz},Mz=Mt((e,t)=>Math.pow(e,t)),Fz=Gt(Vs,Mz),$z={kernelName:Vs,backendName:"cpu",kernelFunc:Fz};function Dz(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=oA(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var Oz={kernelName:$u,backendName:"cpu",kernelFunc:Dz},zz=at(Xo,e=>1/e),Pz={kernelName:Xo,backendName:"cpu",kernelFunc:zz};function Lz(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;ve(a,"resizeBilinear");let l=_.computeStrides(a.shape),[c,u]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(_.sizeFromShape([h,c,u,f])),y=[s&&c>1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=0,v=y[0]/g[0],w=y[1]/g[1];for(let b=0;b1?c-1:c,i&&p>1?u-1:u],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=m[0]/A[0],g=m[1]/A[1],x=n.data.get(s.dataId).values,v=0;for(let w=0;w1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=y[0]/g[0],v=y[1]/g[1],w=0;for(let b=0;b1?u-1:u,i&&f>1?h-1:h],g=[i&&p>1?p-1:p,i&&f>1?f-1:f],x=y[0]/g[0],v=y[1]/g[1],w=1/x,b=1/v,k=Math.ceil(w)*2+2,N=Math.ceil(b)*2+2;for(let C=0;C=p)continue;let Q=F+ie*l[1],he=ie*x,oe=Math.min(u-1,i?Math.round(he):Math.floor(he));if(O===oe)for(let me=0;me=f)continue;let Ie=Q+pe*l[2],Se=pe*v,Fe=Math.min(h-1,i?Math.round(Se):Math.floor(Se));U===Fe&&(ae+=A[Ie+Y])}}m[X+Y]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,m)}var Gz={kernelName:id,backendName:"cpu",kernelFunc:Hz};function qz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;ve(a,"reverse");let i=a.shape.length,o=_.parseAxisParam(s,a.shape);if(i===0)return Gr({inputs:{x:a},backend:n});let l=new Ot(a.shape,a.dtype),c=n.bufferSync(a);for(let u=0;ud[p]=a.shape[p]-1-d[p]),l.set(c.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var Xz={kernelName:qs,backendName:"cpu",kernelFunc:qz},Kz={kernelName:ll,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=_.getTypedArrayFromDType(r.dtype,_.sizeFromShape(r.shape)),[c,u,h,d]=r.shape,[p,f]=E.getImageCenter(i,u,h),m=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let x=0;x=0&&V=0&&j{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),Yz={kernelName:Xs,backendName:"cpu",kernelFunc:Zz};function V_(e,t,n,r,a,s,i,o,l,c){let u=[r/a,a],h=e.values,d=t.values;if(r===0)return Be(n,t.dtype);let p=Be(u,t.dtype);p.values.fill(l);for(let f=0;f=r/a)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y1||a.shape.length===1?1:_.sizeFromShape(a.shape.slice(1));for(let f=0;fe>=0?rP*e:nP*(Math.exp(e)-1)),sP={kernelName:Jo,backendName:"cpu",kernelFunc:aP},iP=at(tl,e=>e<0?-1:e>0?1:0),oP={kernelName:tl,backendName:"cpu",kernelFunc:iP},lP=at(Zs,e=>Math.sin(e)),uP={kernelName:Zs,backendName:"cpu",kernelFunc:lP},cP=at(el,e=>Math.sinh(e)),hP={kernelName:el,backendName:"cpu",kernelFunc:cP},dP=11920928955078125e-23,j_=Math.log(dP)+2,pP=at(nl,e=>{let t=e>-j_,n=e0&&_.isString(n[0])){let a=n.map(s=>_.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return E.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>_.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return ca().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=_.now();return e(),{kernelMs:_.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){_e([e],"where");let t=this.readSync(e.dataId);return nF(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};op.nextDataId=0;var eA={};Me(eA,{addImpl:()=>Gw,bincountImpl:()=>tA,bincountReduceImpl:()=>qw,ceilImpl:()=>Xw,concatImpl:()=>nA,expImpl:()=>Kw,expm1Impl:()=>Zw,floorImpl:()=>Yw,gatherV2Impl:()=>Jw,greaterImpl:()=>Qw,lessImpl:()=>e_,linSpaceImpl:()=>t_,logImpl:()=>n_,maxImpl:()=>r_,maximumImpl:()=>a_,minimumImpl:()=>s_,multiplyImpl:()=>rA,negImpl:()=>i_,notEqualImpl:()=>o_,prodImpl:()=>l_,rangeImpl:()=>sA,rsqrtImpl:()=>u_,simpleAbsImpl:()=>Hw,sliceImpl:()=>lp,sparseReshapeImpl:()=>c_,squaredDifferenceImpl:()=>h_,stridedSliceImpl:()=>d_,subImpl:()=>p_,tileImpl:()=>f_,topKImpl:()=>m_,transposeImpl:()=>aA,uniqueImpl:()=>A_});function Hw(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;_e(t,"abs");let r=new Float32Array(_.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=Hw(a),n.makeOutput(r,t.shape,"float32")},aF={kernelName:lo,backendName:"cpu",kernelFunc:rF};function Mt(e){return(t,n,r,a,s)=>{let i=E.assertAndGetBroadcastShape(t,n),o=i.length,l=_.computeStrides(i),c=_.sizeFromShape(i),u=_.getTypedArrayFromDType(s,c),h=t.length,d=n.length,p=_.computeStrides(t),m=_.computeStrides(n),f=E.getBroadcastDims(t,i),A=E.getBroadcastDims(n,i);if(f.length+A.length===0)for(let y=0;yx[k]=0);let v=_.locToIndex(x,h,p),b=g.slice(-d);A.forEach(k=>b[k]=0);let w=_.locToIndex(b,d,m);u[y]=e(r[v],a[w])}return[u,i]}}function Bn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var sF={kernelName:zh,backendName:"cpu",kernelFunc:Bn};function up(e,t,n="float32"){if(n==="complex64"){let a=up(e,t,"float32"),s=up(e,t,"float32");return Bn({inputs:{real:a,imag:s},backend:e})}let r=_.makeZerosTypedArray(_.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function qr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var iF={kernelName:Cs,backendName:"cpu",kernelFunc:qr};function Ni(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var oF={kernelName:ad,backendName:"cpu",kernelFunc:Ni};function Ga(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return qr({inputs:{x:a},backend:n});let i=up(n,a.shape,a.dtype),o=Ga({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Bn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Ni({inputs:{input:a},backend:n}),o=Ga({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!_.hasEncodingLoss(a.dtype,s)){let i=qr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=_.toTypedArray([0],a.dtype),[l,c]=Mt((u,h)=>u!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var lF={kernelName:ys,backendName:"cpu",kernelFunc:Ga};function Gt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;_e([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=Ga({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),h=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,p=l.data.get(h.dataId).values,m=l.data.get(d.dataId).values,f=Ga({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(f.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(g.dataId).values,[b,w,k]=n(i.shape,o.shape,p,m,x,v),N=l.makeTensorInfo(k,"float32",b),C=l.makeTensorInfo(k,"float32",w),F=Bn({inputs:{real:N,imag:C},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(N),l.disposeIntermediateTensorInfo(C),F}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}}}function iA(e){return(t,n,r,a,s,i)=>{let o=E.assertAndGetBroadcastShape(t,n),l=_.sizeFromShape(o),c=o.length,u=_.computeStrides(o),h=_.getTypedArrayFromDType("float32",l),d=_.getTypedArrayFromDType("float32",l),p=E.getBroadcastDims(t,o),m=E.getBroadcastDims(n,o),f=E.mergeRealAndImagArrays(r,a),A=E.mergeRealAndImagArrays(s,i),y=t.length,g=_.computeStrides(t),x=n.length,v=_.computeStrides(n);if(p.length+m.length===0)for(let b=0;bk[L]=0);let N=_.locToIndex(k,y,g),C=w.slice(-x);m.forEach(L=>C[L]=0);let F=_.locToIndex(C,x,v),O=e(f[N*2],f[N*2+1],A[F*2],A[F*2+1]);h[b]=O.real,d[b]=O.imag}return[h,d,o]}}var Gw=Mt((e,t)=>e+t),uF=iA((e,t,n,r)=>({real:e+n,imag:t+r})),hc=Gt(Ra,Gw,uF),cF={kernelName:Ra,backendName:"cpu",kernelFunc:hc};function tA(e,t,n,r,a){let s=_.sizeFromShape(r),i=_.makeZerosTypedArray(a,n);for(let o=0;o=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function qw(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Be([a,n],t.dtype);for(let o=0;o=n||(r?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function Cl(e){return(t,n,r)=>{let a=_.getTypedArrayFromDType(n,t.length);for(let s=0;s{let{x:i}=r;if(_e(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=_.sizeFromShape(i.shape),u=n||i.dtype,h=_.getArrayFromDType(u,c);for(let d=0;d{let{x:i}=r;if(_e(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,a);return o.makeTensorInfo(i.shape,c,u)}}var Xw=Cl(e=>Math.ceil(e)),hF=Rl(gs,Xw),dF={kernelName:gs,backendName:"cpu",kernelFunc:hF};function nA(e,t,n,r){let a=_.getArrayFromDType(n,_.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=_.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?E.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;cMath.exp(e)),y_=Rl(Is,Kw),pF={kernelName:Is,backendName:"cpu",kernelFunc:y_},Zw=Cl(e=>Math.expm1(e)),fF=Rl(No,Zw),mF={kernelName:No,backendName:"cpu",kernelFunc:fF},Yw=Cl(e=>Math.floor(e)),AF=Rl(Ss,Yw),yF={kernelName:Ss,backendName:"cpu",kernelFunc:AF};function Jw(e,t,n){let r=Be(n,e.dtype);for(let a=0;ae>t?1:0),gF=Gt(Ro,Qw,null,"bool"),xF={kernelName:Ro,backendName:"cpu",kernelFunc:gF},e_=Mt((e,t)=>eMath.log(e)),_F=Rl(Ms,n_),vF={kernelName:Ms,backendName:"cpu",kernelFunc:_F};function r_(e,t,n,r){let a=_.getTypedArrayFromDType(r,_.sizeFromShape(n));for(let s=0;so&&(o=c)}a[s]=o}return a}var a_=Mt((e,t)=>Math.max(e,t)),kF=Gt($s,a_),IF={kernelName:$s,backendName:"cpu",kernelFunc:kF},s_=Mt((e,t)=>Math.min(e,t)),SF=Gt(Ps,s_),NF={kernelName:Ps,backendName:"cpu",kernelFunc:SF},rA=Mt((e,t)=>e*t),TF=iA((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),cp=Gt(Ws,rA,TF),EF={kernelName:Ws,backendName:"cpu",kernelFunc:cp};function i_(e,t,n){let r=_.createScalarValue(-1,n);return rA([],t,r,e,n)}function CF(e){let{inputs:t,backend:n}=e,{x:r}=t;_e(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=i_(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var RF={kernelName:Wo,backendName:"cpu",kernelFunc:CF},o_=Mt((e,t)=>e!==t?1:0),MF=Gt(Bo,o_,null,"bool"),FF={kernelName:Bo,backendName:"cpu",kernelFunc:MF};function aA(e,t,n,r,a){let s=t.length,i=_.sizeFromShape(t),o=_.computeStrides(t),l=_.computeStrides(a),c=_.getTypedArrayFromDType(n,_.sizeFromShape(a));for(let u=0;un.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,m)}var OF={kernelName:qo,backendName:"cpu",kernelFunc:DF};function sA(e,t,n,r){let a=e===t,s=e1;if(a||s||i)return _.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=_.makeZerosTypedArray(o,r);t1/Math.sqrt(e)),zF=Rl(Zs,u_),PF={kernelName:Zs,backendName:"cpu",kernelFunc:zF};function lp(e,t,n,r,a){let s=un.isSliceContinous(r,t,n),i=_.sizeFromShape(n),o=_.computeStrides(r);if(s){let h=un.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?E.fromUint8ToStringArray(e):e,c=Be(r,a,l),u=Be(n,a);for(let h=0;hm+t[f]);u.set(c.get(...p),...d)}return a==="string"?E.fromStringArrayToUint8(u.values):u.values}function Ti(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;_e(a,"slice");let[o,l]=un.parseSliceParams(a,s,i);un.assertParamsValid(a,o,l);let c=n.data.get(a.dataId).values,u=lp(c,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,u)}var LF={kernelName:Qo,backendName:"cpu",kernelFunc:Ti};function c_(e,t,n,r,a){let s=_.sizeFromShape(r),i=t[0],o=a.length,l=[],c=1,u=-1;for(let A=0;A0){p[d-1]=1;for(let A=d-2;A>=0;--A)p[A]=p[A+1]*r[A+1]}let m=[];if(o>0){m[o-1]=1;for(let A=o-2;A>=0;--A)m[A]=m[A+1]*l[A+1]}let f=_.getArrayFromDType(n,i*o);for(let A=0;A{let n=e-t;return n*n}),WF=Gt(ni,h_),BF={kernelName:ni,backendName:"cpu",kernelFunc:WF};function d_(e,t,n,r){let a=Be(e,t.dtype);for(let s=0;se-t),VF=iA((e,t,n,r)=>({real:e-n,imag:t-r})),oA=Gt(ri,p_,VF),jF={kernelName:ri,backendName:"cpu",kernelFunc:oA};function f_(e,t){let n=new Array(e.rank);for(let a=0;ax.value-g.value);let f=h*r,A=l.subarray(f,f+r),y=c.subarray(f,f+r);for(let g=0;g{for(let A=0;Anew op,1);var x_=rt(vo,e=>e>=0?e:Math.exp(e)-1),UF={kernelName:vo,backendName:"cpu",kernelFunc:x_};function b_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;_e([a],"leakyRelu");let i=_.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=_.getTypedArrayFromDType("float32",i);for(let c=0;ce<0?t*e:e);function w_(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;_e([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=GF(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var qF={kernelName:Us,backendName:"cpu",kernelFunc:w_},__=rt(Hs,e=>Math.max(0,e)),XF={kernelName:Hs,backendName:"cpu",kernelFunc:__},v_=rt(qs,e=>Math.min(Math.max(0,e),6)),KF={kernelName:qs,backendName:"cpu",kernelFunc:v_},k_=rt(Js,e=>1/(1+Math.exp(-e))),ZF={kernelName:Js,backendName:"cpu",kernelFunc:k_};function lA(e,t,n,r,a){if(n==="linear")return qr({inputs:{x:t},backend:e});if(n==="relu")return __({inputs:{x:t},backend:e});if(n==="elu")return x_({inputs:{x:t},backend:e});if(n==="relu6")return v_({inputs:{x:t},backend:e});if(n==="prelu")return w_({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return b_({inputs:{x:t},backend:e,attrs:{alpha:a}});if(n==="sigmoid")return k_({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function mt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=_.sizeFromShape(a.shape),o=_.inferFromImplicitShape(s,i),l=_.sizeFromShape(o);_.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let c=n.data.get(a.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,h=c.complexTensorInfos.imag;u.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var YF={kernelName:Ko,backendName:"cpu",kernelFunc:mt};function I_(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;_e([a,s],"matMul");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=_.sizeFromShape(m),y=_.sizeFromShape(f),g=A===y||A===1||y===1;_.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);_.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[A,u,d]:[A,d,u],b=o?[y,p,h]:[y,h,p],w=mt({inputs:{x:a},backend:n,attrs:{shape:v}}),k=mt({inputs:{x:s},backend:n,attrs:{shape:b}}),N=i?w.shape[1]:w.shape[2],C=i?w.shape[2]:w.shape[1],F=o?k.shape[1]:k.shape[2],O=Math.max(A,y),L=n.data.get(w.dataId).values,V=n.data.get(k.dataId).values,j=_.computeStrides(w.shape),U=_.computeStrides(k.shape),[X,G,ee]=i?[j[0],1,j[1]]:[j[0],j[1],1],[Y,ae,te]=o?[1,U[1],U[0]]:[U[1],1,U[0]],ie=C*F,Q=Be([O,C,F],w.dtype),he=Q.values,oe=n.blockSize;for(let me=0;meMath.acos(e)),n$={kernelName:uo,backendName:"cpu",kernelFunc:t$},r$=rt(co,e=>Math.acosh(e)),a$={kernelName:co,backendName:"cpu",kernelFunc:r$};function s$(e){let{inputs:t,backend:n}=e,r=t;_e(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Be(r[0].shape,r[0].dtype),i=s.values;for(let o=0;og&&(g=b,x=v)}p[A]=x}return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var d$={kernelName:fs,backendName:"cpu",kernelFunc:h$};function p$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;_e(a,"argMin");let i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=tr({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],E.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,h]=E.computeOutAndReduceShapes(l.shape,i),d=_.sizeFromShape(u),p=_.makeZerosTypedArray(d,"int32"),m=_.sizeFromShape(h),f=n.data.get(l.dataId).values;for(let A=0;An.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var f$={kernelName:wu,backendName:"cpu",kernelFunc:p$},m$=rt(fo,e=>Math.asin(e)),A$={kernelName:fo,backendName:"cpu",kernelFunc:m$},y$=rt(mo,e=>Math.asinh(e)),g$={kernelName:mo,backendName:"cpu",kernelFunc:y$},x$=rt(Ao,e=>Math.atan(e)),b$={kernelName:Ao,backendName:"cpu",kernelFunc:x$},w$=Mt((e,t)=>Math.atan2(e,t)),_$=Gt(go,w$),v$={kernelName:go,backendName:"cpu",kernelFunc:_$},k$=rt(yo,e=>Math.atanh(e)),I$={kernelName:yo,backendName:"cpu",kernelFunc:k$};function uA(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,c=a.dilationWidth,u=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Be(a.outShape,n),A=f.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],x=a.outShape[3];for(let v=0;vG?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let ae=L+V*x+k;A[ae]=s==="avg"?ee/Y:G}}}return f}function S_(e,t,n,r,a=!1,s=!1){let i=Be(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,c=r.dilationHeight,u=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,m=r.padInfo.left,f=Be(t,n,e);for(let A=0;AF&&(F=X,a?O=s?((A*r.inHeight+L)*r.inWidth+j)*r.inChannels+y:(L*r.inWidth+j)*r.inChannels+y:O=V*d+U)}}i.set(O,A,g,w,y)}}return i}function N_(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,c=a.dilationDepth,u=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,m=a.effectiveFilterWidth,f=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Be(a.outShape,n),v=x.values,b=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],w=a.outShape[2]*a.outShape[3]*a.outShape[4],k=a.outShape[3]*a.outShape[4],N=a.outShape[4];for(let C=0;CIe?Ie=je:s==="avg"&&(Se+=je,Fe++),isNaN(Ie))break}if(isNaN(Ie))break}if(isNaN(Ie))break}let Oe=pe+L;v[Oe]=s==="avg"?Se/Fe:Ie}}}}return x}function S$(e,t){let n=Be(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,m=t.padInfo.left;for(let f=0;f=V&&(V=te,j=X*u*h+ee*u+ae)}}}n.set(j,f,y,b,C,A)}}}return n}function N$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;_e(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))h=qr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=_.computeStrides(a.shape),m=uA(d,a.shape,a.dtype,p,u,"avg");h=n.makeTensorInfo(u.outShape,a.dtype,m.values)}return h}var T$={kernelName:ms,backendName:"cpu",kernelFunc:N$};function E$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;_e(a,"avgPool3d");let u=E.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=N_(h,a.shape,a.dtype,_.computeStrides(a.shape),u,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var C$={kernelName:_u,backendName:"cpu",kernelFunc:E$};function R$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;_e([a,s],"avgPool3DGrad");let u=E.computePool3DInfo(s.shape,i,o,1,l,c),h=u.strideDepth,d=u.strideHeight,p=u.strideWidth,m=u.filterDepth,f=u.filterHeight,A=u.filterWidth,y=u.dilationDepth,g=u.dilationHeight,x=u.dilationWidth,v=u.effectiveFilterDepth,b=u.effectiveFilterHeight,w=u.effectiveFilterWidth,k=v-1-u.padInfo.front,N=w-1-u.padInfo.left,C=b-1-u.padInfo.top,F=Be(s.shape,"float32"),O=1/(m*f*A),L=n.bufferSync(a);for(let V=0;V=u.outDepth||Math.floor(Q)!==Q))for(let he=0;he=u.outHeight||Math.floor(oe)!==oe))for(let me=0;me=u.outWidth||Math.floor(pe)!==pe||(te+=L.get(V,Q,oe,pe,j))}}}F.set(te*O,V,U,X,G,j)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var M$={kernelName:Dh,backendName:"cpu",kernelFunc:R$};function F$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;_e([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=E.computePool2DInfo(i.shape,o,l,1,c),h=u.strideHeight,d=u.strideWidth,p=u.filterHeight,m=u.filterWidth,f=u.dilationHeight,A=u.dilationWidth,y=u.effectiveFilterHeight,g=u.effectiveFilterWidth,x=g-1-u.padInfo.left,v=y-1-u.padInfo.top,b=Be(i.shape,"float32"),w=1/(p*m),k=n.data.get(a.dataId).values,N=Be(a.shape,"float32",k);for(let C=0;C=u.outHeight||Math.floor(G)!==G))for(let ee=0;ee=u.outWidth||Math.floor(Y)!==Y||(U+=N.get(C,G,Y,F))}}b.set(U*w,C,O,L,F)}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var $$={kernelName:$h,backendName:"cpu",kernelFunc:F$};function D$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;_.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),_e([a,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=r;c==null&&(c=.001);let u=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(u.length),A=m.length,y=p.length,g=d.length,x=h.length,v=0,b=0,w=0,k=0;for(let N=0;N=A&&(v=0),b>=x&&(b=0),w>=y&&(w=0),k>=g&&(k=0);return n.makeTensorInfo(a.shape,a.dtype,f)}var O$={kernelName:Ts,backendName:"cpu",kernelFunc:D$};function z$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;_e([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=E.getReshaped(a.shape,s,o),c=E.getPermuted(l.length,s.length),u=E.getReshapedPermuted(a.shape,s,o),h=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(u,i,s.length),p=mt({inputs:{x:a},backend:n,attrs:{shape:l}}),m=tr({inputs:{x:p},backend:n,attrs:{perm:c}}),f=mt({inputs:{x:m},backend:n,attrs:{shape:u}}),A=Ti({inputs:{x:f},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var P$={kernelName:vu,backendName:"cpu",kernelFunc:z$};function L$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,c=tA(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var W$={kernelName:Oh,backendName:"cpu",kernelFunc:L$},B$=rt(Ma,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(_.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;cf.shape),s);if(_.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>_.sizeFromShape(f.shape)>0);if(o.length===1)return qr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(E.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>Ni({inputs:{input:v},backend:n})),A=o.map(v=>Ml({inputs:{input:v},backend:n})),y=Fl({inputs:f,backend:n,attrs:{axis:s}}),g=Fl({inputs:A,backend:n,attrs:{axis:s}}),x=Bn({inputs:{real:y,imag:g},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),A.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),x}let c=o.map(f=>{let A=_.sizeFromShape(f.shape.slice(s));return mt({inputs:{x:f},backend:n,attrs:{shape:[-1,A]}})}),u=c.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=E.computeOutShape(c.map(f=>f.shape),1);let h=c[0].shape[0]===1,d=nA(u,i,t[0].dtype,h),p=E.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(p,t[0].dtype,d);return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var G$={kernelName:xo,backendName:"cpu",kernelFunc:Fl};function T_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r;_e([a,s],"conv2d");let h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,x=d.dataFormat==="channelsLast",v=new Ot(d.outShape,a.dtype),b=_.computeStrides(a.shape),w=_.computeStrides(s.shape),k=b[0],N=x?b[1]:b[2],C=x?b[2]:1,F=x?1:b[1],O=v.strides[0],L=x?v.strides[1]:v.strides[2],V=x?v.strides[2]:1,j=x?1:v.strides[1],U=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,G=v.values;for(let ee=0;ee=d.inHeight)continue;let me=he*w[0],pe=Y+oe*N;for(let Ie=0;Ie=d.inWidth)continue;let et=me+Oe*w[1],tt=pe+$e*C,st=et;for(let Ke=0;Ke=c.inDepth)continue;let ee=X*C[0],Y=O+G*N[1];for(let ae=0;ae=c.inHeight)continue;let oe=ee+Q*C[1],me=Y+he*N[2];for(let pe=0;pe=c.inWidth)continue;let $e=oe+Fe*C[2],et=me+Oe*c.inChannels,tt=$e;for(let st=0;stMath.cos(e)),sD={kernelName:ws,backendName:"cpu",kernelFunc:aD},iD=rt(bo,e=>Math.cosh(e)),oD={kernelName:bo,backendName:"cpu",kernelFunc:iD};function lD(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,[u,h,d,p]=a.shape,m=s.shape[0],[f,A]=o,y=Be([m,f,A,p],"float32"),g=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(a.dataId).values,b=_.computeStrides(a.shape),w=_.computeStrides(y.shape);for(let k=0;k=u)continue;let j=f>1?(O-C)*(h-1)/(f-1):0,U=A>1?(L-F)*(d-1)/(A-1):0;for(let X=0;X1?C*(h-1)+X*j:.5*(C+O)*(h-1);if(G<0||G>h-1){for(let ee=0;ee1?F*(d-1)+te*U:.5*(F+L)*(d-1);if(ie<0||ie>d-1){for(let me=0;me1?F*(d-1)+ee*U:.5*(F+L)*(d-1);if(Y<0||Y>d-1){for(let ie=0;iey+m-g-1:(y,g)=>y+g;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],c=a.shape[2],u=a.shape[3],h=l*s,d=c*s,p=u/(s*s),m=n.data.get(a.dataId).values,f=new Float32Array(o*h*d*p),A=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=E.computeConv2DInfo(a.shape,s.shape,i,d,o,c,!0),{filterHeight:m,filterWidth:f,dilationHeight:A,dilationWidth:y,padInfo:g}=p,x=g.left,v=g.top,b=p.outChannels/p.inChannels,w=new Ot(p.outShape,a.dtype),k=n.data.get(a.dataId).values,N=n.data.get(s.dataId).values,C=w.values;for(let F=0;F=p.inHeight)continue;let ee=X*h[0],Y=O+G*u[1];for(let ae=0;ae=p.inWidth)continue;let oe=ee+Q*h[1],me=Y+he*p.inChannels,pe=te,Ie=oe;for(let Se=0;Se{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(r.dataId).values,u=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:m,inWidth:f,inChannels:A,outHeight:y,outWidth:g,padInfo:x,strideHeight:v,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:N,dilationWidth:C,outShape:F}=E.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),O=_.sizeFromShape(F),L=F.length,V=_.getArrayFromDType(r.dtype,O);for(let j=0;j=0&&Q=0&&oeae&&(ae=Ie)}}}let te=_.locToIndex([j,U,G,Y],L,_.computeStrides(F));V[te]=ae}}}return{dataId:l.write(_.toTypedArray(V,r.dtype),F,r.dtype),shape:F,dtype:r.dtype}}},kD={kernelName:Gh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=_.toNestedArray(r.shape,c.data.get(r.dataId).values),h=_.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:v,filterHeight:b,filterWidth:w,dilationHeight:k,dilationWidth:N,outShape:C}=E.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);_.assert(s.rank===C.length,()=>`Error in ${Gh}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let F=_.toNestedArray(C,c.data.get(s.dataId).values),O=_.makeZerosNestedTypedArray(a.shape,a.dtype);for(let L=0;L=0&&ie=0&&heee&&(ee=oe,Y=te,ae=Q)}}}O[Y][ae][G]+=F[L][V][U][G]}}}return{dataId:c.write(_.toTypedArray(O,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},ID={kernelName:Hh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=_.toNestedArray(r.shape,c.data.get(r.dataId).values),h=_.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:v,filterHeight:b,filterWidth:w,dilationHeight:k,dilationWidth:N,outShape:C}=E.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);_.assert(s.rank===C.length,()=>`Error in ${Hh}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let F=_.toNestedArray(C,c.data.get(s.dataId).values),O=_.makeZerosNestedTypedArray(r.shape,r.dtype);for(let L=0;L=0&&ie=0&&heee&&(ee=oe,Y=ie,ae=he)}}}O[L][Y][ae][G]+=F[L][V][U][G]}}}return{dataId:c.write(_.toTypedArray(O,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function dc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"sum");let o;a.dtype==="bool"?o=Ga({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=qr({inputs:{x:a},backend:n});let l=o.shape.length,c=_.parseAxisParam(s,o.shape),u=E.getAxesPermutation(c,l),h=c,d=o;u!=null&&(d=tr({inputs:{x:o},backend:n,attrs:{perm:u}}),h=E.getInnerMostAxes(h.length,l)),E.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,m]=E.computeOutAndReduceShapes(d.shape,h),f=E.upcastType(d.dtype,"int32"),A=up(n,p,f),y=_.sizeFromShape(m),g=n.data.get(A.dataId).values,x=n.data.get(d.dataId).values;for(let v=0;v=0&&(d=dc({inputs:{x:d},backend:n,attrs:{axis:c[f]-(i.length-p),keepDims:!1}}),m.push(d)),p--)}for(let f of m)f!==d&&n.disposeIntermediateTensorInfo(f);return d}var TD={kernelName:qh,backendName:"cpu",kernelFunc:ND};function ED(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;_e([r,a],"eluGrad");let s=new Float32Array(_.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(a.shape,"float32",s)}var CD={kernelName:Xh,backendName:"cpu",kernelFunc:ED},RD=Mt((e,t)=>e===t?1:0),C_=Gt(Io,RD,null,"bool"),MD={kernelName:Io,backendName:"cpu",kernelFunc:C_},FD=E.ERF_P,$D=E.ERF_A1,DD=E.ERF_A2,OD=E.ERF_A3,zD=E.ERF_A4,PD=E.ERF_A5,LD=rt(ko,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+FD*n);return t*(1-((((PD*r+zD)*r+OD)*r+DD)*r+$D)*r*Math.exp(-n*n))}),WD={kernelName:ko,backendName:"cpu",kernelFunc:LD};function hp(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(_.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),mt({inputs:{x:a},backend:n,attrs:{shape:o}})}var BD={kernelName:So,backendName:"cpu",kernelFunc:hp},VD=Mt((e,t)=>e/t),cA=Gt(ks,VD),hA={kernelName:ks,backendName:"cpu",kernelFunc:cA};function R_(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[a,s],u=_.sizeFromShape(c),h=_.getTypedArrayFromDType("float32",u),d=_.getTypedArrayFromDType("float32",u);for(let A=0;A{let{image:r}=e,a=n,s=_.getTypedArrayFromDType(r.dtype,_.sizeFromShape(r.shape)),[i,o,l,c]=r.shape,u=a.data.get(r.dataId).values;for(let h=0;h=0&&xMath.floor(e/t)),JD=Gt(Ns,YD,null,"int32"),QD={kernelName:Ns,backendName:"cpu",kernelFunc:JD};function eO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=T_({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=hc({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=lA(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var tO={kernelName:li,backendName:"cpu",kernelFunc:eO};function nO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=E_({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=hc({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=lA(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var rO={kernelName:ui,backendName:"cpu",kernelFunc:nO};function aO(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=_.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,c,u,h]=E.prepareAndValidate(r,a);if(c===0)return n.makeTensorInfo(l,r.dtype,[]);let d=Be([c,u],r.dtype),p=n.data.get(a.dataId).values,m=n.data.get(r.dataId).values;for(let f=0;f=s/u)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;ge>=t?1:0),uO=Gt(Es,lO,null,"bool"),cO={kernelName:Es,backendName:"cpu",kernelFunc:uO};function hO(e){let{inputs:t,backend:n}=e,{input:r}=t,a=_.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=mt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=R_(o,!0,n),c=mt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var dO={kernelName:Zh,backendName:"cpu",kernelFunc:hO},pO=rt(Mo,e=>Number.isFinite(e)?1:0,"bool"),fO={kernelName:Mo,backendName:"cpu",kernelFunc:pO},mO=rt(Fo,e=>Math.abs(e)===Infinity?1:0,"bool"),AO={kernelName:Fo,backendName:"cpu",kernelFunc:mO},yO=rt($o,e=>Number.isNaN(e)?1:0,"bool"),gO={kernelName:$o,backendName:"cpu",kernelFunc:yO},xO=Mt((e,t)=>e<=t?1:0),bO=Gt(Oo,xO,null,"bool"),wO={kernelName:Oo,backendName:"cpu",kernelFunc:bO};function _O(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=t_(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var vO={kernelName:Jh,backendName:"cpu",kernelFunc:_O},kO=rt(zo,e=>Math.log1p(e)),IO={kernelName:zo,backendName:"cpu",kernelFunc:kO},SO=Mt((e,t)=>e&&t),NO=Gt(Po,SO,null,"bool"),TO={kernelName:Po,backendName:"cpu",kernelFunc:NO},EO=rt(Tu,e=>e?0:1,"bool"),CO={kernelName:Tu,backendName:"cpu",kernelFunc:EO},RO=Mt((e,t)=>e||t),MO=Gt(Eu,RO,null,"bool"),FO={kernelName:Eu,backendName:"cpu",kernelFunc:MO};function $O(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;_e(a,"LRN");let c=a.shape[3],u=c-1,h=n.data.get(a.dataId).values,d=_.sizeFromShape(a.shape),p=new Float32Array(d);function m(f){let A=f%c,y=f-A+Math.max(0,A-s),g=f-A+Math.min(A+s,u),x=0;for(;y<=g;y++){let v=h[y];x+=v*v}return x}for(let f=0;f`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))h=qr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=_.computeStrides(a.shape),m=uA(d,a.shape,a.dtype,p,u,"max");h=n.makeTensorInfo(u.outShape,a.dtype,m.values)}return h}var WO={kernelName:Ds,backendName:"cpu",kernelFunc:LO};function BO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;_e(a,"maxPool3d");let u=E.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=N_(h,a.shape,a.dtype,_.computeStrides(a.shape),u,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var VO={kernelName:Ru,backendName:"cpu",kernelFunc:BO};function jO(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;_e([a,s],"maxPool3DGrad");let u=E.computePool3DInfo(s.shape,i,o,1,l,c),h=n.bufferSync(s),d=S$(h,u),p=u.strideDepth,m=u.strideHeight,f=u.strideWidth,A=u.dilationDepth,y=u.dilationHeight,g=u.dilationWidth,x=u.effectiveFilterDepth,v=u.effectiveFilterHeight,b=u.effectiveFilterWidth,w=x-1-u.padInfo.front,k=b-1-u.padInfo.left,N=v-1-u.padInfo.top,C=Be(s.shape,"float32"),F=n.bufferSync(a);for(let O=0;O=u.outDepth||Math.floor(te)!==te))for(let ie=0;ie=u.outHeight||Math.floor(Q)!==Q))for(let he=0;he=u.outWidth||Math.floor(oe)!==oe)continue;let me=x*v*b-1-d.get(O,te,Q,oe,L),pe=ae*v*b+ie*b+he,Ie=me===pe?1:0;Ie!==0&&(Y+=F.get(O,te,Q,oe,L)*Ie)}}}C.set(Y,O,V,j,U,L)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var UO={kernelName:td,backendName:"cpu",kernelFunc:jO};function HO(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;_e([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=E.computePool2DInfo(o.shape,l,c,1,u,h),p=n.data.get(o.dataId).values,m=Be(d.outShape,o.dtype,S_(p,o.shape,o.dtype,d).values),f=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,x=d.effectiveFilterHeight,v=d.effectiveFilterWidth,b=v-1-d.padInfo.left,w=x-1-d.padInfo.top,k=Be(o.shape,"float32"),N=n.data.get(a.dataId).values,C=Be(a.shape,"float32",N);for(let F=0;F=d.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y=d.outWidth||Math.floor(ae)!==ae)continue;let te=x*v-1-m.get(F,ee,ae,O),ie=G*v+Y,Q=te===ie?1:0;Q!==0&&(X+=C.get(F,ee,ae,O)*Q)}}k.set(X,F,L,V,O)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var GO={kernelName:ed,backendName:"cpu",kernelFunc:HO};function qO(e,t,n,r,a){let s=_.computeStrides(t),i=uA(e,t,n,s,a,"max"),o=S_(e,t,n,a,!0,r);return[i.values,o.values]}var XO={kernelName:nd,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;_e(r,"MaxPoolWithArgmax");let c=l.data.get(r.dataId).values,u=E.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=qO(c,r.shape,r.dtype,o,u),p=l.write(h,u.outShape,r.dtype),m=l.write(d,u.outShape,r.dtype);return[{dataId:p,shape:u.outShape,dtype:r.dtype},{dataId:m,shape:u.outShape,dtype:"int32"}]}};function KO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=_.parseAxisParam(s,a.shape),l=E.computeOutAndReduceShapes(a.shape,o)[1],c=_.sizeFromShape(l),u=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));u.push(h);let d=Ga({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});u.push(d);let p=cA({inputs:{a:d,b:h},backend:n});u.push(p);let m=dc({inputs:{x:p},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var ZO={kernelName:Os,backendName:"cpu",kernelFunc:KO};function YO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"min");let o=_.parseAxisParam(s,a.shape),l=o,c=E.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=tr({inputs:{x:a},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,a.shape.length)),E.assertAxesAreInnerMostDims("min",l,u.shape.length);let[h,d]=E.computeOutAndReduceShapes(u.shape,l),p=_.sizeFromShape(d),m=_.makeZerosTypedArray(_.sizeFromShape(h),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;yg[0]+a.shape[x]+g[1]),l=s.map(g=>g[0]),c=s.map((g,x)=>g[0]+a.shape[x]),u=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=_.computeStrides(a.shape),m=_.sizeFromShape(o),f=o.length,A=_.computeStrides(o),y=_.getTypedArrayFromDType(a.dtype,m);for(let g=0;g=c[b]&&(x[b]=(c[b]-1)*2-x[b]+u);x=x.map((b,w)=>b-l[w]);let v=_.locToIndex(x,d,p);y[g]=h[v]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var ez={kernelName:Ls,backendName:"cpu",kernelFunc:QO},tz=Mt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),nz=Gt(Lo,tz),rz={kernelName:Lo,backendName:"cpu",kernelFunc:nz},az=so(o5());function F_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=_.parseAxisParam([o],a.shape),c=M_({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=E.expandShapeToKeepDim(c.shape,l),h=mt({inputs:{x:c},backend:n,attrs:{shape:u}}),d=oA({inputs:{a,b:h},backend:n}),p=y_({inputs:{x:d},backend:n}),m=dc({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),f=mt({inputs:{x:m},backend:n,attrs:{shape:u}}),A=cA({inputs:{a:p,b:f},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var sz={kernelName:ti,backendName:"cpu",kernelFunc:F_};function iz(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;_e(a,"multinomial");let l=o?a:F_({inputs:{logits:a},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],h=n.data.get(l.dataId).values,d=[c,s],p=_.makeZerosTypedArray(_.sizeFromShape(d),"int32");for(let m=0;m=0&&u[h]{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=hp({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=Fl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var wz={kernelName:Go,backendName:"cpu",kernelFunc:D_};function _z(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;_e(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),c=n.data.get(a.dataId).values,u=_.sizeFromShape(a.shape),h=a.shape.length,d=_.computeStrides(a.shape),p=_.sizeFromShape(o),m=o.length,f=_.computeStrides(o),A=_.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;yv+l[b]),x=_.locToIndex(g,m,f);A[x]=c[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var O_={kernelName:Vs,backendName:"cpu",kernelFunc:_z},vz=Mt((e,t)=>Math.pow(e,t)),kz=Gt(js,vz),Iz={kernelName:js,backendName:"cpu",kernelFunc:kz};function Sz(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=sA(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var Nz={kernelName:Mu,backendName:"cpu",kernelFunc:Sz},Tz=rt(Xo,e=>1/e),Ez={kernelName:Xo,backendName:"cpu",kernelFunc:Tz};function Cz(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;_e(a,"resizeBilinear");let l=_.computeStrides(a.shape),[c,u]=o,[h,d,p,m]=a.shape,f=n.data.get(a.dataId).values,A=new Float32Array(_.sizeFromShape([h,c,u,m])),y=[s&&c>1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=0,v=y[0]/g[0],b=y[1]/g[1];for(let w=0;w1?c-1:c,i&&p>1?u-1:u],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=f[0]/A[0],g=f[1]/A[1],x=n.data.get(s.dataId).values,v=0;for(let b=0;b1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=y[0]/g[0],v=y[1]/g[1],b=0;for(let w=0;w1?u-1:u,i&&m>1?h-1:h],g=[i&&p>1?p-1:p,i&&m>1?m-1:m],x=y[0]/g[0],v=y[1]/g[1],b=1/x,w=1/v,k=Math.ceil(b)*2+2,N=Math.ceil(w)*2+2;for(let C=0;C=p)continue;let Q=F+ie*l[1],he=ie*x,oe=Math.min(u-1,i?Math.round(he):Math.floor(he));if(O===oe)for(let me=0;me=m)continue;let Ie=Q+pe*l[2],Se=pe*v,Fe=Math.min(h-1,i?Math.round(Se):Math.floor(Se));U===Fe&&(ae+=A[Ie+Y])}}f[X+Y]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,f)}var zz={kernelName:sd,backendName:"cpu",kernelFunc:Oz};function Pz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;_e(a,"reverse");let i=a.shape.length,o=_.parseAxisParam(s,a.shape);if(i===0)return qr({inputs:{x:a},backend:n});let l=new Ot(a.shape,a.dtype),c=n.bufferSync(a);for(let u=0;ud[p]=a.shape[p]-1-d[p]),l.set(c.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var Lz={kernelName:Xs,backendName:"cpu",kernelFunc:Pz},Wz={kernelName:ll,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=_.getTypedArrayFromDType(r.dtype,_.sizeFromShape(r.shape)),[c,u,h,d]=r.shape,[p,m]=E.getImageCenter(i,u,h),f=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let x=0;x=0&&V=0&&j{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),Vz={kernelName:Ks,backendName:"cpu",kernelFunc:Bz};function z_(e,t,n,r,a,s,i,o,l,c){let u=[r/a,a],h=e.values,d=t.values;if(r===0)return Be(n,t.dtype);let p=Be(u,t.dtype);p.values.fill(l);for(let m=0;m=r/a)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y1||a.shape.length===1?1:_.sizeFromShape(a.shape.slice(1));for(let m=0;me>=0?Xz*e:qz*(Math.exp(e)-1)),Zz={kernelName:Jo,backendName:"cpu",kernelFunc:Kz},Yz=rt(tl,e=>e<0?-1:e>0?1:0),Jz={kernelName:tl,backendName:"cpu",kernelFunc:Yz},Qz=rt(Ys,e=>Math.sin(e)),eP={kernelName:Ys,backendName:"cpu",kernelFunc:Qz},tP=rt(el,e=>Math.sinh(e)),nP={kernelName:el,backendName:"cpu",kernelFunc:tP},rP=11920928955078125e-23,P_=Math.log(rP)+2,aP=rt(nl,e=>{let t=e>-P_,n=e{let d=[...u];d[o]=h;let p=Ni({inputs:{x:a},backend:n,attrs:{begin:c,size:d}});return c[o]+=h,p})}var _P={kernelName:rl,backendName:"cpu",kernelFunc:bP},vP=at(Js,e=>Math.sqrt(e)),kP={kernelName:Js,backendName:"cpu",kernelFunc:vP},IP={kernelName:zu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;ve(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),NP={kernelName:Fa,backendName:"cpu",kernelFunc:SP};function TP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r;ve(a,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=un.sliceInfo(a.shape,s,i,o,l,c,u,h,d),x=mt({inputs:{x:a},backend:n,attrs:{shape:y}}),v;if(p){let b=Ni({inputs:{x},backend:n,attrs:{begin:f,size:A}});v=mt({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))v=n.makeTensorInfo(g,a.dtype,[]);else{let b=n.bufferSync(x),k=y_(g,b,m,f);v=n.makeTensorInfo(k.shape,k.dtype,k.values)}let w=mt({inputs:{x:v},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),w}var EP={kernelName:al,backendName:"cpu",kernelFunc:TP},CP=at(ri,e=>Math.tan(e)),RP={kernelName:ri,backendName:"cpu",kernelFunc:CP},MP=at(ai,e=>Math.tanh(e)),FP={kernelName:ai,backendName:"cpu",kernelFunc:MP};function $P(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;ve(a,"tile");let i=x_(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var DP={kernelName:Ma,backendName:"cpu",kernelFunc:$P};function OP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;ve(a,"topk");let o=n.data.get(a.dataId).values,[l,c]=w_(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var zP={kernelName:sl,backendName:"cpu",kernelFunc:OP};function WP(e){let{inputs:t,attrs:n,backend:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=n,[u,h,d,p]=a.shape,[f,m]=c!=null?c:[h,d],A=[u,f,m,p],y=_.computeStrides(a.shape),g=y[0],x=y[1],v=y[2],w=_.getTypedArrayFromDType(a.dtype,_.sizeFromShape(A));w.fill(l);let b=r.data.get(a.dataId).values,k=r.data.get(s.dataId).values;for(let N=0;Nt-1)if(t<=1)n=0;else{let r=2*t;n-=r*Math.trunc(n/r),n>=t&&(n=r-n-1)}return _.clamp(0,n,t-1)}function jP(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=t-1;n+=t*(Math.trunc(-n/r)+1)}else if(n>t-1)if(t<=1)n=0;else{let r=t-1;n-=t*Math.trunc(n/r)}return _.clamp(0,n,t-1)}function UP(e,t){return e}function HP(e,t){return _.clamp(0,e,t-1)}function mc(e,t,n,r,a,s,i,o,l,c,u){let h=i*r+o*a+l*s+c;return 0<=o&&on.disposeIntermediateTensorInfo(f)),p}var YP={kernelName:Pu,backendName:"cpu",kernelFunc:ZP},JP=[u$,pF,h$,p$,xF,m$,y$,x$,b$,v$,I$,N$,E$,M$,$$,z$,L$,B$,j$,o$,H$,q$,K$,yF,bF,Y$,fF,Q$,tD,aD,iD,nD,cD,dD,lD,fD,AD,gD,wD,_D,kD,ID,ND,ED,RD,MD,$D,FD,pA,zD,QF,LD,BD,KD,_F,ZD,kF,nO,aO,sO,SF,lO,cO,dO,fO,AO,TF,xO,mF,bO,eD,vO,IO,NO,e$,CF,CO,MO,MF,$O,zO,LO,VO,UO,GO,$F,KO,YO,QO,tz,rz,qO,sz,oz,OF,uz,dz,Az,PF,WF,xz,_z,Iz,VF,Nz,Ez,Cz,B_,$z,n$,HF,Oz,AF,Pz,r$,a$,i$,Wz,Vz,Uz,Gz,Xz,Kz,Yz,qF,Qz,tP,sP,s$,oP,uP,hP,XF,fz,fP,AP,gP,wP,_P,kP,IP,ZF,NP,EP,JF,DD,RP,FP,DP,zP,jF,BP,qP,KP,YP,Tz];for(let e of JP)ui(e);var H_={};Me(H_,{assertNotComplex:()=>$l,bindCanvasToFramebuffer:()=>tL,bindColorTextureToFramebuffer:()=>mp,bindTextureToProgramUniformSampler:()=>i3,bindTextureUnit:()=>r3,bindVertexBufferToProgramAttribute:()=>AA,callAndCheck:()=>we,canBeRepresented:()=>G_,createFragmentShader:()=>K_,createFramebuffer:()=>n3,createProgram:()=>Z_,createStaticIndexBuffer:()=>Q_,createStaticVertexBuffer:()=>J_,createTexture:()=>e3,createVertexShader:()=>X_,getBatchDim:()=>Ti,getExtensionOrThrow:()=>Ac,getFramebufferErrorMessage:()=>o3,getMaxTexturesInShader:()=>c3,getNumChannels:()=>QP,getProgramUniformLocation:()=>s3,getProgramUniformLocationOrThrow:()=>a3,getRowsCols:()=>Ei,getShapeAs3D:()=>Ap,getTextureShapeFromLogicalShape:()=>l3,getWebGLDisjointQueryTimerVersion:()=>h3,getWebGLErrorMessage:()=>q_,getWebGLMaxTextureSize:()=>u3,hasExtension:()=>nr,isCapableOfRenderingToFloatTexture:()=>d3,isDownloadFloatTextureEnabled:()=>p3,isReshapeFree:()=>gc,isWebGLFenceEnabled:()=>f3,isWebGLVersionEnabled:()=>gA,linkProgram:()=>Y_,resetMaxTextureSize:()=>nL,resetMaxTexturesInShader:()=>rL,unbindColorTextureFromFramebuffer:()=>yA,unbindTextureUnit:()=>eL,validateFramebuffer:()=>yc,validateProgram:()=>fp,validateTextureSize:()=>t3});var Ci={},xA={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function yp(e,t){Ci[e]=t}function qr(e){if(!(e in Ci)){let n=aL(e);if(n!==null)Ci[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Ci[e];return t.isContextLost()?(delete Ci[e],qr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Ci[e])}function sL(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function aL(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=sL(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ci[e]},!1),e===1?t.getContext("webgl",xA)||t.getContext("experimental-webgl",xA):t.getContext("webgl2",xA)}var xc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(xc||(xc={}));var rr;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(rr||(rr={}));var tn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(tn||(tn={}));function wc(e,t){return[t,e]}function iL(e,t){return e*t}function bc(e){let t=_.sizeFromShape(e),n=Math.ceil(t/4);return _.sizeToSquarishShape(n)}function Dl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function oL(e,t){let[n,r]=Dl(e,t);return n*r*4}function wA(e,t){let n=e,r,a,s,i,o,l,c,u,h,d;return J().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:h,textureTypeFloat:d}}function we(e,t){let n=t();return J().getBool("DEBUG")&&lL(e),n}function lL(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+q_(e,t))}var uL=596e-10,cL=65504;function G_(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||uLe.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function X_(e,t){let n=ma(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(we(e,()=>e.shaderSource(n,t)),we(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function K_(e,t){let n=ma(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(we(e,()=>e.shaderSource(n,t)),we(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw hL(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var dL=/ERROR: [0-9]+:([0-9]+):/g;function hL(e,t){let n=dL.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(` + ${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(a.dataId).values),o=n.data.get(r.dataId).values,l=Array.from(n.data.get(s.dataId).values),[c,u,h]=c_(o,r.shape,r.dtype,i,l);return[n.makeTensorInfo(u,r.dtype,c),n.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var uP={kernelName:od,backendName:"cpu",kernelFunc:lP};function cP(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=E.calculateShapes(s,a,o),p=!1,m=n.bufferSync(a),f=n.bufferSync(s),A=n.data.get(i.dataId).values[0],y=z_(m,f,o,d,u,c,l,h,A,p);return n.makeTensorInfo(o,y.dtype,y.values)}var hP={kernelName:ld,backendName:"cpu",kernelFunc:cP};function dP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=_.parseAxisParam(i,a.shape)[0],l=E.prepareSplitSize(a,s,o),c=new Array(a.shape.length).fill(0),u=a.shape.slice();return l.map(h=>{let d=[...u];d[o]=h;let p=Ti({inputs:{x:a},backend:n,attrs:{begin:c,size:d}});return c[o]+=h,p})}var pP={kernelName:rl,backendName:"cpu",kernelFunc:dP},fP=rt(Qs,e=>Math.sqrt(e)),mP={kernelName:Qs,backendName:"cpu",kernelFunc:fP},AP={kernelName:Du,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;_e(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),gP={kernelName:$a,backendName:"cpu",kernelFunc:yP};function xP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r;_e(a,"stridedSlice");let{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=un.sliceInfo(a.shape,s,i,o,l,c,u,h,d),x=mt({inputs:{x:a},backend:n,attrs:{shape:y}}),v;if(p){let w=Ti({inputs:{x},backend:n,attrs:{begin:m,size:A}});v=mt({inputs:{x:w},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(w)}else if(g.some(w=>w===0))v=n.makeTensorInfo(g,a.dtype,[]);else{let w=n.bufferSync(x),k=d_(g,w,f,m);v=n.makeTensorInfo(k.shape,k.dtype,k.values)}let b=mt({inputs:{x:v},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),b}var bP={kernelName:al,backendName:"cpu",kernelFunc:xP},wP=rt(ai,e=>Math.tan(e)),_P={kernelName:ai,backendName:"cpu",kernelFunc:wP},vP=rt(si,e=>Math.tanh(e)),kP={kernelName:si,backendName:"cpu",kernelFunc:vP};function IP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;_e(a,"tile");let i=f_(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var SP={kernelName:Fa,backendName:"cpu",kernelFunc:IP};function NP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;_e(a,"topk");let o=n.data.get(a.dataId).values,[l,c]=m_(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var TP={kernelName:sl,backendName:"cpu",kernelFunc:NP};function RP(e){let{inputs:t,attrs:n,backend:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=n,[u,h,d,p]=a.shape,[m,f]=c!=null?c:[h,d],A=[u,m,f,p],y=_.computeStrides(a.shape),g=y[0],x=y[1],v=y[2],b=_.getTypedArrayFromDType(a.dtype,_.sizeFromShape(A));b.fill(l);let w=r.data.get(a.dataId).values,k=r.data.get(s.dataId).values;for(let N=0;Nt-1)if(t<=1)n=0;else{let r=2*t;n-=r*Math.trunc(n/r),n>=t&&(n=r-n-1)}return _.clamp(0,n,t-1)}function $P(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=t-1;n+=t*(Math.trunc(-n/r)+1)}else if(n>t-1)if(t<=1)n=0;else{let r=t-1;n-=t*Math.trunc(n/r)}return _.clamp(0,n,t-1)}function DP(e,t){return e}function OP(e,t){return _.clamp(0,e,t-1)}function pc(e,t,n,r,a,s,i,o,l,c,u){let h=i*r+o*a+l*s+c;return 0<=o&&on.disposeIntermediateTensorInfo(m)),p}var VP={kernelName:Ou,backendName:"cpu",kernelFunc:BP},jP=[e$,aF,n$,a$,cF,i$,l$,c$,d$,f$,A$,g$,b$,v$,I$,T$,C$,M$,$$,JF,O$,P$,W$,lF,dF,V$,sF,U$,G$,K$,Y$,q$,tD,rD,Q$,sD,oD,uD,hD,pD,mD,AD,gD,bD,_D,vD,ID,kD,hA,TD,UF,CD,MD,WD,pF,BD,mF,qD,KD,ZD,yF,QD,tO,rO,sO,oO,xF,cO,iF,dO,H$,fO,AO,gO,HF,wF,wO,vO,vF,IO,TO,CO,FO,DO,zO,IF,WO,VO,UO,GO,XO,PO,ZO,JO,NF,ez,rz,oz,EF,RF,cz,pz,Az,FF,gz,bz,wz,O_,Iz,qF,OF,Nz,oF,Ez,XF,KF,YF,Rz,Fz,Dz,zz,Lz,Wz,Vz,PF,Uz,Gz,Zz,ZF,Jz,eP,nP,LF,sz,sP,oP,uP,hP,pP,mP,AP,BF,gP,bP,jF,SD,_P,kP,SP,TP,$F,MP,PP,WP,VP,xz];for(let e of jP)ci(e);var W_={};Me(W_,{assertNotComplex:()=>$l,bindCanvasToFramebuffer:()=>GP,bindColorTextureToFramebuffer:()=>fp,bindTextureToProgramUniformSampler:()=>t3,bindTextureUnit:()=>J_,bindVertexBufferToProgramAttribute:()=>fA,callAndCheck:()=>xe,canBeRepresented:()=>B_,createFragmentShader:()=>U_,createFramebuffer:()=>Y_,createProgram:()=>H_,createStaticIndexBuffer:()=>X_,createStaticVertexBuffer:()=>q_,createTexture:()=>K_,createVertexShader:()=>j_,getBatchDim:()=>Ei,getExtensionOrThrow:()=>fc,getFramebufferErrorMessage:()=>n3,getMaxTexturesInShader:()=>s3,getNumChannels:()=>UP,getProgramUniformLocation:()=>e3,getProgramUniformLocationOrThrow:()=>Q_,getRowsCols:()=>Ci,getShapeAs3D:()=>mp,getTextureShapeFromLogicalShape:()=>r3,getWebGLDisjointQueryTimerVersion:()=>i3,getWebGLErrorMessage:()=>V_,getWebGLMaxTextureSize:()=>a3,hasExtension:()=>nr,isCapableOfRenderingToFloatTexture:()=>o3,isDownloadFloatTextureEnabled:()=>l3,isReshapeFree:()=>Ac,isWebGLFenceEnabled:()=>u3,isWebGLVersionEnabled:()=>AA,linkProgram:()=>G_,resetMaxTextureSize:()=>qP,resetMaxTexturesInShader:()=>XP,unbindColorTextureFromFramebuffer:()=>mA,unbindTextureUnit:()=>HP,validateFramebuffer:()=>mc,validateProgram:()=>pp,validateTextureSize:()=>Z_});var Ri={},yA={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Ap(e,t){Ri[e]=t}function Xr(e){if(!(e in Ri)){let n=KP(e);if(n!==null)Ri[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Ri[e];return t.isContextLost()?(delete Ri[e],Xr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Ri[e])}function ZP(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function KP(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=ZP(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ri[e]},!1),e===1?t.getContext("webgl",yA)||t.getContext("experimental-webgl",yA):t.getContext("webgl2",yA)}var yc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(yc||(yc={}));var rr;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(rr||(rr={}));var tn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(tn||(tn={}));function gc(e,t){return[t,e]}function YP(e,t){return e*t}function xc(e){let t=_.sizeFromShape(e),n=Math.ceil(t/4);return _.sizeToSquarishShape(n)}function Dl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function JP(e,t){let[n,r]=Dl(e,t);return n*r*4}function gA(e,t){let n=e,r,a,s,i,o,l,c,u,h,d;return J().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:h,textureTypeFloat:d}}function xe(e,t){let n=t();return J().getBool("DEBUG")&&QP(e),n}function QP(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+V_(e,t))}var eL=596e-10,tL=65504;function B_(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||eLe.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function j_(e,t){let n=Aa(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function U_(e,t){let n=Aa(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw nL(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var rL=/ERROR: [0-9]+:([0-9]+):/g;function nL(e,t){let n=rL.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(` `),s=a.length.toString().length+2,i=a.map((h,d)=>_.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;he.createProgram(),"Unable to create WebGLProgram.")}function Y_(e,t){if(we(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function fp(e,t){if(we(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function J_(e,t){let n=ma(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),we(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Q_(e,t){let n=ma(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),we(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function QP(){return J().getNumber("WEBGL_VERSION")===2?1:4}function e3(e){return ma(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function t3(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function n3(e){return ma(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function AA(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),we(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),we(e,()=>e.enableVertexAttribArray(o)),!0)}function r3(e,t,n){m3(e,n),we(e,()=>e.activeTexture(e.TEXTURE0+n)),we(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function eL(e,t){m3(e,t),we(e,()=>e.activeTexture(e.TEXTURE0+t)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function a3(e,t,n){return ma(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function s3(e,t,n){return e.getUniformLocation(t,n)}function i3(e,t,n,r){we(e,()=>r3(e,t,r)),we(e,()=>e.uniform1i(n,r))}function tL(e){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),we(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function mp(e,t,n){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function yA(e,t){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function yc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+o3(e,t))}function o3(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ma(e,t,n){let r=we(e,()=>t());if(r==null)throw new Error(n);return r}function m3(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(rn){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function Ti(e,t=2){return _.sizeFromShape(e.slice(0,e.length-t))}function Ei(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Ap(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Ti(e),...Ei(e)]),t}function l3(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?_.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=_.squeezeShape(e).newShape);let r=_.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=Ti(e),s=2,i=2;return e.length&&([s,i]=Ei(e)),r=a*(s/2)*(i/2),_.sizeToSquarishShape(r).map(o=>o*2)}return _.sizeToSquarishShape(r)}function gp(e){return e%2==0}function gc(e,t){if(e=e.slice(-2),t=t.slice(-2),_.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||gp(n)&&gp(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&gp(e[0])&&gp(t[0])}var xp,wp;function u3(e){if(xp==null){let t=qr(e);xp=t.getParameter(t.MAX_TEXTURE_SIZE)}return xp}function nL(){xp=null}function rL(){wp=null}function c3(e){if(wp==null){let t=qr(e);wp=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,wp)}function h3(e){if(e===0)return 0;let t,n=qr(e);return nr(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:nr(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function nr(e,t){return e.getExtension(t)!=null}function gA(e){try{if(qr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function d3(e){if(e===0)return!1;let t=qr(e);if(e===1){if(!nr(t,"OES_texture_float"))return!1}else if(!nr(t,"EXT_color_buffer_float"))return!1;return bA(t)}function p3(e){if(e===0)return!1;let t=qr(e);if(e===1){if(!nr(t,"OES_texture_float")||!nr(t,"WEBGL_color_buffer_float"))return!1}else{if(nr(t,"EXT_color_buffer_float"))return bA(t);let n="EXT_color_buffer_half_float";if(nr(t,n)){let r=t.getExtension(n);return pL(t,r)}return!1}return bA(t)}function bA(e){let t=wA(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function pL(e,t){let n=wA(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function f3(e){return e!==2?!1:qr(e).fenceSync!=null}function $l(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&_.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=J();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>gA(2)?2:gA(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>u3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>c3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:h3(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!qu.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>d3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>p3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>f3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>qu.isMobile()&&Ce.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function dn(){let e,t,n,r,a,s,i,o,l,c;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=` +`))}function H_(e){return Aa(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function G_(e,t){if(xe(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function pp(e,t){if(xe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function q_(e,t){let n=Aa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function X_(e,t){let n=Aa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function UP(){return J().getNumber("WEBGL_VERSION")===2?1:4}function K_(e){return Aa(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function Z_(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function Y_(e){return Aa(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function fA(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),xe(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),xe(e,()=>e.enableVertexAttribArray(o)),!0)}function J_(e,t,n){c3(e,n),xe(e,()=>e.activeTexture(e.TEXTURE0+n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function HP(e,t){c3(e,t),xe(e,()=>e.activeTexture(e.TEXTURE0+t)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Q_(e,t,n){return Aa(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function e3(e,t,n){return e.getUniformLocation(t,n)}function t3(e,t,n,r){xe(e,()=>J_(e,t,r)),xe(e,()=>e.uniform1i(n,r))}function GP(e){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),xe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function fp(e,t,n){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function mA(e,t){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function mc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+n3(e,t))}function n3(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Aa(e,t,n){let r=xe(e,()=>t());if(r==null)throw new Error(n);return r}function c3(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(rn){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function Ei(e,t=2){return _.sizeFromShape(e.slice(0,e.length-t))}function Ci(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function mp(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Ei(e),...Ci(e)]),t}function r3(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?_.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=_.squeezeShape(e).newShape);let r=_.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=Ei(e),s=2,i=2;return e.length&&([s,i]=Ci(e)),r=a*(s/2)*(i/2),_.sizeToSquarishShape(r).map(o=>o*2)}return _.sizeToSquarishShape(r)}function yp(e){return e%2==0}function Ac(e,t){if(e=e.slice(-2),t=t.slice(-2),_.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||yp(n)&&yp(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&yp(e[0])&&yp(t[0])}var gp,xp;function a3(e){if(gp==null){let t=Xr(e);gp=t.getParameter(t.MAX_TEXTURE_SIZE)}return gp}function qP(){gp=null}function XP(){xp=null}function s3(e){if(xp==null){let t=Xr(e);xp=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,xp)}function i3(e){if(e===0)return 0;let t,n=Xr(e);return nr(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:nr(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function nr(e,t){return e.getExtension(t)!=null}function AA(e){try{if(Xr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function o3(e){if(e===0)return!1;let t=Xr(e);if(e===1){if(!nr(t,"OES_texture_float"))return!1}else if(!nr(t,"EXT_color_buffer_float"))return!1;return xA(t)}function l3(e){if(e===0)return!1;let t=Xr(e);if(e===1){if(!nr(t,"OES_texture_float")||!nr(t,"WEBGL_color_buffer_float"))return!1}else{if(nr(t,"EXT_color_buffer_float"))return xA(t);let n="EXT_color_buffer_half_float";if(nr(t,n)){let r=t.getExtension(n);return aL(t,r)}return!1}return xA(t)}function xA(e){let t=gA(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function aL(e,t){let n=gA(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function u3(e){return e!==2?!1:Xr(e).fenceSync!=null}function $l(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&_.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=J();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>AA(2)?2:AA(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>a3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>s3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:i3(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Hu.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>o3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>l3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>u3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Hu.isMobile()&&Ce.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function dn(){let e,t,n,r,a,s,i,o,l,c;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=` bool isnan_custom(float val) { return (val > 0.0 || val < 0.0) ? false : val != 0.0; } @@ -78,11 +78,11 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ivec4 round(vec4 value) { return ivec4(floor(value + vec4(0.5))); } - `),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function Ri(e,t,n="index"){let r=_.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function _A(e){let t=_.computeStrides(e).map(n=>n.toString());return` + `),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function Mi(e,t,n="index"){let r=_.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function bA(e){let t=_.computeStrides(e).map(n=>n.toString());return` int getFlatIndex(ivec3 coords) { return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z; } -`}var A3=` +`}var h3=` const float FLOAT_MAX = 1.70141184e38; const float FLOAT_MIN = 1.17549435e-38; @@ -121,9 +121,9 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee return c / 255.0; } -`,fL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=xc.DENSE;let t=bc(e),n=dn();this.outputShape=e,this.userCode=` +`,sL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=yc.DENSE;let t=xc(e),n=dn();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { - ${Ri(["r","c","d"],e)} + ${Mi(["r","c","d"],e)} return ivec3(r, c, d); } @@ -142,9 +142,9 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${n.output} = result; } - `}},mL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=xc.DENSE;let t=bc(e),n=dn();this.outputShape=e,this.userCode=` + `}},iL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=yc.DENSE;let t=xc(e),n=dn();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { - ${Ri(["r","c","d"],e)} + ${Mi(["r","c","d"],e)} return ivec3(r, c, d); } @@ -163,23 +163,23 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${n.output} = result; } - `}},AL=class{constructor(e){this.variableNames=["A"],this.outTexUsage=rr.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=` - ${A3} + `}},oL=class{constructor(e){this.variableNames=["A"],this.outTexUsage=rr.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=` + ${h3} void main() { float x = getAAtOutCoords(); ${t.output} = encode_float(x); } - `}},yL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=rr.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=` - ${A3} + `}},lL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=rr.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=` + ${h3} void main() { ivec3 coords = getOutputCoords(); float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z)); ${t.output} = encode_float(x); } - `}},gL=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=dn(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=` - ${_A(e)} + `}},uL=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=dn(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=` + ${bA(e)} void main() { ivec3 coords = getOutputCoords(); @@ -208,7 +208,7 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${r.output} = vec4(${i}, 0., 0., 0.); } - `}},xL=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=dn(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=` + `}},cL=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=dn(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=` localCoords = coords; if(localCoords[2] + ${c} < ${e[2]}) { localCoords[2] += ${c}; @@ -237,7 +237,7 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee } } `}this.userCode=` - ${_A(e)} + ${bA(e)} void main() { ivec3 coords = getOutputCoords(); @@ -252,7 +252,7 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${r.output} = ${o}; } - `}},y3={};Me(y3,{bindVertexProgramAttributeStreams:()=>S3,createBufferFromOutputTexture:()=>E3,createFloat16MatrixTexture:()=>_3,createFloat16PackedMatrixTexture:()=>I3,createFloat32MatrixTexture:()=>b3,createIndexBuffer:()=>w3,createPackedMatrixTexture:()=>k3,createUnsignedBytesMatrixTexture:()=>v3,createVertexBuffer:()=>x3,createVertexShader:()=>g3,downloadByteEncodedFloatMatrixFromOutputTexture:()=>R3,downloadFloat32MatrixFromBuffer:()=>C3,downloadMatrixFromPackedOutputTexture:()=>F3,downloadPackedMatrixFromBuffer:()=>M3,getInternalFormatForFloat16MatrixTexture:()=>kA,getInternalFormatForFloat16PackedMatrixTexture:()=>NA,getInternalFormatForFloat32MatrixTexture:()=>vA,getInternalFormatForPackedMatrixTexture:()=>SA,getInternalFormatForUnsignedBytesMatrixTexture:()=>IA,uploadDenseMatrixToTexture:()=>N3,uploadPixelDataToTexture:()=>T3});function g3(e){let t=dn(),n=`${t.version} + `}},d3={};Me(d3,{bindVertexProgramAttributeStreams:()=>w3,createBufferFromOutputTexture:()=>k3,createFloat16MatrixTexture:()=>y3,createFloat16PackedMatrixTexture:()=>b3,createFloat32MatrixTexture:()=>A3,createIndexBuffer:()=>m3,createPackedMatrixTexture:()=>x3,createUnsignedBytesMatrixTexture:()=>g3,createVertexBuffer:()=>f3,createVertexShader:()=>p3,downloadByteEncodedFloatMatrixFromOutputTexture:()=>S3,downloadFloat32MatrixFromBuffer:()=>I3,downloadMatrixFromPackedOutputTexture:()=>T3,downloadPackedMatrixFromBuffer:()=>N3,getInternalFormatForFloat16MatrixTexture:()=>_A,getInternalFormatForFloat16PackedMatrixTexture:()=>IA,getInternalFormatForFloat32MatrixTexture:()=>wA,getInternalFormatForPackedMatrixTexture:()=>kA,getInternalFormatForUnsignedBytesMatrixTexture:()=>vA,uploadDenseMatrixToTexture:()=>_3,uploadPixelDataToTexture:()=>v3});function p3(e){let t=dn(),n=`${t.version} precision highp float; ${t.attribute} vec3 clipSpacePos; ${t.attribute} vec2 uv; @@ -261,22 +261,22 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee void main() { gl_Position = vec4(clipSpacePos, 1); resultUV = uv; - }`;return X_(e,n)}function x3(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return J_(e,t)}function w3(e){let t=new Uint16Array([0,1,2,2,1,3]);return Q_(e,t)}function _c(e,t,n,r,a,s){t3(t,n);let i=e3(e),o=e.TEXTURE_2D;return we(e,()=>e.bindTexture(o,i)),we(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),we(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),we(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function vA(e){return e.internalFormatFloat}function b3(e,t,n,r){let[a,s]=wc(t,n);return _c(e,a,s,vA(r),r.textureFormatFloat,e.FLOAT)}function kA(e){return e.internalFormatHalfFloat}function _3(e,t,n,r){let[a,s]=wc(t,n);return _c(e,a,s,kA(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function IA(e){return e.downloadTextureFormat}function v3(e,t,n,r){let[a,s]=wc(t,n);return _c(e,a,s,IA(r),e.RGBA,e.UNSIGNED_BYTE)}function SA(e){return e.internalFormatPackedFloat}function k3(e,t,n,r){let[a,s]=Dl(t,n);return _c(e,a,s,SA(r),e.RGBA,e.FLOAT)}function NA(e){return e.internalFormatPackedHalfFloat}function I3(e,t,n,r){let[a,s]=Dl(t,n);return _c(e,a,s,NA(r),e.RGBA,r.textureTypeHalfFloat)}function S3(e,t,n){let r=0,a=3*4,s=3*4+2*4;return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),AA(e,t,"clipSpacePos",n,3,s,r)&&AA(e,t,"uv",n,2,s,a)}function N3(e,t,n,r,a,s){we(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),we(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function T3(e,t,n){we(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function E3(e,t,n,r){let a=e.createBuffer();we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return we(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),we(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function C3(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function R3(e,t,n,r){let[a,s]=wc(t,n),i=4,o=new Uint8Array(iL(t*n,i));return we(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function M3(e,t,n,r,a,s,i,o){let l=e,c=new Float32Array(oL(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function F3(e,t,n){let r=new Float32Array(t*n*4);return we(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var bp=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,yp(t,e)):this.gl=qr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Ac(this.gl,a),nr(this.gl,s))this.textureHalfFloatExtension=Ac(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),nr(this.gl,r))this.colorBufferHalfFloatExtension=Ac(this.gl,r);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",nr(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(nr(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=x3(this.gl),this.indexBuffer=w3(this.gl),this.framebuffer=n3(this.gl),this.textureConfig=wA(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;we(e,()=>e.finish()),we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.deleteFramebuffer(this.framebuffer)),we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),we(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),b3(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),_3(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),v3(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),T3(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),N3(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),I3(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),k3(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(yA(this.gl,this.framebuffer),this.outputTexture=null),we(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>R3(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return M3(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return C3(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=E3(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>F3(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=K_(t,e),r=g3(t),a=Z_(t);return we(t,()=>t.attachShader(a,r)),we(t,()=>t.attachShader(a,n)),Y_(t,a),this.debug&&fp(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=S3(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&we(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&fp(this.gl,this.program),we(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?a3(this.gl,e,t):s3(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),we(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),i3(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=Dl(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&fp(this.gl,this.program),yc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),we(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),we(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Ac(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await _.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=wL(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&_.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),mp(this.gl,e,this.framebuffer),this.debug&&yc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(mp(this.gl,this.outputTexture,this.framebuffer),this.debug&&yc(this.gl)):yA(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;mp(r,e,this.framebuffer),this.debug&&yc(r),this.outputTexture=e,we(r,()=>r.viewport(0,0,t,n)),we(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),we(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function wL(e){let t=0;for(;t{let f=_.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${f>1?`[${f}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(` -`),i=e.map(p=>bL(p,t,r)).join(` -`),o=t.texShape,l=dn(),c=kL(l),u,h,d=NL(l);return t.isPacked?(u=_L(t.logicalShape,o),h=SL(l)):(u=vL(t.logicalShape,o),h=IL(l)),r&&(d+=TL),[d,c,h,s,u,i,n].join(` -`)}function Ol(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return CL(e);case 1:return RL(e);case 2:return ML(e);case 3:return FL(e);case 4:return $L(e);case 5:return DL(e);case 6:return OL(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function D3(e){switch(e.shapeInfo.logicalShape.length){case 0:return zL(e);case 1:return PL(e);case 2:return LL(e);case 3:return WL(e);default:return BL(e)}}function bL(e,t,n=!1){let r="";n?r+=D3(e):r+=Ol(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=VL(e,t):r+=jL(e,t)),r}function _L(e,t){switch(e.length){case 0:return O3();case 1:return UL(e,t);case 2:return qL(e,t);case 3:return HL(e,t);default:return GL(e,t)}}function vL(e,t){switch(e.length){case 0:return O3();case 1:return XL(e,t);case 2:return QL(e,t);case 3:return KL(e,t);case 4:return ZL(e,t);case 5:return YL(e,t);case 6:return JL(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function kL(e){return` + }`;return j_(e,n)}function f3(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return q_(e,t)}function m3(e){let t=new Uint16Array([0,1,2,2,1,3]);return X_(e,t)}function bc(e,t,n,r,a,s){Z_(t,n);let i=K_(e),o=e.TEXTURE_2D;return xe(e,()=>e.bindTexture(o,i)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),xe(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function wA(e){return e.internalFormatFloat}function A3(e,t,n,r){let[a,s]=gc(t,n);return bc(e,a,s,wA(r),r.textureFormatFloat,e.FLOAT)}function _A(e){return e.internalFormatHalfFloat}function y3(e,t,n,r){let[a,s]=gc(t,n);return bc(e,a,s,_A(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function vA(e){return e.downloadTextureFormat}function g3(e,t,n,r){let[a,s]=gc(t,n);return bc(e,a,s,vA(r),e.RGBA,e.UNSIGNED_BYTE)}function kA(e){return e.internalFormatPackedFloat}function x3(e,t,n,r){let[a,s]=Dl(t,n);return bc(e,a,s,kA(r),e.RGBA,e.FLOAT)}function IA(e){return e.internalFormatPackedHalfFloat}function b3(e,t,n,r){let[a,s]=Dl(t,n);return bc(e,a,s,IA(r),e.RGBA,r.textureTypeHalfFloat)}function w3(e,t,n){let r=0,a=3*4,s=3*4+2*4;return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),fA(e,t,"clipSpacePos",n,3,s,r)&&fA(e,t,"uv",n,2,s,a)}function _3(e,t,n,r,a,s){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function v3(e,t,n){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function k3(e,t,n,r){let a=e.createBuffer();xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return xe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function I3(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function S3(e,t,n,r){let[a,s]=gc(t,n),i=4,o=new Uint8Array(YP(t*n,i));return xe(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function N3(e,t,n,r,a,s,i,o){let l=e,c=new Float32Array(JP(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function T3(e,t,n){let r=new Float32Array(t*n*4);return xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var bp=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Ap(t,e)):this.gl=Xr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=fc(this.gl,a),nr(this.gl,s))this.textureHalfFloatExtension=fc(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),nr(this.gl,r))this.colorBufferHalfFloatExtension=fc(this.gl,r);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",nr(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(nr(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=f3(this.gl),this.indexBuffer=m3(this.gl),this.framebuffer=Y_(this.gl),this.textureConfig=gA(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;xe(e,()=>e.finish()),xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.deleteFramebuffer(this.framebuffer)),xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),xe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),A3(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),y3(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),g3(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),v3(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),_3(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),b3(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),x3(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(mA(this.gl,this.framebuffer),this.outputTexture=null),xe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>S3(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return N3(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return I3(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=k3(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>T3(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=U_(t,e),r=p3(t),a=H_(t);return xe(t,()=>t.attachShader(a,r)),xe(t,()=>t.attachShader(a,n)),G_(t,a),this.debug&&pp(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=w3(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&xe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&pp(this.gl,this.program),xe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?Q_(this.gl,e,t):e3(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),xe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),t3(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=Dl(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&pp(this.gl,this.program),mc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),xe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),xe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=fc(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await _.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=hL(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&_.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),fp(this.gl,e,this.framebuffer),this.debug&&mc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(fp(this.gl,this.outputTexture,this.framebuffer),this.debug&&mc(this.gl)):mA(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;fp(r,e,this.framebuffer),this.debug&&mc(r),this.outputTexture=e,xe(r,()=>r.viewport(0,0,t,n)),xe(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),xe(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function hL(e){let t=0;for(;t{let m=_.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${m>1?`[${m}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(` +`),i=e.map(p=>dL(p,t,r)).join(` +`),o=t.texShape,l=dn(),c=mL(l),u,h,d=gL(l);return t.isPacked?(u=pL(t.logicalShape,o),h=yL(l)):(u=fL(t.logicalShape,o),h=AL(l)),r&&(d+=xL),[d,c,h,s,u,i,n].join(` +`)}function Ol(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return wL(e);case 1:return _L(e);case 2:return vL(e);case 3:return kL(e);case 4:return IL(e);case 5:return SL(e);case 6:return NL(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function C3(e){switch(e.shapeInfo.logicalShape.length){case 0:return TL(e);case 1:return EL(e);case 2:return CL(e);case 3:return RL(e);default:return ML(e)}}function dL(e,t,n=!1){let r="";n?r+=C3(e):r+=Ol(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=FL(e,t):r+=$L(e,t)),r}function pL(e,t){switch(e.length){case 0:return R3();case 1:return DL(e,t);case 2:return PL(e,t);case 3:return OL(e,t);default:return zL(e,t)}}function fL(e,t){switch(e.length){case 0:return R3();case 1:return LL(e,t);case 2:return UL(e,t);case 3:return WL(e,t);case 4:return BL(e,t);case 5:return VL(e,t);case 6:return jL(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function mL(e){return` float sampleTexture(sampler2D textureSampler, vec2 uv) { return ${e.texture2D}(textureSampler, uv).r; } - `}function IL(e){return` + `}function AL(e){return` void setOutput(float val) { ${e.output} = vec4(val, 0, 0, 0); } - `}function SL(e){return` + `}function yL(e){return` void setOutput(vec4 val) { ${e.output} = val; } - `}function NL(e){return`${e.version} + `}function gL(e){return`${e.version} precision highp float; precision highp int; precision highp sampler2D; @@ -331,10 +331,10 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee return fract((p3.x + p3.y) * p3.z); } - ${eW} - ${tW} - ${nW} - `}var eW=` + ${HL} + ${GL} + ${qL} + `}var HL=` vec2 uvFromFlat(int texNumR, int texNumC, int index) { int texR = index / texNumC; int texC = index - texR * texNumC; @@ -346,7 +346,7 @@ vec2 packedUVfrom1D(int texNumR, int texNumC, int index) { int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,tW=` +`,GL=` vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texNumC, int row, int col) { int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2); @@ -354,7 +354,7 @@ vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,nW=` +`,qL=` vec2 packedUVfrom3D(int texNumR, int texNumC, int texelsInBatch, int texelsInLogicalRow, int b, int row, int col) { @@ -363,7 +363,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,TL=` +`,xL=` float getChannel(vec4 frag, vec2 innerDims) { vec2 modCoord = mod(innerDims, 2.); return modCoord.x == 0. ? @@ -374,11 +374,11 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, float modCoord = mod(float(dim), 2.); return modCoord == 0. ? frag.r : frag.g; } -`;function O3(){return` +`;function R3(){return` int getOutputCoords() { return 0; } - `}function UL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?` + `}function DL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?` int getOutputCoords() { return 2 * int(resultUV.x * ${n[1]}.0); } @@ -392,7 +392,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2(${n[0]}, ${n[1]})); return 2 * (resTexRC.x * ${n[1]} + resTexRC.y); } - `}function XL(e,t){return t[0]===1?` + `}function LL(e,t){return t[0]===1?` int getOutputCoords() { return int(resultUV.x * ${t[1]}.0); } @@ -406,7 +406,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2(${t[0]}, ${t[1]})); return resTexRC.x * ${t[1]} + resTexRC.y; } - `}function HL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return` + `}function OL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]})); @@ -420,7 +420,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, return ivec3(b, r, c); } - `}function KL(e,t){let n=Ri(["r","c","d"],e);return` + `}function WL(e,t){let n=Mi(["r","c","d"],e);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); @@ -428,7 +428,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ${n} return ivec3(r, c, d); } - `}function GL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),s=a,i="",o="b, r, c";for(let l=2;l=1?u="coords = 0;":u=o.map(A=>`coords.${h[A+c]} = 0;`).join(` -`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,y)=>`coords.${h[y+c]}`).join(", ");let p="return outputValue;",f=_.sizeFromShape(e.shapeInfo.logicalShape)===1,m=_.sizeFromShape(t.logicalShape)===1;if(s===1&&!f&&!m)p=` + `}function FL(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=E3(e.shapeInfo.logicalShape,t.logicalShape),l=lt(i),c=i-s,u,h=["x","y","z","w","u","v"];s===0?u="":i<2&&o.length>=1?u="coords = 0;":u=o.map(A=>`coords.${h[A+c]} = 0;`).join(` +`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,y)=>`coords.${h[y+c]}`).join(", ");let p="return outputValue;",m=_.sizeFromShape(e.shapeInfo.logicalShape)===1,f=_.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)p=` return vec4(outputValue.xy, outputValue.xy); - `;else if(f&&!m)i===1?p=` + `;else if(m&&!f)i===1?p=` return vec4(outputValue.x, outputValue.x, 0., 0.); `:p=` return vec4(outputValue.x); @@ -808,22 +808,22 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec4 outputValue = get${r}(${d}); ${p} } - `}function jL(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&_.arraysEqual(i,s))return` + `}function $L(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&_.arraysEqual(i,s))return` float ${a}() { return sampleTexture(${n}, resultUV); } - `;let c=lt(l),u=$3(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(m=>`coords.${p[m+h]} = 0;`).join(` -`);let f="";return l<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,A)=>`coords.${p[A+h]}`).join(", "),` + `;let c=lt(l),u=E3(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(f=>`coords.${p[f+h]} = 0;`).join(` +`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,A)=>`coords.${p[A+h]}`).join(", "),` float ${a}() { ${c} coords = getOutputCoords(); ${d} - return get${r}(${f}); + return get${r}(${m}); } - `}function lt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Pl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Ll(e,t){return t.map(n=>e[n]).join(", ")}function rW(e,t,n,r){let a=t.userCode,s=n.map((p,f)=>{let m={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(m.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[f],shapeInfo:m}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=EL(s,o,a,t.packedInputs),c=e.createProgram(l),u=null,h=e.getUniformLocation(c,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let p=0;p{let a=n.logicalShape,s=t[r],i=s.shape;if(!_.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!_.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function aW(e,t,n,r,a){z3(t.inShapeInfos,n),z3([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(_.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function sW(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:iW,bincountImpl:P3,bincountReduceImpl:oW,ceilImpl:lW,concatImpl:uW,expImpl:cW,expm1Impl:hW,floorImpl:dW,gatherV2Impl:pW,greaterImpl:fW,lessImpl:mW,linSpaceImpl:AW,logImpl:yW,maxImpl:gW,maximumImpl:xW,minimumImpl:wW,multiplyImpl:bW,negImpl:_W,prodImpl:vW,rangeImpl:kW,rsqrtImpl:IW,simpleAbsImpl:L3,sliceImpl:SW,sparseReshapeImpl:NW,stridedSliceImpl:TW,subImpl:EW,tileImpl:CW,topKImpl:RW,transposeImpl:TA,uniqueImpl:MW}=nA;function W3(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function pn(e,t){return t===1?[e]:W3(e,t)}function FW(e,t){if(e===1)return"rc";let n="";for(let r=0;re[n]).join(", ")}function XL(e,t,n,r){let a=t.userCode,s=n.map((p,m)=>{let f={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(f.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=bL(s,o,a,t.packedInputs),c=e.createProgram(l),u=null,h=e.getUniformLocation(c,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let p=0;p{let a=n.logicalShape,s=t[r],i=s.shape;if(!_.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!_.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function KL(e,t,n,r,a){M3(t.inShapeInfos,n),M3([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(_.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function ZL(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:YL,bincountImpl:F3,bincountReduceImpl:JL,ceilImpl:QL,concatImpl:eW,expImpl:tW,expm1Impl:nW,floorImpl:rW,gatherV2Impl:aW,greaterImpl:sW,lessImpl:iW,linSpaceImpl:oW,logImpl:lW,maxImpl:uW,maximumImpl:cW,minimumImpl:hW,multiplyImpl:dW,negImpl:pW,prodImpl:fW,rangeImpl:mW,rsqrtImpl:AW,simpleAbsImpl:$3,sliceImpl:yW,sparseReshapeImpl:gW,stridedSliceImpl:xW,subImpl:bW,tileImpl:wW,topKImpl:_W,transposeImpl:SA,uniqueImpl:vW}=eA;function D3(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function pn(e,t){return t===1?[e]:D3(e,t)}function kW(e,t){if(e===1)return"rc";let n="";for(let r=0;r ${t[0]}`;let r="";for(let a=e-2;a= ${t[a]}`,a ${t[0]}`;let r="";for(let a=e-2;a= ${t[a]}`,a= ${t}; bool rEdge = rp1 >= ${n}; - `}function OW(e,t){let n=e.length,r=PW(n,t);return n===1?`getA(rc), + `}function NW(e,t){let n=e.length,r=EW(n,t);return n===1?`getA(rc), rc + 1 >= ${e[0]} ? 0. : getA(rc + 1), 0, 0`:`getA(${r[0]}), cEdge ? 0. : getA(${r[1]}), rEdge ? 0. : getA(${r[2]}), - rEdge || cEdge ? 0. : getA(${r[3]})`}var B3=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=` + rEdge || cEdge ? 0. : getA(${r[3]})`}var O3=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=` ${a} ${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""} int flatIndex = getFlatIndex(thisRC); @@ -860,8 +860,8 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims); ${r>0?"}":""} `}this.userCode=` - ${LW(t)} - ${_A(e)} + ${CW(t)} + ${bA(e)} void main() { ivec3 rc = getOutputCoords(); @@ -876,12 +876,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(result); } - `}};function LW(e){return` + `}};function CW(e){return` ivec3 inputCoordsFromReshapedOutCoords(int index) { - ${Ri(["r","c","d"],e)} + ${Mi(["r","c","d"],e)} return ivec3(r, c, d); } - `}var WW=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=j3(t,n),a=U3(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=V3(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===tn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===tn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===tn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===tn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===tn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=j3(n,r),s=U3(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=V3(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function BW(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function V3(e,t,n,r,a){let s=VW(t,r),i;if(a){let[l,c]=Dl(e[0],e[1]);i=l*c}else{let[l,c]=wc(e[0],e[1]);i=l*c}let o=BW(n,s);return i*o}function VW(e,t){switch(e){case tn.PACKED_2X2_FLOAT32:return SA(t);case tn.PACKED_2X2_FLOAT16:return NA(t);case tn.UNPACKED_FLOAT32:return vA(t);case tn.UNPACKED_FLOAT16:return kA(t);case tn.PACKED_4X1_UNSIGNED_BYTE:return IA(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function jW(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?tn.PACKED_2X2_FLOAT32:tn.UNPACKED_FLOAT32:e?tn.PACKED_2X2_FLOAT16:tn.UNPACKED_FLOAT16}function j3(e,t){if(e===rr.UPLOAD)return tn.PACKED_2X2_FLOAT32;if(e===rr.RENDER||e==null)return jW(t);if(e===rr.DOWNLOAD||e===rr.PIXELS)return tn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function U3(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Ga=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=` + `}var RW=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=P3(t,n),a=L3(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=z3(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===tn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===tn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===tn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===tn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===tn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=P3(n,r),s=L3(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=z3(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function MW(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function z3(e,t,n,r,a){let s=FW(t,r),i;if(a){let[l,c]=Dl(e[0],e[1]);i=l*c}else{let[l,c]=gc(e[0],e[1]);i=l*c}let o=MW(n,s);return i*o}function FW(e,t){switch(e){case tn.PACKED_2X2_FLOAT32:return kA(t);case tn.PACKED_2X2_FLOAT16:return IA(t);case tn.UNPACKED_FLOAT32:return wA(t);case tn.UNPACKED_FLOAT16:return _A(t);case tn.PACKED_4X1_UNSIGNED_BYTE:return vA(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function $W(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?tn.PACKED_2X2_FLOAT32:tn.UNPACKED_FLOAT32:e?tn.PACKED_2X2_FLOAT16:tn.UNPACKED_FLOAT16}function P3(e,t){if(e===rr.UPLOAD)return tn.PACKED_2X2_FLOAT32;if(e===rr.RENDER||e==null)return $W(t);if(e===rr.DOWNLOAD||e===rr.PIXELS)return tn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function L3(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var qa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=` float unaryOperation(float x) { ${t} } @@ -892,11 +892,11 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(y); } - `}},Sr="if (isnan(x)) return x;",UW="return x;",H3="return abs(x);",HW="return (x >= 0.0) ? x : (exp(x) - 1.0);",GW=Sr+` + `}},Nr="if (isnan(x)) return x;",DW="return x;",W3="return abs(x);",OW="return (x >= 0.0) ? x : (exp(x) - 1.0);",zW=Nr+` return (x < 0.0) ? 0.0 : x; -`,qW=Sr+` +`,PW=Nr+` return (x < 0.0) ? 0.0 : min(6.0, x); -`,_p="return x;",XW="return 1.0 / (1.0 + exp(-1.0 * x));",KW="return x;",ZW=` +`,wp="return x;",LW="return 1.0 / (1.0 + exp(-1.0 * x));",WW="return x;",BW=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); @@ -905,7 +905,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; -`,YW=` +`,VW=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -915,7 +915,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = isNaN.a ? x.a : result.a; return result; -`,JW=` +`,jW=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -925,7 +925,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = isNaN.a ? x.a : result.a; return result; -`,QW="return 1.0 / (1.0 + exp(-1.0 * x));",Wl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` +`,UW="return 1.0 / (1.0 + exp(-1.0 * x));",Wl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` vec4 unaryOperation(vec4 x) { ${t} } @@ -936,14 +936,14 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(y); } - `}},eB=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=pn("rc",t),r=lt(t),a=FW(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=` + `}},HW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=pn("rc",t),r=lt(t),a=kW(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=` void main() { ${r} rc = getOutputCoords(); vec4 packedInput = getA(${a}); setOutput(getChannel(packedInput, ${i})); } - `}},tB=Hr.whereImpl,nB=1e-7,rB=1e-4,EA={};function aB(e){return e in EA||(EA[e]={}),EA[e]}var sB=128,iB=600;function oB(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*iB/1024/1024}var Bl=class extends wu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=qr(J().getNumber("WEBGL_VERSION"));this.binaryCache=aB(J().getNumber("WEBGL_VERSION")),this.gpgpu=new bp(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new WW(this.gpgpu),this.numMBBeforeWarning=oB(),this.texData=new Rh(this,ua())}nextDataId(){return Bl.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:rr.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,a){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:rr.UPLOAD,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new Wl(i,_p):h=new Ga(i,_p);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,c;l&&(c=_.now());let u;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);u=E.mergeRealAndImagArrays(h,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=_.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(f=>p.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new Wl(r,_p):p=new Ga(r,_p);let f=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let p=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...bc(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=p[0],m=p[1];u=E.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let p=_.sizeFromShape(r);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}c!=null&&this.disposeIntermediateTensorInfo(c);let h=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ua().removeDataId(e,this),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>_.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=_.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=_.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=_.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:_.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=_.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=sB){return J().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&_.sizeFromShape(n.shape)0&&_.isString(n[0])){let a=n.map(s=>_.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return ua().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new eB(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new zW(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Ti(e.shape),...Ei(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[Ti(t),...Ei(t)],s=new B3(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=Ap(r),i;n?i=new mL(s):i=new fL(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===xc.DENSE){let m=bc(e.outputShape);i.texShape=m.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),_.sizeFromShape(s.shape)===0)return i.values=_.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(m.dataId);if(A.texture==null){if(!e.packedInputs&&_.sizeFromShape(m.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=m.shape)}else if(!!A.isPacked!=!!e.packedInputs)m=A.isPacked?this.unpackTensor(m):this.packTensor(m),o.push(m),A=this.texData.get(m.dataId);else if(A.isPacked&&!gc(A.shape,m.shape)){let y=m,g=m.shape;m.shape=A.shape,m=this.packedReshape(m,g),o.push(m),A=this.texData.get(m.dataId),y.shape=g}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=sW(e,l,c),h=this.getAndSaveBinary(u,()=>rW(this.gpgpu,e,l,c)),d=this.activeTimers!=null,p;d&&(p=this.startTimer()),aW(this.gpgpu,h,l,c,r),o.forEach(m=>this.disposeIntermediateTensorInfo(m)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let f=J().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=_.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let m=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),m}return s}compileAndRun(e,t,n,r,a=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=z(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(xe(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?nB:rB}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=_.now());let u=t.texShape;if(u==null&&(u=l3(n,o),t.texShape=u),a!=null){let h=Ap(n),d,p=u[1],f=u[0],m=a instanceof Uint8Array;o?([p,f]=Dl(u[0],u[1]),d=new xL(h,[f,p],m)):d=new gL(h,[f,p],m);let A=this.makeTensorInfo([f,p],r);m?this.texData.get(A.dataId).usage=rr.PIXELS:this.texData.get(A.dataId).usage=rr.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,f,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),x=this.texData.get(g.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=_.now()-c)}else{let h=this.acquireTexture(u,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=lB(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*_.bytesPerElement(t)}};Bl.nextDataId=0;function lB(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;rnew Bl,2);var uB={forceHalfFloat:q3},X3=` + `}},GW=Gr.whereImpl,qW=1e-7,XW=1e-4,NA={};function KW(e){return e in NA||(NA[e]={}),NA[e]}var ZW=128,YW=600;function JW(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*YW/1024/1024}var Bl=class extends gu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Xr(J().getNumber("WEBGL_VERSION"));this.binaryCache=KW(J().getNumber("WEBGL_VERSION")),this.gpgpu=new bp(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new RW(this.gpgpu),this.numMBBeforeWarning=JW(),this.texData=new Ch(this,ca())}nextDataId(){return Bl.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:rr.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,a){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:rr.UPLOAD,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new Wl(i,wp):h=new qa(i,wp);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,c;l&&(c=_.now());let u;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);u=E.mergeRealAndImagArrays(h,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=_.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(m=>p.push(m))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new Wl(r,wp):p=new qa(r,wp);let m=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let p=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...xc(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=p[0],f=p[1];u=E.mergeRealAndImagArrays(m,f)}else if(l==null)u=this.getValuesFromTexture(e);else{let p=_.sizeFromShape(r);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}c!=null&&this.disposeIntermediateTensorInfo(c);let h=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ca().removeDataId(e,this),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>_.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=_.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=_.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=_.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:_.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=_.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=ZW){return J().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&_.sizeFromShape(n.shape)0&&_.isString(n[0])){let a=n.map(s=>_.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return ca().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new HW(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new TW(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Ei(e.shape),...Ci(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[Ei(t),...Ci(t)],s=new O3(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=mp(r),i;n?i=new iL(s):i=new sL(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===yc.DENSE){let f=xc(e.outputShape);i.texShape=f.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),_.sizeFromShape(s.shape)===0)return i.values=_.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(f.dataId);if(A.texture==null){if(!e.packedInputs&&_.sizeFromShape(f.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=f.shape)}else if(!!A.isPacked!=!!e.packedInputs)f=A.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),A=this.texData.get(f.dataId);else if(A.isPacked&&!Ac(A.shape,f.shape)){let y=f,g=f.shape;f.shape=A.shape,f=this.packedReshape(f,g),o.push(f),A=this.texData.get(f.dataId),y.shape=g}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=ZL(e,l,c),h=this.getAndSaveBinary(u,()=>XL(this.gpgpu,e,l,c)),d=this.activeTimers!=null,p;d&&(p=this.startTimer()),KL(this.gpgpu,h,l,c,r),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let m=J().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=_.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,r,a=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=P(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(ve(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?qW:XW}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=_.now());let u=t.texShape;if(u==null&&(u=r3(n,o),t.texShape=u),a!=null){let h=mp(n),d,p=u[1],m=u[0],f=a instanceof Uint8Array;o?([p,m]=Dl(u[0],u[1]),d=new cL(h,[m,p],f)):d=new uL(h,[m,p],f);let A=this.makeTensorInfo([m,p],r);f?this.texData.get(A.dataId).usage=rr.PIXELS:this.texData.get(A.dataId).usage=rr.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,m,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),x=this.texData.get(g.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=_.now()-c)}else{let h=this.acquireTexture(u,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=QW(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*_.bytesPerElement(t)}};Bl.nextDataId=0;function QW(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;rnew Bl,2);var eB={forceHalfFloat:V3},j3=` if (isnan(a)) return a; if (isnan(b)) return b; `,Vl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=` @@ -956,12 +956,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, float b = getBAtOutCoords(); setOutput(binaryOperation(a, b)); } - `}},vp=` + `}},_p=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; -`,vc=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||_.sizeFromShape(this.outputShape)===1)s=` +`,wc=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||_.sizeFromShape(this.outputShape)===1)s=` result.y = 0.; result.z = 0.; result.w = 0.; @@ -993,30 +993,30 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(result); } - `}};function Vn(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var cB={kernelName:Es,backendName:"webgl",kernelFunc:Vn};function qa(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=Vn({inputs:{x:r},backend:n}),l=Vn({inputs:{x:a},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var hB={kernelName:Ph,backendName:"webgl",kernelFunc:qa},K3="return (a < 0.) ? b * a : a;",Z3=` + `}};function Vn(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var tB={kernelName:Cs,backendName:"webgl",kernelFunc:Vn};function Xa(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=Vn({inputs:{x:r},backend:n}),l=Vn({inputs:{x:a},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var nB={kernelName:zh,backendName:"webgl",kernelFunc:Xa},U3="return (a < 0.) ? b * a : a;",H3=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); -`;function dB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",_.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new vc(Z3,a.shape,i.shape):new Vl(K3,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var pB={kernelName:Cs,backendName:"webgl",kernelFunc:dB},Y3="return (a < 0.) ? b * a : a;",J3=` +`;function rB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",_.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new wc(H3,a.shape,i.shape):new Vl(U3,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var aB={kernelName:Rs,backendName:"webgl",kernelFunc:rB},G3="return (a < 0.) ? b * a : a;",q3=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); -`;function fB(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new vc(J3,r.shape,a.shape):new Vl(Y3,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var mB={kernelName:js,backendName:"webgl",kernelFunc:fB},Q3="if (isnan(x)) return x;",AB=` +`;function sB(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new wc(q3,r.shape,a.shape):new Vl(G3,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var iB={kernelName:Us,backendName:"webgl",kernelFunc:sB},X3="if (isnan(x)) return x;",oB=` if (isnan(a)) return a; if (isnan(b)) return b; -`,yB=` +`,lB=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; -`;function Xe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new Wl(i.shape,t):u=new Ga(i.shape,e),o.runWebGLProgram(u,[i],l)}}function nn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(r&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[A,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[v,w]=x,b={dataId:v.dataId,dtype:v.dtype,shape:l.shape},k={dataId:w.dataId,dtype:w.dtype,shape:c.shape},N=new Vl(e,l.shape,c.shape);return u.runWebGLProgram(N,[b,k],dr(v.dtype,w.dtype))}),g=qa({inputs:{real:A,imag:y},backend:u});return u.disposeIntermediateTensorInfo(A),u.disposeIntermediateTensorInfo(y),g}let h=s||dr(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&a!=null){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[A,y]=a(l.shape,c.shape,f.values,m.values,h),g=u.makeTensorInfo(y,h),x=u.texData.get(g.dataId);return x.values=A,g}let d=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new vc(t,l.shape,c.shape,n):p=new Vl(e,l.shape,c.shape),u.runWebGLProgram(p,[l,c],h)}}function kp(e,t=!1){if(e==="linear")return t?KW:UW;if(e==="relu")return t?YW:GW;if(e==="elu")return t?ZW:HW;if(e==="relu6")return t?JW:qW;if(e==="prelu")return t?J3:Y3;if(e==="leakyrelu")return t?Z3:K3;if(e==="sigmoid")return t?QW:XW;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var e7=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=r?e[1]:e[2],u=Math.ceil(c/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",A="";i&&(o?m=`vec4 activation(vec4 a) { +`;function Xe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new Wl(i.shape,t):u=new qa(i.shape,e),o.runWebGLProgram(u,[i],l)}}function nn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(r&&l.dtype==="complex64"){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[A,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,b]=x,w={dataId:v.dataId,dtype:v.dtype,shape:l.shape},k={dataId:b.dataId,dtype:b.dtype,shape:c.shape},N=new Vl(e,l.shape,c.shape);return u.runWebGLProgram(N,[w,k],dr(v.dtype,b.dtype))}),g=Xa({inputs:{real:A,imag:y},backend:u});return u.disposeIntermediateTensorInfo(A),u.disposeIntermediateTensorInfo(y),g}let h=s||dr(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&a!=null){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[A,y]=a(l.shape,c.shape,m.values,f.values,h),g=u.makeTensorInfo(y,h),x=u.texData.get(g.dataId);return x.values=A,g}let d=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new wc(t,l.shape,c.shape,n):p=new Vl(e,l.shape,c.shape),u.runWebGLProgram(p,[l,c],h)}}function vp(e,t=!1){if(e==="linear")return t?WW:DW;if(e==="relu")return t?VW:zW;if(e==="elu")return t?BW:OW;if(e==="relu6")return t?jW:PW;if(e==="prelu")return t?q3:G3;if(e==="leakyrelu")return t?H3:U3;if(e==="sigmoid")return t?UW:LW;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var K3=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=r?e[1]:e[2],u=Math.ceil(c/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",A="";i&&(o?f=`vec4 activation(vec4 a) { vec4 b = getPreluActivationWeightsAtOutCoords(); ${i} - }`:l?m=`vec4 activation(vec4 a) { + }`:l?f=`vec4 activation(vec4 a) { vec4 b = getLeakyreluAlphaAtOutCoords(); ${i} - }`:m=`vec4 activation(vec4 x) { + }`:f=`vec4 activation(vec4 x) { ${i} }`,A="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",x="rc.x";e[0]`The new shape (${l}) has ${c} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(a.dataId);return u.isPacked&&!gc(a.shape,l)&&!(u.texture!==null&&gc(u.shape,l))?xB(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var wB={kernelName:Ko,backendName:"webgl",kernelFunc:fe},a7=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${_.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";a%n>0&&(c=` + `}},J3="return a * b;";function TA(e){let{inputs:t,backend:n}=e,{a:r,b:a}=t,s=E.upcastType(r.dtype,a.dtype);if(r.dtype==="complex64"){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),c=new Y3(Z3.REAL,r.shape,a.shape),u=new Y3(Z3.IMAG,r.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:r.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),m=Xa({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}if(n.shouldExecuteOnCPU([r,a])){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),[c,u]=dW(r.shape,a.shape,o.values,l.values,s),h=n.makeTensorInfo(u,s),d=n.texData.get(h.dataId);return d.values=c,h}let i;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new wc(J3,r.shape,a.shape):i=new Vl(J3,r.shape,a.shape),n.runWebGLProgram(i,[r,a],s)}var uB={kernelName:Ws,backendName:"webgl",kernelFunc:TA};function cB(e,t,n){let r=[Ei(e.shape),...Ci(e.shape)],a={dtype:e.dtype,shape:r,dataId:e.dataId},s=[Ei(t),...Ci(t)],i=new O3(s,r),o=!0,l=n.runWebGLProgram(i,[a],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function fe(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=n,o=_.sizeFromShape(a.shape),l=_.inferFromImplicitShape(s,o),c=_.sizeFromShape(l);_.assert(o===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(a.dataId);return u.isPacked&&!Ac(a.shape,l)&&!(u.texture!==null&&Ac(u.shape,l))?cB(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var hB={kernelName:Ko,backendName:"webgl",kernelFunc:fe},Q3=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${_.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";a%n>0&&(c=` if (inIdx < 0 || inIdx >= ${a}) { return 0.0; } @@ -1112,7 +1112,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, } setOutput(sumValue); } - `}},bB=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,h=` + `}},dB=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,h=` if (${t==="sum"}) { sumValue += dot(values, ones); } else if (${t==="prod"}) { @@ -1197,12 +1197,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, } setOutput(${l}); } - `}};function _B(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=E.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function Fi(e,t,n,r){let a=_B(e.shape),s=e;for(let i=0;i6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=lt(this.rank),a=W3("rc",this.rank),s=new Array(this.rank);for(let c=0;c6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=lt(this.rank),a=D3("rc",this.rank),s=new Array(this.rank);for(let c=0;c=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${A}).`);let v=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,f]);_.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let w=n?[y,h,p]:[y,p,h],b=r?[g,f,d]:[g,d,f],k=fe({inputs:{x:e},backend:a,attrs:{shape:w}}),N=fe({inputs:{x:t},backend:a,attrs:{shape:b}}),C=[k,N],F=Math.max(y,g),O=n?k.shape[1]:k.shape[2],L=s!=null,V=i!=null,j=l==="leakyrelu",U=l!=null?kp(l,!0):null,X=L||V||j||U!=null,G;if((p===1||f===1)&&O>s7&&X===!1){let Y=k,ae=N;n&&(Y=fn({inputs:{x:k},backend:a,attrs:{perm:[0,2,1]}}),C.push(Y)),r&&(ae=fn({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),C.push(ae));let te=f!==1,ie=f===1,Q=Y;te&&(Q=fe({inputs:{x:Y},backend:a,attrs:{shape:[F,O,1]}}),C.push(Q));let he=f===1?2:1,oe=ae;ie&&(oe=fe({inputs:{x:ae},backend:a,attrs:{shape:[F,1,O]}}),C.push(oe));let me=CA({inputs:{a:Q,b:oe},backend:a});G=Sp({inputs:{x:me},backend:a,attrs:{axis:he,keepDims:!0}}),C.push(me)}else{let Y=dr(e.dtype,t.dtype),ae=new e7(w,b,[F,p,f],n,r,L,U,V,j),te=[k,N];if(s!=null&&te.push(s),V&&te.push(i),j){let ie=a.makeTensorInfo([],"float32",_.createScalarValue(o,"float32"));te.push(ie),C.push(ie)}G=a.runWebGLProgram(ae,te,Y)}let ee=fe({inputs:{x:G},backend:a,attrs:{shape:v}});C.push(G);for(let Y of C)a.disposeIntermediateTensorInfo(Y);return ee}function EB(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r;return Np({a,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:u})}var CB={kernelName:ii,backendName:"webgl",kernelFunc:EB},i7="return abs(x);";function RB(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=L3(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Wl(r.shape,i7):a=new Ga(r.shape,i7),n.runWebGLProgram(a,[r],r.dtype)}var MB={kernelName:lo,backendName:"webgl",kernelFunc:RB},FB=Sr+` + `}};function kp(e,t,n){let r=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new AB(e.shape,t):new mB(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function yB(e,t,n,r){let a=t,s=e.shape.length,i=_.parseAxisParam(a,e.shape),o=i,l=E.getAxesPermutation(o,s),c=l!=null,u=e;c&&(u=kp(e,l,r),o=E.getInnerMostAxes(o.length,s)),E.assertAxesAreInnerMostDims("sum",o,s);let[h,d]=E.computeOutAndReduceShapes(u.shape,o),p=h;n&&(p=E.expandShapeToKeepDim(h,i));let m=_.sizeFromShape(d),f=_.sizeFromShape(e.shape)/m,A=fe({inputs:{x:u},attrs:{shape:[f,m]},backend:r}),y=Ad(e.dtype),g=$i(A,y,"sum",r),x=fe({inputs:{x:g},attrs:{shape:p},backend:r});return r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(g),c&&r.disposeIntermediateTensorInfo(u),x}function Ip(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;return yB(a,s,i,n)}var gB={kernelName:ei,backendName:"webgl",kernelFunc:Ip};function fn(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{perm:s}=r,i=n,o=a.shape.length,l=new Array(o);for(let u=0;u=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${A}).`);let v=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,m]);_.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let b=n?[y,h,p]:[y,p,h],w=r?[g,m,d]:[g,d,m],k=fe({inputs:{x:e},backend:a,attrs:{shape:b}}),N=fe({inputs:{x:t},backend:a,attrs:{shape:w}}),C=[k,N],F=Math.max(y,g),O=n?k.shape[1]:k.shape[2],L=s!=null,V=i!=null,j=l==="leakyrelu",U=l!=null?vp(l,!0):null,X=L||V||j||U!=null,G;if((p===1||m===1)&&O>e7&&X===!1){let Y=k,ae=N;n&&(Y=fn({inputs:{x:k},backend:a,attrs:{perm:[0,2,1]}}),C.push(Y)),r&&(ae=fn({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),C.push(ae));let te=m!==1,ie=m===1,Q=Y;te&&(Q=fe({inputs:{x:Y},backend:a,attrs:{shape:[F,O,1]}}),C.push(Q));let he=m===1?2:1,oe=ae;ie&&(oe=fe({inputs:{x:ae},backend:a,attrs:{shape:[F,1,O]}}),C.push(oe));let me=TA({inputs:{a:Q,b:oe},backend:a});G=Ip({inputs:{x:me},backend:a,attrs:{axis:he,keepDims:!0}}),C.push(me)}else{let Y=dr(e.dtype,t.dtype),ae=new K3(b,w,[F,p,m],n,r,L,U,V,j),te=[k,N];if(s!=null&&te.push(s),V&&te.push(i),j){let ie=a.makeTensorInfo([],"float32",_.createScalarValue(o,"float32"));te.push(ie),C.push(ie)}G=a.runWebGLProgram(ae,te,Y)}let ee=fe({inputs:{x:G},backend:a,attrs:{shape:v}});C.push(G);for(let Y of C)a.disposeIntermediateTensorInfo(Y);return ee}function bB(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r;return Sp({a,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:u})}var wB={kernelName:oi,backendName:"webgl",kernelFunc:bB},t7="return abs(x);";function _B(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=$3(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Wl(r.shape,t7):a=new qa(r.shape,t7),n.runWebGLProgram(a,[r],r.dtype)}var vB={kernelName:lo,backendName:"webgl",kernelFunc:_B},kB=Nr+` if (abs(x) > 1.) { return NAN; } return acos(x); -`,$B=Xe({opSnippet:FB}),DB={kernelName:uo,backendName:"webgl",kernelFunc:$B},OB=Sr+` +`,IB=Xe({opSnippet:kB}),SB={kernelName:uo,backendName:"webgl",kernelFunc:IB},NB=Nr+` if (x < 1.0) return NAN; -return log(x + sqrt(x * x - 1.0));`,zB=Xe({opSnippet:OB}),PB={kernelName:co,backendName:"webgl",kernelFunc:zB},o7="return a + b;",LB=nn({opSnippet:o7,packedOpSnippet:o7,supportsComplex:!0,cpuKernelImpl:iW}),WB={kernelName:Ca,backendName:"webgl",kernelFunc:LB},BB=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` +return log(x + sqrt(x * x - 1.0));`,TB=Xe({opSnippet:NB}),EB={kernelName:co,backendName:"webgl",kernelFunc:TB},n7="return a + b;",CB=nn({opSnippet:n7,packedOpSnippet:n7,supportsComplex:!0,cpuKernelImpl:YL}),RB={kernelName:Ra,backendName:"webgl",kernelFunc:CB},MB=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} @@ -1234,7 +1234,7 @@ return log(x + sqrt(x * x - 1.0));`,zB=Xe({opSnippet:OB}),PB={kernelName:co,back float result = ${r}; setOutput(result); } - `}},VB=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` + `}},FB=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} @@ -1242,7 +1242,7 @@ return log(x + sqrt(x * x - 1.0));`,zB=Xe({opSnippet:OB}),PB={kernelName:co,back vec4 result = ${r}; setOutput(result); } - `}};function Tp(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return Vn({inputs:{x:r[0]},backend:n});if(r.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=Tp({inputs:r.slice(0,o),backend:n}),c=Tp({inputs:r.slice(o),backend:n});return Tp({inputs:[l,c],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>dr(o,l)),s=r.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new VB(r[0].shape,s):new BB(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var jB={kernelName:ds,backendName:"webgl",kernelFunc:Tp};function UB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,o)),E.assertAxesAreInnerMostDims("all",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),f=_.sizeFromShape(p),m=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=Fi(m,m.dtype,"all",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var HB={kernelName:ho,backendName:"webgl",kernelFunc:UB};function GB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,o)),E.assertAxesAreInnerMostDims("any",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),f=_.sizeFromShape(p),m=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=Fi(m,m.dtype,"any",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var qB={kernelName:po,backendName:"webgl",kernelFunc:GB},XB=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` + `}};function Np(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return Vn({inputs:{x:r[0]},backend:n});if(r.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=Np({inputs:r.slice(0,o),backend:n}),c=Np({inputs:r.slice(o),backend:n});return Np({inputs:[l,c],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>dr(o,l)),s=r.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new FB(r[0].shape,s):new MB(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var $B={kernelName:ps,backendName:"webgl",kernelFunc:Np};function DB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,o)),E.assertAxesAreInnerMostDims("all",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),m=_.sizeFromShape(p),f=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=$i(f,f.dtype,"all",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var OB={kernelName:ho,backendName:"webgl",kernelFunc:DB};function zB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,o)),E.assertAxesAreInnerMostDims("any",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),m=_.sizeFromShape(p),f=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=$i(f,f.dtype,"any",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var PB={kernelName:po,backendName:"webgl",kernelFunc:zB},LB=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; @@ -1262,7 +1262,7 @@ return log(x + sqrt(x * x - 1.0));`,zB=Xe({opSnippet:OB}),PB={kernelName:co,back } setOutput(float(bestIndex)); } - `}},KB=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,_.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=lt(o),c=pn("coords",o),u,h;if(s===1){h=o+1;let k=lt(h);u=` + `}},WB=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,_.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=lt(o),c=pn("coords",o),u,h;if(s===1){h=o+1;let k=lt(h);u=` ${k} sourceLocR = ${k}(${c.join()}, 0); ++${c[o-1]}; ${k} sourceLocG = ${k}(${c.join()}, 0); @@ -1278,24 +1278,24 @@ return log(x + sqrt(x * x - 1.0));`,zB=Xe({opSnippet:OB}),PB={kernelName:co,back ${l} sourceLocA = coords; --${c[o-1]}; ${l} sourceLocB = coords; - --${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],f=d.map(k=>"int "+k),m=pn("sourceLocR",h-1).concat("inIdx.r"),A=pn("sourceLocG",h-1).concat("inIdx.g"),y=pn("sourceLocB",h-1).concat("inIdx.b"),g=pn("sourceLocA",h-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=r?"":` - inIdx = round(vec4(getBestIndicesAChannel(${m.join()}), + --${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],m=d.map(k=>"int "+k),f=pn("sourceLocR",h-1).concat("inIdx.r"),A=pn("sourceLocG",h-1).concat("inIdx.g"),y=pn("sourceLocB",h-1).concat("inIdx.b"),g=pn("sourceLocA",h-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=r?"":` + inIdx = round(vec4(getBestIndicesAChannel(${f.join()}), getBestIndicesAChannel(${A.join()}), getBestIndicesAChannel(${y.join()}), - getBestIndicesAChannel(${g.join()})));`,w=`vec4( - getAChannel(${m.join()}), + getBestIndicesAChannel(${g.join()})));`,b=`vec4( + getAChannel(${f.join()}), hasNextCol ? getAChannel(${A.join()}) : 0., hasNextRow ? getAChannel(${y.join()}) : 0., - hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,b=r?"":` - float getBestIndicesAChannel(${f.join()}) { + hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,w=r?"":` + float getBestIndicesAChannel(${m.join()}) { return getChannel(getBestIndicesA(${d.join()}), vec2(${d.slice(-2).join()})); }`;this.userCode=` - float getAChannel(${f.join()}) { + float getAChannel(${m.join()}) { return getChannel(getA(${d.join()}), vec2(${d.slice(-2).join()})); } - ${b} + ${w} void main() { ${l} coords = getOutputCoords(); bool hasNextCol = ${c[o-1]} < ${i[o-1]-1}; @@ -1305,12 +1305,12 @@ return log(x + sqrt(x * x - 1.0));`,zB=Xe({opSnippet:OB}),PB={kernelName:co,back sourceLocB${p}, sourceLocA${p}) * ${t}; ivec4 inIdx = srcIdx; vec4 bestIndex = vec4(inIdx); - vec4 bestValue = ${w}; + vec4 bestValue = ${b}; for (int i = 0; i < ${t}; i++) { inIdx = srcIdx; ${v} - vec4 candidate = ${w}; + vec4 candidate = ${b}; bvec4 nan = isnan(candidate); bvec4 replace = bvec4( vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan))); @@ -1324,23 +1324,23 @@ return log(x + sqrt(x * x - 1.0));`,zB=Xe({opSnippet:OB}),PB={kernelName:co,back } setOutput(bestIndex); } - `}};function l7(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=E.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new XB(o,n,r==null),c=[t];r!=null&&c.push(r);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let h=l7(e,t,n,u);return e.disposeIntermediateTensorInfo(u),h}function u7(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=E.computeOptimalWindowSize(s),o=new KB(a,i,n,r==null),l=r==null?[t]:[t,r],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=u7(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function c7(e,t,n,r){let a=[n];if(E.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=E.computeOutAndReduceShapes(t.shape,a),l=_.sizeFromShape(o),c=fe({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=l7(e,c,r);s.push(u);let h=fe({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return u7(e,t,r)}function ZB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=fn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=c7(n,l,i[0],"max");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var YB={kernelName:ps,backendName:"webgl",kernelFunc:ZB};function JB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=fn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=c7(n,l,i[0],"min");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var QB={kernelName:vu,backendName:"webgl",kernelFunc:JB},eV=Sr+` + `}};function r7(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=E.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new LB(o,n,r==null),c=[t];r!=null&&c.push(r);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let h=r7(e,t,n,u);return e.disposeIntermediateTensorInfo(u),h}function a7(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=E.computeOptimalWindowSize(s),o=new WB(a,i,n,r==null),l=r==null?[t]:[t,r],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=a7(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function s7(e,t,n,r){let a=[n];if(E.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=E.computeOutAndReduceShapes(t.shape,a),l=_.sizeFromShape(o),c=fe({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=r7(e,c,r);s.push(u);let h=fe({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return a7(e,t,r)}function BB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=fn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=s7(n,l,i[0],"max");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var VB={kernelName:fs,backendName:"webgl",kernelFunc:BB};function jB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=fn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=s7(n,l,i[0],"min");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var UB={kernelName:wu,backendName:"webgl",kernelFunc:jB},HB=Nr+` if (abs(x) > 1.) { return NAN; } return asin(x); -`,tV=Xe({opSnippet:eV}),nV={kernelName:fo,backendName:"webgl",kernelFunc:tV},rV=Sr+"return log(x + sqrt(x * x + 1.0));",aV=Xe({opSnippet:rV}),sV={kernelName:mo,backendName:"webgl",kernelFunc:aV},iV=Sr+` +`,GB=Xe({opSnippet:HB}),qB={kernelName:fo,backendName:"webgl",kernelFunc:GB},XB=Nr+"return log(x + sqrt(x * x + 1.0));",KB=Xe({opSnippet:XB}),ZB={kernelName:mo,backendName:"webgl",kernelFunc:KB},YB=Nr+` return atan(x); -`,oV=Xe({opSnippet:iV}),lV={kernelName:Ao,backendName:"webgl",kernelFunc:oV},uV=AB+` +`,JB=Xe({opSnippet:YB}),QB={kernelName:Ao,backendName:"webgl",kernelFunc:JB},eV=oB+` return atan(a, b); -`,cV=` +`,tV=` vec4 result = atan(a, b); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); - `+yB+` + `+lB+` return result; -`,hV=nn({opSnippet:uV,packedOpSnippet:cV}),dV={kernelName:go,backendName:"webgl",kernelFunc:hV},pV=Sr+` +`,nV=nn({opSnippet:eV,packedOpSnippet:tV}),rV={kernelName:go,backendName:"webgl",kernelFunc:nV},aV=Nr+` if ((x < -1.0) || (x > 1.0)) return NAN; -return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelName:yo,backendName:"webgl",kernelFunc:fV},kc=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let k=">=";this.userCode=` +return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sV=Xe({opSnippet:aV}),iV={kernelName:yo,backendName:"webgl",kernelFunc:sV},_c=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let k=">=";this.userCode=` const ivec2 strides = ivec2(${i}, ${o}); const ivec2 pads = ivec2(${d}, ${p}); @@ -1385,14 +1385,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam if (value ${k} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; - minMaxPosition = ${r?a?m:A:`wR * ${h} + wC`}; + minMaxPosition = ${r?a?f:A:`wR * ${h} + wC`}; } } } setOutput(float(minMaxPosition)); } - `;return}let g="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,w=s%4,b=` - if (${f}) { + `;return}let g="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,b=s%4,w=` + if (${m}) { avgValue += dot(values, ones); } else { minMaxValue = ${g}(values, minMaxValue); @@ -1446,11 +1446,11 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam getValue(batch, xR, xC + 3 * ${c}, d) ); - ${b} + ${w} } int xC = xCCorner + ${v}; - if (${w===1}) { + if (${b===1}) { vec4 values = vec4( getValue(batch, xR, xC, d), initializationValue, @@ -1458,8 +1458,8 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam initializationValue ); - ${b} - } else if (${w===2}) { + ${w} + } else if (${b===2}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), @@ -1467,8 +1467,8 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam initializationValue ); - ${b} - } else if (${w===3}) { + ${w} + } else if (${b===3}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), @@ -1476,15 +1476,15 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam initializationValue ); - ${b} + ${w} } } setOutput(${x}); } - `}},RA=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",x="0.0";if(g||(x="-1.0 / 1e-20"),n){let C=">=";this.userCode=` + `}},EA=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",x="0.0";if(g||(x="-1.0 / 1e-20"),n){let C=">=";this.userCode=` const ivec3 strides = ivec3(${i}, ${o}, ${l}); - const ivec3 pads = ivec3(${m}, ${A}, ${y}); + const ivec3 pads = ivec3(${f}, ${A}, ${y}); void main() { ivec5 coords = getOutputCoords(); @@ -1518,7 +1518,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam continue; } - for (int wC = 0; wC < ${f}; + for (int wC = 0; wC < ${m}; wC += ${h}) { int xC = xCCorner + wC; @@ -1535,15 +1535,15 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam if (value ${C} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; - minMaxPosition = ${r?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${f} + - wR * ${f} + wC`}; + minMaxPosition = ${r?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${m} + + wR * ${m} + wC`}; } } } } setOutput(float(minMaxPosition)); } - `;return}let v="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let b=Math.floor(s/4)*4,k=s%4,N=` + `;return}let v="max",b=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(b="avgValue / count");let w=Math.floor(s/4)*4,k=s%4,N=` if (${g}) { avgValue += dot(values, ones); } else { @@ -1552,7 +1552,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam `;this.userCode=` const ivec3 strides = ivec3(${i}, ${o}, ${l}); - const ivec3 pads = ivec3(${m}, ${A}, ${y}); + const ivec3 pads = ivec3(${f}, ${A}, ${y}); const float initializationValue = ${x}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); @@ -1598,7 +1598,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam continue; } - for (int wC = 0; wC < ${b}; wC += 4) { + for (int wC = 0; wC < ${w}; wC += 4) { int xC = xCCorner + wC * ${h}; vec4 values = vec4( @@ -1611,7 +1611,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam ${N} } - int xC = xCCorner + ${b}; + int xC = xCCorner + ${w}; if (${k===1}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), @@ -1641,10 +1641,10 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam ${N} } } - setOutput(${w}); + setOutput(${b}); } } - `}};function AV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;$l(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))return Vn({inputs:{x:a},backend:n});let h=new kc(u,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var yV={kernelName:fs,backendName:"webgl",kernelFunc:AV};function gV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r,u=[1,1,1],h=E.computePool3DInfo(a.shape,s,i,u,o,l,c),d=new RA(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var xV={kernelName:ku,backendName:"webgl",kernelFunc:gV},wV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,h=1/(t*n);this.userCode=` + `}};function oV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;$l(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))return Vn({inputs:{x:a},backend:n});let h=new _c(u,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var lV={kernelName:ms,backendName:"webgl",kernelFunc:oV};function uV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r,u=[1,1,1],h=E.computePool3DInfo(a.shape,s,i,u,o,l,c),d=new EA(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var cV={kernelName:_u,backendName:"webgl",kernelFunc:uV},hV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,h=1/(t*n);this.userCode=` const ivec2 pads = ivec2(${c}, ${u}); const float avgMultiplier = float(${h}); @@ -1686,8 +1686,8 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } setOutput(dotProd); } - `}},bV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=u-1-e.padInfo.front,f=h-1-e.padInfo.top,m=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=` - const ivec3 pads = ivec3(${p}, ${f}, ${m}); + `}},dV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=u-1-e.padInfo.front,m=h-1-e.padInfo.top,f=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=` + const ivec3 pads = ivec3(${p}, ${m}, ${f}); const float avgMultiplier = float(${A}); void main() { @@ -1742,7 +1742,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } setOutput(dotProd); } - `}};function _V(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=E.computePool3DInfo(i.shape,o,l,h,c,u),p=new bV(d);return n.runWebGLProgram(p,[a],i.dtype)}var vV={kernelName:Oh,backendName:"webgl",kernelFunc:_V};function kV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;$l([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=E.computePool2DInfo(i.shape,o,l,1,c),h=new wV(u);return n.runWebGLProgram(h,[a],i.dtype)}var IV={kernelName:Dh,backendName:"webgl",kernelFunc:kV};function SV(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return Np({a,b:s,transposeA:i,transposeB:o,backend:n})}var NV={kernelName:ms,backendName:"webgl",kernelFunc:SV},TV=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` + `}};function pV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=E.computePool3DInfo(i.shape,o,l,h,c,u),p=new dV(d);return n.runWebGLProgram(p,[a],i.dtype)}var fV={kernelName:Dh,backendName:"webgl",kernelFunc:pV};function mV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;$l([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=E.computePool2DInfo(i.shape,o,l,1,c),h=new hV(u);return n.runWebGLProgram(h,[a],i.dtype)}var AV={kernelName:$h,backendName:"webgl",kernelFunc:mV};function yV(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return Sp({a,b:s,transposeA:i,transposeB:o,backend:n})}var gV={kernelName:As,backendName:"webgl",kernelFunc:yV},xV=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { float x = getXAtOutCoords(); float mean = getMeanAtOutCoords(); @@ -1752,7 +1752,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam float inv = scale * inversesqrt(variance + float(${s})); setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1))); } - `}},EV=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` + `}},bV=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { vec4 offset = ${i}; vec4 scale = ${o}; @@ -1765,7 +1765,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam setOutput((x - mean) * inv + offset); } - `}},CV=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;_.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[r,a,s],u=null;i!=null&&(u=i.shape,c.push(i));let h=null;o!=null&&(h=o.shape,c.push(o));let d=J().getBool("WEBGL_PACK_NORMALIZATION")?new EV(r.shape,a.shape,s.shape,u,h,l):new TV(r.shape,a.shape,s.shape,u,h,l);return t.runWebGLProgram(d,c,c[0].dtype)},RV={kernelName:Ns,backendName:"webgl",kernelFunc:CV},FV=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=`uniform int start[${this.rank}];`,r=MV(this.rank),a,s=e.map((i,o)=>`sourceLoc.${MA[o]} = start[${o}] + coords.${MA[o]};`);a=` + `}},wV=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;_.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[r,a,s],u=null;i!=null&&(u=i.shape,c.push(i));let h=null;o!=null&&(h=o.shape,c.push(o));let d=J().getBool("WEBGL_PACK_NORMALIZATION")?new bV(r.shape,a.shape,s.shape,u,h,l):new xV(r.shape,a.shape,s.shape,u,h,l);return t.runWebGLProgram(d,c,c[0].dtype)},_V={kernelName:Ts,backendName:"webgl",kernelFunc:wV},kV=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=`uniform int start[${this.rank}];`,r=vV(this.rank),a,s=e.map((i,o)=>`sourceLoc.${CA[o]} = start[${o}] + coords.${CA[o]};`);a=` ${t} sourceLoc; ${t} coords = getOutputCoords(); ${s.join(` @@ -1776,7 +1776,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam ${a} setOutput(getSource(${r})); } - `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},MA=["x","y","z","w","u","v"];function MV(e){if(e===1)return"sourceLoc";if(e<=6)return MA.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var $V=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=pn("coords",this.rank),r=pn("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=` + `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},CA=["x","y","z","w","u","v"];function vV(e){if(e===1)return"sourceLoc";if(e<=6)return CA.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var IV=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=pn("coords",this.rank),r=pn("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=` result.x = ${s}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${r[this.rank-1]}; @@ -1806,7 +1806,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam ${o} setOutput(result); } - `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function DV(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=un.computeFlatOffset(t,_.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function Ic(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=un.parseSliceParams(a,s,i);if(un.assertParamsValid(a,o,l),_.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=SW(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:c}=n.texData.get(a.dataId),u=un.isSliceContinous(a.shape,o,l);if(c||!u){let h=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new $V(l):new FV(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),DV(a,o,l,n)}var OV={kernelName:Qo,backendName:"webgl",kernelFunc:Ic},zV=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;_.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,x)=>g*x),l=E.getReshaped(a.shape,s,o),c=E.getPermuted(l.length,s.length),u=E.getReshapedPermuted(a.shape,s,o),h=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(u,i,s.length),p=[],f=fe({inputs:{x:a},backend:n,attrs:{shape:l}}),m=fn({inputs:{x:f},backend:n,attrs:{perm:c}}),A=fe({inputs:{x:m},backend:n,attrs:{shape:u}}),y=Ic({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(f),p.push(m),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},PV={kernelName:Iu,backendName:"webgl",kernelFunc:zV};function LV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),c=P3(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var WV={kernelName:zh,backendName:"webgl",kernelFunc:LV},BV="return float(a != b);",h7=nn({opSnippet:BV,dtype:"bool"}),VV={kernelName:Bo,backendName:"webgl",kernelFunc:h7};function Sc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Vn({inputs:{x:a.complexTensorInfos.real},backend:n})}var jV={kernelName:sd,backendName:"webgl",kernelFunc:Sc},UV="return float(int(x));";function HV(e,t){let n=new Ga(e.shape,UV),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function FA(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Vn({inputs:{x:a},backend:n});let i=Rt(a.shape),o=FA({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=qa({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Sc({inputs:{input:a},backend:n}),o=FA({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!_.hasEncodingLoss(a.dtype,s)){let i=Vn({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return HV(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",_.getTypedArrayFromDType("bool",1)),o=h7({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var GV={kernelName:As,backendName:"webgl",kernelFunc:FA},d7="return ceil(x);",qV=Xe({opSnippet:d7,packedOpSnippet:d7,cpuKernelImpl:lW}),XV={kernelName:ys,backendName:"webgl",kernelFunc:qV},KV=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=` + `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function SV(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=un.computeFlatOffset(t,_.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function vc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=un.parseSliceParams(a,s,i);if(un.assertParamsValid(a,o,l),_.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=yW(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:c}=n.texData.get(a.dataId),u=un.isSliceContinous(a.shape,o,l);if(c||!u){let h=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new IV(l):new kV(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),SV(a,o,l,n)}var NV={kernelName:Qo,backendName:"webgl",kernelFunc:vc},TV=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;_.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,x)=>g*x),l=E.getReshaped(a.shape,s,o),c=E.getPermuted(l.length,s.length),u=E.getReshapedPermuted(a.shape,s,o),h=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(u,i,s.length),p=[],m=fe({inputs:{x:a},backend:n,attrs:{shape:l}}),f=fn({inputs:{x:m},backend:n,attrs:{perm:c}}),A=fe({inputs:{x:f},backend:n,attrs:{shape:u}}),y=vc({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(m),p.push(f),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},EV={kernelName:vu,backendName:"webgl",kernelFunc:TV};function CV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),c=F3(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var RV={kernelName:Oh,backendName:"webgl",kernelFunc:CV},MV="return float(a != b);",i7=nn({opSnippet:MV,dtype:"bool"}),FV={kernelName:Bo,backendName:"webgl",kernelFunc:i7};function kc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Vn({inputs:{x:a.complexTensorInfos.real},backend:n})}var $V={kernelName:ad,backendName:"webgl",kernelFunc:kc},DV="return float(int(x));";function OV(e,t){let n=new qa(e.shape,DV),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function RA(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Vn({inputs:{x:a},backend:n});let i=Rt(a.shape),o=RA({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Xa({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=kc({inputs:{input:a},backend:n}),o=RA({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!_.hasEncodingLoss(a.dtype,s)){let i=Vn({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return OV(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",_.getTypedArrayFromDType("bool",1)),o=i7({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var zV={kernelName:ys,backendName:"webgl",kernelFunc:RA},o7="return ceil(x);",PV=Xe({opSnippet:o7,packedOpSnippet:o7,cpuKernelImpl:QL}),LV={kernelName:gs,backendName:"webgl",kernelFunc:PV},WV=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=` uniform float minVal; uniform float maxVal; @@ -1819,7 +1819,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam setOutput(clamp(value, minVal, maxVal)); } - `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},ZV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` + `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},BV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` uniform float minVal; uniform float maxVal; @@ -1833,7 +1833,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam setOutput(clamp(value, vec4(minVal), vec4(maxVal))); } - `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function YV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;J().getBool("WEBGL_PACK_CLIP")?o=new ZV(a.shape):o=new KV(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var JV={kernelName:Ra,backendName:"webgl",kernelFunc:YV},QV=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` + `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function VV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;J().getBool("WEBGL_PACK_CLIP")?o=new BV(a.shape):o=new WV(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var jV={kernelName:Ma,backendName:"webgl",kernelFunc:VV},UV=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` void main() { float re = abs(getRealAtOutCoords()); float im = abs(getImagAtOutCoords()); @@ -1846,7 +1846,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx)) ); } - `}};function p7(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function ej(e){let{inputs:t,backend:n}=e,{x:r}=t,a=n.texData.get(r.dataId),s=new QV(r.shape),i=[p7(r,a.complexTensorInfos.real),p7(r,a.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var tj={kernelName:Su,backendName:"webgl",kernelFunc:ej},nj=class{constructor(e){this.outputShape=[],this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m= ${o[f-1]}) { + }`;for(let m=1;m= ${o[m-1]}) { return getChannel( - getT${f}(${Ep(i,l,m)}), - vec2(${Ep(c,l,m)})); + getT${m}(${Tp(i,l,f)}), + vec2(${Tp(c,l,f)})); }`}let d=o.length,p=o[o.length-1];h+=` return getChannel( - getT${d}(${Ep(i,l,p)}), - vec2(${Ep(c,l,p)}));`,this.userCode=` - float getValue(${i.map(f=>"int "+f)}) { + getT${d}(${Tp(i,l,p)}), + vec2(${Tp(c,l,p)}));`,this.userCode=` + float getValue(${i.map(m=>"int "+m)}) { ${h} } @@ -1892,7 +1892,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } setOutput(result); } - `}};function Ep(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function Cp(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Vn({inputs:{x:a.complexTensorInfos.imag},backend:n})}var aj={kernelName:Jh,backendName:"webgl",kernelFunc:Cp};function jl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(m=>Sc({inputs:{input:m},backend:n})),h=e.map(m=>Cp({inputs:{input:m},backend:n})),d=jl(u,t,n),p=jl(h,t,n),f=qa({inputs:{real:d,imag:p},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),h.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}let a=n.shouldExecuteOnCPU(e);if(r==="string"&&(a=!0),a){let u=e.map(y=>{let g=_.sizeFromShape(y.shape.slice(t));return fe({inputs:{x:y},backend:n,attrs:{shape:[-1,g]}})}),h=u.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),d=E.computeOutShape(u.map(y=>y.shape),1),p=u[0].shape[0]===1,f=uW(h,d,r,p),m=E.computeOutShape(e.map(y=>y.shape),t),A=n.makeTensorInfo(m,r,f);return u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),h=jl(e.slice(0,u),t,n),d=jl(e.slice(u),t,n),p=jl([h,d],t,n);return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new rj(e.map(h=>h.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:s,outShape:i}=sj(e,t,n),o=new nj(s.map(u=>u.shape)),l=n.runWebGLProgram(o,s,r);s.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=fe({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),c}function sj(e,t,n){let r=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>fe({inputs:{x:a},attrs:{shape:[-1,_.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function f7(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=_.parseAxisParam(a,t[0].shape)[0],i=E.computeOutShape(t.map(c=>c.shape),s);if(_.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>_.sizeFromShape(c.shape)>0);if(o.length===1)return Vn({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return E.assertParamsConsistent(l,s),jl(o,s,n)}var ij={kernelName:xo,backendName:"webgl",kernelFunc:f7},m7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",A=m?1:2,y=m?2:3,g=m?3:1,x="",v="";n&&(r?x=`float activation(float a) { + `}};function Tp(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function Ep(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Vn({inputs:{x:a.complexTensorInfos.imag},backend:n})}var KV={kernelName:Yh,backendName:"webgl",kernelFunc:Ep};function jl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(f=>kc({inputs:{input:f},backend:n})),h=e.map(f=>Ep({inputs:{input:f},backend:n})),d=jl(u,t,n),p=jl(h,t,n),m=Xa({inputs:{real:d,imag:p},backend:n});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}let a=n.shouldExecuteOnCPU(e);if(r==="string"&&(a=!0),a){let u=e.map(y=>{let g=_.sizeFromShape(y.shape.slice(t));return fe({inputs:{x:y},backend:n,attrs:{shape:[-1,g]}})}),h=u.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),d=E.computeOutShape(u.map(y=>y.shape),1),p=u[0].shape[0]===1,m=eW(h,d,r,p),f=E.computeOutShape(e.map(y=>y.shape),t),A=n.makeTensorInfo(f,r,m);return u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),h=jl(e.slice(0,u),t,n),d=jl(e.slice(u),t,n),p=jl([h,d],t,n);return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new XV(e.map(h=>h.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:s,outShape:i}=ZV(e,t,n),o=new qV(s.map(u=>u.shape)),l=n.runWebGLProgram(o,s,r);s.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=fe({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),c}function ZV(e,t,n){let r=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>fe({inputs:{x:a},attrs:{shape:[-1,_.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function u7(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=_.parseAxisParam(a,t[0].shape)[0],i=E.computeOutShape(t.map(c=>c.shape),s);if(_.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>_.sizeFromShape(c.shape)>0);if(o.length===1)return Vn({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return E.assertParamsConsistent(l,s),jl(o,s,n)}var YV={kernelName:xo,backendName:"webgl",kernelFunc:u7},c7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",A=f?1:2,y=f?2:3,g=f?3:1,x="",v="";n&&(r?x=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:a?x=`float activation(float a) { @@ -1902,7 +1902,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam float activation(float x) { ${n} } - `,v="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=` + `,v="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${x} const ivec2 strides = ivec2(${o}, ${l}); @@ -1943,7 +1943,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam getW(wR, wC, d1 + 3, d2) ); - if (${m}) { + if (${f}) { vec4 xValues = vec4( getX(batch, xR, xC, d1), getX(batch, xR, xC, d1 + 1), @@ -1962,9 +1962,9 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } } - if (${f===1}) { + if (${m===1}) { - if (${m}) { + if (${f}) { dotProd += getX(batch, xR, xC, ${p}) * getW(wR, wC, ${p}, d2); @@ -1974,13 +1974,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam getW(wR, wC, ${p}, d2); } - } else if (${f===2}) { + } else if (${m===2}) { vec2 wValues = vec2( getW(wR, wC, ${p}, d2), getW(wR, wC, ${p} + 1, d2) ); - if (${m}) { + if (${f}) { vec2 xValues = vec2( getX(batch, xR, xC, ${p}), getX(batch, xR, xC, ${p} + 1) @@ -1994,14 +1994,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam dotProd += dot(xValues, wValues); } - } else if (${f===3}) { + } else if (${m===3}) { vec3 wValues = vec3( getW(wR, wC, ${p}, d2), getW(wR, wC, ${p} + 1, d2), getW(wR, wC, ${p} + 2, d2) ); - if (${m}) { + if (${f}) { vec3 xValues = vec3( getX(batch, xR, xC, ${p}), getX(batch, xR, xC, ${p} + 1), @@ -2022,11 +2022,11 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } float result = dotProd; - ${w} + ${b} ${v} setOutput(result); } - `}},oj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=` + `}},JV=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=` const ivec3 strides = ivec3(${a}, ${s}, ${i}); const ivec3 pads = ivec3(${t}, ${n}, ${r}); @@ -2082,11 +2082,11 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam dotProd += dot(xValues, wValues); } - if (${f===1}) { + if (${m===1}) { dotProd += getX(batch, xF, xR, xC, ${p}) * getW(wF, wR, wC, ${p}, d2); - } else if (${f===2}) { + } else if (${m===2}) { vec2 xValues = vec2( getX(batch, xF, xR, xC, ${p}), getX(batch, xF, xR, xC, ${p} + 1) @@ -2096,7 +2096,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam getW(wF, wR, wC, ${p} + 1, d2) ); dotProd += dot(xValues, wValues); - } else if (${f===3}) { + } else if (${m===3}) { vec3 xValues = vec3( getX(batch, xF, xR, xC, ${p}), getX(batch, xF, xR, xC, ${p} + 1), @@ -2114,18 +2114,18 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } setOutput(dotProd); } - `}},lj=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:h}=n,{left:d,top:p}=o,f=a*r,m=dn(),A=h==="channelsLast",y=A?0:1,g=A?1:2,x="";for(let v=0;v<=1;v++)for(let w=0;w<=1;w++)x+=` - blockIndex = rc.y + ${w}; + `}},QV=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:h}=n,{left:d,top:p}=o,m=a*r,f=dn(),A=h==="channelsLast",y=A?0:1,g=A?1:2,x="";for(let v=0;v<=1;v++)for(let b=0;b<=1;b++)x+=` + blockIndex = rc.y + ${b}; pos = rc.x + ${v}; if(blockIndex < ${e[1]} && pos < ${e[0]}) { offsetY = int(blockIndex / (${l})) * ${i} - ${p}; - d0 = offsetY + ${u} * (pos / ${f}); + d0 = offsetY + ${u} * (pos / ${m}); if(d0 < ${t[y]} && d0 >= 0) { offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.); - d1 = offsetX + ${c} * (int(mod(float(pos), ${f}.) / ${a}.)); + d1 = offsetX + ${c} * (int(mod(float(pos), ${m}.) / ${a}.)); if(d1 < ${t[g]} && d1 >= 0) { @@ -2133,12 +2133,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam if (${A}) { innerDims = vec2(d1, ch); - result[${v*2+w}] = getChannel( + result[${v*2+b}] = getChannel( getA(d0, int(innerDims.x), int(innerDims.y)), innerDims); } else { innerDims = vec2(d0, d1); - result[${v*2+w}] = getChannel( + result[${v*2+b}] = getChannel( getA(ch, int(innerDims.x), int(innerDims.y)), innerDims); } @@ -2156,9 +2156,9 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam ${x} - ${m.output} = result; + ${f.output} = result; } - `}};function A7({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=r.texData.get(e.dataId),u=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",f=!1,m=!1,A,y=[],g=(h===1||d===1)&&u>s7,x=l[2]%2!=0&&!!c.isPacked;if(g||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let v=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],w=fe({inputs:{x:e},backend:r,attrs:{shape:[1,v,n.inChannels]}}),b=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),k=Np({a:w,b,transposeA:f,transposeB:m,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=fe({inputs:{x:k},backend:r,attrs:{shape:n.outShape}}),y.push(w),y.push(b),y.push(k)}else{let v=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),w={dataId:e.dataId,shape:[1,v,n.inChannels],dtype:e.dtype},b=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,_.assert(gc(c.shape,w.shape),()=>`packed reshape ${c.shape} to ${w.shape} isn't free`);let k=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(k);let N=Np({a:w,b:k,backend:r,transposeA:f,transposeB:m,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=r.texData.get(N.dataId);_.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=b,C.shape=n.outShape,A=Vn({inputs:{x:N},backend:r}),A.shape=n.outShape,y.push(N)}for(let v of y)r.disposeIntermediateTensorInfo(v);return A}function y7({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:h,outHeight:d,dataFormat:p}=n,f=p==="channelsLast",m=l*c*u,A=d*h,y=[m,A],g=!0,x=!1,v=[],w=fe({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),b=fe({inputs:{x:t},backend:r,attrs:{shape:[1,m,_.sizeFromShape(t.shape)/m]}});v.push(w),v.push(b);let k=new lj(y,w.shape,n),N=r.runWebGLProgram(k,[w],"float32"),C=fe({inputs:{x:N},backend:r,attrs:{shape:[1,y[0],y[1]]}});v.push(N),v.push(C);let F=a!=null,O=s!=null,L=o==="leakyrelu",V=o?kp(o,!0):null,j=new e7(C.shape,b.shape,[1,A,n.outChannels],g,x,F,V,O,L),U=[C,b];if(a&&U.push(a),O&&U.push(s),L){let Y=r.makeTensorInfo([],"float32",_.createScalarValue(i,"float32"));U.push(Y),v.push(Y)}let X=r.runWebGLProgram(j,U,"float32"),G=f?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=fe({inputs:{x:X},backend:r,attrs:{shape:G}});v.push(X);for(let Y of v)r.disposeIntermediateTensorInfo(Y);return ee}function uj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r,h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=A7({x:a,filter:s,convInfo:d,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=y7({x:a,filter:s,convInfo:d,backend:n});else{let m=new m7(d);p=n.runWebGLProgram(m,[a,s],"float32")}let f=fe({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),f}var cj={kernelName:gs,backendName:"webgl",kernelFunc:uj},hj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=` + `}};function h7({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=r.texData.get(e.dataId),u=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",m=!1,f=!1,A,y=[],g=(h===1||d===1)&&u>e7,x=l[2]%2!=0&&!!c.isPacked;if(g||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let v=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],b=fe({inputs:{x:e},backend:r,attrs:{shape:[1,v,n.inChannels]}}),w=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),k=Sp({a:b,b:w,transposeA:m,transposeB:f,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=fe({inputs:{x:k},backend:r,attrs:{shape:n.outShape}}),y.push(b),y.push(w),y.push(k)}else{let v=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),b={dataId:e.dataId,shape:[1,v,n.inChannels],dtype:e.dtype},w=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,_.assert(Ac(c.shape,b.shape),()=>`packed reshape ${c.shape} to ${b.shape} isn't free`);let k=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(k);let N=Sp({a:b,b:k,backend:r,transposeA:m,transposeB:f,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=r.texData.get(N.dataId);_.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=w,C.shape=n.outShape,A=Vn({inputs:{x:N},backend:r}),A.shape=n.outShape,y.push(N)}for(let v of y)r.disposeIntermediateTensorInfo(v);return A}function d7({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:h,outHeight:d,dataFormat:p}=n,m=p==="channelsLast",f=l*c*u,A=d*h,y=[f,A],g=!0,x=!1,v=[],b=fe({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),w=fe({inputs:{x:t},backend:r,attrs:{shape:[1,f,_.sizeFromShape(t.shape)/f]}});v.push(b),v.push(w);let k=new QV(y,b.shape,n),N=r.runWebGLProgram(k,[b],"float32"),C=fe({inputs:{x:N},backend:r,attrs:{shape:[1,y[0],y[1]]}});v.push(N),v.push(C);let F=a!=null,O=s!=null,L=o==="leakyrelu",V=o?vp(o,!0):null,j=new K3(C.shape,w.shape,[1,A,n.outChannels],g,x,F,V,O,L),U=[C,w];if(a&&U.push(a),O&&U.push(s),L){let Y=r.makeTensorInfo([],"float32",_.createScalarValue(i,"float32"));U.push(Y),v.push(Y)}let X=r.runWebGLProgram(j,U,"float32"),G=m?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=fe({inputs:{x:X},backend:r,attrs:{shape:G}});v.push(X);for(let Y of v)r.disposeIntermediateTensorInfo(Y);return ee}function ej(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r,h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=h7({x:a,filter:s,convInfo:d,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=d7({x:a,filter:s,convInfo:d,backend:n});else{let f=new c7(d);p=n.runWebGLProgram(f,[a,s],"float32")}let m=fe({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),m}var tj={kernelName:xs,backendName:"webgl",kernelFunc:ej},nj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; @@ -2200,7 +2200,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } setOutput(dotProd); } - `}},dj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=` + `}},rj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=` const ivec2 pads = ivec2(${i}, ${o}); void main() { @@ -2253,7 +2253,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } setOutput(dotProd); } - `}},pj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=` + `}},aj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=` void main() { ivec5 coords = getOutputCoords(); int wF = coords.x; @@ -2295,7 +2295,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } setOutput(dotProd); } - `}},fj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=r-1-e.padInfo.left;this.userCode=` + `}},sj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=r-1-e.padInfo.left;this.userCode=` const ivec3 pads = ivec3(${o}, ${l}, ${c}); void main() { @@ -2352,13 +2352,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } setOutput(dotProd); } - `}};function mj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=r,h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,u,i,1,o,c,!1,h),p=new hj(d);return n.runWebGLProgram(p,[a,s],"float32")}var Aj={kernelName:Lh,backendName:"webgl",kernelFunc:mj};function yj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=r,h=E.convertConv2DDataFormat(c),d=E.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),p=new dj(d);return n.runWebGLProgram(p,[a,s],"float32")}var gj={kernelName:xs,backendName:"webgl",kernelFunc:yj};function xj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=E.computeConv3DInfo(a.shape,s.shape,i,l,o),u=new oj(c);return n.runWebGLProgram(u,[a,s],"float32")}var wj={kernelName:Nu,backendName:"webgl",kernelFunc:xj};function bj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,c=E.computeConv3DInfo(a.shape,l,i,1,o),u=new pj(c);return n.runWebGLProgram(u,[a,s],"float32")}var _j={kernelName:Wh,backendName:"webgl",kernelFunc:bj};function vj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,c=E.computeConv3DInfo(l,s.shape,o,1,i),u=new fj(c);return n.runWebGLProgram(u,[a,s],"float32")}var kj={kernelName:Bh,backendName:"webgl",kernelFunc:vj},Ij=Q3+` + `}};function ij(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=r,h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,u,i,1,o,c,!1,h),p=new nj(d);return n.runWebGLProgram(p,[a,s],"float32")}var oj={kernelName:Ph,backendName:"webgl",kernelFunc:ij};function lj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=r,h=E.convertConv2DDataFormat(c),d=E.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),p=new rj(d);return n.runWebGLProgram(p,[a,s],"float32")}var uj={kernelName:bs,backendName:"webgl",kernelFunc:lj};function cj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=E.computeConv3DInfo(a.shape,s.shape,i,l,o),u=new JV(c);return n.runWebGLProgram(u,[a,s],"float32")}var hj={kernelName:Iu,backendName:"webgl",kernelFunc:cj};function dj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,c=E.computeConv3DInfo(a.shape,l,i,1,o),u=new aj(c);return n.runWebGLProgram(u,[a,s],"float32")}var pj={kernelName:Lh,backendName:"webgl",kernelFunc:dj};function fj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,c=E.computeConv3DInfo(l,s.shape,o,1,i),u=new sj(c);return n.runWebGLProgram(u,[a,s],"float32")}var mj={kernelName:Wh,backendName:"webgl",kernelFunc:fj},Aj=X3+` return cos(x); -`,Sj=Xe({opSnippet:Ij}),Nj={kernelName:ws,backendName:"webgl",kernelFunc:Sj},Tj=` +`,yj=Xe({opSnippet:Aj}),gj={kernelName:ws,backendName:"webgl",kernelFunc:yj},xj=` float e2x = exp(-x); return (e2x + 1.0 / e2x) / 2.0; -`,Ej=Xe({opSnippet:Tj}),Cj={kernelName:wo,backendName:"webgl",kernelFunc:Ej},Rj=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,h]=n;this.outputShape=[c,u,h,l];let d=r==="bilinear"?1:0,[p,f]=[`${i-1}.0`,`${o-1}.0`],[m,A,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,x,v]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=` - const float height_ratio = float(${m}); +`,bj=Xe({opSnippet:xj}),wj={kernelName:bo,backendName:"webgl",kernelFunc:bj},_j=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,h]=n;this.outputShape=[c,u,h,l];let d=r==="bilinear"?1:0,[p,m]=[`${i-1}.0`,`${o-1}.0`],[f,A,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,x,v]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=` + const float height_ratio = float(${f}); const float width_ratio = float(${g}); void main() { ivec4 coords = getOutputCoords(); @@ -2388,7 +2388,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam return; } float in_x = ${v}; - if( in_x < 0.0 || in_x > ${f} ) { + if( in_x < 0.0 || in_x > ${m} ) { setOutput(float(${a})); return; } @@ -2418,21 +2418,21 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam setOutput(newValue); } } - `}},Mj=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,u=new Rj(a.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[a,s,i],"float32")},Fj={kernelName:bo,backendName:"webgl",kernelFunc:Mj},w7=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${g7(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=` + `}},vj=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,u=new _j(a.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[a,s,i],"float32")},kj={kernelName:wo,backendName:"webgl",kernelFunc:vj},m7=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${p7(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=` uniform float index; void main() { ${lt(r)} coords = getOutputCoords(); - int end = ${x7(r,"coords")}; + int end = ${f7(r,"coords")}; float val = ${a}; int pow2 = int(pow(2.0, index)); if (${i}) { int idx = ${o}; - ${x7(r,"coords")} = idx; - val += getX(${g7(r,"coords")}); + ${f7(r,"coords")} = idx; + val += getX(${p7(r,"coords")}); } setOutput(val); } - `}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function g7(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function x7(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function $j(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,c=E.getAxesPermutation([s],l),u=a;c!=null&&(u=fn({inputs:{x:a},backend:n,attrs:{perm:c}}));let h=E.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=u.shape[h],p=Vn({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(d))-1;f++){let m=new w7(u.shape,!1,o),A=m.getCustomSetupFunc(f),y=p;p=n.runWebGLProgram(m,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let f=new w7(u.shape,i,o),m=p;p=n.runWebGLProgram(f,[p],p.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=E.getUndoAxesPermutation(c),m=fn({inputs:{x:p},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(u),m}return p}var Dj={kernelName:bs,backendName:"webgl",kernelFunc:$j};function Oj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),c=n.readSync(s.dataId),u=P3(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(a.shape.length===2){let l=n.bufferSync(a),c=n.bufferSync(s),u=oW(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var zj={kernelName:Vh,backendName:"webgl",kernelFunc:Oj},Pj=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` + `}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function p7(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function f7(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Ij(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,c=E.getAxesPermutation([s],l),u=a;c!=null&&(u=fn({inputs:{x:a},backend:n,attrs:{perm:c}}));let h=E.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=u.shape[h],p=Vn({inputs:{x:u},backend:n});for(let m=0;m<=Math.ceil(Math.log2(d))-1;m++){let f=new m7(u.shape,!1,o),A=f.getCustomSetupFunc(m),y=p;p=n.runWebGLProgram(f,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let m=new m7(u.shape,i,o),f=p;p=n.runWebGLProgram(m,[p],p.dtype),n.disposeIntermediateTensorInfo(f)}if(c!=null){let m=E.getUndoAxesPermutation(c),f=fn({inputs:{x:p},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(u),f}return p}var Sj={kernelName:_s,backendName:"webgl",kernelFunc:Ij};function Nj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),c=n.readSync(s.dataId),u=F3(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(a.shape.length===2){let l=n.bufferSync(a),c=n.bufferSync(s),u=JL(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var Tj={kernelName:Bh,backendName:"webgl",kernelFunc:Nj},Ej=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -2451,7 +2451,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam float result = ${this.getInputSamplingString()}; setOutput(result); } - `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Lj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=new Pj(f,s,i);return n.runWebGLProgram(m,[a],a.dtype)}var Wj={kernelName:_o,backendName:"webgl",kernelFunc:Lj},b7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) { + `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Cj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),m=i==="NHWC"?[o,h,d,p]:[o,p,h,d],f=new Ej(m,s,i);return n.runWebGLProgram(f,[a],a.dtype)}var Rj={kernelName:_o,backendName:"webgl",kernelFunc:Cj},A7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:a?A=`float activation(float a) { @@ -2472,8 +2472,8 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam int batch = coords.x; ivec2 xRCCorner = coords.yz * strides - pads; int d2 = coords.w; - int d1 = d2 / ${m}; - int q = d2 - d1 * ${m}; + int d1 = d2 / ${f}; + int q = d2 - d1 * ${f}; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; @@ -2489,7 +2489,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam continue; } - for (int wC = 0; wC < ${f}; wC++) { + for (int wC = 0; wC < ${m}; wC++) { int xC = xCCorner + wC * ${d}; if (xC < 0 || xC >= ${i}) { @@ -2507,18 +2507,18 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam ${y} setOutput(result); } - `}},_7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.outChannels/e.inChannels,i=e.inHeight,o=e.inWidth,l=e.padInfo.top,c=e.padInfo.left,u=e.strideHeight,h=e.strideWidth,d=e.dilationHeight,p=e.dilationWidth,f=e.filterHeight,m=e.filterWidth,A=m,y=` + `}},y7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.outChannels/e.inChannels,i=e.inHeight,o=e.inWidth,l=e.padInfo.top,c=e.padInfo.left,u=e.strideHeight,h=e.strideWidth,d=e.dilationHeight,p=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,A=f,y=` int xR; int xC; int xCOffset; - vec4 wTexel; vec4 previous; vec4 final;`;for(let w=0;w=0 && xR < ${i}) { - `;for(let b=0;b= 0 && xCOffset < ${o}) { xTexelC${k} = getX(batch, xR, xCOffset, d1); @@ -2556,7 +2556,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } xC${k} = xTexelC${k}; - `,k+1= 0 && xCOffset < ${o}) { @@ -2588,7 +2588,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } xC${k+1} = xTexelC${k+2}; - `}}else k= 0 && xCOffset < ${o}) { xTexelC${k} = getX(batch, xR, xCOffset, d1); @@ -2609,7 +2609,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } xC${k} = vec4(xTexelC${k}.zw, xTexelC${k+2}.zw); - `,k+1= 0 && xCOffset < ${o}) { @@ -2634,13 +2634,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam xC${k} = vec4( xTexelC${k}.xy, xTexelC${k+2}.xy); - `,k+1`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let h=E.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!0),d;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new _7(h):d=new b7(h),n.runWebGLProgram(d,[a,s],"float32")}var Vj={kernelName:_s,backendName:"webgl",kernelFunc:Bj},jj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=` + `}};function Mj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=r,u=l;u==null&&(u=[1,1]),_.assert(E.eitherStridesOrDilationsAreOne(i,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let h=E.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!0),d;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new y7(h):d=new A7(h),n.runWebGLProgram(d,[a,s],"float32")}var Fj={kernelName:vs,backendName:"webgl",kernelFunc:Mj},$j=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; @@ -2714,7 +2714,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } setOutput(dotProd); } - `}},Uj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=` + `}},Dj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=` const ivec2 pads = ivec2(${s}, ${i}); void main() { @@ -2759,13 +2759,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } setOutput(dotProd); } - `}};function Hj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=r,h=E.computeConv2DInfo(a.shape,u,i,o,l,c,!0),d=new jj(h);return n.runWebGLProgram(d,[a,s],"float32")}var Gj={kernelName:jh,backendName:"webgl",kernelFunc:Hj};function qj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=r,h=E.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new Uj(h);return n.runWebGLProgram(d,[a,s],"float32")}var Xj={kernelName:Uh,backendName:"webgl",kernelFunc:qj},Kj=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` + `}};function Oj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=r,h=E.computeConv2DInfo(a.shape,u,i,o,l,c,!0),d=new $j(h);return n.runWebGLProgram(d,[a,s],"float32")}var zj={kernelName:Vh,backendName:"webgl",kernelFunc:Oj};function Pj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=r,h=E.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new Dj(h);return n.runWebGLProgram(d,[a,s],"float32")}var Lj={kernelName:jh,backendName:"webgl",kernelFunc:Pj},Wj=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` void main() { ivec2 coords = getOutputCoords(); float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0; setOutput(val); } - `}};function Zj(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=_.sizeFromShape(r.shape),i=fe({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new Kj(s),l=n.runWebGLProgram(o,[i],i.dtype),c=fe({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var Yj={kernelName:Hh,backendName:"webgl",kernelFunc:Zj},Jj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:h}=r;this.userCode=` + `}};function Bj(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=_.sizeFromShape(r.shape),i=fe({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new Wj(s),l=n.runWebGLProgram(o,[i],i.dtype),c=fe({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var Vj={kernelName:Uh,backendName:"webgl",kernelFunc:Bj},jj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:h}=r;this.userCode=` const ivec2 strides = ivec2(${a}, ${s}); const ivec2 pads = ivec2(${u}, ${h}); const float neg_infinity = -3.4e38; @@ -2803,7 +2803,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam float result = curVal; setOutput(result); } - `}};function Qj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=E.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),u,h=new Jj(c);u=n.runWebGLProgram(h,[a,s],"float32");let d=fe({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var eU={kernelName:Tu,backendName:"webgl",kernelFunc:Qj};function tU(e){let{inputs:t,backend:n,attrs:r}=e,{equation:a}=r,s=t,{allDims:i,summedDims:o,idDims:l}=E.decodeEinsumEquation(a,s.length);E.checkEinsumDimSizes(i.length,l,s);let{path:c,steps:u}=E.getEinsumComputePath(o,l),h=u.length,d=null,p=i.length,f=[];for(let m=0;m=0&&(d=Sp({inputs:{x:d},backend:n,attrs:{axis:c[m]-(i.length-p),keepDims:!1}}),f.push(d)),p--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var nU={kernelName:Xh,backendName:"webgl",kernelFunc:tU},rU="return (x >= 0.0) ? x : (exp(x) - 1.0);",aU=` + `}};function Uj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=E.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),u,h=new jj(c);u=n.runWebGLProgram(h,[a,s],"float32");let d=fe({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var Hj={kernelName:Su,backendName:"webgl",kernelFunc:Uj};function Gj(e){let{inputs:t,backend:n,attrs:r}=e,{equation:a}=r,s=t,{allDims:i,summedDims:o,idDims:l}=E.decodeEinsumEquation(a,s.length);E.checkEinsumDimSizes(i.length,l,s);let{path:c,steps:u}=E.getEinsumComputePath(o,l),h=u.length,d=null,p=i.length,m=[];for(let f=0;f=0&&(d=Ip({inputs:{x:d},backend:n,attrs:{axis:c[f]-(i.length-p),keepDims:!1}}),m.push(d)),p--)}for(let f of m)f!==d&&n.disposeIntermediateTensorInfo(f);return d}var qj={kernelName:qh,backendName:"webgl",kernelFunc:Gj},Xj="return (x >= 0.0) ? x : (exp(x) - 1.0);",Kj=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); @@ -2812,12 +2812,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; -`,sU=Xe({opSnippet:rU,packedOpSnippet:aU}),iU={kernelName:vo,backendName:"webgl",kernelFunc:sU},oU="return (b >= 1.0) ? a : a * (b + 1.0);",lU=` +`,Zj=Xe({opSnippet:Xj,packedOpSnippet:Kj}),Yj={kernelName:vo,backendName:"webgl",kernelFunc:Zj},Jj="return (b >= 1.0) ? a : a * (b + 1.0);",Qj=` vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.))); return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0)))); -`,uU=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new vc(lU,r.shape,a.shape):new Vl(oU,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},cU={kernelName:Kh,backendName:"webgl",kernelFunc:uU},hU=` +`,eU=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new wc(Qj,r.shape,a.shape):new Vl(Jj,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},tU={kernelName:Xh,backendName:"webgl",kernelFunc:eU},nU=` return vec4(equal(a, b)); -`,dU="return float(a == b);",pU=nn({opSnippet:dU,packedOpSnippet:hU,dtype:"bool"}),fU={kernelName:Io,backendName:"webgl",kernelFunc:pU},mU=` +`,rU="return float(a == b);",aU=nn({opSnippet:rU,packedOpSnippet:nU,dtype:"bool"}),sU={kernelName:Io,backendName:"webgl",kernelFunc:aU},iU=` // Error function is calculated approximately with elementary function. // See "Handbook of Mathematical Functions with Formulas, // Graphs, and Mathematical Tables", Abramowitz and Stegun. @@ -2832,7 +2832,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam x = abs(x); float t = 1.0 / (1.0 + p * x); return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x)); -`,AU=Xe({opSnippet:mU}),yU={kernelName:ko,backendName:"webgl",kernelFunc:AU},v7="return exp(x);",k7=Xe({opSnippet:v7,packedOpSnippet:v7,cpuKernelImpl:cW}),gU={kernelName:ks,backendName:"webgl",kernelFunc:k7};function $A(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(_.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),fe({inputs:{x:s},backend:r,attrs:{shape:o}})}var xU={kernelName:So,backendName:"webgl",kernelFunc:$A},I7="return exp(x) - 1.0;",wU=Xe({opSnippet:I7,packedOpSnippet:I7,cpuKernelImpl:hW}),bU={kernelName:No,backendName:"webgl",kernelFunc:wU},S7=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` +`,oU=Xe({opSnippet:iU}),lU={kernelName:ko,backendName:"webgl",kernelFunc:oU},g7="return exp(x);",x7=Xe({opSnippet:g7,packedOpSnippet:g7,cpuKernelImpl:tW}),uU={kernelName:Is,backendName:"webgl",kernelFunc:x7};function MA(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(_.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),fe({inputs:{x:s},backend:r,attrs:{shape:o}})}var cU={kernelName:So,backendName:"webgl",kernelFunc:MA},b7="return exp(x) - 1.0;",hU=Xe({opSnippet:b7,packedOpSnippet:b7,cpuKernelImpl:nW}),dU={kernelName:No,backendName:"webgl",kernelFunc:hU},w7=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` const float exponentMultiplier = ${a}; float unaryOpComplex(float real, float expR, float imag, float expI) { @@ -2865,13 +2865,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam ivec2 coords = getOutputCoords(); setOutput(mulMatDFT(coords[0], coords[1])); } - `}};function N7(e,t,n){let r=n.texData.get(e.dataId),a=_.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=fe({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new S7("real",l,t),u=new S7("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),f=qa({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let m=fe({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(f),m}function _U(e){let{inputs:t,backend:n}=e,{input:r}=t;return N7(r,!1,n)}var vU={kernelName:Zh,backendName:"webgl",kernelFunc:_U},kU=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=` + `}};function _7(e,t,n){let r=n.texData.get(e.dataId),a=_.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=fe({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new w7("real",l,t),u=new w7("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),m=Xa({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let f=fe({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function pU(e){let{inputs:t,backend:n}=e,{input:r}=t;return _7(r,!1,n)}var fU={kernelName:Kh,backendName:"webgl",kernelFunc:pU},mU=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=` uniform float value; void main() { // Input can be obtained from uniform value. setOutput(value); } - `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function DA(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||_.inferDtype(a),s==="string"){let i=_.getArrayFromDType(s,_.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new kU(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var IU={kernelName:Eu,backendName:"webgl",kernelFunc:DA},SU=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` + `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function FA(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||_.inferDtype(a),s==="string"){let i=_.getArrayFromDType(s,_.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new mU(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var AU={kernelName:Nu,backendName:"webgl",kernelFunc:FA},yU=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; @@ -2885,7 +2885,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } setOutput(outputValue); } - `}},NU={kernelName:To,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new SU(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},T7="return floor(x);",TU=Xe({opSnippet:T7,packedOpSnippet:T7,cpuKernelImpl:dW}),EU={kernelName:Is,backendName:"webgl",kernelFunc:TU},CU=` + `}},gU={kernelName:To,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new yU(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},v7="return floor(x);",xU=Xe({opSnippet:v7,packedOpSnippet:v7,cpuKernelImpl:rW}),bU={kernelName:Ss,backendName:"webgl",kernelFunc:xU},wU=` float s = sign(a) * sign(b); int ia = round(a); int ib = round(b); @@ -2895,7 +2895,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } else { return NAN; } -`,RU=` +`,_U=` ivec4 ia = round(a); ivec4 ib = round(b); bvec4 cond = notEqual(ib, ivec4(0)); @@ -2916,7 +2916,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam result[3] = idiv(ia[3], ib[3], s[3]); } return vec4(result); -`,MU=nn({opSnippet:CU,packedOpSnippet:RU,dtype:"int32"}),FU={kernelName:Ss,backendName:"webgl",kernelFunc:MU},$U=class{constructor(e){this.variableNames=["A"];let t=dn(),[n,r]=e;this.outputShape=e,this.userCode=` +`,vU=nn({opSnippet:wU,packedOpSnippet:_U,dtype:"int32"}),kU={kernelName:Ns,backendName:"webgl",kernelFunc:vU},IU=class{constructor(e){this.variableNames=["A"];let t=dn(),[n,r]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; @@ -2938,7 +2938,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam setOutput(floor(value * 255.0 + 0.5)); } - `}},DU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=dn(),[n,r]=e;this.outputShape=e,this.userCode=` + `}},SU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=dn(),[n,r]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; @@ -2972,7 +2972,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam ${t.output} = result; } - `}},zU={kernelName:dd,backendName:"webgl",kernelFunc:OU},Ul;function OU(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,[l,c]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],u=[c,l],h=[c,l,s];(o||i)&&(Ul==null&&(Ul=document.createElement("canvas").getContext("2d")),Ul.canvas.width=l,Ul.canvas.height=c,Ul.drawImage(a,0,0,l,c),a=Ul.canvas);let d=n.makeTensorInfo(u,"int32");n.texData.get(d.dataId).usage=rr.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),a);let p=J().getBool("WEBGL_PACK")?new DU(h):new $U(h),f=n.runWebGLProgram(p,[d],"int32");return n.disposeData(d.dataId),f}function PU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=E.convertConv2DDataFormat(u),A=E.computeConv2DInfo(a.shape,s.shape,l,h,c,d,!1,m),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=A7({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=y7({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else{let v=i!=null,w=o!=null,b=p==="leakyrelu",k=p?kp(p,!1):null,N=new m7(A,v,k,w,b),C=[a,s];if(i&&C.push(i),o&&C.push(o),b){let F=n.makeTensorInfo([],"float32",_.createScalarValue(f,"float32"));C.push(F),g.push(F)}y=n.runWebGLProgram(N,C,"float32")}let x=fe({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var LU={kernelName:oi,backendName:"webgl",kernelFunc:PU};function WU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,f=[],m=u;m==null&&(m=[1,1]),_.assert(E.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let A=E.computeConv2DInfo(a.shape,s.shape,l,m,c,h,!0),y=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?kp(d,y):null,x=[a,s],v=i!=null,w=o!=null,b=d==="leakyrelu";if(v&&x.push(i),w&&x.push(o),b){let C=n.makeTensorInfo([],"float32",_.createScalarValue(p,"float32"));x.push(C),f.push(C)}let k;y?k=new _7(A,v,g,w,b):k=new b7(A,v,g,w,b);let N=n.runWebGLProgram(k,x,"float32");return f.forEach(C=>n.disposeIntermediateTensorInfo(C)),N}var BU={kernelName:li,backendName:"webgl",kernelFunc:WU},VU=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=lt(t.length),a=lt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=` + `}},TU={kernelName:hd,backendName:"webgl",kernelFunc:NU},Ul;function NU(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,[l,c]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],u=[c,l],h=[c,l,s];(o||i)&&(Ul==null&&(Ul=document.createElement("canvas").getContext("2d")),Ul.canvas.width=l,Ul.canvas.height=c,Ul.drawImage(a,0,0,l,c),a=Ul.canvas);let d=n.makeTensorInfo(u,"int32");n.texData.get(d.dataId).usage=rr.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),a);let p=J().getBool("WEBGL_PACK")?new SU(h):new IU(h),m=n.runWebGLProgram(p,[d],"int32");return n.disposeData(d.dataId),m}function EU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=E.convertConv2DDataFormat(u),A=E.computeConv2DInfo(a.shape,s.shape,l,h,c,d,!1,f),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=h7({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:m});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=d7({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,b=o!=null,w=p==="leakyrelu",k=p?vp(p,!1):null,N=new c7(A,v,k,b,w),C=[a,s];if(i&&C.push(i),o&&C.push(o),w){let F=n.makeTensorInfo([],"float32",_.createScalarValue(m,"float32"));C.push(F),g.push(F)}y=n.runWebGLProgram(N,C,"float32")}let x=fe({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var CU={kernelName:li,backendName:"webgl",kernelFunc:EU};function RU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,m=[],f=u;f==null&&(f=[1,1]),_.assert(E.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let A=E.computeConv2DInfo(a.shape,s.shape,l,f,c,h,!0),y=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?vp(d,y):null,x=[a,s],v=i!=null,b=o!=null,w=d==="leakyrelu";if(v&&x.push(i),b&&x.push(o),w){let C=n.makeTensorInfo([],"float32",_.createScalarValue(p,"float32"));x.push(C),m.push(C)}let k;y?k=new y7(A,v,g,b,w):k=new A7(A,v,g,b,w);let N=n.runWebGLProgram(k,x,"float32");return m.forEach(C=>n.disposeIntermediateTensorInfo(C)),N}var MU={kernelName:ui,backendName:"webgl",kernelFunc:RU},FU=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=lt(t.length),a=lt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=` ${r} strides = ${r}(${this.strides}); void main() { ${a} coords = getOutputCoords(); @@ -2983,21 +2983,21 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } setOutput(getX(flattenIndex, coords[1])); } - `}};function jU(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,c,u]=E.prepareAndValidate(r,a),h=fe({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=fe({inputs:{x:r},backend:n,attrs:{shape:[_.sizeFromShape(r.shape)/c,c]}}),p=new VU(i,u,[l,c]),f=n.runWebGLProgram(p,[d,h],d.dtype),m=fe({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(f),m}var UU={kernelName:Co,backendName:"webgl",kernelFunc:jU},GU=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=lt(this.rank),r=HU(e,2);this.userCode=` + `}};function $U(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,c,u]=E.prepareAndValidate(r,a),h=fe({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=fe({inputs:{x:r},backend:n,attrs:{shape:[_.sizeFromShape(r.shape)/c,c]}}),p=new FU(i,u,[l,c]),m=n.runWebGLProgram(p,[d,h],d.dtype),f=fe({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(m),f}var DU={kernelName:Co,backendName:"webgl",kernelFunc:$U},zU=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=lt(this.rank),r=OU(e,2);this.userCode=` void main() { ${n} resRC = getOutputCoords(); setOutput(getA(${r})); } - `}};function HU(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;an.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(c.outputShape,v.dtype,v.values)}let m=new GU(d.shape,f),A=n.runWebGLProgram(m,[d,p],d.dtype);h.push(A);let y=fe({inputs:{x:A},backend:n,attrs:{shape:c.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var XU={kernelName:Eo,backendName:"webgl",kernelFunc:qU},KU="return float(a > b);",ZU=` + `}};function OU(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;an.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(c.outputShape,v.dtype,v.values)}let f=new zU(d.shape,m),A=n.runWebGLProgram(f,[d,p],d.dtype);h.push(A);let y=fe({inputs:{x:A},backend:n,attrs:{shape:c.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var LU={kernelName:Eo,backendName:"webgl",kernelFunc:PU},WU="return float(a > b);",BU=` return vec4(greaterThan(a, b)); -`,YU=nn({opSnippet:KU,packedOpSnippet:ZU,cpuKernelImpl:fW,dtype:"bool"}),JU={kernelName:Ro,backendName:"webgl",kernelFunc:YU},QU="return float(a >= b);",eH=` +`,VU=nn({opSnippet:WU,packedOpSnippet:BU,cpuKernelImpl:sW,dtype:"bool"}),jU={kernelName:Ro,backendName:"webgl",kernelFunc:VU},UU="return float(a >= b);",HU=` return vec4(greaterThanEqual(a, b)); -`,tH=nn({opSnippet:QU,packedOpSnippet:eH,dtype:"bool"}),nH={kernelName:Ts,backendName:"webgl",kernelFunc:tH};function rH(e){let{inputs:t,backend:n}=e,{input:r}=t;return N7(r,!0,n)}var aH={kernelName:Yh,backendName:"webgl",kernelFunc:rH},sH="return float(!isnan(x) && !isinf(x));",iH=Xe({opSnippet:sH,dtype:"bool"}),oH={kernelName:Mo,backendName:"webgl",kernelFunc:iH},lH="return float(isinf(x));",uH=Xe({opSnippet:lH,dtype:"bool"}),cH={kernelName:Fo,backendName:"webgl",kernelFunc:uH},hH="return float(isnan(x));",dH=Xe({opSnippet:hH,dtype:"bool"}),pH={kernelName:$o,backendName:"webgl",kernelFunc:dH},fH="return float(a < b);",mH=` +`,GU=nn({opSnippet:UU,packedOpSnippet:HU,dtype:"bool"}),qU={kernelName:Es,backendName:"webgl",kernelFunc:GU};function XU(e){let{inputs:t,backend:n}=e,{input:r}=t;return _7(r,!0,n)}var KU={kernelName:Zh,backendName:"webgl",kernelFunc:XU},ZU="return float(!isnan(x) && !isinf(x));",YU=Xe({opSnippet:ZU,dtype:"bool"}),JU={kernelName:Mo,backendName:"webgl",kernelFunc:YU},QU="return float(isinf(x));",eH=Xe({opSnippet:QU,dtype:"bool"}),tH={kernelName:Fo,backendName:"webgl",kernelFunc:eH},nH="return float(isnan(x));",rH=Xe({opSnippet:nH,dtype:"bool"}),aH={kernelName:$o,backendName:"webgl",kernelFunc:rH},sH="return float(a < b);",iH=` return vec4(lessThan(a, b)); -`,AH=nn({opSnippet:fH,packedOpSnippet:mH,cpuKernelImpl:mW,dtype:"bool"}),yH={kernelName:Do,backendName:"webgl",kernelFunc:AH},gH="return float(a <= b);",xH=` +`,oH=nn({opSnippet:sH,packedOpSnippet:iH,cpuKernelImpl:iW,dtype:"bool"}),lH={kernelName:Do,backendName:"webgl",kernelFunc:oH},uH="return float(a <= b);",cH=` return vec4(lessThanEqual(a, b)); -`,wH=nn({opSnippet:gH,packedOpSnippet:xH,dtype:"bool"}),bH={kernelName:Oo,backendName:"webgl",kernelFunc:wH};function _H(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=AW(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var vH={kernelName:Qh,backendName:"webgl",kernelFunc:_H},kH=`if (x < 0.0) return NAN; - return log(x);`,IH=` +`,hH=nn({opSnippet:uH,packedOpSnippet:cH,dtype:"bool"}),dH={kernelName:Oo,backendName:"webgl",kernelFunc:hH};function pH(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=oW(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var fH={kernelName:Jh,backendName:"webgl",kernelFunc:pH},mH=`if (x < 0.0) return NAN; + return log(x);`,AH=` vec4 result = log(x); vec4 isNaN = vec4(lessThan(x, vec4(0.0))); result.r = isNaN.r == 1.0 ? NAN : result.r; @@ -3006,16 +3006,16 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam result.a = isNaN.a == 1.0 ? NAN : result.a; return result; -`,SH=Xe({opSnippet:kH,packedOpSnippet:IH,cpuKernelImpl:yW}),NH={kernelName:Rs,backendName:"webgl",kernelFunc:SH},TH="return log(1.0 + x);",EH=Xe({opSnippet:TH}),CH={kernelName:zo,backendName:"webgl",kernelFunc:EH},RH="return float(a >= 1.0 && b >= 1.0);",MH=` +`,yH=Xe({opSnippet:mH,packedOpSnippet:AH,cpuKernelImpl:lW}),gH={kernelName:Ms,backendName:"webgl",kernelFunc:yH},xH="return log(1.0 + x);",bH=Xe({opSnippet:xH}),wH={kernelName:zo,backendName:"webgl",kernelFunc:bH},_H="return float(a >= 1.0 && b >= 1.0);",vH=` return vec4( vec4(greaterThanEqual(a, vec4(1.0))) * vec4(greaterThanEqual(b, vec4(1.0)))); -`,FH=nn({opSnippet:RH,packedOpSnippet:MH,dtype:"bool"}),$H={kernelName:Po,backendName:"webgl",kernelFunc:FH},DH="return float(!(x >= 1.0));",OH=Xe({opSnippet:DH}),zH={kernelName:Cu,backendName:"webgl",kernelFunc:OH},PH="return float(a >= 1.0 || b >= 1.0);",LH=` +`,kH=nn({opSnippet:_H,packedOpSnippet:vH,dtype:"bool"}),IH={kernelName:Po,backendName:"webgl",kernelFunc:kH},SH="return float(!(x >= 1.0));",NH=Xe({opSnippet:SH}),TH={kernelName:Tu,backendName:"webgl",kernelFunc:NH},EH="return float(a >= 1.0 || b >= 1.0);",CH=` return min( vec4(greaterThanEqual(a, vec4(1.0))) + vec4(greaterThanEqual(b, vec4(1.0))), vec4(1.0)); -`,WH=nn({opSnippet:PH,packedOpSnippet:LH,dtype:"bool"}),BH={kernelName:Ru,backendName:"webgl",kernelFunc:WH},VH=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` +`,RH=nn({opSnippet:EH,packedOpSnippet:CH,dtype:"bool"}),MH={kernelName:Eu,backendName:"webgl",kernelFunc:RH},FH=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3034,7 +3034,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam float val = x * ${o}; setOutput(val); } - `}},jH=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` + `}},$H=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords.x; @@ -3096,7 +3096,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam vec4 result = xAtOutputCoords * ${o}; setOutput(result); } - `}},UH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,c=J().getBool("WEBGL_PACK_NORMALIZATION")?new jH(a.shape,s,i,o,l):new VH(a.shape,s,i,o,l);return n.runWebGLProgram(c,[a],a.dtype)},HH={kernelName:Mu,backendName:"webgl",kernelFunc:UH},GH=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=` + `}},DH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,c=J().getBool("WEBGL_PACK_NORMALIZATION")?new $H(a.shape,s,i,o,l):new FH(a.shape,s,i,o,l);return n.runWebGLProgram(c,[a],a.dtype)},OH={kernelName:Cu,backendName:"webgl",kernelFunc:DH},zH=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3151,14 +3151,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } setOutput(result); } - `}},qH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=r,h=new GH(a.shape,o,l,c,u);return n.runWebGLProgram(h,[a,s,i],a.dtype)},XH={kernelName:ed,backendName:"webgl",kernelFunc:qH};function KH(e,t,n,r){let a=_.sizeFromShape(t),s=_.sizeFromShape(e.shape)/a,i=fe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=Fi(i,e.dtype,"max",r),l=fe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function E7(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=u!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,x=new Array(o);for(let b=0;b{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=r,h=new zH(a.shape,o,l,c,u);return n.runWebGLProgram(h,[a,s,i],a.dtype)},LH={kernelName:Qh,backendName:"webgl",kernelFunc:PH};function WH(e,t,n,r){let a=_.sizeFromShape(t),s=_.sizeFromShape(e.shape)/a,i=fe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=$i(i,e.dtype,"max",r),l=fe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function k7(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=u!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,x=new Array(o);for(let w=0;w`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))return Vn({inputs:{x:a},backend:n});let h=new kc(u,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var nG={kernelName:$s,backendName:"webgl",kernelFunc:tG};function rG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=r,u=[1,1,1],h=E.computePool3DInfo(a.shape,s,i,u,o,c,l),d=new RA(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var aG={kernelName:Fu,backendName:"webgl",kernelFunc:rG},sG=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=` +`,UH=nn({opSnippet:VH,packedOpSnippet:jH,cpuKernelImpl:cW}),HH={kernelName:$s,backendName:"webgl",kernelFunc:UH};function GH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;$l(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))return Vn({inputs:{x:a},backend:n});let h=new _c(u,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var qH={kernelName:Ds,backendName:"webgl",kernelFunc:GH};function XH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=r,u=[1,1,1],h=E.computePool3DInfo(a.shape,s,i,u,o,c,l),d=new EA(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var KH={kernelName:Ru,backendName:"webgl",kernelFunc:XH},ZH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=` const ivec2 pads = ivec2(${i}, ${o}); void main() { @@ -3204,7 +3204,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } setOutput(dotProd); } - `}},iG=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=c-1-e.padInfo.left,p=o*l*c-1;this.userCode=` + `}},YH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=c-1-e.padInfo.left,p=o*l*c-1;this.userCode=` const ivec3 pads = ivec3(${u}, ${h}, ${d}); void main() { @@ -3268,14 +3268,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam } setOutput(dotProd); } - `}};function oG(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=E.computePool3DInfo(i.shape,o,l,h,c,u),p=new RA(d,"max",!0),f=n.runWebGLProgram(p,[i],i.dtype),m=new iG(d),A=n.runWebGLProgram(m,[a,f],i.dtype);return n.disposeIntermediateTensorInfo(f),A}var lG={kernelName:nd,backendName:"webgl",kernelFunc:oG};function uG(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;$l([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=E.computePool2DInfo(o.shape,l,c,1,u,h),p=!0,f=new kc(d,"max",p),m=n.runWebGLProgram(f,[o],o.dtype),A=new sG(d),y=n.runWebGLProgram(A,[a,m],o.dtype);return n.disposeIntermediateTensorInfo(m),y}var cG={kernelName:td,backendName:"webgl",kernelFunc:uG};function hG(e,t,n,r){let a=new kc(n,"max",!1),s=r.runWebGLProgram(a,[e],"float32");a=new kc(n,"max",!0,!0,t);let i=r.runWebGLProgram(a,[e],"float32");return[s,i]}var dG={kernelName:rd,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;_.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let c=[1,1];_.assert(E.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,s,c,i),[h,d]=hG(r,o,u,l);return[h,d]}};function pG(e,t,n,r){let a=_.sizeFromShape(t),s=_.sizeFromShape(e.shape)/a,i=fe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=Fi(i,"float32","mean",r),l=fe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var fG={kernelName:Ds,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=_.parseAxisParam(s,r.shape),c=l,u=E.getAxesPermutation(c,o),h=u!=null,d=i.shouldExecuteOnCPU([r]),p=[],f=r;if(h){if(d){let x=i.texData.get(f.dataId).values,v=new Array(o);for(let k=0;k{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;_.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let c=[1,1];_.assert(E.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,s,c,i),[h,d]=nG(r,o,u,l);return[h,d]}};function aG(e,t,n,r){let a=_.sizeFromShape(t),s=_.sizeFromShape(e.shape)/a,i=fe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=$i(i,"float32","mean",r),l=fe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var sG={kernelName:Os,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=_.parseAxisParam(s,r.shape),c=l,u=E.getAxesPermutation(c,o),h=u!=null,d=i.shouldExecuteOnCPU([r]),p=[],m=r;if(h){if(d){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let k=0;kc[0]+e[u]+c[1]);let r=e.length,a=lt(r),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=` +`,cG=nn({opSnippet:lG,packedOpSnippet:uG,cpuKernelImpl:hW}),hG={kernelName:Ps,backendName:"webgl",kernelFunc:cG},dG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let r=e.length,a=lt(r),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=` int start = ${s}; int end = ${i}; @@ -3304,7 +3304,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam ${a} coords = outC - start; setOutput(getX(${o})); } - `}},_G=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,f)=>p[0]+e[f]+p[1]);let r=e.length,a=lt(r),s=t.map(p=>p[0]).join(","),i=t.map((p,f)=>p[0]+e[f]).join(","),o=pn("rc",r),l=pn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=` + `}},pG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,m)=>p[0]+e[m]+p[1]);let r=e.length,a=lt(r),s=t.map(p=>p[0]).join(","),i=t.map((p,m)=>p[0]+e[m]).join(","),o=pn("rc",r),l=pn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=` ${a} source = rc; if (source < start) { source = start * 2 - source - ${h}; @@ -3360,13 +3360,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam ${d} setOutput(result); } - `}},vG=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new _G(r.shape,a,s):new bG(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},kG={kernelName:Ps,backendName:"webgl",kernelFunc:vG},IG=`if (b == 0.0) return NAN; - return mod(a, b);`,SG=` + `}},fG=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new pG(r.shape,a,s):new dG(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},mG={kernelName:Ls,backendName:"webgl",kernelFunc:fG},AG=`if (b == 0.0) return NAN; + return mod(a, b);`,yG=` vec4 result = mod(a, b); vec4 isNaN = vec4(equal(b, vec4(0.0))); - `+vp+` + `+_p+` return result; -`,NG=nn({opSnippet:IG,packedOpSnippet:SG}),TG={kernelName:Lo,backendName:"webgl",kernelFunc:NG},EG=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=` +`,gG=nn({opSnippet:AG,packedOpSnippet:yG}),xG={kernelName:Lo,backendName:"webgl",kernelFunc:gG},bG=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=` uniform float seed; void main() { @@ -3388,11 +3388,11 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fV=Xe({opSnippet:pV}),mV={kernelNam // If no other event happened, last event happened. setOutput(float(${t-1})); } - `}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},CG=` + `}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},wG=` if (a == b) { return 1.0; }; -return a / b;`,RG=` +return a / b;`,_G=` // vec4 one = vec4(equal(a, b)); // return one + (vec4(1.0) - one) * a / b; vec4 result = a / b; @@ -3410,14 +3410,14 @@ return a / b;`,RG=` } return result; -`,C7=nn({opSnippet:CG,packedOpSnippet:RG,checkOutOfBounds:!0}),MG={kernelName:vs,backendName:"webgl",kernelFunc:C7},R7="return a - b;",M7=nn({opSnippet:R7,packedOpSnippet:R7,supportsComplex:!0,cpuKernelImpl:EW}),FG={kernelName:ni,backendName:"webgl",kernelFunc:M7};function F7(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=_.parseAxisParam([s],a.shape),o=E7({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=E.expandShapeToKeepDim(o.shape,i),c=fe({inputs:{x:o},backend:n,attrs:{shape:l}}),u=M7({inputs:{a,b:c},backend:n}),h=k7({inputs:{x:u},backend:n}),d=Sp({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=fe({inputs:{x:d},backend:n,attrs:{shape:l}}),f=C7({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}var $G={kernelName:ei,backendName:"webgl",kernelFunc:F7};function DG(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:F7({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),c=l.shape[0],u=l.shape[1],h=new EG(c,u,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var OG={kernelName:ad,backendName:"webgl",kernelFunc:DG},$7="return -x;";function zG(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=_W(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Wl(r.shape,$7):a=new Ga(r.shape,$7),n.runWebGLProgram(a,[r],r.dtype)}var PG={kernelName:Wo,backendName:"webgl",kernelFunc:zG},LG=Hr.nonMaxSuppressionV3Impl;function WG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,c=n.readSync(a.dataId),u=n.readSync(s.dataId),{selectedIndices:h}=LG(c,u,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var BG={kernelName:Vo,backendName:"webgl",kernelFunc:WG},VG=Hr.nonMaxSuppressionV4Impl;function jG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=VG(u,h,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var UG={kernelName:jo,backendName:"webgl",kernelFunc:jG},HG=Hr.nonMaxSuppressionV5Impl;function GG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,f=l,m=c,{selectedIndices:A,selectedScores:y}=HG(u,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var qG={kernelName:Uo,backendName:"webgl",kernelFunc:GG},XG=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` +`,I7=nn({opSnippet:wG,packedOpSnippet:_G,checkOutOfBounds:!0}),vG={kernelName:ks,backendName:"webgl",kernelFunc:I7},S7="return a - b;",N7=nn({opSnippet:S7,packedOpSnippet:S7,supportsComplex:!0,cpuKernelImpl:bW}),kG={kernelName:ri,backendName:"webgl",kernelFunc:N7};function T7(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=_.parseAxisParam([s],a.shape),o=k7({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=E.expandShapeToKeepDim(o.shape,i),c=fe({inputs:{x:o},backend:n,attrs:{shape:l}}),u=N7({inputs:{a,b:c},backend:n}),h=x7({inputs:{x:u},backend:n}),d=Ip({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=fe({inputs:{x:d},backend:n,attrs:{shape:l}}),m=I7({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}var IG={kernelName:ti,backendName:"webgl",kernelFunc:T7};function SG(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:T7({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),c=l.shape[0],u=l.shape[1],h=new bG(c,u,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var NG={kernelName:rd,backendName:"webgl",kernelFunc:SG},E7="return -x;";function TG(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=pW(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Wl(r.shape,E7):a=new qa(r.shape,E7),n.runWebGLProgram(a,[r],r.dtype)}var EG={kernelName:Wo,backendName:"webgl",kernelFunc:TG},CG=Gr.nonMaxSuppressionV3Impl;function RG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,c=n.readSync(a.dataId),u=n.readSync(s.dataId),{selectedIndices:h}=CG(c,u,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var MG={kernelName:Vo,backendName:"webgl",kernelFunc:RG},FG=Gr.nonMaxSuppressionV4Impl;function $G(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=FG(u,h,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var DG={kernelName:jo,backendName:"webgl",kernelFunc:$G},OG=Gr.nonMaxSuppressionV5Impl;function zG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,m=l,f=c,{selectedIndices:A,selectedScores:y}=OG(u,h,d,p,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var PG={kernelName:Uo,backendName:"webgl",kernelFunc:zG},LG=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int index = round(getIndices(coords.x)); setOutput(mix(float(${r}), float(${n}), float(index == coords.y))); } - `}},KG=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=_.sizeFromShape(a.shape),c=new XG(l,s,i,o),u=fe({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(c,[u],a.dtype);n.disposeIntermediateTensorInfo(u);let d=[...a.shape,s],p=fe({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},ZG={kernelName:Ws,backendName:"webgl",kernelFunc:KG};function Rp(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=Sc({inputs:{input:r},backend:n}),s=Rp({inputs:{x:a},backend:n}),i=Cp({inputs:{input:r},backend:n}),o=Rp({inputs:{x:i},backend:n}),l=qa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return DA({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var YG={kernelName:ol,backendName:"webgl",kernelFunc:Rp};function D7(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=Sc({inputs:{input:r},backend:n}),s=D7({inputs:{x:a},backend:n}),i=Cp({inputs:{input:r},backend:n}),o=Rp({inputs:{x:i},backend:n}),l=qa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return DA({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var JG={kernelName:Ho,backendName:"webgl",kernelFunc:D7};function QG(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return $A({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=$A({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=f7({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var eq={kernelName:Go,backendName:"webgl",kernelFunc:QG},tq=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let r=e.length,a=lt(r),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=` + `}},WG=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=_.sizeFromShape(a.shape),c=new LG(l,s,i,o),u=fe({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(c,[u],a.dtype);n.disposeIntermediateTensorInfo(u);let d=[...a.shape,s],p=fe({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},BG={kernelName:Bs,backendName:"webgl",kernelFunc:WG};function Cp(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=kc({inputs:{input:r},backend:n}),s=Cp({inputs:{x:a},backend:n}),i=Ep({inputs:{input:r},backend:n}),o=Cp({inputs:{x:i},backend:n}),l=Xa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return FA({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var VG={kernelName:ol,backendName:"webgl",kernelFunc:Cp};function C7(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=kc({inputs:{input:r},backend:n}),s=C7({inputs:{x:a},backend:n}),i=Ep({inputs:{input:r},backend:n}),o=Cp({inputs:{x:i},backend:n}),l=Xa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return FA({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var jG={kernelName:Ho,backendName:"webgl",kernelFunc:C7};function UG(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return MA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=MA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=u7({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var HG={kernelName:Go,backendName:"webgl",kernelFunc:UG},GG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let r=e.length,a=lt(r),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=` int start = ${s}; int end = ${i}; uniform float value; @@ -3444,19 +3444,19 @@ return a / b;`,RG=` setOutput(getX(${o})); } } - `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},nq=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,a=lt(r),s=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=pn("rc",r),l=pn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1; + `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},qG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let r=e.length,a=lt(r),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=pn("rc",r),l=pn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1; if(${c}) { `,r===1?"":`} rc = outputLoc; ${o[r-2]} += 1; if(${o[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${o[r-1]} += 1; - if(${c}) {`],d=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let f=0,m=r===1?2:4;f= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let m=0,f=r===1?2:4;m{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},O7=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new nq(a.shape,s,i):new tq(a.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[a],a.dtype,l)},rq={kernelName:Bs,backendName:"webgl",kernelFunc:O7},aq=` + `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},R7=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new qG(a.shape,s,i):new GG(a.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[a],a.dtype,l)},XG={kernelName:Vs,backendName:"webgl",kernelFunc:R7},KG=` if(a < 0.0 && floor(b) < b){ return NAN; } @@ -3478,7 +3478,7 @@ return a / b;`,RG=` } return (round(mod(b, 2.0)) != 1) ? pow(abs(a), b) : sign(a) * pow(abs(a), b); -`,sq=` +`,ZG=` // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise. vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1))); vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); @@ -3492,11 +3492,11 @@ return a / b;`,RG=` result.a = isExpZero.a ? 1.0 : result.a; vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b)); - `+vp+` + `+_p+` return result; -`,iq=nn({opSnippet:aq,packedOpSnippet:sq}),oq={kernelName:Vs,backendName:"webgl",kernelFunc:iq};function lq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],c=_.parseAxisParam(s,a.shape),u=c,h=E.getAxesPermutation(u,o),d=a;h!=null&&(d=fn({inputs:{x:a},backend:n,attrs:{perm:h}}),u=E.getInnerMostAxes(u.length,o),l.push(d)),E.assertAxesAreInnerMostDims("prod",u,o);let p;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:A,outDtype:y}=vW(d.shape,d.dtype,f,u);p=n.makeTensorInfo(A,y,m)}else{let[f,m]=E.computeOutAndReduceShapes(d.shape,u),A=_.sizeFromShape(m),y=fe({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=yd(a.dtype),x=Fi(y,g,"prod",n);p=fe({inputs:{x},backend:n,attrs:{shape:f}}),l.push(y),l.push(x)}if(i){l.push(p);let f=E.expandShapeToKeepDim(p.shape,c);p=fe({inputs:{x:p},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var uq={kernelName:qo,backendName:"webgl",kernelFunc:lq},z7=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=kW(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},cq={kernelName:$u,backendName:"webgl",kernelFunc:z7},hq="return 1.0 / x;",dq=Xe({opSnippet:hq}),pq={kernelName:Xo,backendName:"webgl",kernelFunc:dq},fq=Sr+` +`,YG=nn({opSnippet:KG,packedOpSnippet:ZG}),JG={kernelName:js,backendName:"webgl",kernelFunc:YG};function QG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],c=_.parseAxisParam(s,a.shape),u=c,h=E.getAxesPermutation(u,o),d=a;h!=null&&(d=fn({inputs:{x:a},backend:n,attrs:{perm:h}}),u=E.getInnerMostAxes(u.length,o),l.push(d)),E.assertAxesAreInnerMostDims("prod",u,o);let p;if(n.shouldExecuteOnCPU([d])){let m=n.texData.get(d.dataId).values,{outVals:f,outShape:A,outDtype:y}=fW(d.shape,d.dtype,m,u);p=n.makeTensorInfo(A,y,f)}else{let[m,f]=E.computeOutAndReduceShapes(d.shape,u),A=_.sizeFromShape(f),y=fe({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=Ad(a.dtype),x=$i(y,g,"prod",n);p=fe({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(p);let m=E.expandShapeToKeepDim(p.shape,c);p=fe({inputs:{x:p},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),p}var eq={kernelName:qo,backendName:"webgl",kernelFunc:QG},M7=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=mW(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},tq={kernelName:Mu,backendName:"webgl",kernelFunc:M7},nq="return 1.0 / x;",rq=Xe({opSnippet:nq}),aq={kernelName:Xo,backendName:"webgl",kernelFunc:rq},sq=Nr+` return (x < 0.0) ? 0.0 : x; -`,mq=` +`,iq=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -3506,9 +3506,9 @@ return a / b;`,RG=` result.a = isNaN.a ? x.a : result.a; return result; -`,Aq=Xe({opSnippet:fq,packedOpSnippet:mq}),yq={kernelName:Us,backendName:"webgl",kernelFunc:Aq},gq=Sr+` +`,oq=Xe({opSnippet:sq,packedOpSnippet:iq}),lq={kernelName:Hs,backendName:"webgl",kernelFunc:oq},uq=Nr+` return (x < 0.0) ? 0.0 : min(6.0, x); -`,xq=` +`,cq=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -3518,7 +3518,7 @@ return a / b;`,RG=` result.a = isNaN.a ? x.a : result.a; return result; -`,wq=Xe({opSnippet:gq,packedOpSnippet:xq}),bq={kernelName:Gs,backendName:"webgl",kernelFunc:wq},_q=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` +`,hq=Xe({opSnippet:uq,packedOpSnippet:cq}),dq={kernelName:qs,backendName:"webgl",kernelFunc:hq},pq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${c[0]/u[0]}, ${c[1]/u[1]}); @@ -3551,7 +3551,7 @@ return a / b;`,RG=` setOutput(newValue); } - `}},vq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` + `}},fq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${c[0]/u[0]}, ${c[1]/u[1]}, @@ -3628,7 +3628,7 @@ return a / b;`,RG=` setOutput(newValue); } - `}};function kq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new vq(a.shape,l,c,s,i):new _q(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],"float32")}var Iq={kernelName:Hs,backendName:"webgl",kernelFunc:kq},Sq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=` + `}};function mq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new fq(a.shape,l,c,s,i):new pq(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],"float32")}var Aq={kernelName:Gs,backendName:"webgl",kernelFunc:mq},yq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,m=Math.ceil(d)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3645,7 +3645,7 @@ return a / b;`,RG=` const float invWidthScale = float(${d}); const int winHeight = int(${p}); - const int winWidth = int(${f}); + const int winWidth = int(${m}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); @@ -3709,7 +3709,7 @@ return a / b;`,RG=` setOutput(accumulator); } - `}};function Nq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new Sq(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Tq={kernelName:od,backendName:"webgl",kernelFunc:Nq},Eq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` + `}};function gq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new yq(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var xq={kernelName:id,backendName:"webgl",kernelFunc:gq},bq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${c[0]/u[0]}, ${c[1]/u[1]}); @@ -3731,7 +3731,7 @@ return a / b;`,RG=` setOutput(newValue); } - `}};function Cq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=new Eq(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],a.dtype)}var Rq={kernelName:Du,backendName:"webgl",kernelFunc:Cq},Mq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=` + `}};function wq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=new bq(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],a.dtype)}var _q={kernelName:Fu,backendName:"webgl",kernelFunc:wq},vq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,m=Math.ceil(d)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3748,7 +3748,7 @@ return a / b;`,RG=` const float invWidthScale = float(${d}); const int winHeight = int(${p}); - const int winWidth = int(${f}); + const int winWidth = int(${m}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); @@ -3801,7 +3801,7 @@ return a / b;`,RG=` setOutput(accumulator); } - `}};function Fq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new Mq(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var $q={kernelName:id,backendName:"webgl",kernelFunc:Fq},Dq=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` + `}};function kq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new vq(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Iq={kernelName:sd,backendName:"webgl",kernelFunc:kq},Sq=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` void main() { int coord = getOutputCoords(); setOutput(getX(${e[0]} - coord - 1)); @@ -3811,7 +3811,7 @@ return a / b;`,RG=` ${s} coords = getOutputCoords(); setOutput(getX(${a})); } - `}},Oq=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=pn("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=lt(n);n===1?this.userCode=` + `}},Nq=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=pn("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=lt(n);n===1?this.userCode=` void main(){ int rc = getOutputCoords(); vec4 result = vec4(0.); @@ -3839,7 +3839,7 @@ return a / b;`,RG=` } setOutput(result); } - `;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function c(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function u(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let f=e.map((y,g)=>d(g,p)),m=f.join(","),A=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${A}))`}function d(p,f){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${f[p]} - 1`:`${f[p]}`}}};function zq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=_.parseAxisParam(s,a.shape);if(i===0)return Vn({inputs:{x:a},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Oq(a.shape,o):new Dq(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var Pq={kernelName:qs,backendName:"webgl",kernelFunc:zq},Lq=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],r=e[2];this.outputShape=e;let a="";typeof t=="number"?a=`float outputValue = ${t.toFixed(2)};`:a=` + `;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function c(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function u(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let m=e.map((y,g)=>d(g,p)),f=m.join(","),A=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${A}))`}function d(p,m){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${m[p]} - 1`:`${m[p]}`}}};function Tq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=_.parseAxisParam(s,a.shape);if(i===0)return Vn({inputs:{x:a},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Nq(a.shape,o):new Sq(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var Eq={kernelName:Xs,backendName:"webgl",kernelFunc:Tq},Cq=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],r=e[2];this.outputShape=e;let a="";typeof t=="number"?a=`float outputValue = ${t.toFixed(2)};`:a=` vec3 fill = vec3(${t.join(",")}); float outputValue = fill[coords[3]];`,this.userCode=` uniform vec4 params; @@ -3859,7 +3859,7 @@ return a / b;`,RG=` } setOutput(outputValue); } - `}getCustomSetupFunc(e,t,n,r){return(a,s)=>{this.paramsLoc==null&&(this.paramsLoc=a.getUniformLocationNoThrow(s,"params")),a.gl.uniform4f(this.paramsLoc,e,t,n,r)}}},Wq={kernelName:ll,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new Lq(r.shape,s),[c,u]=E.getImageCenter(i,r.shape[1],r.shape[2]),h=l.getCustomSetupFunc(c,u,Math.sin(a),Math.cos(a));return o.runWebGLProgram(l,[r],r.dtype,h)}},Bq=` + `}getCustomSetupFunc(e,t,n,r){return(a,s)=>{this.paramsLoc==null&&(this.paramsLoc=a.getUniformLocationNoThrow(s,"params")),a.gl.uniform4f(this.paramsLoc,e,t,n,r)}}},Rq={kernelName:ll,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new Cq(r.shape,s),[c,u]=E.getImageCenter(i,r.shape[1],r.shape[2]),h=l.getCustomSetupFunc(c,u,Math.sin(a),Math.cos(a));return o.runWebGLProgram(l,[r],r.dtype,h)}},Mq=` // OpenGL ES does not support round function. // The algorithm is based on banker's rounding. float base = floor(x); @@ -3874,7 +3874,7 @@ return a / b;`,RG=` return base + 1.0; } } -`,Vq=Xe({opSnippet:Bq}),jq={kernelName:Xs,backendName:"webgl",kernelFunc:Vq},Uq="return inversesqrt(x);",Hq=Xe({opSnippet:Uq,cpuKernelImpl:IW}),Gq={kernelName:Ks,backendName:"webgl",kernelFunc:Hq},P7=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=lt(a.length),l=lt(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=` +`,Fq=Xe({opSnippet:Mq}),$q={kernelName:Ks,backendName:"webgl",kernelFunc:Fq},Dq="return inversesqrt(x);",Oq=Xe({opSnippet:Dq,cpuKernelImpl:AW}),zq={kernelName:Zs,backendName:"webgl",kernelFunc:Oq},F7=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=lt(a.length),l=lt(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=` ${o} strides = ${o}(${a}); void main() { @@ -3894,7 +3894,7 @@ return a / b;`,RG=` } setOutput(mix(getDefaultValue(), sum, float(found))); } - `}};function qq(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:h}=E.calculateShapes(s,a,i),d=[h/c,c];if(h===0)return n.makeTensorInfo(i,a.dtype);let p=fe({inputs:{x:a},backend:n,attrs:{shape:[l,o]}}),f=fe({inputs:{x:s},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new P7(l,o,p.shape.length,f.shape.length,u,d),y=n.runWebGLProgram(A,[f,p,m],f.dtype),g=fe({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),g}var Xq={kernelName:Zo,backendName:"webgl",kernelFunc:qq},Kq=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,a;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0); -`,Qq=Xe({opSnippet:Jq}),eX={kernelName:Jo,backendName:"webgl",kernelFunc:Qq},tX="return 1.0 / (1.0 + exp(-1.0 * x));",nX=Xe({opSnippet:tX}),rX={kernelName:Ys,backendName:"webgl",kernelFunc:nX},aX=` +`,Uq=Xe({opSnippet:jq}),Hq={kernelName:Jo,backendName:"webgl",kernelFunc:Uq},Gq="return 1.0 / (1.0 + exp(-1.0 * x));",qq=Xe({opSnippet:Gq}),Xq={kernelName:Js,backendName:"webgl",kernelFunc:qq},Kq=` if (isnan(x)) { return 0.0; } return sign(x); -`,sX=Xe({opSnippet:aX}),iX={kernelName:tl,backendName:"webgl",kernelFunc:sX},oX=Q3+` +`,Zq=Xe({opSnippet:Kq}),Yq={kernelName:tl,backendName:"webgl",kernelFunc:Zq},Jq=X3+` return sin(x); -`,lX=Xe({opSnippet:oX}),uX={kernelName:Zs,backendName:"webgl",kernelFunc:lX},cX=` +`,Qq=Xe({opSnippet:Jq}),eX={kernelName:Ys,backendName:"webgl",kernelFunc:Qq},tX=` float e2x = exp(x); return (e2x - 1.0 / e2x) / 2.0; -`,hX=Xe({opSnippet:cX}),dX={kernelName:el,backendName:"webgl",kernelFunc:hX},pX=` +`,nX=Xe({opSnippet:tX}),rX={kernelName:el,backendName:"webgl",kernelFunc:nX},aX=` float epsilon = 1.1920928955078125e-7; float threshold = log(epsilon) + 2.0; @@ -3938,9 +3938,9 @@ return a / b;`,RG=` result = log(exp_x + 1.0); } return result; -`,fX=Xe({opSnippet:pX}),mX={kernelName:nl,backendName:"webgl",kernelFunc:fX},AX=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;_.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;yn.disposeIntermediateTensorInfo(y)),A},yX={kernelName:Ou,backendName:"webgl",kernelFunc:AX};function gX(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:a,newShape:s}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(a.dataId)),o=n.readSync(r.dataId),l=Array.from(n.readSync(s.dataId)),[c,u,h]=NW(o,r.shape,r.dtype,i,l);return[n.makeTensorInfo(u,r.dtype,c),n.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var xX={kernelName:ld,backendName:"webgl",kernelFunc:gX};function wX(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,strides:u,outputSize:h}=E.calculateShapes(s,a,o),d=!1,p=new P7(c,l,a.shape.length,s.shape.length,u,[h,1],d),f=n.runWebGLProgram(p,[s,a,i],s.dtype),m=fe({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),m}var bX={kernelName:ud,backendName:"webgl",kernelFunc:wX};function _X(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=_.parseAxisParam(i,a.shape)[0],l=E.prepareSplitSize(a,s,o),c=a.shape.length,u=new Array(c).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let f=Ic({inputs:{x:a},backend:n,attrs:{begin:u,size:p}});return u[o]+=d,f})}var vX={kernelName:rl,backendName:"webgl",kernelFunc:_X},kX="return sqrt(x);",IX=Xe({opSnippet:kX}),SX={kernelName:Js,backendName:"webgl",kernelFunc:IX},NX="return x * x;",TX=Xe({opSnippet:NX}),EX={kernelName:zu,backendName:"webgl",kernelFunc:TX},L7="return (a - b) * (a - b);",CX=nn({opSnippet:L7,packedOpSnippet:L7}),RX={kernelName:ti,backendName:"webgl",kernelFunc:CX};function MX({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=Sr+` +`,sX=Xe({opSnippet:aX}),iX={kernelName:nl,backendName:"webgl",kernelFunc:sX},oX=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;_.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;yn.disposeIntermediateTensorInfo(y)),A},lX={kernelName:$u,backendName:"webgl",kernelFunc:oX};function uX(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:a,newShape:s}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(a.dataId)),o=n.readSync(r.dataId),l=Array.from(n.readSync(s.dataId)),[c,u,h]=gW(o,r.shape,r.dtype,i,l);return[n.makeTensorInfo(u,r.dtype,c),n.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var cX={kernelName:od,backendName:"webgl",kernelFunc:uX};function hX(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,strides:u,outputSize:h}=E.calculateShapes(s,a,o),d=!1,p=new F7(c,l,a.shape.length,s.shape.length,u,[h,1],d),m=n.runWebGLProgram(p,[s,a,i],s.dtype),f=fe({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var dX={kernelName:ld,backendName:"webgl",kernelFunc:hX};function pX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=_.parseAxisParam(i,a.shape)[0],l=E.prepareSplitSize(a,s,o),c=a.shape.length,u=new Array(c).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let m=vc({inputs:{x:a},backend:n,attrs:{begin:u,size:p}});return u[o]+=d,m})}var fX={kernelName:rl,backendName:"webgl",kernelFunc:pX},mX="return sqrt(x);",AX=Xe({opSnippet:mX}),yX={kernelName:Qs,backendName:"webgl",kernelFunc:AX},gX="return x * x;",xX=Xe({opSnippet:gX}),bX={kernelName:Du,backendName:"webgl",kernelFunc:xX},$7="return (a - b) * (a - b);",wX=nn({opSnippet:$7,packedOpSnippet:$7}),_X={kernelName:ni,backendName:"webgl",kernelFunc:wX};function vX({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=Nr+` return x > 0.0 ? 1.0 : float(${t.alpha}); - `,s=new Ga(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var FX={kernelName:Fa,backendName:"webgl",kernelFunc:MX},$X=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=lt(n.length),s=lt(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=` + `,s=new qa(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var kX={kernelName:$a,backendName:"webgl",kernelFunc:vX},IX=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=lt(n.length),s=lt(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=` ${a} begin = ${a}(${e}); ${a} strides = ${a}(${t}); @@ -3948,15 +3948,15 @@ return a / b;`,RG=` ${s} coords = getOutputCoords(); setOutput(getX(${i})); } - `}};function DX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=un.sliceInfo(a.shape,s,i,o,l,c,u,h,d),x=fe({inputs:{x:a},backend:n,attrs:{shape:y}}),v;if(p){let b=Ic({inputs:{x},backend:n,attrs:{begin:f,size:A}});v=fe({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))v=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let b=n.texData.get(x.dataId).values,k=Be(x.shape,x.dtype,b),N=TW(g,k,m,f);v=n.makeTensorInfo(g,x.dtype,N.values)}else{let b=new $X(f,m,g);v=n.runWebGLProgram(b,[x],x.dtype)}let w=fe({inputs:{x:v},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),w}var OX={kernelName:al,backendName:"webgl",kernelFunc:DX},zX="return tan(x);",PX=Xe({opSnippet:zX}),LX={kernelName:ri,backendName:"webgl",kernelFunc:PX},WX=` + `}};function SX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=un.sliceInfo(a.shape,s,i,o,l,c,u,h,d),x=fe({inputs:{x:a},backend:n,attrs:{shape:y}}),v;if(p){let w=vc({inputs:{x},backend:n,attrs:{begin:m,size:A}});v=fe({inputs:{x:w},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(w)}else if(g.some(w=>w===0))v=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let w=n.texData.get(x.dataId).values,k=Be(x.shape,x.dtype,w),N=xW(g,k,f,m);v=n.makeTensorInfo(g,x.dtype,N.values)}else{let w=new IX(m,f,g);v=n.runWebGLProgram(w,[x],x.dtype)}let b=fe({inputs:{x:v},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),b}var NX={kernelName:al,backendName:"webgl",kernelFunc:SX},TX="return tan(x);",EX=Xe({opSnippet:TX}),CX={kernelName:ai,backendName:"webgl",kernelFunc:EX},RX=` float e2x = exp(-2.0 * abs(x)); return sign(x) * (1.0 - e2x) / (1.0 + e2x); -`,BX=Xe({opSnippet:WX}),VX={kernelName:ai,backendName:"webgl",kernelFunc:BX},UX=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a5){let o=n.readSync(a.dataId).map(u=>_.decodeString(u)),l=Be(a.shape,a.dtype,o),c=CW(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new UX(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var HX={kernelName:Ma,backendName:"webgl",kernelFunc:W7};function GX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,c]=RW(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var qX={kernelName:sl,backendName:"webgl",kernelFunc:GX},XX=class{constructor(e,t,n,r,a,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(r){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=` + `}};function $X(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a5){let o=n.readSync(a.dataId).map(u=>_.decodeString(u)),l=Be(a.shape,a.dtype,o),c=wW(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new DX(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var OX={kernelName:Fa,backendName:"webgl",kernelFunc:D7};function zX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,c]=_W(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var PX={kernelName:sl,backendName:"webgl",kernelFunc:zX},LX=class{constructor(e,t,n,r,a,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(r){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=` float mapCoord(float outCoord, float len) { float inCoord = outCoord; if(${o} == 2) { @@ -4068,7 +4068,7 @@ return a / b;`,RG=` } setOutput(outputValue); } - `}};function KX(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=r,[u,h,d,p]=a.shape,[f,m]=c!=null?c:[h,d],A=[u,f,m,p],y=new XX(h,d,i,o,l,A);return n.runWebGLProgram(y,[a,s],"float32")}var ZX={kernelName:cd,backendName:"webgl",kernelFunc:KX};function YX(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;$l(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=MW(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var JX={kernelName:hd,backendName:"webgl",kernelFunc:YX};function QX(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],c=new Array(o-1),u=0;for(let m=0;mn.disposeIntermediateTensorInfo(m)),f}var eK={kernelName:il,backendName:"webgl",kernelFunc:QX},tK=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,h=` + `}};function WX(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=r,[u,h,d,p]=a.shape,[m,f]=c!=null?c:[h,d],A=[u,m,f,p],y=new LX(h,d,i,o,l,A);return n.runWebGLProgram(y,[a,s],"float32")}var BX={kernelName:ud,backendName:"webgl",kernelFunc:WX};function VX(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;$l(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=vW(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var jX={kernelName:cd,backendName:"webgl",kernelFunc:VX};function UX(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],c=new Array(o-1),u=0;for(let f=0;fn.disposeIntermediateTensorInfo(f)),m}var HX={kernelName:il,backendName:"webgl",kernelFunc:UX},GX=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,h=` sumValue += dot(values, segFilter); `,d="";a%n>0&&(d=` if (inIdx < 0 || inIdx >= ${a}) { @@ -4174,26 +4174,26 @@ return a / b;`,RG=` } setOutput(${l}); } - `}};function nK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],c=0,u=E.getAxesPermutation([c],o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),l.push(h),c=E.getInnerMostAxes(1,o)[0]);let d=E.segment_util.computeOutShape(h.shape,c,i),p=_.sizeFromShape([h.shape[c]]),f=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(f);let m=yd(a.dtype),A=(v,w,b,k,N)=>{let C=v.shape[0],F=v.shape[1],O=E.segment_util.segOpComputeOptimalWindowSize(F,N),L={windowSize:O,inSize:F,batchSize:C,numSegments:N},V=new tK(L,w),j=n.compileAndRun(V,[v,b],k);if(l.push(j),j.shape[1]===N)return j;let U=z7({backend:n,attrs:{start:0,stop:N,step:1,dtype:"float32"}}),X=W7({inputs:{x:U},backend:n,attrs:{reps:[F/O]}});return l.push(U),l.push(X),A(j,w,X,k,N)},y=A(f,"unsortedSegmentSum",s,m,i),g=fe({inputs:{x:y},backend:n,attrs:{shape:d}}),x=g;if(u!=null){l.push(g);let v=E.getUndoAxesPermutation(u);x=fn({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var rK={kernelName:Pu,backendName:"webgl",kernelFunc:nK},aK=[HH,XH,CB,MB,DB,PB,WB,jB,HB,qB,YB,QB,nV,sV,dV,lV,mV,xV,yV,vV,IV,NV,RV,PV,WV,GV,XV,JV,tj,hB,ij,Aj,gj,cj,_j,kj,wj,Nj,Cj,Fj,Dj,zj,Wj,Gj,Xj,Vj,Yj,eU,nU,iU,cU,fU,yU,gU,xU,bU,vU,IU,NU,EU,FU,zU,LU,BU,UU,XU,JU,nH,cB,aH,aj,oH,cH,pH,pB,yH,bH,vH,CH,NH,$H,zH,BH,ZH,aG,nG,lG,cG,dG,eG,fG,AG,wG,kG,TG,OG,gB,PG,BG,UG,qG,VV,ZG,JG,eq,rq,oq,mB,uq,cq,jV,MG,pq,bq,yq,wB,Iq,Tq,Rq,$q,Pq,Wq,jq,Gq,Xq,Yq,eX,rX,iX,uX,dX,OV,$G,mX,yX,xX,bX,vX,SX,EX,RX,FX,OX,FG,NB,LX,VX,HX,qX,ZX,TB,JX,eK,rK,YG];for(let e of aK)ui(e);var Mn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Mn||(Mn={}));var Nc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(Nc||(Nc={}));var B7;function sK(e){B7=e.wasm.cwrap(ii,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function iK(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,f=0;if(i!=null){let N=n.dataIdMap.get(i.dataId);if(N.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${N.shape.length}.`);f=N.id}let m=o==null?0:n.dataIdMap.get(o.dataId).id,A=Nc[u];if(A==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=c?s.shape[1]:s.shape[2],x=a.shape[0],v=n.makeOutput([x,y,g],a.dtype),w=n.dataIdMap.get(v.dataId).id,b=new Uint8Array(new Int32Array(a.shape).buffer),k=new Uint8Array(new Int32Array(s.shape).buffer);return B7(d,b,a.shape.length,p,k,s.shape.length,l,c,A,f,m,h||0,w),v}var oK={kernelName:ii,backendName:"wasm",setupFunc:sK,kernelFunc:iK};function mn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return _.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var lK=mn(lo);function An(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,h=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,p=n!=null?n:c.dtype,f=E.assertAndGetBroadcastShape(c.shape,u.shape),m=o.makeOutput(f,p);if(_.sizeFromShape(f)===0)return m;let A=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),g=o.dataIdMap.get(m.dataId).id,x=()=>r(h,A,c.shape.length,d,y,u.shape.length,Mn[c.dtype],g);if(t&&c.dtype==="float32")return x(),m;let v=E.getBroadcastDims(c.shape,f),w=E.getBroadcastDims(u.shape,f),b=v.every((N,C)=>N===C),k=w.every((N,C)=>N===C);if(b&&k)return x(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var uK=!0,cK=An(Ca,uK),V7;function hK(e){V7=e.wasm.cwrap(ds,null,["array","number","number","number"])}function dK(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(_.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return V7(s,a.length,Mn[r.dtype],i),r}var pK={kernelName:ds,backendName:"wasm",setupFunc:hK,kernelFunc:dK};function Mp(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var fK={kernelName:Es,backendName:"wasm",kernelFunc:Mp},j7;function mK(e){j7=e.wasm.cwrap(si,null,["number","array","number","number","number","array","number"])}function Fp(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=yK(t.x.shape,r.perm),i=!0;for(let f=0;f=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var gK={kernelName:si,backendName:"wasm",kernelFunc:Fp,setupFunc:mK};function Xa(e,t,n){let r=e.shape,a=e.shape.length,s=_.parseAxisParam(t,r),i=s,o=E.getAxesPermutation(i,a),l=null,c=!1;if(o!=null){let u=new Array(a);for(let d=0;d`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:i,dtype:r.dtype}}var RK={kernelName:Ko,backendName:"wasm",kernelFunc:Nr},X7;function MK(e){X7=e.wasm.cwrap(ms,null,["number","array","number","number","array","number","number","number","number"])}function FK(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=_.sizeFromShape(f),y=_.sizeFromShape(m),g=A===y||A===1||y===1;_.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let x=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);_.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[A,u,d]:[A,d,u],w=o?[y,p,h]:[y,h,p],b=Nr({inputs:{x:a},backend:n,attrs:{shape:v}}),k=Nr({inputs:{x:s},backend:n,attrs:{shape:w}}),N=n.dataIdMap.get(b.dataId).id,C=n.dataIdMap.get(k.dataId).id,F=i?b.shape[2]:b.shape[1],O=o?k.shape[1]:k.shape[2],L=Math.max(A,y),V=n.makeOutput([L,F,O],b.dtype),j=n.dataIdMap.get(V.dataId).id,U=new Uint8Array(new Int32Array(b.shape).buffer),X=new Uint8Array(new Int32Array(k.shape).buffer);return X7(N,U,b.shape.length,C,X,k.shape.length,i,o,j),n.disposeData(b.dataId),n.disposeData(k.dataId),V.shape=x,V}var $K={kernelName:ms,backendName:"wasm",setupFunc:MK,kernelFunc:FK};function $p(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var DK={kernelName:As,backendName:"wasm",kernelFunc:$p},OK=mn(ys),K7;function zK(e){K7=e.wasm.cwrap(Ra,null,["number","number","number","number"])}function PK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(l.dataId).id;return K7(o,s,i,c),l}var LK={kernelName:Ra,backendName:"wasm",setupFunc:zK,kernelFunc:PK};function Z7(e){let{inputs:t,backend:n}=e,r=_.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=E.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>_.sizeFromShape(p.shape)>0);if(s.length===1)return Mp({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(_.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(E.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(x=>{let v=_.sizeFromShape(x.shape.slice(r));return Nr({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),f=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));a=E.computeOutShape(p.map(x=>x.shape),1);let m=p[0].shape[0]===1,A=aA(f,a,t[0].dtype,m),y=E.computeOutShape(s.map(x=>x.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=E.fromStringArrayToUint8(A),p.forEach(x=>n.disposeData(x.dataId)),i}let l=_.sizeFromShape(s[0].shape.slice(0,r)),c=0,u=s.map(p=>{let f=_.sizeFromShape(p.shape.slice(r));return c+=f,f}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p`cumsum does not support ${a.dtype} tensors in the WASM backend`);let c=E.getAxesPermutation([s],l),u=a;c!==null&&(u=Fp({inputs:{x:a},attrs:{perm:c},backend:n}));let h=E.getInnerMostAxes(1,l)[0];E.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(u.shape,u.dtype),p=u.shape[h],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(d.dataId).id;ev(f,i?1:0,o?1:0,p,m,Mn[a.dtype]);let A=d;if(c!==null){let y=E.getUndoAxesPermutation(c);A=Fp({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return A}var QK={kernelName:bs,backendName:"wasm",setupFunc:YK,kernelFunc:JK},tv;function eZ(e){tv=e.wasm.cwrap(_o,null,["number","number","number","array","number","array","array","number","number"])}function tZ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(_.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(f).buffer),x=new Uint8Array(new Int32Array(_.computeStrides(f)).buffer),v=t.dataIdMap.get(m.dataId).id;return tv(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,x,f.length,v),m}var nZ={kernelName:_o,backendName:"wasm",setupFunc:eZ,kernelFunc:tZ},nv;function rZ(e){nv=e.wasm.cwrap(_s,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function aZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:h}=n,d=c==null?[1,1]:c,p=E.computeConv2DInfo(a.shape,s.shape,l,d,u,h,!0),f=p.filterHeight,m=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,x=p.padInfo.left,v=p.dilationHeight,w=p.dilationWidth,b=p.strideHeight,k=p.strideWidth,N=p.inChannels,C=p.outChannels,F=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let O=r.makeOutput(p.outShape,"float32"),L=r.dataIdMap.get(O.dataId).id;return nv(i,a.shape[0],a.shape[1],a.shape[2],o,f,m,A,y,g,x,F,v,w,b,k,N,C,L),O}var sZ={kernelName:_s,backendName:"wasm",setupFunc:rZ,kernelFunc:aZ},iZ=!1,oZ=An(Io,iZ,"bool"),lZ=mn(ks);function zA(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(_.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Nr({inputs:{x:a},backend:r,attrs:{shape:o}})}var uZ={kernelName:So,backendName:"wasm",kernelFunc:zA};function cZ(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var hZ={kernelName:Eu,backendName:"wasm",kernelFunc:cZ},rv;function dZ(e){rv=e.wasm.cwrap(To,null,["number","number","number","number","number","number"])}function pZ(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,c,u]=r.shape;return rv(s,o,l,c,u,i),a}var fZ={kernelName:To,backendName:"wasm",kernelFunc:pZ,setupFunc:dZ},mZ=mn(Is),AZ=!1,yZ=An(Ss,AZ),av;function gZ(e){av=e.wasm.cwrap(Ns,null,["number","number","number","number","number","number","number"])}function xZ(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(s.shape,s.dtype);if(_.sizeFromShape(s.shape)===0)return m;let A=t.dataIdMap.get(m.dataId).id;return av(u,h,d,p,f,a,A),m}var wZ={kernelName:Ns,backendName:"wasm",setupFunc:gZ,kernelFunc:xZ},sv;function bZ(e){sv=e.wasm.cwrap(oi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function _Z(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(a.shape,s.shape,l,u,c,d),A=Nc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,x=m.outChannels,v=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);v=Q.id}let w=m.filterHeight,b=m.filterWidth,k=m.padInfo.top,N=m.padInfo.right,C=m.padInfo.bottom,F=m.padInfo.left,O=m.dilationHeight,L=m.dilationWidth,V=m.strideHeight,j=m.strideWidth,U=m.inChannels,X=m.padInfo.type==="SAME"?1:0,G=m.batchSize,ee=m.inHeight,Y=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(m.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return sv(y,G,ee,Y,g,w,b,v,k,N,C,F,X,O,L,V,j,U,x,A,ie,f||0,te),ae}var vZ={kernelName:oi,backendName:"wasm",setupFunc:bZ,kernelFunc:_Z},iv;function kZ(e){iv=e.wasm.cwrap(li,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function IZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(a.shape,s.shape,l,u,c,d,!0),A=Nc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,x=m.outChannels,v=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);v=Q.id}let w=m.filterHeight,b=m.filterWidth,k=m.padInfo.top,N=m.padInfo.right,C=m.padInfo.bottom,F=m.padInfo.left,O=m.dilationHeight,L=m.dilationWidth,V=m.strideHeight,j=m.strideWidth,U=m.inChannels,X=m.padInfo.type==="SAME"?1:0,G=m.batchSize,ee=m.inHeight,Y=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(m.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return iv(y,G,ee,Y,g,w,b,v,k,N,C,F,X,O,L,V,j,U,x,A,ie,f||0,te),ae}var SZ={kernelName:li,backendName:"wasm",setupFunc:kZ,kernelFunc:IZ},ov;function NZ(e){ov=e.wasm.cwrap(Co,null,["number","number","number","number","number","number","array","number"])}function TZ(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=tm.prepareAndValidate(r,a),c=t.makeOutput(s,r.dtype);if(i===0)return c;let u=a.shape,h=u[u.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,f=new Uint8Array(new Int32Array(l).buffer),m=t.dataIdMap.get(c.dataId).id;return ov(d,Mn[r.dtype],p,i,h,o,f,m),c}var EZ={kernelName:Co,backendName:"wasm",setupFunc:NZ,kernelFunc:TZ},lv;function CZ(e){lv=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function RZ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=_.parseAxisParam(i,a.shape)[0],c=E.segment_util.collectGatherOpShapeInfo(a,s,l,o),u=Nr({inputs:{x:a},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),h=_.sizeFromShape(s.shape),d=Nr({inputs:{x:s},attrs:{shape:[c.batchSize,h/c.batchSize]},backend:t}),p=[c.batchSize,c.outerSize,h/c.batchSize,c.sliceSize],f=t.makeOutput(p,a.dtype);if(_.sizeFromShape(a.shape)===0)return f;let m=u.shape.length-1,A=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(f.dataId).id,x=new Uint8Array(new Int32Array(_.computeStrides(u.shape)).buffer),v=new Uint8Array(new Int32Array(_.computeStrides(p)).buffer);return lv(A,Mn[a.dtype],x,m,y,c.batchSize,v,g),t.disposeData(u.dataId),t.disposeData(d.dataId),f.shape=c.outputShape,f}var MZ={kernelName:Eo,backendName:"wasm",setupFunc:CZ,kernelFunc:RZ},FZ=!1,$Z=An(Ro,FZ,"bool"),DZ=!1,OZ=An(Ts,DZ,"bool"),uv;function zZ(e){uv=e.wasm.cwrap(Cs,null,["number","number","number"])}function PZ(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(_.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;uv(a,n,i)}return s}var LZ={kernelName:Cs,backendName:"wasm",setupFunc:zZ,kernelFunc:PZ},WZ=!1,BZ=An(Do,WZ,"bool"),VZ=!1,jZ=An(Oo,VZ,"bool"),UZ=mn(Rs),HZ=!1,GZ=An(Po,HZ,"bool"),cv;function qZ(e){cv=e.wasm.cwrap(Ms,null,["number, number, number"])}function XZ(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:h,inputWasTransposed:d}=Xa(i,a,t);if(d){let g=t.dataIdMap.get(c.dataId).id;l=c,o=g}let p=l.shape.length;E.assertAxesAreInnerMostDims("max",u,p);let[f,m]=E.computeOutAndReduceShapes(l.shape,u),A=_.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(_.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;cv(o,A,g)}if(d&&t.disposeData(c.dataId),s){let g=E.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var KZ={kernelName:Ms,backendName:"wasm",setupFunc:qZ,kernelFunc:XZ},ZZ=!1,YZ=An(Fs,ZZ),hv;function JZ(e){hv=e.wasm.cwrap($s,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function QZ(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(a.shape,i,o,1,l,c),h=u.filterHeight,d=u.filterWidth,p=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,A=u.padInfo.left,y=u.dilationHeight,g=u.dilationWidth,x=u.strideHeight,v=u.strideWidth,w=u.inChannels,b=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let k=r.makeOutput(u.outShape,"float32"),N=r.dataIdMap.get(k.dataId).id;return hv(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,y,g,x,v,w,b,N),k}var eY={kernelName:$s,backendName:"wasm",setupFunc:JZ,kernelFunc:QZ},dv;function tY(e){dv=e.wasm.cwrap(Ds,null,["number, number, number"])}function nY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Xa(i,a,t),f=h;if(p){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,A]=E.computeOutAndReduceShapes(c.shape,f),y=_.sizeFromShape(A),g=c;c.dtype!=="float32"&&(g=$p({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let x=t.makeOutput(m,"float32");if(_.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;dv(l,y,v)}if(p&&t.disposeData(u.dataId),s){let v=E.expandShapeToKeepDim(x.shape,d);x.shape=v}return c.dtype!=="float32"&&t.disposeData(g.dataId),x}var rY={kernelName:Ds,backendName:"wasm",setupFunc:tY,kernelFunc:nY},pv;function aY(e){pv=e.wasm.cwrap(Os,null,["number, number, number"])}function sY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Xa(i,a,t);if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x)}let f=c.shape.length;E.assertAxesAreInnerMostDims("min",h,f);let[m,A]=E.computeOutAndReduceShapes(c.shape,h),y=_.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;pv(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var iY={kernelName:Os,backendName:"wasm",setupFunc:aY,kernelFunc:sY},oY=!1,lY=An(zs,oY),PA;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(PA||(PA={}));var fv;function uY(e){fv=e.wasm.cwrap(Ps,null,["number","array","number","number","array","array","number","number"])}function cY(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,mode:a}}=e,s=r.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(f=>f[0]),h=r.map(f=>f[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return fv(i,c,t.shape.length,Mn[t.dtype],d,p,PA[a],l),o}var hY={kernelName:Ps,backendName:"wasm",kernelFunc:cY,setupFunc:uY},dY=!0,pY=An(Ls,dY),fY=mn(Wo);function LA(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var mv;function mY(e){mv=e.wasm.cwrap(Vo,"number",["number","number","number","number","number"])}function AY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,h=mv(c,u,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:f,pValidOutputs:m}=LA(t,h);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([p],"int32",d)}var yY={kernelName:Vo,backendName:"wasm",setupFunc:mY,kernelFunc:AY},Av;function gY(e){Av=e.wasm.cwrap(jo,"number",["number","number","number","number","number","bool"])}function xY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=Av(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=LA(t,d);t.wasm._free(m);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var wY={kernelName:jo,backendName:"wasm",setupFunc:gY,kernelFunc:xY},yv;function bY(e){yv=e.wasm.cwrap(Uo,"number",["number","number","number","number","number","number"])}function _Y(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=yv(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=LA(t,d);t.wasm._free(A);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([f],"float32",m);return[y,g]}var vY={kernelName:Uo,backendName:"wasm",setupFunc:bY,kernelFunc:_Y},kY=!1,IY=An(Bo,kY,"bool"),gv;function SY(e){gv=e.wasm.cwrap(Ws,null,["number","number","number","number","number"])}function NY(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(a.dataId).id;return gv(u,s,i,o,c),l}var TY={kernelName:Ws,backendName:"wasm",setupFunc:SY,kernelFunc:NY};function EY(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var CY={kernelName:Ho,backendName:"wasm",kernelFunc:EY};function RY(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return zA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=zA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=Z7({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeData(u.dataId)),c}var MY={kernelName:Go,backendName:"wasm",kernelFunc:RY},xv;function FY(e){xv=e.wasm.cwrap(Bs,null,["number","array","number","number","array","array","number","number"])}function $Y(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(f=>f[0]),h=r.map(f=>f[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return xv(i,c,t.shape.length,Mn[t.dtype],d,p,a,l),o}var DY={kernelName:Bs,backendName:"wasm",kernelFunc:$Y,setupFunc:FY},OY=!1,zY=An(Vs,OY),wv;function PY(e){wv=e.wasm.cwrap(js,null,["number","number","number"])}function LY(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return wv(s,i,l),o}var WY={kernelName:js,backendName:"wasm",setupFunc:PY,kernelFunc:LY},bv;function BY(e){bv=e.wasm.cwrap(qo,null,["number","number","number","number"])}function VY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Xa(i,a,t),f=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,A]=E.computeOutAndReduceShapes(c.shape,f),y=_.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;bv(l,y,Mn[g.dtype],x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var jY={kernelName:qo,backendName:"wasm",setupFunc:BY,kernelFunc:VY},UY=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=oA(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},HY={kernelName:$u,backendName:"wasm",kernelFunc:UY},GY=!0,qY=An(vs,GY),XY=mn(Us),KY=mn(Gs),_v;function ZY(e){_v=e.wasm.cwrap(Hs,null,["number","number","number","number","number","number","number","number","number","number"])}function YY(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,[u,h,d,p]=a.shape,f=[u,l,c,p],m=t.dataIdMap.get(a.dataId),A;m.dtype!=="float32"&&(A=$p({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(A.dataId));let y=m.id,g=t.makeOutput(f,"float32");if(_.sizeFromShape(a.shape)===0)return g;let x=t.dataIdMap.get(g.dataId).id;return _v(y,u,h,d,p,l,c,s?1:0,i?1:0,x),A!=null&&t.disposeData(A.dataId),g}var JY={kernelName:Hs,backendName:"wasm",setupFunc:ZY,kernelFunc:YY},vv;function QY(e){vv=e.wasm.cwrap(qs,null,["number","array","number","array","number","number"])}function eJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=_.parseAxisParam(s,a.shape);if(a.shape.length===0)return Mp({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);vv(l,u,i.length,h,a.shape.length,c);let d=Nr({inputs:{x:o},attrs:{shape:a.shape},backend:n});return n.disposeData(o.dataId),d}var tJ={kernelName:qs,backendName:"wasm",kernelFunc:eJ,setupFunc:QY},kv;function nJ(e){kv=e.wasm.cwrap(ll,null,["number","number","number","number","number","number","number","number","array","number","number"])}function rJ(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(l.dataId).id,[h,d,p,f]=a.shape,[m,A]=E.getImageCenter(o,d,p),y=i===0,g=255,x=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],v=new Uint8Array(new Int32Array(x).buffer);return kv(c,h,d,p,f,s,m,A,v,x.length,u),l}var aJ={kernelName:ll,backendName:"wasm",kernelFunc:rJ,setupFunc:nJ},sJ=mn(Xs),iJ=mn(Ks),Iv;function oJ(e){Iv=e.wasm.cwrap(Zo,null,["number","number","number","number","number","number","array","number","number"])}function lJ(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(_.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=nm.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,f=t.dataIdMap.get(s.dataId).id,m=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return Iv(p,f,Mn[s.dtype],l,c,u,m,d,A),o}var uJ={kernelName:Zo,backendName:"wasm",setupFunc:oJ,kernelFunc:lJ},Sv;function cJ(e){Sv=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function hJ(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(c.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:_.sizeFromShape(a.shape.slice(1));return Sv(i,o,l,p,u),c}var dJ={kernelName:Yo,backendName:"wasm",kernelFunc:hJ,setupFunc:cJ},Nv;function pJ(e){Nv=e.wasm.cwrap(Ys,null,["number","number"])}function fJ(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return _.sizeFromShape(a.shape)===0||Nv(r,s),a}var mJ={kernelName:"Sigmoid",backendName:"wasm",setupFunc:pJ,kernelFunc:fJ},AJ=mn(Zs);function Dp(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=un.parseSliceParams(t,n,r),o=un.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),c=a.makeOutput(i,t.dtype),u=_.computeStrides(t.shape),h=a.dataIdMap.get(c.dataId);if(o){let f=un.computeFlatOffset(s,u);return t.dtype==="string"?h.stringBytes=l.slice(f,f+_.sizeFromShape(i)):a.typedArrayFromHeap(c).set(l.subarray(f,f+_.sizeFromShape(i))),c}if(t.dtype==="string"){let f=up(l,s,i,t.shape,t.dtype);return h.stringBytes=f,c}let d=a.typedArrayFromHeap(c),p=t.shape.length;if(p===2)yJ(l,u[0],d,s,i);else if(p===3)gJ(l,u[0],u[1],d,s,i);else if(p===4)xJ(l,u[0],u[1],u[2],d,s,i);else{let f=up(l,s,i,t.shape,t.dtype);d.set(f)}return c}function yJ(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let c=i;c{let d=[...u];d[o]=h;let p=Dp({inputs:{x:a},attrs:{begin:c,size:d},backend:r});return c[o]+=h,p})}var IJ={kernelName:rl,backendName:"wasm",kernelFunc:kJ},SJ=mn(Js),NJ=mn(zu),TJ=!0,EJ=An(ti,TJ),Ev;function CJ(e){Ev=e.wasm.cwrap(Fa,null,["number","number","number"])}function RJ(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return Ev(i,a,l),o}var MJ={kernelName:Fa,backendName:"wasm",setupFunc:CJ,kernelFunc:RJ},Cv;function FJ(e){Cv=e.wasm.cwrap(al,null,["number","array","number","array","array","array","array","array","number","number"])}function $J(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,p=E.slice_util.maskToAxes(u);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=a.shape.length-s.length,m=E.slice_util.maskToAxes(h),A=a.shape.slice();m.forEach(F=>{s[F]=0,i[F]=1,A.splice(F,0,1)});let y=Nr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:x,strides:v}=E.slice_util.getNormalizedAxes(y.shape,p,f,s,i,o,l,c,u);s=g,i=x,o=v;let w=E.slice_util.maskToAxes(d);w.forEach(F=>{i[F]=s[F]+1,o[F]=1});let b=E.slice_util.computeOutShape(s,i,o),k=b.filter((F,O)=>w.indexOf(O)===-1);if(o.every(F=>F===1)){let F=Dp({inputs:{x:y},attrs:{begin:s,size:b},backend:t});t.disposeData(y.dataId);let O=Nr({inputs:{x:F},attrs:{shape:k},backend:t});return t.disposeData(F.dataId),O}let N=t.makeOutput(k,"float32");if(!k.some(F=>F===0)){let F=t.dataIdMap.get(y.dataId).id,O=new Uint8Array(new Int32Array(_.computeStrides(y.shape)).buffer),L=new Uint8Array(new Int32Array(s).buffer),V=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(o).buffer),U=new Uint8Array(new Int32Array(k).buffer),X=new Uint8Array(new Int32Array(_.computeStrides(k)).buffer),G=t.dataIdMap.get(N.dataId).id;Cv(F,O,y.shape.length,L,V,j,U,X,k.length,G)}t.disposeData(y.dataId);let C=Nr({inputs:{x:N},attrs:{shape:k},backend:t});return t.disposeData(N.dataId),C}var DJ={kernelName:al,backendName:"wasm",setupFunc:FJ,kernelFunc:$J},OJ=!0,zJ=An(ni,OJ),Rv;function PJ(e){Rv=e.wasm.cwrap(Qs,null,["number, number, number"])}function LJ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Xa(i,a,t),f=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,A]=E.computeOutAndReduceShapes(c.shape,f),y=_.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;Rv(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var WJ={kernelName:Qs,backendName:"wasm",setupFunc:PJ,kernelFunc:LJ},BJ=mn(ri),VJ=mn(ai),Mv;function jJ(e){Mv=e.wasm.cwrap(Ma,null,["number","array","number","array","number","number"])}function UJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let c=t.makeOutput(l,r.dtype),u=t.dataIdMap.get(c.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return Fv(i,o,r.shape.length,Mn[r.dtype],a,s,u,d),[c,h]},XJ={kernelName:sl,backendName:"wasm",setupFunc:GJ,kernelFunc:qJ};function KJ(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),c=0;for(let p=0;p({dataId:p,dtype:f,shape:l}))}var ZJ={kernelName:il,backendName:"wasm",kernelFunc:KJ};function YJ(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var JJ={kernelName:ol,backendName:"wasm",kernelFunc:YJ},QJ=[lK,cK,pK,bK,kK,NK,CK,$K,DK,OK,LK,WK,jK,GK,qK,ZK,QK,nZ,sZ,oZ,lZ,uZ,hZ,fZ,mZ,yZ,oK,wZ,vZ,SZ,EZ,MZ,$Z,OZ,fK,LZ,BZ,jZ,UZ,GZ,KZ,YZ,eY,rY,iY,lY,hY,pY,fY,yY,wY,vY,IY,TY,CY,MY,DY,zY,WY,jY,HY,qY,XY,KY,RK,JY,tJ,aJ,iJ,sJ,uJ,dJ,mJ,AJ,wJ,vJ,IJ,SJ,NJ,EJ,MJ,DJ,zJ,WJ,BJ,VJ,HJ,XJ,gK,ZJ,JJ];for(let e of QJ)ui(e);var WA=J();WA.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));WA.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(WA.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var $v=so(T9()),eQ='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',tQ=so(E9()),Dv=class extends wu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Rh(this,ua())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=_.now();return e(),{kernelMs:_.now()-t}}move(e,t,n,r,a){let s=this.dataIdNextNumber++;if(r==="string"){let c=t;this.dataIdMap.set(e,{id:s,stringBytes:c,shape:n,dtype:r,memoryOffset:null,refCount:a});return}let i=_.sizeFromShape(n),o=i*_.bytesPerElement(r),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:r,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+_.sizeFromShape(r)*_.bytesPerElement(n));return nQ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let a=this.dataIdNextNumber++;r={id:a},this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=_.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=_.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function rQ(e){return(t,n)=>(_.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance,s.module)})})}),{})}function Ov(e,t,n){if(Op!=null)return Op;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),Tc!=null&&Tc[r]!=null?Tc[r]:n+r}async function aQ(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let c=eQ,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return o.endsWith(".wasm")?Ov(e,t,Ec!=null?Ec:l):l+o},BA&&(a.instantiateWasm=rQ(Ov(e,t,Ec!=null?Ec:"")));let s=!1;a.onAbort=()=>{s||Cc||(Cc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Op==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+$v.default.toString()],{type:"text/javascript"}),i=(0,$v.default)(a)):i=(0,tQ.default)(a),i.then(o=>{s=!0,Cc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function nQ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var sQ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Op=null,Ec=null,Tc={},Cc=!1,BA=!1;function iQ(e,t=!1){if(lm("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Cc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Op=e,BA=t}function oQ(e,t=!1){if(Cc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Ec=e;else{Tc=e;let n=sQ.filter(r=>Tc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}BA=t}var zv="3.5.0",lQ=2;yl("wasm",async()=>{let{wasm:e}=await aQ();return new Dv(e)},lQ);Z().prototype.abs=function(){return this.throwIfDisposed(),zt(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),cm(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),hm(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),kd(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),Zu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),mi(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),dm(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),M(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),H(this,[e,t,n,r])};Z().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),H(this,[e,t,n,r,a])};Z().prototype.asin=function(){return this.throwIfDisposed(),pm(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),fm(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),mm(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),Am(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),ym(this)};Z().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),Ju(this,e,t,n,r)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Qu(this,e,t)};Z().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),gi(this,e,t,n,r,a)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),xl(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),bm(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),En(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Pe&&(e=[e]),rt([this,...e],t)};Z().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Sd(this,e,t,n,r,a,s)};Z().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),Nd(this,e,t,n,r,a)};Z().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),ca(this,e,t,n,r,a,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),ec(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),Td(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Ed(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),km(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),bl(this,e,t,n,r,a,s)};Z().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),Im(this,e,t,n,r,a)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),Sm(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),Ae(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),ub(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),_l(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),Wa(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),Nm(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),Qn(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),Qt(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),Tm(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),cc(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),vl(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),vd(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),xi(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Va(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),pr(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),Nl(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),Gd(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),hb(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),db(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),Cm(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),nc(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),wi(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),Rd(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),Rm(this,e,t,n,r)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),mb(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),$d(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),$m(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),zn(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),Md(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),fr(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),rc(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),Dd(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),xb(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ve(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),ac(this,e,t,n,r)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Rn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),jr(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),It(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),kl(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),Il(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Om(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),zm(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),P(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),kt(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Zd(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),vi(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),ml(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),Ln(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),ha(this,e,t)};Z().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),_b(this,e,t,n,r,a)};Z().prototype.pow=function(e){return this.throwIfDisposed(),da(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),ic(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),zd(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),Wm(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),Ur(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),Ld(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Wb(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),Bb(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),Wn(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),hc(this)};Z().prototype.round=function(){return this.throwIfDisposed(),Bm(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),Wd(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),Bd(this)};Z().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Vm(this,e,t,n,r,a,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),Tn(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),jm(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),Vd(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),jd(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Re(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),uc(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),bi(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),sc(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),Lt(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),en(this)};Z().prototype.square=function(){return this.throwIfDisposed(),ot(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),qd(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),ja(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Pe?[this,e]:[this,...e];return cn(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),Tl(this,e)};Z().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),Hm(this,e,t,n,r,a,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),ye(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Te(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),Gm(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),yi(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),Ba(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),ge(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),ge(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),ge(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),qm(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),Je(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),Kd(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Xm(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),mr(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),Cn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),He(this)};var Pv={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,Tl(ge(n,"float32"),-1))}}},uQ={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=ot(ge(n,"float32")),a=en(ye(xe(1),r));return kt(Ae(e,a))}}}},cQ={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=en(ye(ot(ge(n,"float32")),1));return Ae(e,r)}}}},hQ={kernelName:Ca,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=e,i=Pt(n.shape,a);return i.length>0&&(s=Te(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Pt(r.shape,a);return i.length>0&&(s=Te(s,i)),H(s,r.shape)}}}},dQ={kernelName:ds,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},pQ={kernelName:ps,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},fQ={kernelName:vu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},mQ={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,en(ye(xe(1),ot(ge(n,"float32")))))}}},AQ={kernelName:mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=en(se(xe(1),ot(ge(n,"float32"))));return Ae(e,r)}}}},yQ={kernelName:go,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=se(ot(n),ot(r)),i=P(e,Ae(r,s)),o=Pt(n.shape,a);return o.length>0&&(i=Te(i,o)),H(i,n.shape)},b:()=>{let s=se(ot(n),ot(r)),i=kt(P(e,Ae(n,s))),o=Pt(r.shape,a);return o.length>0&&(i=Te(i,o)),H(i,r.shape)}}}},gQ={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,se(ot(ge(n,"float32")),1))}}},xQ={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,ye(xe(1),ot(ge(n,"float32"))))}}};function wQ(e,t,n,r,a,s){let i=R(e,"dy","avgPool3dGrad"),o=R(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&M(Ut(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:c},d={filterSize:n,strides:r,pad:a,dimRoundingMode:s},p=$.runKernel(Oh,h,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var bQ=D({avgPool3dGrad_:wQ}),_Q={kernelName:ku,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>bQ(e,r,a,s,i,o)}}};function vQ(e,t,n,r,a){let s=R(e,"dy","avgPoolGrad"),i=R(t,"input","avgPoolGrad");M(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=$.runKernel(Dh,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var kQ=D({avgPoolGrad_:vQ}),IQ={kernelName:fs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>kQ(e,r,a,s,i)}}},SQ={kernelName:ms,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Ve(e,a,!1,!0),b:()=>Ve(r,e,!0,!1)}:!s&&i?{a:()=>Ve(e,a,!1,!1),b:()=>Ve(e,r,!0,!1)}:s&&!i?{a:()=>Ve(a,e,!1,!0),b:()=>Ve(r,e,!1,!1)}:{a:()=>Ve(a,e,!0,!0),b:()=>Ve(e,r,!0,!0)}}},NQ={kernelName:Iu,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>sc(e,r,a)}}},TQ={kernelName:nw,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l1&&o.push(l);return{x:()=>Te(e,o,!0)}}},EQ={kernelName:As,gradFunc:e=>({x:()=>e.clone()})},CQ={kernelName:ys,gradFunc:e=>({x:()=>He(e)})},RQ={kernelName:Ra,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>Cn(fr(Va(r,a),wi(r,s)),e,He(e))}}},MQ={kernelName:Su,inputsToSave:["x"],gradFunc:Pv.gradFunc},FQ={kernelName:xo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=hr(a,t[0].shape)[0],i=r.map(o=>o[s]);return Lt(e,i,s).map(o=>()=>o)}},$Q={kernelName:gs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return M(La(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>_m(r.shape,e,a,i,o,l),filter:()=>Jm(r,e,a.shape,i,o,l)}}},DQ={kernelName:xs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>ca(e,a,s,i,o,1,l),filter:()=>Jm(e,r,a.shape,s,i,o,l)}}};function OQ(e,t,n,r,a){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),M(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),M(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return $.runKernel(Wh,o,l)}var zQ=D({conv3DBackpropFilter_:OQ}),PQ={kernelName:Nu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;M(La(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>ib(i.shape,e,o,a,s),filter:()=>zQ(i,e,o.shape,a,s)}}},LQ={kernelName:ws,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(kt(Vd(ge(n,"float32"))),e)}}},WQ={kernelName:wo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(jd(ge(n,"float32")),e)}}},BQ={kernelName:bs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=gb([a],r.rank),l=Ed(e,a,s,!i);return o!=null&&(l=Je(l,o)),l}}}},VQ={kernelName:_s,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;M(La(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),M(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),M(Br(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&M(Ut(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>Fb(l.shape,e,c,a,s,r,i),filter:()=>Mb(l,e,c.shape,a,s,r,i)}}},jQ={kernelName:Tu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>$.runKernel(Gh,s,n),filter:()=>$.runKernel(qh,i,n)}}},UQ={kernelName:vo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>$.runKernel(Kh,r)}}},HQ={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=P(Qn(kt(ot(n))),2/Math.sqrt(Math.PI));return{x:()=>P(e,r)}}},GQ={kernelName:ks,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,n)}}},qQ={kernelName:So,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},XQ={kernelName:No,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,Qn(n))}}},KQ={kernelName:Is,gradFunc:e=>({x:()=>He(e)})},ZQ={kernelName:Ss,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Ae(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=P(e,ge(n,"float32")),i=Pt(r.shape,a);i.length>0&&(s=H(Te(s,i),r.shape));let o=ot(r);return kt(Ae(s,ge(o,"float32")))}}}},YQ={kernelName:Ns,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?xe(1):o,c=Pt(s.shape,a.shape),u=[];if(s.rank===1){for(let m=0;ms.rank===1?H(P(P(e,Ba(H(p,[1,1,1,s.shape[0]]),u)),l),a.shape):H(P(P(e,p),l),a.shape),mean:()=>{let m=P(P(p,xe(-1)),d);return s.rank===1&&(m=Te(m,c)),H(m,s.shape)},variance:()=>{let m=P(P(f,h),d);return s.rank===1&&(m=Te(m,c)),H(m,s.shape)},scale:()=>{let m=P(h,p),A=P(e,m);return s.rank===1&&(A=Te(A,c)),H(A,s.shape)},offset:()=>{let m=e;return s.rank===1&&(m=Te(m,c)),H(m,s.shape)}}}},JQ={kernelName:Eo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=hr(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,c=o.slice(0,i),u=c.length,h=o.slice(s,o.length).slice(1),d=h.length,p=Lv(0,u),f=Lv(u+1,u+1+d),m=Wv([c,[l],h]),A=H(e,m),y=H(a,[l]),g=Wv([[u],p,f]),x=Je(A,g),v=Xm(x,y,r.shape[i]),w=Fm(g);return v=Je(v,w),v},indices:()=>a}}};function Lv(e,t){let n=[];for(let r=e;r{let[n,r]=t;return{a:()=>He(n),b:()=>He(r)}}},eee={kernelName:Es,gradFunc:e=>({x:()=>ge(e,"float32")})},tee={kernelName:Mo,gradFunc:e=>({x:()=>He(e)})},nee={kernelName:Fo,gradFunc:e=>({x:()=>He(e)})},ree={kernelName:$o,gradFunc:e=>({x:()=>He(e)})},aee={kernelName:Cs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=pr(r,0);return{x:()=>Cn(s,e,P(e,a))}}},see={kernelName:zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,se(n,1))}}},iee={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,ge(n,"float32"))}}},oee={kernelName:rw,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=Qn(r);return ye(e,P(Te(e,a,s),i))}}}};function lee(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return $.runKernel(ed,o,l)}var uee=D({localResponseNormalizationBackprop_:lee}),cee={kernelName:Mu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>uee(r,a,e,s,i,o,l)}}};function Bv(e,t,n,r){return t.rankP(e,ge(Wa(n,t),e.dtype))}}var Vv={kernelName:Ms,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=hr(a,s.shape),l=Bv(e,i,s,o);return{x:()=>l.x()}}},hee={kernelName:Fs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>P(e,ge(Va(n,r),"float32")),b:()=>P(e,ge(Rd(n,r),"float32"))}}};function dee(e,t,n,r,a,s,i){let o=R(e,"dy","maxPool3dGrad"),l=R(t,"input","maxPool3dGrad"),c=R(n,"output","maxPool3dGrad"),u=o,h=l,d=c,p=!1;l.rank===4&&(p=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=H(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),M(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),M(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&M(Ut(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let f={dy:u,input:h,output:d},m={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=$.runKernel(nd,f,m);return p?H(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var pee=D({maxPool3dGrad_:dee}),fee={kernelName:Fu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>pee(e,r,a,s,i,o,l)}}};function mee(e,t,n,r,a,s,i){let o=R(e,"dy","maxPoolGrad"),l=R(t,"input","maxPoolGrad"),c=R(n,"output","maxPoolGrad");M(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),M(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&M(Ut(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return $.runKernel(td,u,h)}var Aee=D({maxPoolGrad_:mee}),yee={kernelName:$s,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>Aee(e,r,a,s,i,o)}}},gee={kernelName:Ds,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=hr(a,r.shape),i=yb(r.shape,s)[1],o=Et(i);return{x:()=>{let l=r.shape.slice();s.forEach(u=>{l[u]=1});let c=H(e,l);return Ae(P(c,Pn(r.shape,"float32")),o)}}}},xee={kernelName:Os,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=hr(a,s.shape),l=Bv(e,i,s,o);return{x:()=>l.x()}}},wee={kernelName:zs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>P(e,ge(wi(n,r),"float32")),b:()=>P(e,ge(pr(n,r),"float32"))}}},bee={kernelName:Ps,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Re(e,s,r.shape)}}},_ee={kernelName:Lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Pt(n.shape,a);return s.length>0?H(Te(e,s),n.shape):e},b:()=>{let s=P(e,kt(vl(Ae(n,r)))),i=Pt(r.shape,a);return i.length>0?H(Te(s,i),r.shape):s}}}},vee={kernelName:Ls,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=P(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=P(e,ge(n,"float32")),i=Pt(r.shape,a);return i.length>0?H(Te(s,i),r.shape):s}}}},kee={kernelName:Wo,gradFunc:e=>({x:()=>kt(e)})},Iee={kernelName:Ws,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Rt(n.shape,"float32")}}},See={kernelName:Ho,gradFunc:e=>({x:()=>He(e)})},Nee={kernelName:Go,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return mr(e,r).map(a=>()=>a)}},jv={kernelName:Bs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Re(e,s,r.shape)}}},Tee={kernelName:Vs,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=ft(s.shape,i.shape);return{a:()=>{let l=ge(i,"float32"),c=P(e,P(l,da(s,ye(l,xe(1))))),u=Pt(s.shape,o);return u.length>0&&(c=Te(c,u)),H(c,s.shape)},b:()=>{let l=pr(s,0),c=Cn(l,zn(s),He(s)),u=P(e,P(a,c)),h=Pt(i.shape,o);return h.length>0&&(u=Te(u,h)),H(u,i.shape)}}}},Eee={kernelName:js,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=pr(n,0);return{x:()=>Cn(a,e,P(e,r)),alpha:()=>{let s=Cn(a,He(e),P(e,n)),i=Pt(r.shape,e.shape);return i.length>0&&(s=Te(s,i)),H(s,r.shape)}}}},Cee={kernelName:vs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Ae(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=P(e,ge(n,"float32")),i=Pt(r.shape,a);i.length>0&&(s=H(Te(s,i),r.shape));let o=ot(r);return kt(Ae(s,ge(o,"float32")))}}}},Ree={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,kt(ot(n)))}}},Mee={kernelName:Gs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=P(wi(n,6),Tl(n));return{x:()=>P(e,ge(r,"float32"))}}},Fee={kernelName:Us,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,ge(Tl(n),"float32"))}}},$ee={kernelName:Ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},Dee={kernelName:Hs,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(od,a,n)}}},Oee={kernelName:Du,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(id,a,n)}}},zee={kernelName:qs,gradFunc:(e,t,n)=>{let{dims:r}=n,a=hr(r,e.shape);return{x:()=>Wn(e,a)}}},Pee={kernelName:Xs,gradFunc:e=>({x:()=>He(e)})},Lee={kernelName:Ks,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>kt(Ae(e,P(da(n,1.5),2)))}}},Wee={kernelName:Yo,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ge(He(n),"float32"),t:()=>P(e,ge(n,e.dtype)),e:()=>P(e,ge(rc(n),e.dtype))}}},Bee={kernelName:Jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=pr(n,xe(0)),a=xe(Hb),s=xe(Gb),i=P(e,s),o=P(P(e,a),Qn(ge(n,"float32")));return Cn(r,i,o)}}}},Vee={kernelName:Ys,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,P(n,ye(xe(1),n)))}}},jee={kernelName:tl,gradFunc:e=>({x:()=>He(e)})},Uee={kernelName:Zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(ec(ge(n,"float32")),e)}}},Hee={kernelName:el,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(Td(ge(n,"float32")),e)}}},Gee={kernelName:Qo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=Vw(r,a,s),c=[];for(let u=0;uha(e,c)}}},qee={kernelName:ei,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=P(e,r);return{logits:()=>ye(i,P(Te(i,[a],s),r))}}},Xee={kernelName:nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,Tn(n))}}},Uv={kernelName:Ou,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>Qu(e,r,a)}}},Hv={kernelName:rl,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>rt(e,r)}}},Kee={kernelName:Js,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,P(en(ge(n,"float32")),2))}}},Zee={kernelName:zu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,P(ge(n,"float32"),2))}}},Yee={kernelName:ti,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xe(2);return{a:()=>P(e,P(a,ye(n,r))),b:()=>P(e,P(a,ye(r,n)))}}},Jee={kernelName:Fa,gradFunc:e=>({x:()=>He(e)})},Qee={kernelName:ni,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=e,i=Pt(n.shape,a);return i.length>0&&(s=Te(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Pt(r.shape,a);return i.length>0&&(s=Te(s,i)),H(kt(s),r.shape)}}}},ete={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;hr(s,r.shape).forEach(l=>{a[l]=1});let i=H(e,a),o=P(i,Pn(r.shape,"float32"));return{x:()=>o}}},tte={kernelName:ri,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,ot(ec(n)))}}},nte={kernelName:ai,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(ye(xe(1),ot(n)),e)}}},rte={kernelName:Ma,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=He(r);if(r.rank===1)for(let i=0;i{let r=n,{perm:a}=r,s=Fm(a);return{x:()=>Je(e,s)}}},ste={kernelName:il,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>cn(e,a)}}},ote={kernelName:Pu,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ite(e,n)}}};function ite(e,t){let n=jr(t,He(t)),r=xi(e,n),a=Va(t,xe(0,"int32")),s=r.rank-a.rank;for(let o=0;o({x:()=>He(e)})},ute=[Pv,uQ,cQ,hQ,dQ,pQ,fQ,mQ,AQ,yQ,gQ,xQ,_Q,IQ,SQ,NQ,TQ,EQ,CQ,RQ,MQ,FQ,DQ,$Q,PQ,LQ,WQ,BQ,VQ,jQ,Cee,UQ,HQ,GQ,qQ,XQ,ZQ,KQ,YQ,JQ,QQ,eee,tee,nee,ree,aee,see,iee,oee,cee,Vv,Vv,hee,fee,yee,gee,xee,wee,bee,_ee,vee,kee,Iee,See,Nee,jv,jv,Tee,Eee,Ree,Mee,Fee,$ee,Dee,Oee,zee,Pee,Lee,Wee,Bee,Vee,jee,Uee,Hee,Gee,qee,Xee,Uv,Uv,Hv,Hv,Kee,Yee,Zee,Jee,Qee,ete,tte,nte,rte,ate,ste,ote,lte];for(let e of ute)aw(e);var Gv={};Me(Gv,{maxNorm:()=>cte,minMaxNorm:()=>pte,nonNeg:()=>dte,unitNorm:()=>hte});var VA;function Wt(){return VA==null&&(VA=Kw().epsilon()),VA}function Tr(){return"channelsLast"}var Aa=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Aa.prototype)}},Er=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Er.prototype)}},B=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,B.prototype)}},De=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,De.prototype)}},qv=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,qv.prototype)}};function $i(e,t){if(Array.isArray(e)){let n=[];for(let r=0;rn.toUpperCase())}var Ar={};function jA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function UA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>UA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:UA(r))}}}function Rc(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in Ar)i=Ar[s];else if(i=t[s],i==null)throw new B(`Unknown ${r}: ${e}. This may be due to one of the following reasons: + `}};function qX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],c=0,u=E.getAxesPermutation([c],o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),l.push(h),c=E.getInnerMostAxes(1,o)[0]);let d=E.segment_util.computeOutShape(h.shape,c,i),p=_.sizeFromShape([h.shape[c]]),m=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(m);let f=Ad(a.dtype),A=(v,b,w,k,N)=>{let C=v.shape[0],F=v.shape[1],O=E.segment_util.segOpComputeOptimalWindowSize(F,N),L={windowSize:O,inSize:F,batchSize:C,numSegments:N},V=new GX(L,b),j=n.compileAndRun(V,[v,w],k);if(l.push(j),j.shape[1]===N)return j;let U=M7({backend:n,attrs:{start:0,stop:N,step:1,dtype:"float32"}}),X=D7({inputs:{x:U},backend:n,attrs:{reps:[F/O]}});return l.push(U),l.push(X),A(j,b,X,k,N)},y=A(m,"unsortedSegmentSum",s,f,i),g=fe({inputs:{x:y},backend:n,attrs:{shape:d}}),x=g;if(u!=null){l.push(g);let v=E.getUndoAxesPermutation(u);x=fn({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var XX={kernelName:Ou,backendName:"webgl",kernelFunc:qX},KX=[OH,LH,wB,vB,SB,EB,RB,$B,OB,PB,VB,UB,qB,ZB,rV,QB,iV,cV,lV,fV,AV,gV,_V,EV,RV,zV,LV,jV,GV,nB,YV,oj,uj,tj,pj,mj,hj,gj,wj,kj,Sj,Tj,Rj,zj,Lj,Fj,Vj,Hj,qj,Yj,tU,sU,lU,uU,cU,dU,fU,AU,gU,bU,kU,TU,CU,MU,DU,LU,jU,qU,tB,KU,KV,JU,tH,aH,aB,lH,dH,fH,wH,gH,IH,TH,MH,BH,KH,qH,QH,tG,rG,HH,sG,oG,hG,mG,xG,NG,uB,EG,MG,DG,PG,FV,BG,jG,HG,XG,JG,iB,eq,tq,$V,vG,aq,dq,lq,hB,Aq,xq,_q,Iq,Eq,Rq,$q,zq,Lq,Vq,Hq,Xq,Yq,eX,rX,NV,IG,iX,lX,cX,dX,fX,yX,bX,_X,kX,NX,kG,gB,CX,FX,OX,PX,BX,xB,jX,HX,XX,VG];for(let e of KX)ci(e);var Mn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Mn||(Mn={}));var Ic;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(Ic||(Ic={}));var O7;function ZX(e){O7=e.wasm.cwrap(oi,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function YX(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let N=n.dataIdMap.get(i.dataId);if(N.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${N.shape.length}.`);m=N.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,A=Ic[u];if(A==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=c?s.shape[1]:s.shape[2],x=a.shape[0],v=n.makeOutput([x,y,g],a.dtype),b=n.dataIdMap.get(v.dataId).id,w=new Uint8Array(new Int32Array(a.shape).buffer),k=new Uint8Array(new Int32Array(s.shape).buffer);return O7(d,w,a.shape.length,p,k,s.shape.length,l,c,A,m,f,h||0,b),v}var JX={kernelName:oi,backendName:"wasm",setupFunc:ZX,kernelFunc:YX};function mn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return _.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var QX=mn(lo);function An(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,h=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,p=n!=null?n:c.dtype,m=E.assertAndGetBroadcastShape(c.shape,u.shape),f=o.makeOutput(m,p);if(_.sizeFromShape(m)===0)return f;let A=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),g=o.dataIdMap.get(f.dataId).id,x=()=>r(h,A,c.shape.length,d,y,u.shape.length,Mn[c.dtype],g);if(t&&c.dtype==="float32")return x(),f;let v=E.getBroadcastDims(c.shape,m),b=E.getBroadcastDims(u.shape,m),w=v.every((N,C)=>N===C),k=b.every((N,C)=>N===C);if(w&&k)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var eK=!0,tK=An(Ra,eK),z7;function nK(e){z7=e.wasm.cwrap(ps,null,["array","number","number","number"])}function rK(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(_.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return z7(s,a.length,Mn[r.dtype],i),r}var aK={kernelName:ps,backendName:"wasm",setupFunc:nK,kernelFunc:rK};function Rp(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var sK={kernelName:Cs,backendName:"wasm",kernelFunc:Rp},P7;function iK(e){P7=e.wasm.cwrap(ii,null,["number","array","number","number","number","array","number"])}function Mp(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=lK(t.x.shape,r.perm),i=!0;for(let m=0;m=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var uK={kernelName:ii,backendName:"wasm",kernelFunc:Mp,setupFunc:iK};function Ka(e,t,n){let r=e.shape,a=e.shape.length,s=_.parseAxisParam(t,r),i=s,o=E.getAxesPermutation(i,a),l=null,c=!1;if(o!=null){let u=new Array(a);for(let d=0;d`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:i,dtype:r.dtype}}var _K={kernelName:Ko,backendName:"wasm",kernelFunc:Tr},j7;function vK(e){j7=e.wasm.cwrap(As,null,["number","array","number","number","array","number","number","number","number"])}function kK(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=_.sizeFromShape(m),y=_.sizeFromShape(f),g=A===y||A===1||y===1;_.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);_.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[A,u,d]:[A,d,u],b=o?[y,p,h]:[y,h,p],w=Tr({inputs:{x:a},backend:n,attrs:{shape:v}}),k=Tr({inputs:{x:s},backend:n,attrs:{shape:b}}),N=n.dataIdMap.get(w.dataId).id,C=n.dataIdMap.get(k.dataId).id,F=i?w.shape[2]:w.shape[1],O=o?k.shape[1]:k.shape[2],L=Math.max(A,y),V=n.makeOutput([L,F,O],w.dtype),j=n.dataIdMap.get(V.dataId).id,U=new Uint8Array(new Int32Array(w.shape).buffer),X=new Uint8Array(new Int32Array(k.shape).buffer);return j7(N,U,w.shape.length,C,X,k.shape.length,i,o,j),n.disposeData(w.dataId),n.disposeData(k.dataId),V.shape=x,V}var IK={kernelName:As,backendName:"wasm",setupFunc:vK,kernelFunc:kK};function Fp(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var SK={kernelName:ys,backendName:"wasm",kernelFunc:Fp},NK=mn(gs),U7;function TK(e){U7=e.wasm.cwrap(Ma,null,["number","number","number","number"])}function EK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(l.dataId).id;return U7(o,s,i,c),l}var CK={kernelName:Ma,backendName:"wasm",setupFunc:TK,kernelFunc:EK};function H7(e){let{inputs:t,backend:n}=e,r=_.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=E.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>_.sizeFromShape(p.shape)>0);if(s.length===1)return Rp({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(_.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(E.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(x=>{let v=_.sizeFromShape(x.shape.slice(r));return Tr({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));a=E.computeOutShape(p.map(x=>x.shape),1);let f=p[0].shape[0]===1,A=nA(m,a,t[0].dtype,f),y=E.computeOutShape(s.map(x=>x.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=E.fromStringArrayToUint8(A),p.forEach(x=>n.disposeData(x.dataId)),i}let l=_.sizeFromShape(s[0].shape.slice(0,r)),c=0,u=s.map(p=>{let m=_.sizeFromShape(p.shape.slice(r));return c+=m,m}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p`cumsum does not support ${a.dtype} tensors in the WASM backend`);let c=E.getAxesPermutation([s],l),u=a;c!==null&&(u=Mp({inputs:{x:a},attrs:{perm:c},backend:n}));let h=E.getInnerMostAxes(1,l)[0];E.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(u.shape,u.dtype),p=u.shape[h],m=n.dataIdMap.get(u.dataId).id,f=n.dataIdMap.get(d.dataId).id;K7(m,i?1:0,o?1:0,p,f,Mn[a.dtype]);let A=d;if(c!==null){let y=E.getUndoAxesPermutation(c);A=Mp({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return A}var UK={kernelName:_s,backendName:"wasm",setupFunc:VK,kernelFunc:jK},Z7;function HK(e){Z7=e.wasm.cwrap(_o,null,["number","number","number","array","number","array","array","number","number"])}function GK(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),m=i==="NHWC"?[o,h,d,p]:[o,p,h,d],f=t.makeOutput(m,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(_.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(_.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return Z7(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,x,m.length,v),f}var qK={kernelName:_o,backendName:"wasm",setupFunc:HK,kernelFunc:GK},Y7;function XK(e){Y7=e.wasm.cwrap(vs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function KK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:h}=n,d=c==null?[1,1]:c,p=E.computeConv2DInfo(a.shape,s.shape,l,d,u,h,!0),m=p.filterHeight,f=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,x=p.padInfo.left,v=p.dilationHeight,b=p.dilationWidth,w=p.strideHeight,k=p.strideWidth,N=p.inChannels,C=p.outChannels,F=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let O=r.makeOutput(p.outShape,"float32"),L=r.dataIdMap.get(O.dataId).id;return Y7(i,a.shape[0],a.shape[1],a.shape[2],o,m,f,A,y,g,x,F,v,b,w,k,N,C,L),O}var ZK={kernelName:vs,backendName:"wasm",setupFunc:XK,kernelFunc:KK},YK=!1,JK=An(Io,YK,"bool"),QK=mn(Is);function DA(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(_.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Tr({inputs:{x:a},backend:r,attrs:{shape:o}})}var eZ={kernelName:So,backendName:"wasm",kernelFunc:DA};function tZ(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var nZ={kernelName:Nu,backendName:"wasm",kernelFunc:tZ},J7;function rZ(e){J7=e.wasm.cwrap(To,null,["number","number","number","number","number","number"])}function aZ(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,c,u]=r.shape;return J7(s,o,l,c,u,i),a}var sZ={kernelName:To,backendName:"wasm",kernelFunc:aZ,setupFunc:rZ},iZ=mn(Ss),oZ=!1,lZ=An(Ns,oZ),Q7;function uZ(e){Q7=e.wasm.cwrap(Ts,null,["number","number","number","number","number","number","number"])}function cZ(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,m=c!=null?t.dataIdMap.get(c.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(_.sizeFromShape(s.shape)===0)return f;let A=t.dataIdMap.get(f.dataId).id;return Q7(u,h,d,p,m,a,A),f}var hZ={kernelName:Ts,backendName:"wasm",setupFunc:uZ,kernelFunc:cZ},ev;function dZ(e){ev=e.wasm.cwrap(li,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function pZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=n,f=E.computeConv2DInfo(a.shape,s.shape,l,u,c,d),A=Ic[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);v=Q.id}let b=f.filterHeight,w=f.filterWidth,k=f.padInfo.top,N=f.padInfo.right,C=f.padInfo.bottom,F=f.padInfo.left,O=f.dilationHeight,L=f.dilationWidth,V=f.strideHeight,j=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(f.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return ev(y,G,ee,Y,g,b,w,v,k,N,C,F,X,O,L,V,j,U,x,A,ie,m||0,te),ae}var fZ={kernelName:li,backendName:"wasm",setupFunc:dZ,kernelFunc:pZ},tv;function mZ(e){tv=e.wasm.cwrap(ui,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function AZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=n,f=E.computeConv2DInfo(a.shape,s.shape,l,u,c,d,!0),A=Ic[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);v=Q.id}let b=f.filterHeight,w=f.filterWidth,k=f.padInfo.top,N=f.padInfo.right,C=f.padInfo.bottom,F=f.padInfo.left,O=f.dilationHeight,L=f.dilationWidth,V=f.strideHeight,j=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(f.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return tv(y,G,ee,Y,g,b,w,v,k,N,C,F,X,O,L,V,j,U,x,A,ie,m||0,te),ae}var yZ={kernelName:ui,backendName:"wasm",setupFunc:mZ,kernelFunc:AZ},nv;function gZ(e){nv=e.wasm.cwrap(Co,null,["number","number","number","number","number","number","array","number"])}function xZ(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=Qf.prepareAndValidate(r,a),c=t.makeOutput(s,r.dtype);if(i===0)return c;let u=a.shape,h=u[u.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(c.dataId).id;return nv(d,Mn[r.dtype],p,i,h,o,m,f),c}var bZ={kernelName:Co,backendName:"wasm",setupFunc:gZ,kernelFunc:xZ},rv;function wZ(e){rv=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function _Z(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=_.parseAxisParam(i,a.shape)[0],c=E.segment_util.collectGatherOpShapeInfo(a,s,l,o),u=Tr({inputs:{x:a},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),h=_.sizeFromShape(s.shape),d=Tr({inputs:{x:s},attrs:{shape:[c.batchSize,h/c.batchSize]},backend:t}),p=[c.batchSize,c.outerSize,h/c.batchSize,c.sliceSize],m=t.makeOutput(p,a.dtype);if(_.sizeFromShape(a.shape)===0)return m;let f=u.shape.length-1,A=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(_.computeStrides(u.shape)).buffer),v=new Uint8Array(new Int32Array(_.computeStrides(p)).buffer);return rv(A,Mn[a.dtype],x,f,y,c.batchSize,v,g),t.disposeData(u.dataId),t.disposeData(d.dataId),m.shape=c.outputShape,m}var vZ={kernelName:Eo,backendName:"wasm",setupFunc:wZ,kernelFunc:_Z},kZ=!1,IZ=An(Ro,kZ,"bool"),SZ=!1,NZ=An(Es,SZ,"bool"),av;function TZ(e){av=e.wasm.cwrap(Rs,null,["number","number","number"])}function EZ(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(_.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;av(a,n,i)}return s}var CZ={kernelName:Rs,backendName:"wasm",setupFunc:TZ,kernelFunc:EZ},RZ=!1,MZ=An(Do,RZ,"bool"),FZ=!1,$Z=An(Oo,FZ,"bool"),DZ=mn(Ms),OZ=!1,zZ=An(Po,OZ,"bool"),sv;function PZ(e){sv=e.wasm.cwrap(Fs,null,["number, number, number"])}function LZ(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:h,inputWasTransposed:d}=Ka(i,a,t);if(d){let g=t.dataIdMap.get(c.dataId).id;l=c,o=g}let p=l.shape.length;E.assertAxesAreInnerMostDims("max",u,p);let[m,f]=E.computeOutAndReduceShapes(l.shape,u),A=_.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(_.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;sv(o,A,g)}if(d&&t.disposeData(c.dataId),s){let g=E.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var WZ={kernelName:Fs,backendName:"wasm",setupFunc:PZ,kernelFunc:LZ},BZ=!1,VZ=An($s,BZ),iv;function jZ(e){iv=e.wasm.cwrap(Ds,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function UZ(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(a.shape,i,o,1,l,c),h=u.filterHeight,d=u.filterWidth,p=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,A=u.padInfo.left,y=u.dilationHeight,g=u.dilationWidth,x=u.strideHeight,v=u.strideWidth,b=u.inChannels,w=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let k=r.makeOutput(u.outShape,"float32"),N=r.dataIdMap.get(k.dataId).id;return iv(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,m,f,A,y,g,x,v,b,w,N),k}var HZ={kernelName:Ds,backendName:"wasm",setupFunc:jZ,kernelFunc:UZ},ov;function GZ(e){ov=e.wasm.cwrap(Os,null,["number, number, number"])}function qZ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Ka(i,a,t),m=h;if(p){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=E.getInnerMostAxes(m.length,c.shape.length))}E.assertAxesAreInnerMostDims("mean",m,c.shape.length);let[f,A]=E.computeOutAndReduceShapes(c.shape,m),y=_.sizeFromShape(A),g=c;c.dtype!=="float32"&&(g=Fp({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let x=t.makeOutput(f,"float32");if(_.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;ov(l,y,v)}if(p&&t.disposeData(u.dataId),s){let v=E.expandShapeToKeepDim(x.shape,d);x.shape=v}return c.dtype!=="float32"&&t.disposeData(g.dataId),x}var XZ={kernelName:Os,backendName:"wasm",setupFunc:GZ,kernelFunc:qZ},lv;function KZ(e){lv=e.wasm.cwrap(zs,null,["number, number, number"])}function ZZ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Ka(i,a,t);if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x)}let m=c.shape.length;E.assertAxesAreInnerMostDims("min",h,m);let[f,A]=E.computeOutAndReduceShapes(c.shape,h),y=_.sizeFromShape(A),g=t.makeOutput(f,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;lv(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var YZ={kernelName:zs,backendName:"wasm",setupFunc:KZ,kernelFunc:ZZ},JZ=!1,QZ=An(Ps,JZ),OA;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(OA||(OA={}));var uv;function eY(e){uv=e.wasm.cwrap(Ls,null,["number","array","number","number","array","array","number","number"])}function tY(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,mode:a}}=e,s=r.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(m=>m[0]),h=r.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return uv(i,c,t.shape.length,Mn[t.dtype],d,p,OA[a],l),o}var nY={kernelName:Ls,backendName:"wasm",kernelFunc:tY,setupFunc:eY},rY=!0,aY=An(Ws,rY),sY=mn(Wo);function zA(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var cv;function iY(e){cv=e.wasm.cwrap(Vo,"number",["number","number","number","number","number"])}function oY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,h=cv(c,u,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:m,pValidOutputs:f}=zA(t,h);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([p],"int32",d)}var lY={kernelName:Vo,backendName:"wasm",setupFunc:iY,kernelFunc:oY},hv;function uY(e){hv=e.wasm.cwrap(jo,"number",["number","number","number","number","number","bool"])}function cY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=hv(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=zA(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var hY={kernelName:jo,backendName:"wasm",setupFunc:uY,kernelFunc:cY},dv;function dY(e){dv=e.wasm.cwrap(Uo,"number",["number","number","number","number","number","number"])}function pY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=dv(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=zA(t,d);t.wasm._free(A);let y=t.makeOutput([m],"int32",p),g=t.makeOutput([m],"float32",f);return[y,g]}var fY={kernelName:Uo,backendName:"wasm",setupFunc:dY,kernelFunc:pY},mY=!1,AY=An(Bo,mY,"bool"),pv;function yY(e){pv=e.wasm.cwrap(Bs,null,["number","number","number","number","number"])}function gY(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(a.dataId).id;return pv(u,s,i,o,c),l}var xY={kernelName:Bs,backendName:"wasm",setupFunc:yY,kernelFunc:gY};function bY(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var wY={kernelName:Ho,backendName:"wasm",kernelFunc:bY};function _Y(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return DA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=DA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=H7({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeData(u.dataId)),c}var vY={kernelName:Go,backendName:"wasm",kernelFunc:_Y},fv;function kY(e){fv=e.wasm.cwrap(Vs,null,["number","array","number","number","array","array","number","number"])}function IY(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(m=>m[0]),h=r.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return fv(i,c,t.shape.length,Mn[t.dtype],d,p,a,l),o}var SY={kernelName:Vs,backendName:"wasm",kernelFunc:IY,setupFunc:kY},NY=!1,TY=An(js,NY),mv;function EY(e){mv=e.wasm.cwrap(Us,null,["number","number","number"])}function CY(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return mv(s,i,l),o}var RY={kernelName:Us,backendName:"wasm",setupFunc:EY,kernelFunc:CY},Av;function MY(e){Av=e.wasm.cwrap(qo,null,["number","number","number","number"])}function FY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Ka(i,a,t),m=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=E.getInnerMostAxes(m.length,c.shape.length))}E.assertAxesAreInnerMostDims("prod",m,c.shape.length);let[f,A]=E.computeOutAndReduceShapes(c.shape,m),y=_.sizeFromShape(A),g=t.makeOutput(f,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;Av(l,y,Mn[g.dtype],x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var $Y={kernelName:qo,backendName:"wasm",setupFunc:MY,kernelFunc:FY},DY=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=sA(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},OY={kernelName:Mu,backendName:"wasm",kernelFunc:DY},zY=!0,PY=An(ks,zY),LY=mn(Hs),WY=mn(qs),yv;function BY(e){yv=e.wasm.cwrap(Gs,null,["number","number","number","number","number","number","number","number","number","number"])}function VY(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,[u,h,d,p]=a.shape,m=[u,l,c,p],f=t.dataIdMap.get(a.dataId),A;f.dtype!=="float32"&&(A=Fp({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(A.dataId));let y=f.id,g=t.makeOutput(m,"float32");if(_.sizeFromShape(a.shape)===0)return g;let x=t.dataIdMap.get(g.dataId).id;return yv(y,u,h,d,p,l,c,s?1:0,i?1:0,x),A!=null&&t.disposeData(A.dataId),g}var jY={kernelName:Gs,backendName:"wasm",setupFunc:BY,kernelFunc:VY},gv;function UY(e){gv=e.wasm.cwrap(Xs,null,["number","array","number","array","number","number"])}function HY(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=_.parseAxisParam(s,a.shape);if(a.shape.length===0)return Rp({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);gv(l,u,i.length,h,a.shape.length,c);let d=Tr({inputs:{x:o},attrs:{shape:a.shape},backend:n});return n.disposeData(o.dataId),d}var GY={kernelName:Xs,backendName:"wasm",kernelFunc:HY,setupFunc:UY},xv;function qY(e){xv=e.wasm.cwrap(ll,null,["number","number","number","number","number","number","number","number","array","number","number"])}function XY(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(l.dataId).id,[h,d,p,m]=a.shape,[f,A]=E.getImageCenter(o,d,p),y=i===0,g=255,x=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],v=new Uint8Array(new Int32Array(x).buffer);return xv(c,h,d,p,m,s,f,A,v,x.length,u),l}var KY={kernelName:ll,backendName:"wasm",kernelFunc:XY,setupFunc:qY},ZY=mn(Ks),YY=mn(Zs),bv;function JY(e){bv=e.wasm.cwrap(Zo,null,["number","number","number","number","number","number","array","number","number"])}function QY(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(_.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=em.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return bv(p,m,Mn[s.dtype],l,c,u,f,d,A),o}var eJ={kernelName:Zo,backendName:"wasm",setupFunc:JY,kernelFunc:QY},wv;function tJ(e){wv=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function nJ(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(c.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:_.sizeFromShape(a.shape.slice(1));return wv(i,o,l,p,u),c}var rJ={kernelName:Yo,backendName:"wasm",kernelFunc:nJ,setupFunc:tJ},_v;function aJ(e){_v=e.wasm.cwrap(Js,null,["number","number"])}function sJ(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return _.sizeFromShape(a.shape)===0||_v(r,s),a}var iJ={kernelName:"Sigmoid",backendName:"wasm",setupFunc:aJ,kernelFunc:sJ},oJ=mn(Ys);function $p(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=un.parseSliceParams(t,n,r),o=un.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),c=a.makeOutput(i,t.dtype),u=_.computeStrides(t.shape),h=a.dataIdMap.get(c.dataId);if(o){let m=un.computeFlatOffset(s,u);return t.dtype==="string"?h.stringBytes=l.slice(m,m+_.sizeFromShape(i)):a.typedArrayFromHeap(c).set(l.subarray(m,m+_.sizeFromShape(i))),c}if(t.dtype==="string"){let m=lp(l,s,i,t.shape,t.dtype);return h.stringBytes=m,c}let d=a.typedArrayFromHeap(c),p=t.shape.length;if(p===2)lJ(l,u[0],d,s,i);else if(p===3)uJ(l,u[0],u[1],d,s,i);else if(p===4)cJ(l,u[0],u[1],u[2],d,s,i);else{let m=lp(l,s,i,t.shape,t.dtype);d.set(m)}return c}function lJ(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let c=i;c{let d=[...u];d[o]=h;let p=$p({inputs:{x:a},attrs:{begin:c,size:d},backend:r});return c[o]+=h,p})}var AJ={kernelName:rl,backendName:"wasm",kernelFunc:mJ},yJ=mn(Qs),gJ=mn(Du),xJ=!0,bJ=An(ni,xJ),kv;function wJ(e){kv=e.wasm.cwrap($a,null,["number","number","number"])}function _J(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return kv(i,a,l),o}var vJ={kernelName:$a,backendName:"wasm",setupFunc:wJ,kernelFunc:_J},Iv;function kJ(e){Iv=e.wasm.cwrap(al,null,["number","array","number","array","array","array","array","array","number","number"])}function IJ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,p=E.slice_util.maskToAxes(u);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=a.shape.length-s.length,f=E.slice_util.maskToAxes(h),A=a.shape.slice();f.forEach(F=>{s[F]=0,i[F]=1,A.splice(F,0,1)});let y=Tr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:x,strides:v}=E.slice_util.getNormalizedAxes(y.shape,p,m,s,i,o,l,c,u);s=g,i=x,o=v;let b=E.slice_util.maskToAxes(d);b.forEach(F=>{i[F]=s[F]+1,o[F]=1});let w=E.slice_util.computeOutShape(s,i,o),k=w.filter((F,O)=>b.indexOf(O)===-1);if(o.every(F=>F===1)){let F=$p({inputs:{x:y},attrs:{begin:s,size:w},backend:t});t.disposeData(y.dataId);let O=Tr({inputs:{x:F},attrs:{shape:k},backend:t});return t.disposeData(F.dataId),O}let N=t.makeOutput(k,"float32");if(!k.some(F=>F===0)){let F=t.dataIdMap.get(y.dataId).id,O=new Uint8Array(new Int32Array(_.computeStrides(y.shape)).buffer),L=new Uint8Array(new Int32Array(s).buffer),V=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(o).buffer),U=new Uint8Array(new Int32Array(k).buffer),X=new Uint8Array(new Int32Array(_.computeStrides(k)).buffer),G=t.dataIdMap.get(N.dataId).id;Iv(F,O,y.shape.length,L,V,j,U,X,k.length,G)}t.disposeData(y.dataId);let C=Tr({inputs:{x:N},attrs:{shape:k},backend:t});return t.disposeData(N.dataId),C}var SJ={kernelName:al,backendName:"wasm",setupFunc:kJ,kernelFunc:IJ},NJ=!0,TJ=An(ri,NJ),Sv;function EJ(e){Sv=e.wasm.cwrap(ei,null,["number, number, number"])}function CJ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Ka(i,a,t),m=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=E.getInnerMostAxes(m.length,c.shape.length))}E.assertAxesAreInnerMostDims("sum",m,c.shape.length);let[f,A]=E.computeOutAndReduceShapes(c.shape,m),y=_.sizeFromShape(A),g=t.makeOutput(f,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;Sv(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var RJ={kernelName:ei,backendName:"wasm",setupFunc:EJ,kernelFunc:CJ},MJ=mn(ai),FJ=mn(si),Nv;function $J(e){Nv=e.wasm.cwrap(Fa,null,["number","array","number","array","number","number"])}function DJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let c=t.makeOutput(l,r.dtype),u=t.dataIdMap.get(c.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return Tv(i,o,r.shape.length,Mn[r.dtype],a,s,u,d),[c,h]},LJ={kernelName:sl,backendName:"wasm",setupFunc:zJ,kernelFunc:PJ};function WJ(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),c=0;for(let p=0;p({dataId:p,dtype:m,shape:l}))}var BJ={kernelName:il,backendName:"wasm",kernelFunc:WJ};function VJ(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var jJ={kernelName:ol,backendName:"wasm",kernelFunc:VJ},UJ=[QX,tK,aK,dK,mK,gK,wK,IK,SK,NK,CK,RK,$K,zK,PK,BK,UK,qK,ZK,JK,QK,eZ,nZ,sZ,iZ,lZ,JX,hZ,fZ,yZ,bZ,vZ,IZ,NZ,sK,CZ,MZ,$Z,DZ,zZ,WZ,VZ,HZ,XZ,YZ,QZ,nY,aY,sY,lY,hY,fY,AY,xY,wY,vY,SY,TY,RY,$Y,OY,PY,LY,WY,_K,jY,GY,KY,YY,ZY,eJ,rJ,iJ,oJ,hJ,fJ,AJ,yJ,gJ,bJ,vJ,SJ,TJ,RJ,MJ,FJ,OJ,LJ,uK,BJ,jJ];for(let e of UJ)ci(e);var PA=J();PA.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));PA.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(PA.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var Ev=so(x9()),HJ='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',GJ=so(b9()),Cv=class extends gu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Ch(this,ca())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=_.now();return e(),{kernelMs:_.now()-t}}move(e,t,n,r,a){let s=this.dataIdNextNumber++;if(r==="string"){let c=t;this.dataIdMap.set(e,{id:s,stringBytes:c,shape:n,dtype:r,memoryOffset:null,refCount:a});return}let i=_.sizeFromShape(n),o=i*_.bytesPerElement(r),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:r,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+_.sizeFromShape(r)*_.bytesPerElement(n));return qJ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let a=this.dataIdNextNumber++;r={id:a},this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=_.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=_.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function XJ(e){return(t,n)=>(_.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance,s.module)})})}),{})}function Rv(e,t,n){if(Dp!=null)return Dp;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),Sc!=null&&Sc[r]!=null?Sc[r]:n+r}async function KJ(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let c=HJ,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return o.endsWith(".wasm")?Rv(e,t,Nc!=null?Nc:l):l+o},LA&&(a.instantiateWasm=XJ(Rv(e,t,Nc!=null?Nc:"")));let s=!1;a.onAbort=()=>{s||Tc||(Tc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Dp==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Ev.default.toString()],{type:"text/javascript"}),i=(0,Ev.default)(a)):i=(0,GJ.default)(a),i.then(o=>{s=!0,Tc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function qJ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var ZJ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Dp=null,Nc=null,Sc={},Tc=!1,LA=!1;function YJ(e,t=!1){if(im("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Tc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Dp=e,LA=t}function JJ(e,t=!1){if(Tc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Nc=e;else{Sc=e;let n=ZJ.filter(r=>Sc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}LA=t}var Mv="3.5.0",QJ=2;yl("wasm",async()=>{let{wasm:e}=await KJ();return new Cv(e)},QJ);Z().prototype.abs=function(){return this.throwIfDisposed(),zt(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),lm(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),um(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),vd(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),Xu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),Ai(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),cm(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),M(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),H(this,[e,t,n,r])};Z().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),H(this,[e,t,n,r,a])};Z().prototype.asin=function(){return this.throwIfDisposed(),hm(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),dm(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),pm(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),fm(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),mm(this)};Z().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),Zu(this,e,t,n,r)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Yu(this,e,t)};Z().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),xi(this,e,t,n,r,a)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),xl(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),xm(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),En(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Pe&&(e=[e]),ot([this,...e],t)};Z().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Id(this,e,t,n,r,a,s)};Z().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),Sd(this,e,t,n,r,a)};Z().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),ha(this,e,t,n,r,a,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),Ju(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),Nd(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Td(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),_m(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),wl(this,e,t,n,r,a,s)};Z().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),vm(this,e,t,n,r,a)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),km(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),Ae(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),aw(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),_l(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),Ba(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),Im(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),Qn(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),Qt(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),Sm(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),lc(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),vl(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),_d(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),bi(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),ja(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),pr(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),Nl(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),Hd(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),iw(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),ow(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),Tm(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),ec(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),wi(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),Cd(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),Em(this,e,t,n,r)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),cw(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Fd(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Mm(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),zn(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),Rd(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),fr(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),tc(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),$d(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),fw(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ve(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),nc(this,e,t,n,r)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Rn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),Ur(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),It(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),kl(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),Il(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),$m(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),Dm(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),kt(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Kd(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),ki(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),ml(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),Ln(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),da(this,e,t)};Z().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),yw(this,e,t,n,r,a)};Z().prototype.pow=function(e){return this.throwIfDisposed(),pa(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),ac(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),Od(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),Pm(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),Hr(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),Pd(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Dw(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),Ow(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),Wn(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),uc(this)};Z().prototype.round=function(){return this.throwIfDisposed(),Lm(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),Ld(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),Wd(this)};Z().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Wm(this,e,t,n,r,a,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),Tn(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),Bm(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),Bd(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),Vd(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Re(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),oc(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),_i(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),rc(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),Lt(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),en(this)};Z().prototype.square=function(){return this.throwIfDisposed(),it(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Gd(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),Ua(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Pe?[this,e]:[this,...e];return cn(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),Tl(this,e)};Z().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),jm(this,e,t,n,r,a,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),ye(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Te(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),Um(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),gi(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),Va(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),ge(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),ge(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),ge(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),Hm(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),Je(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),Xd(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Gm(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),mr(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),Cn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),He(this)};var Fv={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Tl(ge(n,"float32"),-1))}}},eQ={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=it(ge(n,"float32")),a=en(ye(ve(1),r));return kt(Ae(e,a))}}}},tQ={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=en(ye(it(ge(n,"float32")),1));return Ae(e,r)}}}},nQ={kernelName:Ra,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=e,i=Pt(n.shape,a);return i.length>0&&(s=Te(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Pt(r.shape,a);return i.length>0&&(s=Te(s,i)),H(s,r.shape)}}}},rQ={kernelName:ps,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},aQ={kernelName:fs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},sQ={kernelName:wu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},iQ={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,en(ye(ve(1),it(ge(n,"float32")))))}}},oQ={kernelName:mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=en(se(ve(1),it(ge(n,"float32"))));return Ae(e,r)}}}},lQ={kernelName:go,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=se(it(n),it(r)),i=z(e,Ae(r,s)),o=Pt(n.shape,a);return o.length>0&&(i=Te(i,o)),H(i,n.shape)},b:()=>{let s=se(it(n),it(r)),i=kt(z(e,Ae(n,s))),o=Pt(r.shape,a);return o.length>0&&(i=Te(i,o)),H(i,r.shape)}}}},uQ={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,se(it(ge(n,"float32")),1))}}},cQ={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,ye(ve(1),it(ge(n,"float32"))))}}};function hQ(e,t,n,r,a,s){let i=R(e,"dy","avgPool3dGrad"),o=R(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&M(Ut(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:c},d={filterSize:n,strides:r,pad:a,dimRoundingMode:s},p=$.runKernel(Dh,h,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var dQ=D({avgPool3dGrad_:hQ}),pQ={kernelName:_u,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>dQ(e,r,a,s,i,o)}}};function fQ(e,t,n,r,a){let s=R(e,"dy","avgPoolGrad"),i=R(t,"input","avgPoolGrad");M(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=$.runKernel($h,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var mQ=D({avgPoolGrad_:fQ}),AQ={kernelName:ms,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>mQ(e,r,a,s,i)}}},yQ={kernelName:As,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Ve(e,a,!1,!0),b:()=>Ve(r,e,!0,!1)}:!s&&i?{a:()=>Ve(e,a,!1,!1),b:()=>Ve(e,r,!0,!1)}:s&&!i?{a:()=>Ve(a,e,!1,!0),b:()=>Ve(r,e,!1,!1)}:{a:()=>Ve(a,e,!0,!0),b:()=>Ve(e,r,!0,!0)}}},gQ={kernelName:vu,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>rc(e,r,a)}}},xQ={kernelName:Yx,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l1&&o.push(l);return{x:()=>Te(e,o,!0)}}},bQ={kernelName:ys,gradFunc:e=>({x:()=>e.clone()})},wQ={kernelName:gs,gradFunc:e=>({x:()=>He(e)})},_Q={kernelName:Ma,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>Cn(fr(ja(r,a),wi(r,s)),e,He(e))}}},vQ={kernelName:ku,inputsToSave:["x"],gradFunc:Fv.gradFunc},kQ={kernelName:xo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=hr(a,t[0].shape)[0],i=r.map(o=>o[s]);return Lt(e,i,s).map(o=>()=>o)}},IQ={kernelName:xs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return M(Wa(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>bm(r.shape,e,a,i,o,l),filter:()=>Zm(r,e,a.shape,i,o,l)}}},SQ={kernelName:bs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>ha(e,a,s,i,o,1,l),filter:()=>Zm(e,r,a.shape,s,i,o,l)}}};function NQ(e,t,n,r,a){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),M(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),M(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return $.runKernel(Lh,o,l)}var TQ=D({conv3DBackpropFilter_:NQ}),EQ={kernelName:Iu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;M(Wa(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>tw(i.shape,e,o,a,s),filter:()=>TQ(i,e,o.shape,a,s)}}},CQ={kernelName:ws,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(kt(Bd(ge(n,"float32"))),e)}}},RQ={kernelName:bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Vd(ge(n,"float32")),e)}}},MQ={kernelName:_s,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=pw([a],r.rank),l=Td(e,a,s,!i);return o!=null&&(l=Je(l,o)),l}}}},FQ={kernelName:vs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;M(Wa(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),M(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),M(Vr(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&M(Ut(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>Tw(l.shape,e,c,a,s,r,i),filter:()=>Nw(l,e,c.shape,a,s,r,i)}}},$Q={kernelName:Su,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>$.runKernel(Hh,s,n),filter:()=>$.runKernel(Gh,i,n)}}},DQ={kernelName:vo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>$.runKernel(Xh,r)}}},OQ={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=z(Qn(kt(it(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,r)}}},zQ={kernelName:Is,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},PQ={kernelName:So,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},LQ={kernelName:No,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Qn(n))}}},WQ={kernelName:Ss,gradFunc:e=>({x:()=>He(e)})},BQ={kernelName:Ns,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Ae(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=z(e,ge(n,"float32")),i=Pt(r.shape,a);i.length>0&&(s=H(Te(s,i),r.shape));let o=it(r);return kt(Ae(s,ge(o,"float32")))}}}},VQ={kernelName:Ts,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?ve(1):o,c=Pt(s.shape,a.shape),u=[];if(s.rank===1){for(let f=0;fs.rank===1?H(z(z(e,Va(H(p,[1,1,1,s.shape[0]]),u)),l),a.shape):H(z(z(e,p),l),a.shape),mean:()=>{let f=z(z(p,ve(-1)),d);return s.rank===1&&(f=Te(f,c)),H(f,s.shape)},variance:()=>{let f=z(z(m,h),d);return s.rank===1&&(f=Te(f,c)),H(f,s.shape)},scale:()=>{let f=z(h,p),A=z(e,f);return s.rank===1&&(A=Te(A,c)),H(A,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Te(f,c)),H(f,s.shape)}}}},jQ={kernelName:Eo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=hr(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,c=o.slice(0,i),u=c.length,h=o.slice(s,o.length).slice(1),d=h.length,p=$v(0,u),m=$v(u+1,u+1+d),f=Dv([c,[l],h]),A=H(e,f),y=H(a,[l]),g=Dv([[u],p,m]),x=Je(A,g),v=Gm(x,y,r.shape[i]),b=Rm(g);return v=Je(v,b),v},indices:()=>a}}};function $v(e,t){let n=[];for(let r=e;r{let[n,r]=t;return{a:()=>He(n),b:()=>He(r)}}},HQ={kernelName:Cs,gradFunc:e=>({x:()=>ge(e,"float32")})},GQ={kernelName:Mo,gradFunc:e=>({x:()=>He(e)})},qQ={kernelName:Fo,gradFunc:e=>({x:()=>He(e)})},XQ={kernelName:$o,gradFunc:e=>({x:()=>He(e)})},KQ={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=pr(r,0);return{x:()=>Cn(s,e,z(e,a))}}},ZQ={kernelName:zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,se(n,1))}}},YQ={kernelName:Ms,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,ge(n,"float32"))}}},JQ={kernelName:Jx,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=Qn(r);return ye(e,z(Te(e,a,s),i))}}}};function QQ(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return $.runKernel(Qh,o,l)}var eee=D({localResponseNormalizationBackprop_:QQ}),tee={kernelName:Cu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>eee(r,a,e,s,i,o,l)}}};function Ov(e,t,n,r){return t.rankz(e,ge(Ba(n,t),e.dtype))}}var zv={kernelName:Fs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=hr(a,s.shape),l=Ov(e,i,s,o);return{x:()=>l.x()}}},nee={kernelName:$s,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>z(e,ge(ja(n,r),"float32")),b:()=>z(e,ge(Cd(n,r),"float32"))}}};function ree(e,t,n,r,a,s,i){let o=R(e,"dy","maxPool3dGrad"),l=R(t,"input","maxPool3dGrad"),c=R(n,"output","maxPool3dGrad"),u=o,h=l,d=c,p=!1;l.rank===4&&(p=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=H(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),M(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),M(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&M(Ut(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:u,input:h,output:d},f={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=$.runKernel(td,m,f);return p?H(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var aee=D({maxPool3dGrad_:ree}),see={kernelName:Ru,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>aee(e,r,a,s,i,o,l)}}};function iee(e,t,n,r,a,s,i){let o=R(e,"dy","maxPoolGrad"),l=R(t,"input","maxPoolGrad"),c=R(n,"output","maxPoolGrad");M(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),M(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&M(Ut(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return $.runKernel(ed,u,h)}var oee=D({maxPoolGrad_:iee}),lee={kernelName:Ds,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>oee(e,r,a,s,i,o)}}},uee={kernelName:Os,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=hr(a,r.shape),i=dw(r.shape,s)[1],o=Et(i);return{x:()=>{let l=r.shape.slice();s.forEach(u=>{l[u]=1});let c=H(e,l);return Ae(z(c,Pn(r.shape,"float32")),o)}}}},cee={kernelName:zs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=hr(a,s.shape),l=Ov(e,i,s,o);return{x:()=>l.x()}}},hee={kernelName:Ps,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>z(e,ge(wi(n,r),"float32")),b:()=>z(e,ge(pr(n,r),"float32"))}}},dee={kernelName:Ls,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Re(e,s,r.shape)}}},pee={kernelName:Lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Pt(n.shape,a);return s.length>0?H(Te(e,s),n.shape):e},b:()=>{let s=z(e,kt(vl(Ae(n,r)))),i=Pt(r.shape,a);return i.length>0?H(Te(s,i),r.shape):s}}}},fee={kernelName:Ws,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=z(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=z(e,ge(n,"float32")),i=Pt(r.shape,a);return i.length>0?H(Te(s,i),r.shape):s}}}},mee={kernelName:Wo,gradFunc:e=>({x:()=>kt(e)})},Aee={kernelName:Bs,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Rt(n.shape,"float32")}}},yee={kernelName:Ho,gradFunc:e=>({x:()=>He(e)})},gee={kernelName:Go,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return mr(e,r).map(a=>()=>a)}},Pv={kernelName:Vs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Re(e,s,r.shape)}}},xee={kernelName:js,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=ft(s.shape,i.shape);return{a:()=>{let l=ge(i,"float32"),c=z(e,z(l,pa(s,ye(l,ve(1))))),u=Pt(s.shape,o);return u.length>0&&(c=Te(c,u)),H(c,s.shape)},b:()=>{let l=pr(s,0),c=Cn(l,zn(s),He(s)),u=z(e,z(a,c)),h=Pt(i.shape,o);return h.length>0&&(u=Te(u,h)),H(u,i.shape)}}}},bee={kernelName:Us,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=pr(n,0);return{x:()=>Cn(a,e,z(e,r)),alpha:()=>{let s=Cn(a,He(e),z(e,n)),i=Pt(r.shape,e.shape);return i.length>0&&(s=Te(s,i)),H(s,r.shape)}}}},wee={kernelName:ks,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Ae(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=z(e,ge(n,"float32")),i=Pt(r.shape,a);i.length>0&&(s=H(Te(s,i),r.shape));let o=it(r);return kt(Ae(s,ge(o,"float32")))}}}},_ee={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,kt(it(n)))}}},vee={kernelName:qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=z(wi(n,6),Tl(n));return{x:()=>z(e,ge(r,"float32"))}}},kee={kernelName:Hs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ge(Tl(n),"float32"))}}},Iee={kernelName:Ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},See={kernelName:Gs,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(id,a,n)}}},Nee={kernelName:Fu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(sd,a,n)}}},Tee={kernelName:Xs,gradFunc:(e,t,n)=>{let{dims:r}=n,a=hr(r,e.shape);return{x:()=>Wn(e,a)}}},Eee={kernelName:Ks,gradFunc:e=>({x:()=>He(e)})},Cee={kernelName:Zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>kt(Ae(e,z(pa(n,1.5),2)))}}},Ree={kernelName:Yo,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ge(He(n),"float32"),t:()=>z(e,ge(n,e.dtype)),e:()=>z(e,ge(tc(n),e.dtype))}}},Mee={kernelName:Jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=pr(n,ve(0)),a=ve(Ww),s=ve(Bw),i=z(e,s),o=z(z(e,a),Qn(ge(n,"float32")));return Cn(r,i,o)}}}},Fee={kernelName:Js,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,ye(ve(1),n)))}}},$ee={kernelName:tl,gradFunc:e=>({x:()=>He(e)})},Dee={kernelName:Ys,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Ju(ge(n,"float32")),e)}}},Oee={kernelName:el,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Nd(ge(n,"float32")),e)}}},zee={kernelName:Qo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=zb(r,a,s),c=[];for(let u=0;uda(e,c)}}},Pee={kernelName:ti,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=z(e,r);return{logits:()=>ye(i,z(Te(i,[a],s),r))}}},Lee={kernelName:nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Tn(n))}}},Lv={kernelName:$u,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>Yu(e,r,a)}}},Wv={kernelName:rl,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>ot(e,r)}}},Wee={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,z(en(ge(n,"float32")),2))}}},Bee={kernelName:Du,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(ge(n,"float32"),2))}}},Vee={kernelName:ni,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ve(2);return{a:()=>z(e,z(a,ye(n,r))),b:()=>z(e,z(a,ye(r,n)))}}},jee={kernelName:$a,gradFunc:e=>({x:()=>He(e)})},Uee={kernelName:ri,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=e,i=Pt(n.shape,a);return i.length>0&&(s=Te(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Pt(r.shape,a);return i.length>0&&(s=Te(s,i)),H(kt(s),r.shape)}}}},Hee={kernelName:ei,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;hr(s,r.shape).forEach(l=>{a[l]=1});let i=H(e,a),o=z(i,Pn(r.shape,"float32"));return{x:()=>o}}},Gee={kernelName:ai,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,it(Ju(n)))}}},qee={kernelName:si,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(ye(ve(1),it(n)),e)}}},Xee={kernelName:Fa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=He(r);if(r.rank===1)for(let i=0;i{let r=n,{perm:a}=r,s=Rm(a);return{x:()=>Je(e,s)}}},Zee={kernelName:il,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>cn(e,a)}}},Jee={kernelName:Ou,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Yee(e,n)}}};function Yee(e,t){let n=Ur(t,He(t)),r=bi(e,n),a=ja(t,ve(0,"int32")),s=r.rank-a.rank;for(let o=0;o({x:()=>He(e)})},ete=[Fv,eQ,tQ,nQ,rQ,aQ,sQ,iQ,oQ,lQ,uQ,cQ,pQ,AQ,yQ,gQ,xQ,bQ,wQ,_Q,vQ,kQ,SQ,IQ,EQ,CQ,RQ,MQ,FQ,$Q,wee,DQ,OQ,zQ,PQ,LQ,BQ,WQ,VQ,jQ,UQ,HQ,GQ,qQ,XQ,KQ,ZQ,YQ,JQ,tee,zv,zv,nee,see,lee,uee,cee,hee,dee,pee,fee,mee,Aee,yee,gee,Pv,Pv,xee,bee,_ee,vee,kee,Iee,See,Nee,Tee,Eee,Cee,Ree,Mee,Fee,$ee,Dee,Oee,zee,Pee,Lee,Lv,Lv,Wv,Wv,Wee,Vee,Bee,jee,Uee,Hee,Gee,qee,Xee,Kee,Zee,Jee,Qee];for(let e of ete)Qx(e);var Bv={};Me(Bv,{maxNorm:()=>tte,minMaxNorm:()=>ate,nonNeg:()=>rte,unitNorm:()=>nte});var WA;function Wt(){return WA==null&&(WA=Ub().epsilon()),WA}function Er(){return"channelsLast"}var ya=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ya.prototype)}},Cr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Cr.prototype)}},B=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,B.prototype)}},De=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,De.prototype)}},Vv=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Vv.prototype)}};function Di(e,t){if(Array.isArray(e)){let n=[];for(let r=0;rn.toUpperCase())}var Ar={};function BA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function VA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>VA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:VA(r))}}}function Ec(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in Ar)i=Ar[s];else if(i=t[s],i==null)throw new B(`Unknown ${r}: ${e}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new B(`${r}: Improper config format: ${JSON.stringify(s)}. 'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in Ar?[o,l]=Ar.className:i in t&&([o,l]=t[i]),o==null)throw new B(`Unknown ${r}: ${i}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. -2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let p of Object.keys(Ar))c[p]=Ar[p];for(let p of Object.keys(n))c[p]=n[p];let u=s.config;u.customObjects=c;let h=Object.assign({},Ar);for(let p of Object.keys(n))Ar[p]=n[p];UA(s.config);let d=l(o,s.config,n,a);return Ar=Object.assign({},h),d}else{let c=Object.assign({},Ar);for(let h of Object.keys(n))Ar[h]=n[h];let u=new o(s.config);return Ar=Object.assign({},c),u}}}function fte(e,t){return et?1:0}function zp(e,t){return-1*fte(e,t)}function Ka(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function mte(e){if(e==null)throw new B(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Oi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new B(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function HA(e,t,n=0,r=Infinity){return Xr(n>=0),Xr(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function qt(e,t){Array.isArray(e)?(_.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>qt(n,`element ${r+1} of ${t}`))):_.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Kv(e)}.`)}function Kv(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Kv(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function Ate(e,t){let n=_.now(),r;return(...a)=>{let s=_.now();return s-nen(Te(P(e,e),t,!0)))}var Mc=class extends re.Serializable{getConfig(){return{}}},qA=class extends Mc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return z(()=>{let t=GA(e,this.axis),n=En(t,0,this.maxValue);return P(e,Ae(n,se(Wt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};qA.className="MaxNorm";re.registerClass(qA);var XA=class extends Mc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return z(()=>Ae(e,se(Wt(),GA(e,this.axis))))}getConfig(){return{axis:this.axis}}};XA.className="UnitNorm";re.registerClass(XA);var KA=class extends Mc{apply(e){return Ur(e)}};KA.className="NonNeg";re.registerClass(KA);var ZA=class extends Mc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return z(()=>{let t=GA(e,this.axis),n=se(P(this.rate,En(t,this.minValue,this.maxValue)),P(1-this.rate,t));return P(e,Ae(n,se(Wt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};ZA.className="MinMaxNorm";re.registerClass(ZA);var Yv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Bt(e){return jA(e)}function Jv(e,t={}){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Vt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Yv?Yv[e]:e,config:{}};return Jv(t)}else return e instanceof Mc?e:Jv(e)}function cte(e){return new qA(e)}function hte(e){return new XA(e)}function dte(){return new KA}function pte(e){return new ZA(e)}var Qv={};Me(Qv,{constant:()=>xte,glorotNormal:()=>Ste,glorotUniform:()=>Ite,heNormal:()=>Nte,heUniform:()=>Tte,identity:()=>vte,leCunNormal:()=>Ete,leCunUniform:()=>Cte,ones:()=>gte,orthogonal:()=>Rte,randomNormal:()=>bte,randomUniform:()=>wte,truncatedNormal:()=>_te,varianceScaling:()=>kte,zeros:()=>yte});var Mte=["channelsFirst","channelsLast"],Fte=["nearest","bilinear"],$te=["valid","same","causal"],Dte=["max","avg"],Ote=["sum","mul","concat","ave"],Hl=new Map;function Ct(e){Oi(Mte,"DataFormat",e)}function zte(e){Oi(Fte,"InterpolationFormat",e)}function ar(e){Oi($te,"PaddingMode",e)}function e6(e){Oi(Dte,"PoolMode",e)}var Fc=[],t6="/";function zi(e,t){Fc.push(e);try{let n=t();return Fc.pop(),n}catch(n){throw Fc.pop(),n}}function Pte(){return Fc.length===0?"":Fc.join(t6)+t6}function r6(e){if(!n6(e))throw new Error("Not a valid tensor name: '"+e+"'");return Pte()+e}function a6(e){if(!n6(e))throw new Error("Not a valid tensor name: '"+e+"'");Hl.has(e)||Hl.set(e,0);let t=Hl.get(e);if(Hl.set(e,Hl.get(e)+1),t>0){let n=`${e}_${t}`;return Hl.set(n,1),n}else return e}var Lte=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function n6(e){return!!e.match(Lte)}function Wte(e){return e===parseInt(e.toString(),10)}function Za(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a{if(e.shape.length!==2)throw new B(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Dc(e,1);return YA(n,[1,t,1])})}function Vte(e){let t=[Za(e.shape)];return e.reshape(t)}function jte(e){if(e.rank<=1)throw new B(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Za(e.shape,1)];return e.reshape(t)}function Pi(e,t,n){return z(()=>{switch(e.rank){case 1:return Ud(e,t,n);case 2:return Um(e,[t,0],[n,e.shape[1]]);case 3:return Hd(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return lc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new B(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function JA(e,t,n){return z(()=>{switch(e.rank){case 1:return Ud(e,t,n);case 2:return Um(e,[0,t],[e.shape[0],n]);case 3:return Hd(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return lc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Pp(e,t,n,r){return z(()=>{switch(e.rank){case 1:return Ud(e,t,n);case 2:switch(r){case 1:return Pi(e,t,n);case 2:return JA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return Pi(e,t,n);case 2:return Hd(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return JA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return Pi(e,t,n);case 2:return lc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return lc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return JA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function QA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),rt(e,t)}function i6(e,t){switch(e.rank){case 1:return rb([e,t]);case 2:return wl([e,t],0);case 3:return ab([e,t],0);case 4:return sb([e,t],0);default:throw new B(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function YA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new B(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ba(e,t)}function Lp(e,t=0,n=1,r,a){return vb(e,t,n,r,a)}function Kr(e,t,n,r){if(e.rank<2||t.rank<2)throw new De(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new De(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return Ua.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?ey(e.rank,r,Tr()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=t.transpose(u).reshape([l,-1]);let h=[...a,...c],d=!1,p=!1;return Ua.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?ey(e.rank,r,Tr()):null,activation:n}).reshape(h)}}function o6(e,t,n){return z(()=>(Array.isArray(t)?t=sn(t,"int32"):t=t.toInt(),xi(e,t,n)))}function Oc(e){return P(e,e)}function ey(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new B(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new B(`Unsupported input rank by biasAdd: ${t.rank}`)}function Rr(e,t,n){return z(()=>(n==null&&(n=Tr()),Ct(n),e.add(ey(e.rank,t,n))))}function Ute(e,t=1){if(t!==1)throw new De(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return _l(e)}function Hte(e){return z(()=>Ae(e,zt(e).add(1)))}function l6(e,t,n,r){return z(()=>Cb(e,t,n,r))}function Gte(e){return z(()=>{let t=se(.5,P(.2,e));return En(t,0,1)})}function zc(e,t,n=!1){return n?e():t()}var qte=["fanIn","fanOut","fanAvg"],Xte=["normal","uniform","truncatedNormal"];function Kte(e){Oi(qte,"FanMode",e)}function Zte(e){Oi(Xte,"Distribution",e)}var yr=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},ty=class extends yr{apply(e,t){return Rt(e,t)}};ty.className="Zeros";re.registerClass(ty);var Wp=class extends yr{apply(e,t){return Pn(e,t)}};Wp.className="Ones";re.registerClass(Wp);var ny=class extends yr{constructor(e){super();if(typeof e!="object")throw new B(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new B(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return z(()=>P(xe(this.value),Pn(e,t)))}getConfig(){return{value:this.value}}};ny.className="Constant";re.registerClass(ny);var ry=class extends yr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Sl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};ry.className="RandomUniform";re.registerClass(ry);var ay=class extends yr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`randomNormal does not support dType ${t}.`);return Lp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ay.className="RandomNormal";re.registerClass(ay);var sy=class extends yr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`truncatedNormal does not support dType ${t}.`);return Xd(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};sy.className="TruncatedNormal";re.registerClass(sy);var iy=class extends yr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return z(()=>{if(e.length!==2||e[0]!==e[1])throw new B("Identity matrix initializer can only be used for 2D square matrices.");return P(this.gain,Em(e[0]))})}getConfig(){return{gain:this.gain}}};iy.className="Identity";re.registerClass(iy);function Yte(e,t="channelsLast"){let n,r;if(Ct(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Za(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Za(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Za(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var $n=class extends yr{constructor(e){super();if(e.scale<0)throw new B(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Kte(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Zte(this.distribution),this.seed=e.seed}apply(e,t){let n=Yte(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`${this.getClassName()} does not support dType ${t}.`);return Xd(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Sl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};$n.className="VarianceScaling";re.registerClass($n);var Bp=class extends $n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Bp.className="GlorotUniform";re.registerClass(Bp);var Vp=class extends $n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Vp.className="GlorotNormal";re.registerClass(Vp);var jp=class extends $n{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};jp.className="HeNormal";re.registerClass(jp);var Up=class extends $n{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Up.className="HeUniform";re.registerClass(Up);var Hp=class extends $n{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Hp.className="LeCunNormal";re.registerClass(Hp);var Gp=class extends $n{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Gp.className="LeCunNormal";re.registerClass(Gp);var oy=class extends yr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new De("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return z(()=>{if(e.length<2)throw new De("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=Lp(n,0,1,"float32"),a=jb.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),P(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};oy.className="Orthogonal";re.registerClass(oy);var u6={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function c6(e,t={}){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function St(e){return jA(e)}function gt(e){if(typeof e=="string"){let t=e in u6?u6[e]:e;if(t==="GlorotNormal")return new Vp;if(t==="GlorotUniform")return new Bp;if(t==="HeNormal")return new jp;if(t==="HeUniform")return new Up;if(t==="LeCunNormal")return new Hp;if(t==="LeCunUniform")return new Gp;{let n={};return n.className=t,n.config={},c6(n)}}else return e instanceof yr?e:c6(e)}function yte(){return new ty}function gte(){return new Wp}function xte(e){return new ny(e)}function wte(e){return new ry(e)}function bte(e){return new ay(e)}function _te(e){return new sy(e)}function vte(e){return new iy(e)}function kte(e){return new $n(e)}function Ite(e){return new Bp(e)}function Ste(e){return new Vp(e)}function Nte(e){return new jp(e)}function Tte(e){return new Up(e)}function Ete(e){return new Hp(e)}function Cte(e){return new Gp(e)}function Rte(e){return new oy(e)}var h6={};Me(h6,{Layer:()=>qe,RNN:()=>Zr,RNNCell:()=>Pc,activation:()=>fne,add:()=>vne,alphaDropout:()=>ire,average:()=>kne,averagePooling1d:()=>ly,averagePooling2d:()=>uy,averagePooling3d:()=>cy,avgPool1d:()=>Fne,avgPool2d:()=>Dne,avgPool3d:()=>zne,avgPooling1d:()=>$ne,avgPooling2d:()=>One,avgPooling3d:()=>Pne,batchNormalization:()=>Cne,bidirectional:()=>Jne,concatenate:()=>Ine,conv1d:()=>sne,conv2d:()=>ine,conv2dTranspose:()=>one,conv3d:()=>lne,conv3dTranspose:()=>une,convLstm2d:()=>Xne,convLstm2dCell:()=>Kne,cropping2D:()=>hne,dense:()=>mne,depthwiseConv2d:()=>pne,dot:()=>Ene,dropout:()=>Ane,elu:()=>Qte,embedding:()=>_ne,flatten:()=>gne,gaussianDropout:()=>sre,gaussianNoise:()=>are,globalAveragePooling1d:()=>Lne,globalAveragePooling2d:()=>Wne,globalMaxPool1d:()=>ere,globalMaxPool2d:()=>tre,globalMaxPooling1d:()=>p6,globalMaxPooling2d:()=>f6,gru:()=>Vne,gruCell:()=>jne,input:()=>d6,inputLayer:()=>Jte,layerNormalization:()=>Rne,leakyReLU:()=>tne,lstm:()=>Une,lstmCell:()=>Hne,masking:()=>ore,maxPool1d:()=>nre,maxPool2d:()=>rre,maxPooling1d:()=>m6,maxPooling2d:()=>A6,maxPooling3d:()=>Bne,maximum:()=>Sne,minimum:()=>Nne,multiply:()=>Tne,permute:()=>bne,prelu:()=>nne,reLU:()=>ene,repeatVector:()=>xne,reshape:()=>wne,rnn:()=>Zne,separableConv2d:()=>cne,simpleRNN:()=>Gne,simpleRNNCell:()=>qne,softmax:()=>rne,spatialDropout1d:()=>yne,stackedRNNCells:()=>Yne,thresholdedReLU:()=>ane,timeDistributed:()=>Qne,upSampling2d:()=>dne,zeroPadding2d:()=>Mne});var lre=0;function y6(){return lre++}var qp={};function Xp(e=""){return e in qp||(qp[e]=0),qp[e]+=1,e+qp[e].toString()}function hy(e){return Array.isArray(e)&&Array.isArray(e[0])}function Kp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new B(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function st(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new B(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Zp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var g6="Variable",x6=class{constructor(e,t="float32",n=g6,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=y6(),n=n==null?g6:n,this.originalName=r6(n),this.name=a6(this.originalName),this.trainable_=r,this.constraint=a,this.val=Ib(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),ure(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function ure(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function dy(e){return e.map(t=>t.read())}function py(e){e.forEach(t=>{t[0].write(t[1])})}var Ft=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Mr=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=y6(),s!=null&&(this.originalName=r6(s),this.name=a6(this.originalName)),this.rank=t.length}},cre=0,Yp=class{constructor(e,t){this.callArgs=t,this.id=cre++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},hre=0,qe=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=hre++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ya(n)+"_"+Xp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Er(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new B(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Fn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Fn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Aa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Aa(`Layer ${this.name} is not connected, no input to return.`);return Fn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Aa(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Aa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Fn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=At(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=At(this.inputSpec);if(e.length!==t.length)throw new B(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;na.maxNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of At(e))s.push(i.shape);this.build(Fn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=At(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Fn(o),this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=dre(e),i=this.computeOutputShape(s),o,l=pre(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new Mr(l,c,this,At(e),t,this.name,u)):o=new Mr(l,i,this,At(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Aa(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Aa(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Er(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Zp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return dy(e?this.trainableWeights:this.weights)}setWeights(e){z(()=>{let t=this.weights;if(t.length!==e.length)throw new B(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=dy(t);for(let a=0;aa.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=At(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=At(e);t=At(t),n=At(n),r=At(r),a=Kp(a),s=Kp(s);let l=[],c=[],u=[];for(let h of o)l.push(h.sourceLayer),c.push(h.nodeIndex),u.push(h.tensorIndex);new Yp({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;he.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function dre(e){e=At(e);let t=[];for(let n of e)t.push(n.shape);return Fn(t)}function pre(e){return"float32"}function w6(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s0){let a=await Promise.all(t);for(let s=0;sse(this.totals[r],P(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:z(()=>{let r=P(Ae(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Ht(t[n])}))}},I6=class extends Xl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;inew S6(n,t))}var gr=class{constructor(){}static registerCallbackConstructor(e,t){_.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),gr.checkForDuplicate(t),gr.constructors[e]==null&&(gr.constructors[e]=[]),gr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in gr.constructors)gr.constructors[+t].forEach(n=>{if(n===e)throw new B("Duplicate callback constructor.")})}static clear(){gr.constructors={}}static createCallbacks(e){let t=[];for(let n in gr.constructors){let r=+n;e>=r&&t.push(...gr.constructors[r])}return t.map(n=>new n)}};gr.constructors={};function T6(e,t,n,r,a,s,i,o,l){let c=new I6,u=[new mre,...gr.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let h=new k6(u);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:c}}function Fr(e,t={},n=!1){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Jp(e,t){return z(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Te(Oc(e),t,!0),r=tc(n.shape,Wt()),a=en(jr(n,r));return Ae(e,a)})}function Li(e,t){return z(()=>It(Oc(ye(t,e)),-1))}function Qp(e,t){return z(()=>It(zt(ye(t,e)),-1))}function Kl(e,t){return z(()=>{let n=ye(e,t),r=En(zt(e),Wt(),Number.MAX_VALUE),a=zt(Ae(n,r));return P(100,It(a,-1))})}function Are(e,t){return z(()=>{let n=En(t,Wt(),Number.MAX_VALUE),r=zn(se(1,n)),a=En(e,Wt(),Number.MAX_VALUE),s=zn(se(1,a));return It(Oc(ye(r,s)),-1)})}function yre(e,t){return z(()=>{let n=jr(0,ye(1,P(e,t)));return It(Oc(n),-1)})}function gre(e,t){return z(()=>{let n=jr(0,ye(1,P(e,t)));return It(n,-1)})}function xre(e,t){return z(()=>{let n=Te(P(e,t),-1),r=Rn(P(ye(1,e),t),-1);return jr(0,se(1,ye(r,n)))})}function wre(e,t){return z(()=>{let n=Math.log(2),r=ye(t,e),a=ye(se(r,bi(P(-2,r))),n);return It(a,-1)})}function Lc(e,t,n=!1){return z(()=>{if(n)t=uc(t);else{let r=Te(t,t.shape.length-1,!0);t=Ae(t,r)}return t=En(t,Wt(),1-Wt()),kt(Te(P(e.toFloat(),zn(t)),t.shape.length-1))})}function e0(e,t,n=!1){return z(()=>{let r=vl(Vte(e)).toInt();t=En(t,Wt(),1-Wt());let a=t.shape,s=ml(r,a[a.length-1]).reshape(a);return Lc(s,t,n)})}function bre(e,t){if(!_.arraysEqual(e.shape,t.shape))throw new B(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return z(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function t0(e,t){return z(()=>{let n;return n=En(t,Wt(),1-Wt()),n=zn(Ae(n,ye(1,n))),It(bre(e,n),-1)})}function _re(e,t){return z(()=>{let n=En(e,Wt(),1),r=En(t,Wt(),1);return Te(P(e,zn(Ae(n,r))),-1)})}function vre(e,t){return z(()=>{let n=zn(se(Wt(),t));return It(ye(t,P(e,n)),-1)})}function fy(e,t){return z(()=>{let n=Jp(e,-1),r=Jp(t,-1),a=P(n,r);return kt(Te(a,-1))})}var n0={meanSquaredError:Li,meanAbsoluteError:Qp,meanAbsolutePercentageError:Kl,meanSquaredLogarithmicError:Are,squaredHinge:yre,hinge:gre,categoricalHinge:xre,logcosh:wre,categoricalCrossentropy:Lc,sparseCategoricalCrossentropy:e0,binaryCrossentropy:t0,kullbackLeiblerDivergence:_re,poisson:vre,cosineProximity:fy};function my(e){if(typeof e=="string"){if(e in n0)return n0[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new B(t)}else return e}function Ay(e,t){return z(()=>{let n=P(.5,Ln(t)),r=$c(pr(t,n),e.dtype);return It(Wa(e,r),-1)})}function yy(e,t){return z(()=>$c(Wa(mi(e,-1),mi(t,-1)),"float32"))}function E6(e,t){return z(()=>fr(e.equal(1),t.equal(1)).sum().cast("float32"))}function kre(e,t){return z(()=>fr(e.equal(1),t.equal(0)).sum().cast("float32"))}function Ire(e,t){return z(()=>fr(e.equal(0),t.equal(1)).sum().cast("float32"))}function C6(e,t){return z(()=>{let n=E6(e,t),r=Ire(e,t),a=n.add(r);return Cn(pr(a,0),n.div(a),0).cast("float32")})}function Sre(e,t){return z(()=>{let n=E6(e,t),r=kre(e,t),a=n.add(r);return Cn(pr(a,0),n.div(a),0).cast("float32")})}function R6(e,t){return t0(e,t)}function M6(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Wa(e,t).asType("float32")}var Nre=Li,Tre=Li,Ere=Qp,Cre=Qp,Rre=Kl,Mre=Kl,gy=Lc,Fre=fy,F6=e0,r0={binaryAccuracy:Ay,categoricalAccuracy:yy,precision:C6,categoricalCrossentropy:gy,sparseCategoricalCrossentropy:F6,mse:Nre,MSE:Tre,mae:Ere,MAE:Cre,mape:Rre,MAPE:Mre,cosine:Fre};function $re(e){if(typeof e=="string"&&e in r0)return r0[e];if(typeof e!="string"&&e!=null)return e;throw new B(`Unknown metric ${e}`)}function a0(e){if(Xr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(n0))if(n0[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(r0))if(r0[n]===e){t=n;break}return t!==void 0?t:e.name}}function Dre(e){let t={Adagrad:()=>Ii.adagrad(.01),Adadelta:()=>Ii.adadelta(1,.95,Wt()),Adam:()=>Ii.adam(.001,.9,.999,Wt()),Adamax:()=>Ii.adamax(.002,.9,.999,Wt(),0),RMSProp:()=>Ii.rmsprop(.001,.9,0,Wt()),SGD:()=>Ii.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new B(`Unknown Optimizer ${e}`)}var $6=1*1024*1024;function D6(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!xy(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>$6&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${$6}.`)}}function xy(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!xy(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!xy(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Wre(e,t,n,r=console.log){let a=zre(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!a){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}r("_".repeat(t)),s0(s,n,r),r("=".repeat(t));let o=e.layers;for(let u=0;u1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function s0(e,t,n=console.log){let r="";for(let a=0;a0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function Pre(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];s0(i,t,n)}function Lre(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(u){a="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let h=0;hf.name),l=[],c=t.names();for(let f of o)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),h,d;if(_y[u]==null){let f=Vre(i,t);h=f.sorted,d=f.recipientCounts,_y[u]=h,z6[u]=d}h=_y[u],d={},a||Object.assign(d,z6[u]);let p=new Wi(t);for(let f=0;fr.maxNumTensors&&(r.maxNumTensors=C),C0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=P6(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=P6(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(c=>r[l].add(c))}}return{sorted:n,recipientCounts:Ure(r)}}function Ure(e){let t={};for(let n in e)t[n]=e[n].size;return t}function P6(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)a[c.name]==null&&(a[c.name]=new Set),a[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:r,recipientMap:a}}function jre(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;ry.name)}`);Ka(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let g=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;Xr(x===0,"input layer has >1 nodes"),Xr(v===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;yy.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,x,v,w,b)=>{(v==null||w==null||b==null)&&(v=y.sourceLayer,w=y.nodeIndex,b=y.tensorIndex);let k=v.inboundNodes[w];if(x.indexOf(k)!==-1)throw new Er(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(g.indexOf(k)!==-1)return;this.containerNodes.add(Yr.nodeKey(v,w)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(k)===-1&&x.push(k);let N=k.inboundLayers.length;for(let C=0;C=0;)x.splice(x.indexOf(k),1);i.push(k)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],x=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,x),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let v=0;vparseInt(y,10)).sort(zp);this.layers=[];for(let y of p){let g=d[y];g.sort((x,v)=>{let w=s[x.id],b=s[v.id];return wb?1:0});for(let x of g)x instanceof Yr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(zp);let f=this.inputs.slice(),m=[];for(let y of p)for(let g of h[y]){let x=g.outboundLayer;if(x!=null){for(let v of g.inputTensors)if(f.indexOf(v)===-1)throw new Er(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let v of g.outputTensors)f.push(v);m.push(x.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(x=>x===y).length;if(g!==1)throw new Er(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Yp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new B("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new B(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new B(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new B(`${s.length} of ${r} weights are not set: ${s}`)}py(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${by}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=wy(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return z(()=>{e=At(e);let n=new Wi;for(let r=0;r{e=At(e);let n;return t==null?n=$i(null,e.length):n=At(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Kp(e);if(t.length!==this.inputLayers.length)throw new B(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;iparseInt(i,10)).sort(zp);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;fparseInt(o,10)).sort(zp);for(let o of r){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,h=c.inputTensors,d=c.outputTensors,p=new Array;for(let f of h)f.id in n&&p.push(n[f.id]);if(p.length===h.length){let f={},m,A,y,g;if(c.callArgs!=null&&(f=c.callArgs),p.length===1){let[x,v]=p[0];f.mask==null&&(f.mask=v),y=At(u.call(x,f)),g=At(u.computeMask(x,v)),m=[x],A=[v]}else m=p.map(x=>x[0]),A=p.map(x=>x[1]),f.mask==null&&(f.mask=A),y=At(u.call(m,f)),g=At(u.computeMask(m,A));if(u.activityRegularizer)throw new De("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x{let e=[];for(let t of this.layers)for(let n=0;n0){let f=[];for(let m=0;m0&&m.apply(Fn(y),g)}function l(m){let A=m.name,y=Fr(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,m.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new B(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!mte(s);)for(let m of u){let A=a[m.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let m of p){let A=m[0],y=m[1],g=m[2];Xr(A in a);let x=a[A].inboundNodes[y].outputTensors;h.push(x[g])}let f=t.outputLayers;for(let m of f){let A=m[0],y=m[1],g=m[2];Xr(A in a);let x=a[A].inboundNodes[y].outputTensors;d.push(x[g])}return new e({inputs:h,outputs:d,name:c})}get stateful(){if(this._stateful)throw new B("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){z(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Hre(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function L6(e,t){return Hre(e,t,"classWeight")}async function W6(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=z(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());_e(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),sn(i,"float32")}else return null}function Gre(e,t){return P(e,t)}var qre=32;function V6(e,t){let n,r,a=t;n=a.xs,r=a.ys,_.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=B6("input",e.inputNames,n),i=B6("output",e.outputNames,r),o=s[0].shape[0];_.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),_.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function B6(e,t,n){if(n instanceof Pe)return[n];if(Array.isArray(n))return _.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new B(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function Xre(e){if(e.length===3)throw new De("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Zre(e,t,n){let r=n.batchesPerEpoch!=null;if(_.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),_.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),_.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),_.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),_.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(j6(n.validationData))_.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=Xre(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;a?c=l.slice().concat(l.map(A=>"val_"+A)):c=l.slice();let u=N6(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=T6(u,h,n.epochs,null,null,Kre(t,n),null,a,c);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f=n.batchesPerEpoch:x.done){if(a){let v;j6(n.validationData)?v=At(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=At(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?qre:n.validationBatchSize,verbose:0}));for(let w=0;w0)throw new De("Verbose mode is not implemented yet.");_.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=Yre(t)?t:await t.iterator(),o=0,l=0;for(;r?l{if(c.value){let{xs:u,ys:h}=V6(e,c.value),d=u.concat(h),p=z(()=>a(d));if(_e(d),l===0)for(let m=0;mse(s[m],P(f,A))),l>0&&_e(y)}_e(p),o+=f,++l}return s}),c.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Vc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>Pi(r,t,n-t)):Pi(e,t,n-t)}function ky(e,t){return z(()=>e==null?null:Array.isArray(e)?e.map(n=>ky(n,t)):o6(e,t.dtype==="int32"?t:t.toInt()))}function Iy(e,t){let n=[],r=0,a=null;for(;r=e&&(a=e),n.push([r,a]),r=a;return n}async function Qre(e,t,n,r,a,s,i,o,l,c,u,h,d,p,f){a==null&&(a=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,p==null))throw new B("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=Cr(0,A)),i==null&&(i=1);let{callbackList:g,history:x}=T6(o,i,s,d,A,p,a,m,h);g.setModel(e),e.history=x,await g.onTrainBegin(),e.stopTraining_=!1;for(let v=d;v{let F=k[N][0],O=k[N][1],L=Pi(b,F,O-F);C.batch=N,C.size=O-F;let V=ky(n,L),j=t(V);for(let U=0;U0){if(f=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new De("validationData including sample weights is not supported yet."):new B(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let b=!0,k=await e.standardizeUserData(i,o,null,null,b,h);l=k[0],c=k[1],m=l.concat(c)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){f=!0;let b=Math.floor(a[0].shape[0]*(1-r.validationSplit)),k=a[0].shape[0];l=Vc(a,b,k),a=Vc(a,0,b),c=Vc(s,b,k),s=Vc(s,0,b),m=l.concat(c)}else r.validationSteps!=null&&(f=!0);let A=a.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),x,v;f?(e.makeTestFunction(),x=e.testFunction,v=g.slice().concat(g.map(b=>"val_"+b))):(x=null,m=[],v=g.slice());let w=N6(r.callbacks,r.yieldEvery);return await Qre(e,y,A,g,h,r.epochs,r.verbose,w,x,m,r.shuffle,v,r.initialEpoch,null,null)}finally{e.isTraining=!1,Bi(a,t),Bi(s,n),Bi(l,i),Bi(c,o),u!=null&&_e(u)}}function U6(e){let t=[];e instanceof Pe&&(e=[e]);for(let n=0;nn.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof Pe)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function tae(e){return e instanceof Pe}function Sy(e){return Array.isArray(e)}function H6(e){return!tae(e)&&!Sy(e)}function G6(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Sy(e)&&e.length>0)i=!0;else if(H6(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new B(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(H6(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new B(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Sy(e)){if(e=e,e.length!==t.length)throw new B(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new B(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=U6(s),n!=null)for(let i=0;i=0&&c!==u)throw new B(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function nae(e,t,n){let r=Ka(e.map(s=>s.shape[0]));r.sort();let a=Ka(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new B(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new B(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!_.arraysEqual(r,a))throw new B(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function rae(e,t,n){let r=[Li,t0,Lc];for(let a=0;a1)throw new B(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var sae="layers-model",ga=class extends Yr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new B("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Wre(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Dre(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof fa))throw new B("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new B(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(my(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new B(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>my(s))}else{let s=my(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s{for(let s=0;s1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=aae(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};zi("metric",()=>{for(let s=0;s{let l="",c,u,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let f=this.internalOutputShapes[s];f[f.length-1]===1||this.lossFunctions[s]===t0?["accuracy","acc"].indexOf(d)!==-1?u=Ay:["crossentropy","ce"].indexOf(d)!==-1&&(u=R6):this.lossFunctions[s]===e0?["accuracy","acc"].indexOf(d)!==-1?u=M6:["crossentropy","ce"].indexOf(d)!==-1&&(u=F6):["accuracy","acc"].indexOf(d)!==-1?u=yy:["crossentropy","ce"].indexOf(d)!==-1&&(u=gy);let m;["accuracy","acc"].indexOf(d)!==-1?m="acc":["crossentropy","ce"].indexOf(d)!==-1&&(m="ce"),h=u,c=l+m}else h=$re(d),c=l+a0(d);let p;zi(c,()=>{p=h}),a(s,c,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;vy(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return Fn(l)}finally{Bi(s[0],e),Bi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Jre(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new B(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new B(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new B("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new Wi;if(e instanceof Pe&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new B(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;oi.name);for(let i=0;i0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new B(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return z(()=>{let r=this.checkNumSamples(e);if(n)throw new De("Verbose predictLoop() is not implemented yet.");let a=Iy(r,t),s=this.outputs.map(i=>[]);for(let i=0;i{let o=a[i][0],l=a[i][1],c=Vc(e,o,l),u=[];if(Array.isArray(c))for(let d=0;ds[l].push(o));return Fn(s.map(i=>rt(i,0)))})}predict(e,t={}){let n=U6(e);q6(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return vy(r),this.predictLoop(n,r)}finally{Bi(n,e)}}predictOnBatch(e){q6(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new Er("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s0&&e[0].shape[0]%r!=0)throw new B(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let c=L6(r,this.outputNames);l=[];for(let u=0;u{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new De("Verbose mode is not implemented yet.");if(a!=null)throw new De("steps mode in testLoop() is not implemented yet");{let o=Iy(s,n),l=sn(Cr(0,s));for(let c=0;c1&&(a+=`_${Xv(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let p=0;p1&&p{d=se(d,p)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>z(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;lya(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=ya(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ya(a0(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ya(a0(e)));{let e={};for(let t in this.metrics)e[t]=ya(a0(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Wc(e.optimizer_config),n=Fr(t),r;if(typeof e.loss=="string")r=Di(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>Di(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=Di(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>Di(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=Di(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Nn.getSaveHandlers(e);if(i.length===0)throw new B(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new B(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new B("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Nn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:sae,generatedBy:`TensorFlow.js tfjs-layers v${by}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Nn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Nn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;D6(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){D6(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};ga.className="Model";re.registerClass(ga);var X6=class extends ga{};X6.className="Functional";re.registerClass(X6);async function iae(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=Wc(n),a=Fr(r,t);if(e.weightsManifest!=null){let s=await Nn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),_e(s)}return a}async function lae(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Nn.getLoadHandlers(e,t);if(n.length===0)n.push(Nn.browserHTTPRequest(e,t));else if(n.length>1)throw new B(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return oae(e,void 0,t)}async function oae(e,t,n){if(n==null&&(n={}),e.load==null)throw new B("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=Fr(Wc(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new B("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=uae(r.weightData,r.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),_e(c),_e(u.map(h=>h.tensor))}return o}function uae(e,t){let n=Nn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Zl=class extends ga{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Xp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new B(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Zl||e instanceof ga,n;if(t){if(n=e,n.outputs.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new B("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new B("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=b6({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new B(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=w6(this.outputs[0])}this.inboundNodes=[],new Yp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:$i(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(st(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new ga({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Er("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Er("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Er("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Er("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new B("Legacy serialization format not supported yet.");a=t}else _.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Zl))throw new De(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=Fr(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new B("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new B("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Zl.className="Sequential";re.registerClass(Zl);function cae(e){return new ga(e)}function hae(e){return new Zl(e)}function dae(e,t){return t==null&&(t={}),lae(e,t)}function d6(e){return b6(e)}function pae(e,t){gr.registerCallbackConstructor(e,t)}var Dn=class extends re.Serializable{getConfig(){return{}}},K6=class extends Dn{apply(e,t=1){return Ute(e,t)}};K6.className="elu";re.registerClass(K6);var Z6=class extends Dn{apply(e){return Bd(e)}};Z6.className="selu";re.registerClass(Z6);var Y6=class extends Dn{apply(e){return Ur(e)}};Y6.className="relu";re.registerClass(Y6);var J6=class extends Dn{apply(e){return z(()=>Il(6,Ur(e)))}};J6.className="relu6";re.registerClass(J6);var Q6=class extends Dn{apply(e){return e}};Q6.className="linear";re.registerClass(Q6);var e4=class extends Dn{apply(e){return Tn(e)}};e4.className="sigmoid";re.registerClass(e4);var t4=class extends Dn{apply(e){return Gte(e)}};t4.className="hardSigmoid";re.registerClass(t4);var n4=class extends Dn{apply(e){return bi(e)}};n4.className="softplus";re.registerClass(n4);var r4=class extends Dn{apply(e){return Hte(e)}};r4.className="softsign";re.registerClass(r4);var a4=class extends Dn{apply(e){return yi(e)}};a4.className="tanh";re.registerClass(a4);var Ny=class extends Dn{apply(e,t=-1){return uc(e,t)}};Ny.className="softmax";re.registerClass(Ny);var s4=class extends Dn{apply(e,t=-1){return $d(e,t)}};s4.className="logSoftmax";re.registerClass(s4);var i4=class extends Dn{apply(e,t=1){return z(()=>Tn(e.mul(t)).mul(e))}};i4.className="swish";re.registerClass(i4);var o4=class extends Dn{apply(e){return z(()=>P(e,yi(bi(e))))}};o4.className="mish";re.registerClass(o4);function Qa(e){return e.getClassName()}function Ty(e,t={}){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function es(e){if(e==null){let t={};return t.className="linear",t.config={},Ty(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Ty(t)}else return e instanceof Dn?e:Ty(e)}function Ey(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var l4=class extends re.Serializable{},jc=class extends l4{constructor(e){super();Ey(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return z(()=>{let t=Rt([1]);return this.hasL1&&(t=se(t,Te(P(this.l1,zt(e))))),this.hasL2&&(t=se(t,Te(P(this.l2,Oc(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};jc.className="L1L2";re.registerClass(jc);function fae(e){return Ey(e),new jc({l1:e!=null?e.l1:null,l2:0})}function mae(e){return Ey(e),new jc({l2:e!=null?e.l2:null,l1:0})}var u4={l1l2:"L1L2"};function ut(e){return jA(e)}function c4(e,t={}){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function xt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in u4?u4[e]:e,config:{}};return c4(t)}else return e instanceof l4?e:c4(e)}var Cy=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=Ur(e);return this.maxValue!=null&&(n=En(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Cy.className="ReLU";re.registerClass(Cy);var Ry=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return nc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Ry.className="LeakyReLU";re.registerClass(Ry);var My=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=gt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=xt(e.alphaRegularizer),this.alphaConstraint=Vt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new B(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=st(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r(Ct(t),t==="channelsFirst"?Je(e,[0,2,3,1]):e))}function h4(e,t){return z(()=>(Ct(t),t==="channelsFirst"?Je(e,[0,2,3,4,1]):e))}function Aae(e,t,n,r=1,a="valid",s,i=1){return z(()=>{if(s==null&&(s=Tr()),Ct(s),e.shape.length!==3)throw new B(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new B(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new B(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Je(e,[0,2,1])),a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Sd(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Rr(o,n)),o})}function d4(e,t,n,r=[1,1],a="valid",s,i,o=null){return z(()=>{if(s==null&&(s=Tr()),Ct(s),e.rank!==3&&e.rank!==4)throw new B(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new B(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Oy(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ua.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Je(l,[0,3,1,2])),l})}function yae(e,t,n,r=[1,1,1],a="valid",s,i){return z(()=>{if(s==null&&(s=Tr()),Ct(s),e.rank!==4&&e.rank!==5)throw new B(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new B(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=h4(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=vm(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Rr(o,n)),s==="channelsFirst"&&(o=Je(o,[0,4,1,2,3])),o})}var zy=class extends qe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",zy.verifyArgs(t),this.rank=e,qt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new De(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Yl(t.kernelSize,e,"kernelSize"),this.strides=Yl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ar(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ct(this.dataFormat),this.activation=es(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=gt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Vt(t.biasConstraint),this.biasRegularizer=xt(t.biasRegularizer),this.activityRegularizer=xt(t.activityRegularizer),this.dilationRate=Yl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new B(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new B(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new B(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Xr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!HA(e.kernelSize,"number",1,3))throw new B(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Qa(this.activation),useBias:this.useBias,biasInitializer:St(this.biasInitializer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Uc=class extends zy{constructor(e,t){super(e,t);this.kernel=null,Uc.verifyArgs(t),this.filters=t.filters,qt(this.filters,"filters"),this.kernelInitializer=gt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Vt(t.kernelConstraint),this.kernelRegularizer=xt(t.kernelRegularizer)}build(e){e=st(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return z(()=>{e=ze(e);let n,r=this.bias==null?null:this.bias.read(),a=Zv(this.activation.getClassName());if(a!=null&&this.rank===2)n=d4(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=Aae(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=d4(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=yae(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new De("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=st(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a 0 but got ${JSON.stringify(e.filters)}`)}},Hc=class extends Uc{constructor(e){super(2,e);Hc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!HA(e.kernelSize,"number",1,2))throw new B(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Hc.className="Conv2D";re.registerClass(Hc);var Gc=class extends Uc{constructor(e){super(3,e);Gc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new B(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Gc.className="Conv3D";re.registerClass(Gc);var Py=class extends Hc{constructor(e){super(e);if(this.inputSpec=[new Ft({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==4)throw new B("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ft({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return z(()=>{let n=ze(e);if(n.shape.length!==4)throw new B(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],c=this.kernelSize[0],u=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=Jr(o,h,c,this.padding),f=Jr(l,d,u,this.padding),m=[a,p,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Je(n,[0,2,3,1]));let A=Nd(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=Je(A,[0,3,1,2])),this.bias!=null&&(A=Rr(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=st(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=Jr(t[r],o,s,this.padding),t[a]=Jr(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Py.className="Conv2DTranspose";re.registerClass(Py);var Ly=class extends Gc{constructor(e){super(e);if(this.inputSpec=[new Ft({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==5)throw new B("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ft({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return z(()=>{let n=ze(e);if(n.shape.length!==5)throw new B(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=r[o],c=r[s],u=r[i],h=this.kernelSize[0],d=this.kernelSize[1],p=this.kernelSize[2],f=this.strides[0],m=this.strides[1],A=this.strides[2],y=Jr(l,f,h,this.padding),g=Jr(c,m,d,this.padding),x=Jr(u,A,p,this.padding),v=[a,y,g,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Je(n,[0,2,3,4,1]));let w=ob(n,this.kernel.read(),v,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=Je(w,[0,4,1,2,3])),this.bias!==null&&(w=Rr(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=st(e);let t=e.slice(),n,r,a,s;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3,s=4):(n=4,r=1,a=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],h=this.strides[2];return t[n]=this.filters,t[r]=Jr(t[r],c,i,this.padding),t[a]=Jr(t[a],u,o,this.padding),t[s]=Jr(t[s],h,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Ly.className="Conv3DTranspose";re.registerClass(Ly);var p4=class extends Uc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new B("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new B("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new B(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=xt(t.depthwiseRegularizer),this.depthwiseConstraint=Vt(t.depthwiseConstraint),this.pointwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=xt(t.pointwiseRegularizer),this.pointwiseConstraint=Vt(t.pointwiseConstraint)}build(e){if(e=st(e),e.length{e=ze(e);let n;if(this.rank===1)throw new De("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Je(e,[0,2,3,1])),n=Vm(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Rr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Je(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=St(this.depthwiseInitializer),e.pointwiseInitializer=St(this.pointwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.pointwiseRegularizer=ut(this.pointwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseConstraint),e.pointwiseConstraint=Bt(this.pointwiseConstraint),e}};p4.className="SeparableConv";var Wy=class extends p4{constructor(e){super(2,e)}};Wy.className="SeparableConv2D";re.registerClass(Wy);var i0=class extends Uc{constructor(e){super(1,e);i0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!HA(e.kernelSize,"number",1,1))throw new B(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};i0.className="Conv1D";re.registerClass(i0);var By=class extends qe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return z(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=Pp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Pp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Pp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Pp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};By.className="Cropping2D";re.registerClass(By);var Vy=class extends qe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,zte(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return z(()=>{let n=ze(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=Je(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return Je(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Vy.className="UpSampling2D";re.registerClass(Vy);function gae(e,t,n=[1,1],r="valid",a,s){return z(()=>{a==null&&(a=Tr()),Ct(a);let i=Oy(e,a);if(e.rank!==4)throw new B(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new B(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=bl(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=Je(i,[0,3,1,2])),i})}var jy=class extends zy{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=gt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Vt(e.depthwiseConstraint),this.depthwiseRegularizer=xt(e.depthwiseRegularizer)}build(e){if(e=st(e),e.length<4)throw new B(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return z(()=>{e=ze(e);let n=gae(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Rr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=$r(t,this.kernelSize[0],this.padding,this.strides[0]),s=$r(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=St(this.depthwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseRegularizer),e}};jy.className="DepthwiseConv2D";re.registerClass(jy);function f4(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new B("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function m4(e,t,n,r=!1,a,s,i=!1,o=!1){return z(()=>{let l=t.shape.length;if(l<3)throw new B(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(Cr(2,l));if(t=Je(t,c),s!=null)throw new De("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=Qt(a,-1)),a=Je(a,c)),r&&(t=Wn(t,0),a!=null&&(a=Wn(a,0)));let u=[],h,d=n,p=t.shape[0],f=mr(t),m;a!=null&&(m=mr(a));for(let y=0;ye(g,d));if(a==null)h=x[0],d=x[1];else{let v=z(()=>{let w=m[y],b=Ln(w).sub(w),k=x[0].mul(w).add(d[0].mul(b)),N=d.map((C,F)=>x[1][F].mul(w).add(C.mul(b)));return{output:k,newStates:N}});h=v.output,d=v.newStates}o&&u.push(h)}let A;return o&&(A=cn(u,1)),[h,A,d]})}var Zr=class extends qe{constructor(e){super(e);let t;if(e.cell==null)throw new B("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new o0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new B("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ft({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Cr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){hy(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return z(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;ni.shape[i.shape.length-1]),s))throw new B(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Ft({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){z(()=>{if(!this.stateful)throw new Aa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Rt([n,r])):this.states_=[Rt([n,this.cell.stateSize])];else if(e==null)_e(this.states_),this.keptStates!=null&&(_e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Rt([n,r])):this.states_[0]=Rt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):_e(this.states_);for(let r=0;rHt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=f4(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Ft({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof Mr){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return z(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=ze(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new B(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=m4((d,p)=>{let f=this.cell.call([d].concat(p),i);return[f[0],f.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,r);let h=this.returnSequences?c:l;return this.returnState?[h].concat(u):h})}getInitialState(e){return z(()=>{let t=Rt(e.shape);return t=Te(t,[1,2]),t=Dc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?YA(t,[1,n]):t):this.cell.stateSize>1?[YA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Zr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=Fr(r,n);return new e(Object.assign(t,{cell:a}))}};Zr.className="RNN";re.registerClass(Zr);var Pc=class extends qe{},l0=class extends Pc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,qt(this.units,"units"),this.activation=es(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Gl([1,Ya([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ya([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return z(()=>{if(e=e,e.length!==2)throw new B(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0Ln(e),rate:this.dropout,training:r})),0Ln(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Kr(P(e,s),this.kernel.read()):a=Kr(e,this.kernel.read()),this.bias!=null&&(a=Rr(a,this.bias.read())),i!=null&&(n=P(n,i));let o=se(a,Kr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Qa(this.activation),useBias:this.useBias,kernelInitializer:St(this.kernelInitializer),recurrentInitializer:St(this.recurrentInitializer),biasInitializer:St(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),recurrentConstraint:Bt(this.recurrentConstraint),biasConstraint:Bt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};l0.className="SimpleRNNCell";re.registerClass(l0);var Uy=class extends Zr{constructor(e){e.cell=new l0(e),super(e)}call(e,t){return z(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};Uy.className="SimpleRNN";re.registerClass(Uy);var u0=class extends Pc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new B("GRUCell does not support reset_after parameter set to true.");this.units=e.units,qt(this.units,"units"),this.activation=es(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=es(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Gl([1,Ya([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ya([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return z(()=>{if(e=e,e.length!==2)throw new B(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0Ln(e),rate:this.dropout,training:n,count:3})),0Ln(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Hy.className="GRU";re.registerClass(Hy);var qc=class extends Pc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,qt(this.units,"units"),this.activation=es(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=es(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Gl([1,Ya([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ya([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=st(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends yr{apply(i,o){let l=a.apply([s]),c=new Wp().apply([s]),u=a.apply([s*2]);return i6(i6(l,c),u)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return z(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new B(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0Ln(e),rate:this.dropout,training:n,count:4})),0Ln(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Gy.className="LSTM";re.registerClass(Gy);var o0=class extends Pc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return z(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i{zi(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push(Fr(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return dy(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;sl6(t(),n),i=()=>zc(s,t,r);return!a||a<=1?Ht(i().clone()):Array(a).fill(void 0).map(i).map(o=>Ht(o.clone()))}var xae=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a{if(this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new B("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return z(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Rt(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){z(()=>{if(!this.stateful)throw new Aa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Rt(a)):this.states_=[Rt(a)];else if(e==null)_e(this.states_),this.keptStates!=null&&(_e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Rt(a)):this.states_[0]=Rt(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):_e(this.states_);for(let s=0;sHt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=$r(l,r[0],a,s[0],i[0]),h=$r(c,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,h]:[u,h,n]]}};A4.className="ConvRNN2D";var c0=class extends qc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,qt(this.filters,"filters"),this.kernelSize=Yl(n,2,"kernelSize"),this.kernelSize.forEach(o=>qt(o,"kernelSize")),this.strides=Yl(r||1,2,"strides"),this.strides.forEach(o=>qt(o,"strides")),this.padding=a||"valid",ar(this.padding),this.dataFormat=s||"channelsLast",Ct(this.dataFormat),this.dilationRate=Yl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>qt(o,"dilationRate"))}build(e){var t;e=st(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends yr{apply(u,h){let d=l.apply([c]),p=Pn([c]),f=l.apply([c*2]);return QA([d,p,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return z(()=>{if(e.length!==3)throw new B(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0Ln(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,ae,te)=>!ae||!ae[te]?Y:P(ae[te],Y),c=l(r,o,0),u=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0Ln(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,f=l(a,p,0),m=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[x,v,w,b]=Lt(this.kernel.read(),i,g),[k,N,C,F]=this.useBias?Lt(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,x,k,this.padding),u=this.inputConv(u,v,N,this.padding),h=this.inputConv(h,w,C,this.padding),d=this.inputConv(d,b,F,this.padding);let[O,L,V,j]=Lt(this.recurrentKernel.read(),i,g);f=this.recurrentConv(f,O),m=this.recurrentConv(m,L),A=this.recurrentConv(A,V),y=this.recurrentConv(y,j);let U=this.recurrentActivation.apply(se(c,f)),X=this.recurrentActivation.apply(se(u,m)),G=se(P(X,s),P(U,this.activation.apply(se(h,A)))),ee=P(this.recurrentActivation.apply(se(d,y)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=xae(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=ca(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Rr(a,n,this.dataFormat):a}recurrentConv(e,t){return ca(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};c0.className="ConvLSTM2DCell";re.registerClass(c0);var qy=class extends A4{constructor(e){let t=new c0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};qy.className="ConvLSTM2D";re.registerClass(qy);var h0=class extends qe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r{this.invokeCallHook(e,t);let n=ze(e);if(0l6(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};h0.className="Dropout";re.registerClass(h0);var Xy=class extends h0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Xy.className="SpatialDropout1D";re.registerClass(Xy);var Ky=class extends qe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,qt(this.units,"units"),this.activation=es(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Vt(e.kernelConstraint),this.biasConstraint=Vt(e.biasConstraint),this.kernelRegularizer=xt(e.kernelRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=st(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=st(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e),r=Zv(this.activation.getClassName()),a;return r!=null?a=Kr(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Kr(n,this.kernel.read()),this.bias!=null&&(a=Rr(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:Qa(this.activation),useBias:this.useBias,kernelInitializer:St(this.kernelInitializer),biasInitializer:St(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Ky.className="Dense";re.registerClass(Ky);var Zy=class extends qe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=st(e);for(let t of e.slice(1))if(t==null)throw new B(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Za(e,1)]}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:Qa(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Yy.className="Activation";re.registerClass(Yy);var Jy=class extends qe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return z(()=>(e=ze(e),Bte(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Jy.className="RepeatVector";re.registerClass(Jy);var Qy=class extends qe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=ze(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Qy.className="Reshape";re.registerClass(Qy);var eg=class extends qe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Cr(1,e.dims.length+1);if(!_.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ft({ndim:this.dims.length+1})]}computeOutputShape(e){e=st(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return Je(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};eg.className="Permute";re.registerClass(eg);var tg=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),r=-1;return Zu(vi(n,this.maskValue),r)}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e),r=-1,a=!0,s=Zu(vi(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};tg.className="Masking";re.registerClass(tg);var ng=class extends qe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(At(e.inputLength))}this.inputDim=e.inputDim,qt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,qt(this.outputDim,"outputDim"),this.embeddingsInitializer=gt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=xt(e.embeddingsRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.embeddingsConstraint=Vt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return z(()=>this.maskZero?(e=ze(e),vi(e,He(e))):null)}computeOutputShape(e){if(e=st(e),this.inputLength==null)return[...e,this.outputDim];let t=At(this.inputLength);if(t.length!==e.length-1)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r{this.invokeCallHook(e,t);let n=ze(e);return n.dtype!=="int32"&&(n=$c(n,"int32")),o6(this.embeddings.read(),n.as1D()).reshape(st(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:St(this.embeddingsInitializer),embeddingsRegularizer:ut(this.embeddingsRegularizer),activityRegularizer:ut(this.activityRegularizer),embeddingsConstraint:Bt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};ng.className="Embedding";re.registerClass(ng);var Vi=class extends qe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new De}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new B(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;aa.length);e.indexOf(null)===-1&&Ka(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return z(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Ya(r);for(let s of e){let i=s.rank;for(let o=0;o1){let c=Cr(1,l).concat([0]);n.push(Je(o,c)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=Je(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(Cr(0,i-1));s=Je(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r{if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an Array");if(!Array.isArray(e))throw new B("`inputs` should be an Array");if(t.length!==e.length)throw new B(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:Qt(r,0));let n=t[0];for(let r=1;r{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new B("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return z(()=>QA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new B("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new B("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new B(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return z(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s3||t.shape.length>3)throw new De("batchDot is not implemented for tensors of 4D or higher rank yet");if(_.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),_.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new De("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return z(()=>{let i;if(r>a){i=r-a;let l=[];for(let c=0;cr){i=a-r;let l=[];for(let c=0;c0){let l;r>a?l=r+a-3:l=r-1;let c=[];for(let u=l;u"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new B(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new B(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>Xc(a,e[s].shape.length)):r=[Xc(this.axes,t.shape.length),Xc(this.axes,n.shape.length)],this.normalize&&(t=Jp(t,r[0]),n=Jp(n,r[1])),wae(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Xc(this.axes,e.length),Xc(this.axes,t.length)],n}computeOutputShape(e){_.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};ug.className="Dot";re.registerClass(ug);var cg=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e);return zc(()=>Lp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};cg.className="GaussianNoise";re.registerClass(cg);var hg=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?zc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(Lp(n.shape,1,r))},()=>n,t.training||!1):n})}};hg.className="GaussianDropout";re.registerClass(hg);var dg=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return z(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return zc(()=>{let r=ze(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=Va(Sl(n),this.rate);o=$c(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>ze(e),t.training||!1)}return e})}};dg.className="AlphaDropout";re.registerClass(dg);function Kc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=Qw(e,t,n,r,a,s);else if(e.rank===3)i=eb(e,t,n,r,a,s);else if(e.rank===4)i=tb(e,t,n,r,a,s);else throw new De(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function bae(e,t,n,r,a=.001){return z(()=>{let s=Od(e,r),i=s.mean,o=s.variance;return[Kc(e,i,o,n,t,a),i,o]})}function _ae(e,t,n,r,a=.001){return z(()=>{let s=Od(e,r),i=s.mean,o=s.variance,l=[];for(let p of Cr(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let c=i.reshape(l),u=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[Kc(e,c,u,d,h,a),i,o]})}function vae(e,t,n,r,a=.001){return _.arraysEqual(r.slice().sort(),Cr(0,e.rank-1))?bae(e,t,n,r,a):_ae(e,t,n,r,a)}var pg=class extends qe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.movingMeanInitializer=gt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=gt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Vt(e.betaConstraint),this.gammaConstraint=Vt(e.gammaConstraint),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer)}build(e){e=st(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new B(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ft({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return z(()=>{let n=t.training==null?!1:t.training,r=ze(e),a=r.shape,s=a.length,i=Cr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=$i(1,s);l[o]=a[o];let c=i.slice();c.sort();let u=!_.arraysEqual(c,Cr(0,s).slice(0,s-1)),h=()=>{if(u){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return Kc(r,A,y,g,x,this.epsilon)}else return Kc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,f]=vae(r,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(A,y,g)=>{z(()=>{let x=1-g,v=A.read(),w=v.sub(y).mul(x);A.write(v.sub(w))})};return(()=>{m(this.movingMean,p,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:St(this.betaInitializer),gammaInitializer:St(this.gammaInitializer),movingMeanInitializer:St(this.movingMeanInitializer),movingVarianceInitializer:St(this.movingVarianceInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer),betaConstraint:Bt(this.betaConstraint),gammaConstraint:Bt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};pg.className="BatchNormalization";re.registerClass(pg);var fg=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=st(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Ka(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=ze(e),r=n.shape,a=r.length;return z(()=>{let s=!0,{mean:i,variance:o}=Od(n,this.axis,s),l=$i(1,a);for(let f of this.axis)l[f]=r[f];let c=f=>f!=null&&f.shape.length!==a&&this.axis!==[a-1]?f.reshape(l):f,u=c(this.gamma.read()),h=c(this.beta.read()),d=[],p=[];for(let f=0;f{if(e.rank!==4)throw new B(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new B("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Tr()),n!=="channelsLast"&&n!=="channelsFirst")throw new B(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],ha(e,r)})}var mg=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Tr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new B(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new B(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new B(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){e=st(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return z(()=>kae(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};mg.className="ZeroPadding2D";re.registerClass(mg);function d0(e,t,n,r,a,s){return z(()=>{Ct(a),e6(s),ar(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=Tr()),s==null&&(s="max"),e=Oy(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=ac(e,t,n,o):i=Ju(e,t,n,o),a==="channelsFirst"&&(i=Je(i,[0,3,1,2])),i})}function y4(e,t,n,r,a,s){return z(()=>{Ct(a),e6(s),ar(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=Tr()),s==null&&(s="max"),e=h4(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Dm(e,t,n,o):i=wm(e,t,n,o),a==="channelsFirst"&&(i=Je(i,[0,4,1,2,3])),i})}var g4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new B(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(qt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new B(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ar(this.padding),this.inputSpec=[new Ft({ndim:3})]}computeOutputShape(e){e=st(e);let t=$r(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return z(()=>{this.invokeCallHook(e,t),e=Dc(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ja(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Ag=class extends g4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),ar(r),d0(e,t,n,r,a,"max")}};Ag.className="MaxPooling1D";re.registerClass(Ag);var yg=class extends g4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),ar(r),d0(e,t,n,r,a,"avg")}};yg.className="AveragePooling1D";re.registerClass(yg);var x4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new B(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];qt(this.poolSize,"poolSize"),qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),ar(this.padding),this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=$r(t,this.poolSize[0],this.padding,this.strides[0]),n=$r(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return z(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},gg=class extends x4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),ar(r),d0(e,t,n,r,a,"max")}};gg.className="MaxPooling2D";re.registerClass(gg);var xg=class extends x4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),ar(r),d0(e,t,n,r,a,"avg")}};xg.className="AveragePooling2D";re.registerClass(xg);var w4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new B(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];qt(this.poolSize,"poolSize"),qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),ar(this.padding),this.inputSpec=[new Ft({ndim:5})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=$r(t,this.poolSize[0],this.padding,this.strides[0]),n=$r(n,this.poolSize[1],this.padding,this.strides[1]),r=$r(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return z(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},wg=class extends w4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),ar(r),y4(e,t,n,r,a,"max")}};wg.className="MaxPooling3D";re.registerClass(wg);var bg=class extends w4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),ar(r),y4(e,t,n,r,a,"avg")}};bg.className="AveragePooling3D";re.registerClass(bg);var b4=class extends qe{constructor(e){super(e);this.inputSpec=[new Ft({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new De}},_g=class extends b4{constructor(e){super(e||{})}call(e,t){return z(()=>{let n=ze(e);return It(n,1)})}};_g.className="GlobalAveragePooling1D";re.registerClass(_g);var vg=class extends b4{constructor(e){super(e||{})}call(e,t){return z(()=>{let n=ze(e);return Rn(n,1)})}};vg.className="GlobalMaxPooling1D";re.registerClass(vg);var _4=class extends qe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new De}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},kg=class extends _4{call(e,t){return z(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?It(n,[1,2]):It(n,[2,3])})}};kg.className="GlobalAveragePooling2D";re.registerClass(kg);var Ig=class extends _4{call(e,t){return z(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Rn(n,[1,2]):Rn(n,[2,3])})}};Ig.className="GlobalMaxPooling2D";re.registerClass(Ig);var v4=class extends qe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=Fr(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},Sg=class extends v4{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=st(e),e.length<3)throw new B(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=st(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return z(()=>(e=ze(e),m4((n,r)=>[ze(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Sg.className="TimeDistributed";re.registerClass(Sg);function Iae(e){Oi(Ote,"BidirectionalMergeMode",e)}var Sae="concat",Ng=class extends v4{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Fr(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=Fr(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?Sae:e.mergeMode,Iae(this.mergeMode),e.weights)throw new De("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):Fn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=f4(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new B("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Ft({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(r!=null)throw new De("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Mr;for(let l of s)if(l instanceof Mr!==o)throw new B("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let h=super.apply(l,t);return this.inputSpec=u,h}else return super.apply(e,t)}call(e,t){return z(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Wn(a,1));let i;return this.mergeMode==="concat"?i=QA([r,a]):this.mergeMode==="sum"?i=se(r,a):this.mergeMode==="ave"?i=P(.5,se(r,a)):this.mergeMode==="mul"?i=P(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){zi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),zi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Fr(t.layer);if(delete t.layer,t.numConstants!=null)throw new De("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};Ng.className="Bidirectional";re.registerClass(Ng);function Jte(e){return new ql(e)}function Qte(e){return new Fy(e)}function ene(e){return new Cy(e)}function tne(e){return new Ry(e)}function nne(e){return new My(e)}function rne(e){return new Dy(e)}function ane(e){return new $y(e)}function sne(e){return new i0(e)}function ine(e){return new Hc(e)}function one(e){return new Py(e)}function lne(e){return new Gc(e)}function une(e){return new Ly(e)}function cne(e){return new Wy(e)}function hne(e){return new By(e)}function dne(e){return new Vy(e)}function pne(e){return new jy(e)}function fne(e){return new Yy(e)}function mne(e){return new Ky(e)}function Ane(e){return new h0(e)}function yne(e){return new Xy(e)}function gne(e){return new Zy(e)}function xne(e){return new Jy(e)}function wne(e){return new Qy(e)}function bne(e){return new eg(e)}function _ne(e){return new ng(e)}function vne(e){return new rg(e)}function kne(e){return new sg(e)}function Ine(e){return new lg(e)}function Sne(e){return new ig(e)}function Nne(e){return new og(e)}function Tne(e){return new ag(e)}function Ene(e){return new ug(e)}function Cne(e){return new pg(e)}function Rne(e){return new fg(e)}function Mne(e){return new mg(e)}function ly(e){return new yg(e)}function Fne(e){return ly(e)}function $ne(e){return ly(e)}function uy(e){return new xg(e)}function Dne(e){return uy(e)}function One(e){return uy(e)}function cy(e){return new bg(e)}function zne(e){return cy(e)}function Pne(e){return cy(e)}function Lne(e){return new _g(e)}function Wne(e){return new kg(e)}function p6(e){return new vg(e)}function f6(e){return new Ig(e)}function m6(e){return new Ag(e)}function A6(e){return new gg(e)}function Bne(e){return new wg(e)}function Vne(e){return new Hy(e)}function jne(e){return new u0(e)}function Une(e){return new Gy(e)}function Hne(e){return new qc(e)}function Gne(e){return new Uy(e)}function qne(e){return new l0(e)}function Xne(e){return new qy(e)}function Kne(e){return new c0(e)}function Zne(e){return new Zr(e)}function Yne(e){return new o0(e)}function Jne(e){return new Ng(e)}function Qne(e){return new Sg(e)}var ere=p6,tre=f6,nre=m6,rre=A6;function are(e){return new cg(e)}function sre(e){return new hg(e)}function ire(e){return new dg(e)}function ore(e){return new tg(e)}var k4={};Me(k4,{MAPE:()=>zae,MSE:()=>Wae,binaryAccuracy:()=>Nae,binaryCrossentropy:()=>Tae,categoricalAccuracy:()=>Cae,categoricalCrossentropy:()=>Rae,cosineProximity:()=>$ae,mape:()=>Pae,meanAbsoluteError:()=>Dae,meanAbsolutePercentageError:()=>Oae,meanSquaredError:()=>Lae,mse:()=>Bae,precision:()=>Mae,recall:()=>Fae,sparseCategoricalAccuracy:()=>Eae});function Nae(e,t){return Ay(e,t)}function Tae(e,t){return R6(e,t)}function Eae(e,t){return M6(e,t)}function Cae(e,t){return yy(e,t)}function Rae(e,t){return gy(e,t)}function Mae(e,t){return C6(e,t)}function Fae(e,t){return Sre(e,t)}function $ae(e,t){return fy(e,t)}function Dae(e,t){return Qp(e,t)}function Oae(e,t){return Kl(e,t)}function zae(e,t){return Kl(e,t)}function Pae(e,t){return Kl(e,t)}function Lae(e,t){return Li(e,t)}function Wae(e,t){return Li(e,t)}function Bae(e,t){return Li(e,t)}var I4={};Me(I4,{modelFromJSON:()=>iae});var S4={};Me(S4,{l1:()=>jae,l1l2:()=>Vae,l2:()=>Uae});function Vae(e){return new jc(e)}function jae(e){return fae(e)}function Uae(e){return mae(e)}var N4=class extends Xl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof ga))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function p0(e,t){return et}var E4=class extends N4{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new De("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=p0:this.mode==="max"?this.monitorFunc=T4:this.monitor.indexOf("acc")!==-1?this.monitorFunc=T4:this.monitorFunc=p0,this.monitorFunc===p0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===p0?Infinity:-Infinity}async onEpochEnd(e,t){await Ja(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Hae(e){return new E4(e)}var Gae={earlyStopping:Hae},Dr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Dr||(Dr={}));var C4;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(C4||(C4={}));var Tg={};function qae(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Tg[e]=n}function R4(e){return Tg[e]}function Xae(e){delete Tg[e]}function I(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return yn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>yn(h,n,r,a));let c=yn(t.inputNames.slice(o)[0],n,r,a),u=c.dataSync();return s.type==="number"?u[0]:_.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function yn(e,t,n,r){let[a,s]=jn(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[f0(a,o)]);return i!==void 0?t[f0(a,i)][s]:void 0}function Kae(e,t,n){return t[f0(e,n.currentContextId)]}function xa(e,t){let[n,r]=jn(e);return[f0(n,t&&t.currentContextId),r]}function f0(e,t){return t?`${e}-${t}`:e}function jn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function m0(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function wa(e){return e.kept?e:Wr(e)}var M4={};Me(M4,{json:()=>Zae});var Zae=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],F4={};Me(F4,{json:()=>Yae});var Yae=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],$4={};Me($4,{json:()=>Jae});var Jae=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],D4={};Me(D4,{json:()=>Qae});var Qae=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],O4={};Me(O4,{json:()=>ese});var ese=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],z4={};Me(z4,{json:()=>tse});var tse=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],P4={};Me(P4,{json:()=>nse});var nse=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],L4={};Me(L4,{json:()=>rse});var rse=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],W4={};Me(W4,{json:()=>ase});var ase=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],B4={};Me(B4,{json:()=>sse});var sse=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],V4={};Me(V4,{json:()=>ise});var ise=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],j4={};Me(j4,{json:()=>ose});var ose=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],U4={};Me(U4,{json:()=>lse});var lse=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],H4={};Me(H4,{json:()=>use});var use=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],G4={};Me(G4,{json:()=>cse});var cse=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],q4={};Me(q4,{json:()=>hse});var hse=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],X4={};Me(X4,{json:()=>dse});var dse=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],Z4=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[M4,F4,$4,D4,O4,z4,P4,V4,B4,L4,j4,U4,H4,G4,q4,X4,W4],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?a.push(f[m.name]):(m.input==null||m.input.length===0)&&s.push(f[m.name]),f),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(f=>{let m=i[f];m.inputNames.forEach(A=>{let[y]=xa(A);m.inputs.push(i[y]),i[y].children.push(m)})}),Object.keys(u).length===0?h.forEach(f=>{let m=i[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=xa(f),A=i[m];A!=null&&(A.signatureKey=u[f],l.push(A))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=xa(f),A=i[m];A&&(A.signatureKey=c[f],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=R4(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=Eg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Eg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=zg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=zg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=Rg(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=Rg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=Og(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Og(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=Cg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Cg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=Lg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Lg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=Dg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Dg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=Pg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Pg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=Fg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Fg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=$g(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=$g(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=K4(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=K4(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&r.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=xa(c.name),h={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Mg(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,s.push(h),a[u]=h}),Object.keys(a).forEach(c=>{let u=a[c];u.inputNames.forEach(h=>{let[d]=xa(h);u.inputs.push(a[d]),a[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,h]=xa(o[c.name]),d=a[u];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function pse(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function Y4(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):pse(e);return t?n:n.toLowerCase()}function Eg(e,t,n,r=!1){let a=e[t];return a!=null?Y4(a.s,r):n}function Cg(e,t,n){let r=e[t];return r?r.b:n}function Rg(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function Mg(e){switch(typeof e=="string"&&(e=Dr[e]),e){case Dr.DT_FLOAT:return"float32";case Dr.DT_INT32:case Dr.DT_INT64:case Dr.DT_INT8:case Dr.DT_UINT8:return"int32";case Dr.DT_BOOL:return"bool";case Dr.DT_DOUBLE:return"float32";case Dr.DT_STRING:return"string";default:return null}}function K4(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function Fg(e,t,n){let r=e[t];return r&&r.type?Mg(r.type):n}function $g(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>Mg(a)):n}function J4(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Dg(e,t,n){let r=e[t];return r&&r.shape?J4(r.shape):n}function Og(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function zg(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>Y4(s,r)):n}function Pg(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>J4(a)):n}function Lg(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var fse=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return yn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return yn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Rg(this.node.rawAttrs,e,t);if(n.s!=null)return Eg(this.node.rawAttrs,e,t);if(n.b!=null)return Cg(this.node.rawAttrs,e,t);if(n.shape!=null)return Dg(this.node.rawAttrs,e,t);if(n.type!=null)return Fg(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Og(this.node.rawAttrs,e,t);if(n.list.s!=null)return zg(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Pg(this.node.rawAttrs,e,t);if(n.list.b!=null)return Lg(this.node.rawAttrs,e,t);if(n.list.type!=null)return $g(this.node.rawAttrs,e,t)}return t}},mse=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[Pa(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[zm(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[P(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[Ae(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[Sm(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[vd(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ye(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Il(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[jr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[da(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[qd(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ase=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(I("x",e,t,n))];case"Acos":return[cm(I("x",e,t,n))];case"Acosh":return[hm(I("x",e,t,n))];case"Asin":return[pm(I("x",e,t,n))];case"Asinh":return[fm(I("x",e,t,n))];case"Atan":return[mm(I("x",e,t,n))];case"Atan2":return[Am(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[ym(I("x",e,t,n))];case"Ceil":return[bm(I("x",e,t,n))];case"Complex":return[$a(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[ec(I("x",e,t,n))];case"Cosh":return[Td(I("x",e,t,n))];case"Elu":return[_l(I("x",e,t,n))];case"Erf":return[Nm(I("x",e,t,n))];case"Exp":return[Qn(I("x",e,t,n))];case"Expm1":return[Tm(I("x",e,t,n))];case"Floor":return[vl(I("x",e,t,n))];case"Log":return[zn(I("x",e,t,n))];case"Log1p":return[Md(I("x",e,t,n))];case"Imag":return[Cd(I("x",e,t,n))];case"Neg":return[kt(I("x",e,t,n))];case"Reciprocal":return[Wm(I("x",e,t,n))];case"Real":return[oc(I("x",e,t,n))];case"Relu":return[Ur(I("x",e,t,n))];case"Round":return[Bm(I("x",e,t,n))];case"Selu":return[Bd(I("x",e,t,n))];case"Sigmoid":return[Tn(I("x",e,t,n))];case"Sin":return[Vd(I("x",e,t,n))];case"Sign":return[jm(I("x",e,t,n))];case"Sinh":return[jd(I("x",e,t,n))];case"Softplus":return[bi(I("x",e,t,n))];case"Sqrt":return[en(I("x",e,t,n))];case"Square":return[ot(I("x",e,t,n))];case"Tanh":return[yi(I("x",e,t,n))];case"Tan":return[Gm(I("x",e,t,n))];case"ClipByValue":return[En(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Ld(I("x",e,t,n))];case"Rsqrt":return[Wd(yn(e.inputNames[0],t,n))];case"Prod":return[zd(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[nc(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[ic(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[Cm(yn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function xr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){_.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;rn+` Shapes ${e} and ${t} must match`)}}}function Q4(e){return!(typeof e=="number"||e.some(t=>t<0))}function Zc(e,t,n){let r=Wg(e,n),a=!Q4(r);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(a&&t.forEach(s=>{r=Wg(s.shape,r)}),!Q4(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function Wg(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=a>=0?a:s}return n}var yse=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=xe(0),Ht(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, - because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),xr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Ht(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,mr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to +2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let p of Object.keys(Ar))c[p]=Ar[p];for(let p of Object.keys(n))c[p]=n[p];let u=s.config;u.customObjects=c;let h=Object.assign({},Ar);for(let p of Object.keys(n))Ar[p]=n[p];VA(s.config);let d=l(o,s.config,n,a);return Ar=Object.assign({},h),d}else{let c=Object.assign({},Ar);for(let h of Object.keys(n))Ar[h]=n[h];let u=new o(s.config);return Ar=Object.assign({},c),u}}}function ste(e,t){return et?1:0}function Op(e,t){return-1*ste(e,t)}function Za(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function ite(e){if(e==null)throw new B(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function zi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new B(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function jA(e,t,n=0,r=Infinity){return Kr(n>=0),Kr(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function qt(e,t){Array.isArray(e)?(_.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>qt(n,`element ${r+1} of ${t}`))):_.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Uv(e)}.`)}function Uv(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Uv(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function ote(e,t){let n=_.now(),r;return(...a)=>{let s=_.now();return s-nen(Te(z(e,e),t,!0)))}var Cc=class extends re.Serializable{getConfig(){return{}}},HA=class extends Cc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=UA(e,this.axis),n=En(t,0,this.maxValue);return z(e,Ae(n,se(Wt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};HA.className="MaxNorm";re.registerClass(HA);var GA=class extends Cc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>Ae(e,se(Wt(),UA(e,this.axis))))}getConfig(){return{axis:this.axis}}};GA.className="UnitNorm";re.registerClass(GA);var qA=class extends Cc{apply(e){return Hr(e)}};qA.className="NonNeg";re.registerClass(qA);var XA=class extends Cc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=UA(e,this.axis),n=se(z(this.rate,En(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,Ae(n,se(Wt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};XA.className="MinMaxNorm";re.registerClass(XA);var Gv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Bt(e){return BA(e)}function qv(e,t={}){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Vt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Gv?Gv[e]:e,config:{}};return qv(t)}else return e instanceof Cc?e:qv(e)}function tte(e){return new HA(e)}function nte(e){return new GA(e)}function rte(){return new qA}function ate(e){return new XA(e)}var Xv={};Me(Xv,{constant:()=>cte,glorotNormal:()=>yte,glorotUniform:()=>Ate,heNormal:()=>gte,heUniform:()=>xte,identity:()=>fte,leCunNormal:()=>bte,leCunUniform:()=>wte,ones:()=>ute,orthogonal:()=>_te,randomNormal:()=>dte,randomUniform:()=>hte,truncatedNormal:()=>pte,varianceScaling:()=>mte,zeros:()=>lte});var vte=["channelsFirst","channelsLast"],kte=["nearest","bilinear"],Ite=["valid","same","causal"],Ste=["max","avg"],Nte=["sum","mul","concat","ave"],Hl=new Map;function Ct(e){zi(vte,"DataFormat",e)}function Tte(e){zi(kte,"InterpolationFormat",e)}function ar(e){zi(Ite,"PaddingMode",e)}function Kv(e){zi(Ste,"PoolMode",e)}var Rc=[],Zv="/";function Pi(e,t){Rc.push(e);try{let n=t();return Rc.pop(),n}catch(n){throw Rc.pop(),n}}function Ete(){return Rc.length===0?"":Rc.join(Zv)+Zv}function Jv(e){if(!Yv(e))throw new Error("Not a valid tensor name: '"+e+"'");return Ete()+e}function Qv(e){if(!Yv(e))throw new Error("Not a valid tensor name: '"+e+"'");Hl.has(e)||Hl.set(e,0);let t=Hl.get(e);if(Hl.set(e,Hl.get(e)+1),t>0){let n=`${e}_${t}`;return Hl.set(n,1),n}else return e}var Cte=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function Yv(e){return!!e.match(Cte)}function Rte(e){return e===parseInt(e.toString(),10)}function Ya(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a{if(e.shape.length!==2)throw new B(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Fc(e,1);return KA(n,[1,t,1])})}function Fte(e){let t=[Ya(e.shape)];return e.reshape(t)}function $te(e){if(e.rank<=1)throw new B(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ya(e.shape,1)];return e.reshape(t)}function Li(e,t,n){return P(()=>{switch(e.rank){case 1:return jd(e,t,n);case 2:return Vm(e,[t,0],[n,e.shape[1]]);case 3:return Ud(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return ic(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new B(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function ZA(e,t,n){return P(()=>{switch(e.rank){case 1:return jd(e,t,n);case 2:return Vm(e,[0,t],[e.shape[0],n]);case 3:return Ud(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return ic(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function zp(e,t,n,r){return P(()=>{switch(e.rank){case 1:return jd(e,t,n);case 2:switch(r){case 1:return Li(e,t,n);case 2:return ZA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return Li(e,t,n);case 2:return Ud(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return ZA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return Li(e,t,n);case 2:return ic(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return ic(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return ZA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function YA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ot(e,t)}function t6(e,t){switch(e.rank){case 1:return Jb([e,t]);case 2:return bl([e,t],0);case 3:return Qb([e,t],0);case 4:return ew([e,t],0);default:throw new B(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function KA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new B(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Va(e,t)}function Pp(e,t=0,n=1,r,a){return gw(e,t,n,r,a)}function Zr(e,t,n,r){if(e.rank<2||t.rank<2)throw new De(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new De(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return Ha.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?JA(e.rank,r,Er()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(u).reshape([l,-1]);let h=[...a,...c],d=!1,p=!1;return Ha.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?JA(e.rank,r,Er()):null,activation:n}).reshape(h)}}function n6(e,t,n){return P(()=>(Array.isArray(t)?t=sn(t,"int32"):t=t.toInt(),bi(e,t,n)))}function $c(e){return z(e,e)}function JA(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new B(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new B(`Unsupported input rank by biasAdd: ${t.rank}`)}function Mr(e,t,n){return P(()=>(n==null&&(n=Er()),Ct(n),e.add(JA(e.rank,t,n))))}function Dte(e,t=1){if(t!==1)throw new De(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return _l(e)}function Ote(e){return P(()=>Ae(e,zt(e).add(1)))}function r6(e,t,n,r){return P(()=>Iw(e,t,n,r))}function zte(e){return P(()=>{let t=se(.5,z(.2,e));return En(t,0,1)})}function Dc(e,t,n=!1){return n?e():t()}var Pte=["fanIn","fanOut","fanAvg"],Lte=["normal","uniform","truncatedNormal"];function Wte(e){zi(Pte,"FanMode",e)}function Bte(e){zi(Lte,"Distribution",e)}var yr=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},QA=class extends yr{apply(e,t){return Rt(e,t)}};QA.className="Zeros";re.registerClass(QA);var Lp=class extends yr{apply(e,t){return Pn(e,t)}};Lp.className="Ones";re.registerClass(Lp);var ey=class extends yr{constructor(e){super();if(typeof e!="object")throw new B(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new B(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return P(()=>z(ve(this.value),Pn(e,t)))}getConfig(){return{value:this.value}}};ey.className="Constant";re.registerClass(ey);var ty=class extends yr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Sl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};ty.className="RandomUniform";re.registerClass(ty);var ny=class extends yr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`randomNormal does not support dType ${t}.`);return Pp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ny.className="RandomNormal";re.registerClass(ny);var ry=class extends yr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`truncatedNormal does not support dType ${t}.`);return qd(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ry.className="TruncatedNormal";re.registerClass(ry);var ay=class extends yr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return P(()=>{if(e.length!==2||e[0]!==e[1])throw new B("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,Nm(e[0]))})}getConfig(){return{gain:this.gain}}};ay.className="Identity";re.registerClass(ay);function Vte(e,t="channelsLast"){let n,r;if(Ct(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Ya(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Ya(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Ya(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var $n=class extends yr{constructor(e){super();if(e.scale<0)throw new B(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Wte(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Bte(this.distribution),this.seed=e.seed}apply(e,t){let n=Vte(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`${this.getClassName()} does not support dType ${t}.`);return qd(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Sl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};$n.className="VarianceScaling";re.registerClass($n);var Wp=class extends $n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Wp.className="GlorotUniform";re.registerClass(Wp);var Bp=class extends $n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Bp.className="GlorotNormal";re.registerClass(Bp);var Vp=class extends $n{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Vp.className="HeNormal";re.registerClass(Vp);var jp=class extends $n{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};jp.className="HeUniform";re.registerClass(jp);var Up=class extends $n{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Up.className="LeCunNormal";re.registerClass(Up);var Hp=class extends $n{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Hp.className="LeCunNormal";re.registerClass(Hp);var sy=class extends yr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new De("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return P(()=>{if(e.length<2)throw new De("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=Pp(n,0,1,"float32"),a=Pw.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),z(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};sy.className="Orthogonal";re.registerClass(sy);var a6={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function s6(e,t={}){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function St(e){return BA(e)}function gt(e){if(typeof e=="string"){let t=e in a6?a6[e]:e;if(t==="GlorotNormal")return new Bp;if(t==="GlorotUniform")return new Wp;if(t==="HeNormal")return new Vp;if(t==="HeUniform")return new jp;if(t==="LeCunNormal")return new Up;if(t==="LeCunUniform")return new Hp;{let n={};return n.className=t,n.config={},s6(n)}}else return e instanceof yr?e:s6(e)}function lte(){return new QA}function ute(){return new Lp}function cte(e){return new ey(e)}function hte(e){return new ty(e)}function dte(e){return new ny(e)}function pte(e){return new ry(e)}function fte(e){return new ay(e)}function mte(e){return new $n(e)}function Ate(e){return new Wp(e)}function yte(e){return new Bp(e)}function gte(e){return new Vp(e)}function xte(e){return new jp(e)}function bte(e){return new Up(e)}function wte(e){return new Hp(e)}function _te(e){return new sy(e)}var i6={};Me(i6,{Layer:()=>qe,RNN:()=>Yr,RNNCell:()=>Oc,activation:()=>sne,add:()=>fne,alphaDropout:()=>Yne,average:()=>mne,averagePooling1d:()=>iy,averagePooling2d:()=>oy,averagePooling3d:()=>ly,avgPool1d:()=>kne,avgPool2d:()=>Sne,avgPool3d:()=>Tne,avgPooling1d:()=>Ine,avgPooling2d:()=>Nne,avgPooling3d:()=>Ene,batchNormalization:()=>wne,bidirectional:()=>jne,concatenate:()=>Ane,conv1d:()=>Zte,conv2d:()=>Yte,conv2dTranspose:()=>Jte,conv3d:()=>Qte,conv3dTranspose:()=>ene,convLstm2d:()=>Lne,convLstm2dCell:()=>Wne,cropping2D:()=>nne,dense:()=>ine,depthwiseConv2d:()=>ane,dot:()=>bne,dropout:()=>one,elu:()=>Ute,embedding:()=>pne,flatten:()=>une,gaussianDropout:()=>Zne,gaussianNoise:()=>Kne,globalAveragePooling1d:()=>Cne,globalAveragePooling2d:()=>Rne,globalMaxPool1d:()=>Hne,globalMaxPool2d:()=>Gne,globalMaxPooling1d:()=>l6,globalMaxPooling2d:()=>u6,gru:()=>Fne,gruCell:()=>$ne,input:()=>o6,inputLayer:()=>jte,layerNormalization:()=>_ne,leakyReLU:()=>Gte,lstm:()=>Dne,lstmCell:()=>One,masking:()=>Jne,maxPool1d:()=>qne,maxPool2d:()=>Xne,maxPooling1d:()=>c6,maxPooling2d:()=>h6,maxPooling3d:()=>Mne,maximum:()=>yne,minimum:()=>gne,multiply:()=>xne,permute:()=>dne,prelu:()=>qte,reLU:()=>Hte,repeatVector:()=>cne,reshape:()=>hne,rnn:()=>Bne,separableConv2d:()=>tne,simpleRNN:()=>zne,simpleRNNCell:()=>Pne,softmax:()=>Xte,spatialDropout1d:()=>lne,stackedRNNCells:()=>Vne,thresholdedReLU:()=>Kte,timeDistributed:()=>Une,upSampling2d:()=>rne,zeroPadding2d:()=>vne});var Qne=0;function d6(){return Qne++}var Gp={};function qp(e=""){return e in Gp||(Gp[e]=0),Gp[e]+=1,e+Gp[e].toString()}function uy(e){return Array.isArray(e)&&Array.isArray(e[0])}function Xp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new B(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function at(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new B(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Kp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var p6="Variable",f6=class{constructor(e,t="float32",n=p6,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=d6(),n=n==null?p6:n,this.originalName=Jv(n),this.name=Qv(this.originalName),this.trainable_=r,this.constraint=a,this.val=bw(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),ere(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function ere(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function cy(e){return e.map(t=>t.read())}function hy(e){e.forEach(t=>{t[0].write(t[1])})}var Ft=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Fr=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=d6(),s!=null&&(this.originalName=Jv(s),this.name=Qv(this.originalName)),this.rank=t.length}},tre=0,Zp=class{constructor(e,t){this.callArgs=t,this.id=tre++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},nre=0,qe=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=nre++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ga(n)+"_"+qp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Cr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new B(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Fn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Fn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ya(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ya(`Layer ${this.name} is not connected, no input to return.`);return Fn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ya(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ya(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Fn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=At(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=At(this.inputSpec);if(e.length!==t.length)throw new B(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;na.maxNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of At(e))s.push(i.shape);this.build(Fn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=At(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Fn(o),this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=rre(e),i=this.computeOutputShape(s),o,l=are(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new Fr(l,c,this,At(e),t,this.name,u)):o=new Fr(l,i,this,At(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ya(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ya(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Cr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Kp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return cy(e?this.trainableWeights:this.weights)}setWeights(e){P(()=>{let t=this.weights;if(t.length!==e.length)throw new B(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=cy(t);for(let a=0;aa.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=At(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=At(e);t=At(t),n=At(n),r=At(r),a=Xp(a),s=Xp(s);let l=[],c=[],u=[];for(let h of o)l.push(h.sourceLayer),c.push(h.nodeIndex),u.push(h.tensorIndex);new Zp({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;he.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function rre(e){e=At(e);let t=[];for(let n of e)t.push(n.shape);return Fn(t)}function are(e){return"float32"}function m6(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s0){let a=await Promise.all(t);for(let s=0;sse(this.totals[r],z(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:P(()=>{let r=z(Ae(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Ht(t[n])}))}},b6=class extends Xl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;inew w6(n,t))}var gr=class{constructor(){}static registerCallbackConstructor(e,t){_.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),gr.checkForDuplicate(t),gr.constructors[e]==null&&(gr.constructors[e]=[]),gr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in gr.constructors)gr.constructors[+t].forEach(n=>{if(n===e)throw new B("Duplicate callback constructor.")})}static clear(){gr.constructors={}}static createCallbacks(e){let t=[];for(let n in gr.constructors){let r=+n;e>=r&&t.push(...gr.constructors[r])}return t.map(n=>new n)}};gr.constructors={};function v6(e,t,n,r,a,s,i,o,l){let c=new b6,u=[new ire,...gr.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let h=new x6(u);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:c}}function $r(e,t={},n=!1){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Yp(e,t){return P(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Te($c(e),t,!0),r=Qu(n.shape,Wt()),a=en(Ur(n,r));return Ae(e,a)})}function Wi(e,t){return P(()=>It($c(ye(t,e)),-1))}function Jp(e,t){return P(()=>It(zt(ye(t,e)),-1))}function Kl(e,t){return P(()=>{let n=ye(e,t),r=En(zt(e),Wt(),Number.MAX_VALUE),a=zt(Ae(n,r));return z(100,It(a,-1))})}function ore(e,t){return P(()=>{let n=En(t,Wt(),Number.MAX_VALUE),r=zn(se(1,n)),a=En(e,Wt(),Number.MAX_VALUE),s=zn(se(1,a));return It($c(ye(r,s)),-1)})}function lre(e,t){return P(()=>{let n=Ur(0,ye(1,z(e,t)));return It($c(n),-1)})}function ure(e,t){return P(()=>{let n=Ur(0,ye(1,z(e,t)));return It(n,-1)})}function cre(e,t){return P(()=>{let n=Te(z(e,t),-1),r=Rn(z(ye(1,e),t),-1);return Ur(0,se(1,ye(r,n)))})}function hre(e,t){return P(()=>{let n=Math.log(2),r=ye(t,e),a=ye(se(r,_i(z(-2,r))),n);return It(a,-1)})}function zc(e,t,n=!1){return P(()=>{if(n)t=oc(t);else{let r=Te(t,t.shape.length-1,!0);t=Ae(t,r)}return t=En(t,Wt(),1-Wt()),kt(Te(z(e.toFloat(),zn(t)),t.shape.length-1))})}function Qp(e,t,n=!1){return P(()=>{let r=vl(Fte(e)).toInt();t=En(t,Wt(),1-Wt());let a=t.shape,s=ml(r,a[a.length-1]).reshape(a);return zc(s,t,n)})}function dre(e,t){if(!_.arraysEqual(e.shape,t.shape))throw new B(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return P(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function e0(e,t){return P(()=>{let n;return n=En(t,Wt(),1-Wt()),n=zn(Ae(n,ye(1,n))),It(dre(e,n),-1)})}function pre(e,t){return P(()=>{let n=En(e,Wt(),1),r=En(t,Wt(),1);return Te(z(e,zn(Ae(n,r))),-1)})}function fre(e,t){return P(()=>{let n=zn(se(Wt(),t));return It(ye(t,z(e,n)),-1)})}function dy(e,t){return P(()=>{let n=Yp(e,-1),r=Yp(t,-1),a=z(n,r);return kt(Te(a,-1))})}var t0={meanSquaredError:Wi,meanAbsoluteError:Jp,meanAbsolutePercentageError:Kl,meanSquaredLogarithmicError:ore,squaredHinge:lre,hinge:ure,categoricalHinge:cre,logcosh:hre,categoricalCrossentropy:zc,sparseCategoricalCrossentropy:Qp,binaryCrossentropy:e0,kullbackLeiblerDivergence:pre,poisson:fre,cosineProximity:dy};function py(e){if(typeof e=="string"){if(e in t0)return t0[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new B(t)}else return e}function fy(e,t){return P(()=>{let n=z(.5,Ln(t)),r=Mc(pr(t,n),e.dtype);return It(Ba(e,r),-1)})}function my(e,t){return P(()=>Mc(Ba(Ai(e,-1),Ai(t,-1)),"float32"))}function k6(e,t){return P(()=>fr(e.equal(1),t.equal(1)).sum().cast("float32"))}function mre(e,t){return P(()=>fr(e.equal(1),t.equal(0)).sum().cast("float32"))}function Are(e,t){return P(()=>fr(e.equal(0),t.equal(1)).sum().cast("float32"))}function I6(e,t){return P(()=>{let n=k6(e,t),r=Are(e,t),a=n.add(r);return Cn(pr(a,0),n.div(a),0).cast("float32")})}function yre(e,t){return P(()=>{let n=k6(e,t),r=mre(e,t),a=n.add(r);return Cn(pr(a,0),n.div(a),0).cast("float32")})}function S6(e,t){return e0(e,t)}function N6(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Ba(e,t).asType("float32")}var gre=Wi,xre=Wi,bre=Jp,wre=Jp,_re=Kl,vre=Kl,Ay=zc,kre=dy,T6=Qp,n0={binaryAccuracy:fy,categoricalAccuracy:my,precision:I6,categoricalCrossentropy:Ay,sparseCategoricalCrossentropy:T6,mse:gre,MSE:xre,mae:bre,MAE:wre,mape:_re,MAPE:vre,cosine:kre};function Ire(e){if(typeof e=="string"&&e in n0)return n0[e];if(typeof e!="string"&&e!=null)return e;throw new B(`Unknown metric ${e}`)}function r0(e){if(Kr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(t0))if(t0[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(n0))if(n0[n]===e){t=n;break}return t!==void 0?t:e.name}}function Sre(e){let t={Adagrad:()=>Si.adagrad(.01),Adadelta:()=>Si.adadelta(1,.95,Wt()),Adam:()=>Si.adam(.001,.9,.999,Wt()),Adamax:()=>Si.adamax(.002,.9,.999,Wt(),0),RMSProp:()=>Si.rmsprop(.001,.9,0,Wt()),SGD:()=>Si.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new B(`Unknown Optimizer ${e}`)}var E6=1*1024*1024;function C6(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!yy(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>E6&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${E6}.`)}}function yy(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!yy(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!yy(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Rre(e,t,n,r=console.log){let a=Tre(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!a){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}r("_".repeat(t)),a0(s,n,r),r("=".repeat(t));let o=e.layers;for(let u=0;u1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function a0(e,t,n=console.log){let r="";for(let a=0;a0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function Ere(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];a0(i,t,n)}function Cre(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(u){a="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let h=0;hm.name),l=[],c=t.names();for(let m of o)c.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),h,d;if(by[u]==null){let m=Fre(i,t);h=m.sorted,d=m.recipientCounts,by[u]=h,M6[u]=d}h=by[u],d={},a||Object.assign(d,M6[u]);let p=new Bi(t);for(let m=0;mr.maxNumTensors&&(r.maxNumTensors=C),C0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=F6(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=F6(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(c=>r[l].add(c))}}return{sorted:n,recipientCounts:Dre(r)}}function Dre(e){let t={};for(let n in e)t[n]=e[n].size;return t}function F6(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)a[c.name]==null&&(a[c.name]=new Set),a[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:r,recipientMap:a}}function $re(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;ry.name)}`);Za(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let g=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;Kr(x===0,"input layer has >1 nodes"),Kr(v===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;yy.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,x,v,b,w)=>{(v==null||b==null||w==null)&&(v=y.sourceLayer,b=y.nodeIndex,w=y.tensorIndex);let k=v.inboundNodes[b];if(x.indexOf(k)!==-1)throw new Cr(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(g.indexOf(k)!==-1)return;this.containerNodes.add(Jr.nodeKey(v,b)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(k)===-1&&x.push(k);let N=k.inboundLayers.length;for(let C=0;C=0;)x.splice(x.indexOf(k),1);i.push(k)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],x=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,x),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let v=0;vparseInt(y,10)).sort(Op);this.layers=[];for(let y of p){let g=d[y];g.sort((x,v)=>{let b=s[x.id],w=s[v.id];return bw?1:0});for(let x of g)x instanceof Jr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(Op);let m=this.inputs.slice(),f=[];for(let y of p)for(let g of h[y]){let x=g.outboundLayer;if(x!=null){for(let v of g.inputTensors)if(m.indexOf(v)===-1)throw new Cr(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of g.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(x=>x===y).length;if(g!==1)throw new Cr(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Zp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new B("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new B(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new B(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new B(`${s.length} of ${r} weights are not set: ${s}`)}hy(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${xy}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=gy(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return P(()=>{e=At(e);let n=new Bi;for(let r=0;r{e=At(e);let n;return t==null?n=Di(null,e.length):n=At(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Xp(e);if(t.length!==this.inputLayers.length)throw new B(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;iparseInt(i,10)).sort(Op);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(c.id)!==-1)continue;let u=[];for(let m=0;mparseInt(o,10)).sort(Op);for(let o of r){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,h=c.inputTensors,d=c.outputTensors,p=new Array;for(let m of h)m.id in n&&p.push(n[m.id]);if(p.length===h.length){let m={},f,A,y,g;if(c.callArgs!=null&&(m=c.callArgs),p.length===1){let[x,v]=p[0];m.mask==null&&(m.mask=v),y=At(u.call(x,m)),g=At(u.computeMask(x,v)),f=[x],A=[v]}else f=p.map(x=>x[0]),A=p.map(x=>x[1]),m.mask==null&&(m.mask=A),y=At(u.call(f,m)),g=At(u.computeMask(f,A));if(u.activityRegularizer)throw new De("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x{let e=[];for(let t of this.layers)for(let n=0;n0){let m=[];for(let f=0;f0&&f.apply(Fn(y),g)}function l(f){let A=f.name,y=$r(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,f.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new B(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let c=t.name,u=t.layers;for(let f of u)l(f);for(;!ite(s);)for(let f of u){let A=a[f.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let f of p){let A=f[0],y=f[1],g=f[2];Kr(A in a);let x=a[A].inboundNodes[y].outputTensors;h.push(x[g])}let m=t.outputLayers;for(let f of m){let A=f[0],y=f[1],g=f[2];Kr(A in a);let x=a[A].inboundNodes[y].outputTensors;d.push(x[g])}return new e({inputs:h,outputs:d,name:c})}get stateful(){if(this._stateful)throw new B("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){P(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Ore(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function $6(e,t){return Ore(e,t,"classWeight")}async function D6(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=P(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());we(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),sn(i,"float32")}else return null}function zre(e,t){return z(e,t)}var Pre=32;function z6(e,t){let n,r,a=t;n=a.xs,r=a.ys,_.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=O6("input",e.inputNames,n),i=O6("output",e.outputNames,r),o=s[0].shape[0];_.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),_.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function O6(e,t,n){if(n instanceof Pe)return[n];if(Array.isArray(n))return _.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new B(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function Lre(e){if(e.length===3)throw new De("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Bre(e,t,n){let r=n.batchesPerEpoch!=null;if(_.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),_.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),_.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),_.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),_.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(P6(n.validationData))_.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=Lre(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;a?c=l.slice().concat(l.map(A=>"val_"+A)):c=l.slice();let u=_6(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=v6(u,h,n.epochs,null,null,Wre(t,n),null,a,c);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m=n.batchesPerEpoch:x.done){if(a){let v;P6(n.validationData)?v=At(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=At(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?Pre:n.validationBatchSize,verbose:0}));for(let b=0;b0)throw new De("Verbose mode is not implemented yet.");_.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=Vre(t)?t:await t.iterator(),o=0,l=0;for(;r?l{if(c.value){let{xs:u,ys:h}=z6(e,c.value),d=u.concat(h),p=P(()=>a(d));if(we(d),l===0)for(let f=0;fse(s[f],z(m,A))),l>0&&we(y)}we(p),o+=m,++l}return s}),c.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Wc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>Li(r,t,n-t)):Li(e,t,n-t)}function _y(e,t){return P(()=>e==null?null:Array.isArray(e)?e.map(n=>_y(n,t)):n6(e,t.dtype==="int32"?t:t.toInt()))}function vy(e,t){let n=[],r=0,a=null;for(;r=e&&(a=e),n.push([r,a]),r=a;return n}async function Ure(e,t,n,r,a,s,i,o,l,c,u,h,d,p,m){a==null&&(a=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let f=!1;if(l!=null&&c!=null&&(f=!0),m!=null&&(f=!0,p==null))throw new B("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=Rr(0,A)),i==null&&(i=1);let{callbackList:g,history:x}=v6(o,i,s,d,A,p,a,f,h);g.setModel(e),e.history=x,await g.onTrainBegin(),e.stopTraining_=!1;for(let v=d;v{let F=k[N][0],O=k[N][1],L=Li(w,F,O-F);C.batch=N,C.size=O-F;let V=_y(n,L),j=t(V);for(let U=0;U0){if(m=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new De("validationData including sample weights is not supported yet."):new B(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let w=!0,k=await e.standardizeUserData(i,o,null,null,w,h);l=k[0],c=k[1],f=l.concat(c)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){m=!0;let w=Math.floor(a[0].shape[0]*(1-r.validationSplit)),k=a[0].shape[0];l=Wc(a,w,k),a=Wc(a,0,w),c=Wc(s,w,k),s=Wc(s,0,w),f=l.concat(c)}else r.validationSteps!=null&&(m=!0);let A=a.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),x,v;m?(e.makeTestFunction(),x=e.testFunction,v=g.slice().concat(g.map(w=>"val_"+w))):(x=null,f=[],v=g.slice());let b=_6(r.callbacks,r.yieldEvery);return await Ure(e,y,A,g,h,r.epochs,r.verbose,b,x,f,r.shuffle,v,r.initialEpoch,null,null)}finally{e.isTraining=!1,Vi(a,t),Vi(s,n),Vi(l,i),Vi(c,o),u!=null&&we(u)}}function L6(e){let t=[];e instanceof Pe&&(e=[e]);for(let n=0;nn.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof Pe)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function Gre(e){return e instanceof Pe}function ky(e){return Array.isArray(e)}function W6(e){return!Gre(e)&&!ky(e)}function B6(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(ky(e)&&e.length>0)i=!0;else if(W6(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new B(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(W6(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new B(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(ky(e)){if(e=e,e.length!==t.length)throw new B(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new B(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=L6(s),n!=null)for(let i=0;i=0&&c!==u)throw new B(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function qre(e,t,n){let r=Za(e.map(s=>s.shape[0]));r.sort();let a=Za(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new B(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new B(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!_.arraysEqual(r,a))throw new B(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function Xre(e,t,n){let r=[Wi,e0,zc];for(let a=0;a1)throw new B(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var Zre="layers-model",xa=class extends Jr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new B("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Rre(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Sre(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof ma))throw new B("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new B(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(py(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new B(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>py(s))}else{let s=py(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s{for(let s=0;s1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=Kre(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Pi("metric",()=>{for(let s=0;s{let l="",c,u,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===e0?["accuracy","acc"].indexOf(d)!==-1?u=fy:["crossentropy","ce"].indexOf(d)!==-1&&(u=S6):this.lossFunctions[s]===Qp?["accuracy","acc"].indexOf(d)!==-1?u=N6:["crossentropy","ce"].indexOf(d)!==-1&&(u=T6):["accuracy","acc"].indexOf(d)!==-1?u=my:["crossentropy","ce"].indexOf(d)!==-1&&(u=Ay);let f;["accuracy","acc"].indexOf(d)!==-1?f="acc":["crossentropy","ce"].indexOf(d)!==-1&&(f="ce"),h=u,c=l+f}else h=Ire(d),c=l+r0(d);let p;Pi(c,()=>{p=h}),a(s,c,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;wy(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return Fn(l)}finally{Vi(s[0],e),Vi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),jre(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new B(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new B(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new B("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new Bi;if(e instanceof Pe&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new B(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;oi.name);for(let i=0;i0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new B(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return P(()=>{let r=this.checkNumSamples(e);if(n)throw new De("Verbose predictLoop() is not implemented yet.");let a=vy(r,t),s=this.outputs.map(i=>[]);for(let i=0;i{let o=a[i][0],l=a[i][1],c=Wc(e,o,l),u=[];if(Array.isArray(c))for(let d=0;ds[l].push(o));return Fn(s.map(i=>ot(i,0)))})}predict(e,t={}){let n=L6(e);V6(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return wy(r),this.predictLoop(n,r)}finally{Vi(n,e)}}predictOnBatch(e){V6(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new Cr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s0&&e[0].shape[0]%r!=0)throw new B(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let c=$6(r,this.outputNames);l=[];for(let u=0;u{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new De("Verbose mode is not implemented yet.");if(a!=null)throw new De("steps mode in testLoop() is not implemented yet");{let o=vy(s,n),l=sn(Rr(0,s));for(let c=0;c1&&(a+=`_${jv(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let p=0;p1&&p{d=se(d,p)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>P(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;lga(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=ga(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ga(r0(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ga(r0(e)));{let e={};for(let t in this.metrics)e[t]=ga(r0(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Pc(e.optimizer_config),n=$r(t),r;if(typeof e.loss=="string")r=Oi(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>Oi(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=Oi(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>Oi(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=Oi(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Nn.getSaveHandlers(e);if(i.length===0)throw new B(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new B(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new B("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Nn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:Zre,generatedBy:`TensorFlow.js tfjs-layers v${xy}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Nn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Nn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;C6(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){C6(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};xa.className="Model";re.registerClass(xa);var j6=class extends xa{};j6.className="Functional";re.registerClass(j6);async function Yre(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=Pc(n),a=$r(r,t);if(e.weightsManifest!=null){let s=await Nn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),we(s)}return a}async function Qre(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Nn.getLoadHandlers(e,t);if(n.length===0)n.push(Nn.browserHTTPRequest(e,t));else if(n.length>1)throw new B(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Jre(e,void 0,t)}async function Jre(e,t,n){if(n==null&&(n={}),e.load==null)throw new B("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=$r(Pc(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new B("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=eae(r.weightData,r.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),we(c),we(u.map(h=>h.tensor))}return o}function eae(e,t){let n=Nn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Zl=class extends xa{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:qp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new B(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Zl||e instanceof xa,n;if(t){if(n=e,n.outputs.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new B("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new B("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=A6({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new B(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=m6(this.outputs[0])}this.inboundNodes=[],new Zp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Di(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(at(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new xa({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Cr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Cr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Cr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Cr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new B("Legacy serialization format not supported yet.");a=t}else _.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Zl))throw new De(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=$r(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new B("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new B("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Zl.className="Sequential";re.registerClass(Zl);function tae(e){return new xa(e)}function nae(e){return new Zl(e)}function rae(e,t){return t==null&&(t={}),Qre(e,t)}function o6(e){return A6(e)}function aae(e,t){gr.registerCallbackConstructor(e,t)}var Dn=class extends re.Serializable{getConfig(){return{}}},U6=class extends Dn{apply(e,t=1){return Dte(e,t)}};U6.className="elu";re.registerClass(U6);var H6=class extends Dn{apply(e){return Wd(e)}};H6.className="selu";re.registerClass(H6);var G6=class extends Dn{apply(e){return Hr(e)}};G6.className="relu";re.registerClass(G6);var q6=class extends Dn{apply(e){return P(()=>Il(6,Hr(e)))}};q6.className="relu6";re.registerClass(q6);var X6=class extends Dn{apply(e){return e}};X6.className="linear";re.registerClass(X6);var K6=class extends Dn{apply(e){return Tn(e)}};K6.className="sigmoid";re.registerClass(K6);var Z6=class extends Dn{apply(e){return zte(e)}};Z6.className="hardSigmoid";re.registerClass(Z6);var Y6=class extends Dn{apply(e){return _i(e)}};Y6.className="softplus";re.registerClass(Y6);var J6=class extends Dn{apply(e){return Ote(e)}};J6.className="softsign";re.registerClass(J6);var Q6=class extends Dn{apply(e){return gi(e)}};Q6.className="tanh";re.registerClass(Q6);var Iy=class extends Dn{apply(e,t=-1){return oc(e,t)}};Iy.className="softmax";re.registerClass(Iy);var e4=class extends Dn{apply(e,t=-1){return Fd(e,t)}};e4.className="logSoftmax";re.registerClass(e4);var t4=class extends Dn{apply(e,t=1){return P(()=>Tn(e.mul(t)).mul(e))}};t4.className="swish";re.registerClass(t4);var n4=class extends Dn{apply(e){return P(()=>z(e,gi(_i(e))))}};n4.className="mish";re.registerClass(n4);function es(e){return e.getClassName()}function Sy(e,t={}){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function ts(e){if(e==null){let t={};return t.className="linear",t.config={},Sy(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Sy(t)}else return e instanceof Dn?e:Sy(e)}function Ny(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var r4=class extends re.Serializable{},Bc=class extends r4{constructor(e){super();Ny(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return P(()=>{let t=Rt([1]);return this.hasL1&&(t=se(t,Te(z(this.l1,zt(e))))),this.hasL2&&(t=se(t,Te(z(this.l2,$c(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Bc.className="L1L2";re.registerClass(Bc);function sae(e){return Ny(e),new Bc({l1:e!=null?e.l1:null,l2:0})}function iae(e){return Ny(e),new Bc({l2:e!=null?e.l2:null,l1:0})}var a4={l1l2:"L1L2"};function ut(e){return BA(e)}function s4(e,t={}){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function xt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in a4?a4[e]:e,config:{}};return s4(t)}else return e instanceof r4?e:s4(e)}var Ty=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=Hr(e);return this.maxValue!=null&&(n=En(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Ty.className="ReLU";re.registerClass(Ty);var Ey=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return ec(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Ey.className="LeakyReLU";re.registerClass(Ey);var Cy=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=gt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=xt(e.alphaRegularizer),this.alphaConstraint=Vt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new B(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=at(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r(Ct(t),t==="channelsFirst"?Je(e,[0,2,3,1]):e))}function i4(e,t){return P(()=>(Ct(t),t==="channelsFirst"?Je(e,[0,2,3,4,1]):e))}function oae(e,t,n,r=1,a="valid",s,i=1){return P(()=>{if(s==null&&(s=Er()),Ct(s),e.shape.length!==3)throw new B(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new B(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new B(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Je(e,[0,2,1])),a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Id(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Mr(o,n)),o})}function o4(e,t,n,r=[1,1],a="valid",s,i,o=null){return P(()=>{if(s==null&&(s=Er()),Ct(s),e.rank!==3&&e.rank!==4)throw new B(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new B(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=$y(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ha.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Je(l,[0,3,1,2])),l})}function lae(e,t,n,r=[1,1,1],a="valid",s,i){return P(()=>{if(s==null&&(s=Er()),Ct(s),e.rank!==4&&e.rank!==5)throw new B(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new B(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=i4(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=wm(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Mr(o,n)),s==="channelsFirst"&&(o=Je(o,[0,4,1,2,3])),o})}var Dy=class extends qe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Dy.verifyArgs(t),this.rank=e,qt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new De(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Yl(t.kernelSize,e,"kernelSize"),this.strides=Yl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ar(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ct(this.dataFormat),this.activation=ts(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=gt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Vt(t.biasConstraint),this.biasRegularizer=xt(t.biasRegularizer),this.activityRegularizer=xt(t.activityRegularizer),this.dilationRate=Yl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new B(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new B(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new B(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Kr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!jA(e.kernelSize,"number",1,3))throw new B(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:es(this.activation),useBias:this.useBias,biasInitializer:St(this.biasInitializer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Vc=class extends Dy{constructor(e,t){super(e,t);this.kernel=null,Vc.verifyArgs(t),this.filters=t.filters,qt(this.filters,"filters"),this.kernelInitializer=gt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Vt(t.kernelConstraint),this.kernelRegularizer=xt(t.kernelRegularizer)}build(e){e=at(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return P(()=>{e=ze(e);let n,r=this.bias==null?null:this.bias.read(),a=Hv(this.activation.getClassName());if(a!=null&&this.rank===2)n=o4(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=oae(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=o4(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=lae(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new De("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=at(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a 0 but got ${JSON.stringify(e.filters)}`)}},jc=class extends Vc{constructor(e){super(2,e);jc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!jA(e.kernelSize,"number",1,2))throw new B(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};jc.className="Conv2D";re.registerClass(jc);var Uc=class extends Vc{constructor(e){super(3,e);Uc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new B(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Uc.className="Conv3D";re.registerClass(Uc);var Oy=class extends jc{constructor(e){super(e);if(this.inputSpec=[new Ft({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==4)throw new B("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ft({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=ze(e);if(n.shape.length!==4)throw new B(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],c=this.kernelSize[0],u=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=Qr(o,h,c,this.padding),m=Qr(l,d,u,this.padding),f=[a,p,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Je(n,[0,2,3,1]));let A=Sd(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=Je(A,[0,3,1,2])),this.bias!=null&&(A=Mr(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=at(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=Qr(t[r],o,s,this.padding),t[a]=Qr(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Oy.className="Conv2DTranspose";re.registerClass(Oy);var zy=class extends Uc{constructor(e){super(e);if(this.inputSpec=[new Ft({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==5)throw new B("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ft({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=ze(e);if(n.shape.length!==5)throw new B(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=r[o],c=r[s],u=r[i],h=this.kernelSize[0],d=this.kernelSize[1],p=this.kernelSize[2],m=this.strides[0],f=this.strides[1],A=this.strides[2],y=Qr(l,m,h,this.padding),g=Qr(c,f,d,this.padding),x=Qr(u,A,p,this.padding),v=[a,y,g,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Je(n,[0,2,3,4,1]));let b=nw(n,this.kernel.read(),v,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(b=Je(b,[0,4,1,2,3])),this.bias!==null&&(b=Mr(b,this.bias.read(),this.dataFormat)),this.activation!==null&&(b=this.activation.apply(b)),b})}computeOutputShape(e){e=at(e);let t=e.slice(),n,r,a,s;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3,s=4):(n=4,r=1,a=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],h=this.strides[2];return t[n]=this.filters,t[r]=Qr(t[r],c,i,this.padding),t[a]=Qr(t[a],u,o,this.padding),t[s]=Qr(t[s],h,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};zy.className="Conv3DTranspose";re.registerClass(zy);var l4=class extends Vc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new B("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new B("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new B(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=xt(t.depthwiseRegularizer),this.depthwiseConstraint=Vt(t.depthwiseConstraint),this.pointwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=xt(t.pointwiseRegularizer),this.pointwiseConstraint=Vt(t.pointwiseConstraint)}build(e){if(e=at(e),e.length{e=ze(e);let n;if(this.rank===1)throw new De("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Je(e,[0,2,3,1])),n=Wm(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Mr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Je(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=St(this.depthwiseInitializer),e.pointwiseInitializer=St(this.pointwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.pointwiseRegularizer=ut(this.pointwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseConstraint),e.pointwiseConstraint=Bt(this.pointwiseConstraint),e}};l4.className="SeparableConv";var Py=class extends l4{constructor(e){super(2,e)}};Py.className="SeparableConv2D";re.registerClass(Py);var s0=class extends Vc{constructor(e){super(1,e);s0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!jA(e.kernelSize,"number",1,1))throw new B(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};s0.className="Conv1D";re.registerClass(s0);var Ly=class extends qe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return P(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=zp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return zp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=zp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return zp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ly.className="Cropping2D";re.registerClass(Ly);var Wy=class extends qe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,Tte(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return P(()=>{let n=ze(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=Je(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return Je(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Wy.className="UpSampling2D";re.registerClass(Wy);function uae(e,t,n=[1,1],r="valid",a,s){return P(()=>{a==null&&(a=Er()),Ct(a);let i=$y(e,a);if(e.rank!==4)throw new B(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new B(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=wl(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=Je(i,[0,3,1,2])),i})}var By=class extends Dy{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=gt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Vt(e.depthwiseConstraint),this.depthwiseRegularizer=xt(e.depthwiseRegularizer)}build(e){if(e=at(e),e.length<4)throw new B(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{e=ze(e);let n=uae(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Mr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=Dr(t,this.kernelSize[0],this.padding,this.strides[0]),s=Dr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=St(this.depthwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseRegularizer),e}};By.className="DepthwiseConv2D";re.registerClass(By);function u4(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new B("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function c4(e,t,n,r=!1,a,s,i=!1,o=!1){return P(()=>{let l=t.shape.length;if(l<3)throw new B(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(Rr(2,l));if(t=Je(t,c),s!=null)throw new De("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=Qt(a,-1)),a=Je(a,c)),r&&(t=Wn(t,0),a!=null&&(a=Wn(a,0)));let u=[],h,d=n,p=t.shape[0],m=mr(t),f;a!=null&&(f=mr(a));for(let y=0;ye(g,d));if(a==null)h=x[0],d=x[1];else{let v=P(()=>{let b=f[y],w=Ln(b).sub(b),k=x[0].mul(b).add(d[0].mul(w)),N=d.map((C,F)=>x[1][F].mul(b).add(C.mul(w)));return{output:k,newStates:N}});h=v.output,d=v.newStates}o&&u.push(h)}let A;return o&&(A=cn(u,1)),[h,A,d]})}var Yr=class extends qe{constructor(e){super(e);let t;if(e.cell==null)throw new B("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new i0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new B("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ft({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Rr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){uy(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return P(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;ni.shape[i.shape.length-1]),s))throw new B(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Ft({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new ya("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Rt([n,r])):this.states_=[Rt([n,this.cell.stateSize])];else if(e==null)we(this.states_),this.keptStates!=null&&(we(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Rt([n,r])):this.states_[0]=Rt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):we(this.states_);for(let r=0;rHt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=u4(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Ft({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof Fr){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=ze(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new B(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=c4((d,p)=>{let m=this.cell.call([d].concat(p),i);return[m[0],m.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,r);let h=this.returnSequences?c:l;return this.returnState?[h].concat(u):h})}getInitialState(e){return P(()=>{let t=Rt(e.shape);return t=Te(t,[1,2]),t=Fc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?KA(t,[1,n]):t):this.cell.stateSize>1?[KA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Yr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=$r(r,n);return new e(Object.assign(t,{cell:a}))}};Yr.className="RNN";re.registerClass(Yr);var Oc=class extends qe{},o0=class extends Oc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,qt(this.units,"units"),this.activation=ts(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Gl([1,Ja([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ja([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new B(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0Ln(e),rate:this.dropout,training:r})),0Ln(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Zr(z(e,s),this.kernel.read()):a=Zr(e,this.kernel.read()),this.bias!=null&&(a=Mr(a,this.bias.read())),i!=null&&(n=z(n,i));let o=se(a,Zr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:es(this.activation),useBias:this.useBias,kernelInitializer:St(this.kernelInitializer),recurrentInitializer:St(this.recurrentInitializer),biasInitializer:St(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),recurrentConstraint:Bt(this.recurrentConstraint),biasConstraint:Bt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};o0.className="SimpleRNNCell";re.registerClass(o0);var Vy=class extends Yr{constructor(e){e.cell=new o0(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(we(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(we(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};Vy.className="SimpleRNN";re.registerClass(Vy);var l0=class extends Oc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new B("GRUCell does not support reset_after parameter set to true.");this.units=e.units,qt(this.units,"units"),this.activation=ts(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ts(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Gl([1,Ja([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ja([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new B(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0Ln(e),rate:this.dropout,training:n,count:3})),0Ln(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0{this.cell.dropoutMask!=null&&(we(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(we(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};jy.className="GRU";re.registerClass(jy);var Hc=class extends Oc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,qt(this.units,"units"),this.activation=ts(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ts(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Gl([1,Ja([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ja([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=at(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends yr{apply(i,o){let l=a.apply([s]),c=new Lp().apply([s]),u=a.apply([s*2]);return t6(t6(l,c),u)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new B(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0Ln(e),rate:this.dropout,training:n,count:4})),0Ln(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0{this.cell.dropoutMask!=null&&(we(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(we(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Uy.className="LSTM";re.registerClass(Uy);var i0=class extends Oc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return P(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i{Pi(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push($r(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return cy(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;sr6(t(),n),i=()=>Dc(s,t,r);return!a||a<=1?Ht(i().clone()):Array(a).fill(void 0).map(i).map(o=>Ht(o.clone()))}var cae=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a{if(this.cell.dropoutMask!=null&&(we(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(we(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new B("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return P(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Rt(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new ya("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Rt(a)):this.states_=[Rt(a)];else if(e==null)we(this.states_),this.keptStates!=null&&(we(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Rt(a)):this.states_[0]=Rt(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):we(this.states_);for(let s=0;sHt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=Dr(l,r[0],a,s[0],i[0]),h=Dr(c,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,h]:[u,h,n]]}};h4.className="ConvRNN2D";var u0=class extends Hc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,qt(this.filters,"filters"),this.kernelSize=Yl(n,2,"kernelSize"),this.kernelSize.forEach(o=>qt(o,"kernelSize")),this.strides=Yl(r||1,2,"strides"),this.strides.forEach(o=>qt(o,"strides")),this.padding=a||"valid",ar(this.padding),this.dataFormat=s||"channelsLast",Ct(this.dataFormat),this.dilationRate=Yl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>qt(o,"dilationRate"))}build(e){var t;e=at(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends yr{apply(u,h){let d=l.apply([c]),p=Pn([c]),m=l.apply([c*2]);return YA([d,p,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return P(()=>{if(e.length!==3)throw new B(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0Ln(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,ae,te)=>!ae||!ae[te]?Y:z(ae[te],Y),c=l(r,o,0),u=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0Ln(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,m=l(a,p,0),f=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[x,v,b,w]=Lt(this.kernel.read(),i,g),[k,N,C,F]=this.useBias?Lt(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,x,k,this.padding),u=this.inputConv(u,v,N,this.padding),h=this.inputConv(h,b,C,this.padding),d=this.inputConv(d,w,F,this.padding);let[O,L,V,j]=Lt(this.recurrentKernel.read(),i,g);m=this.recurrentConv(m,O),f=this.recurrentConv(f,L),A=this.recurrentConv(A,V),y=this.recurrentConv(y,j);let U=this.recurrentActivation.apply(se(c,m)),X=this.recurrentActivation.apply(se(u,f)),G=se(z(X,s),z(U,this.activation.apply(se(h,A)))),ee=z(this.recurrentActivation.apply(se(d,y)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=cae(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=ha(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Mr(a,n,this.dataFormat):a}recurrentConv(e,t){return ha(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};u0.className="ConvLSTM2DCell";re.registerClass(u0);var Hy=class extends h4{constructor(e){let t=new u0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Hy.className="ConvLSTM2D";re.registerClass(Hy);var c0=class extends qe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r{this.invokeCallHook(e,t);let n=ze(e);if(0r6(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};c0.className="Dropout";re.registerClass(c0);var Gy=class extends c0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Gy.className="SpatialDropout1D";re.registerClass(Gy);var qy=class extends qe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,qt(this.units,"units"),this.activation=ts(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Vt(e.kernelConstraint),this.biasConstraint=Vt(e.biasConstraint),this.kernelRegularizer=xt(e.kernelRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=at(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=at(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e),r=Hv(this.activation.getClassName()),a;return r!=null?a=Zr(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Zr(n,this.kernel.read()),this.bias!=null&&(a=Mr(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:es(this.activation),useBias:this.useBias,kernelInitializer:St(this.kernelInitializer),biasInitializer:St(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};qy.className="Dense";re.registerClass(qy);var Xy=class extends qe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=at(e);for(let t of e.slice(1))if(t==null)throw new B(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ya(e,1)]}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:es(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Ky.className="Activation";re.registerClass(Ky);var Zy=class extends qe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return P(()=>(e=ze(e),Mte(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Zy.className="RepeatVector";re.registerClass(Zy);var Yy=class extends qe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=ze(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Yy.className="Reshape";re.registerClass(Yy);var Jy=class extends qe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Rr(1,e.dims.length+1);if(!_.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ft({ndim:this.dims.length+1})]}computeOutputShape(e){e=at(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return Je(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Jy.className="Permute";re.registerClass(Jy);var Qy=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),r=-1;return Xu(ki(n,this.maskValue),r)}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e),r=-1,a=!0,s=Xu(ki(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};Qy.className="Masking";re.registerClass(Qy);var e2=class extends qe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(At(e.inputLength))}this.inputDim=e.inputDim,qt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,qt(this.outputDim,"outputDim"),this.embeddingsInitializer=gt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=xt(e.embeddingsRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.embeddingsConstraint=Vt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return P(()=>this.maskZero?(e=ze(e),ki(e,He(e))):null)}computeOutputShape(e){if(e=at(e),this.inputLength==null)return[...e,this.outputDim];let t=At(this.inputLength);if(t.length!==e.length-1)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r{this.invokeCallHook(e,t);let n=ze(e);return n.dtype!=="int32"&&(n=Mc(n,"int32")),n6(this.embeddings.read(),n.as1D()).reshape(at(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:St(this.embeddingsInitializer),embeddingsRegularizer:ut(this.embeddingsRegularizer),activityRegularizer:ut(this.activityRegularizer),embeddingsConstraint:Bt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};e2.className="Embedding";re.registerClass(e2);var ji=class extends qe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new De}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new B(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;aa.length);e.indexOf(null)===-1&&Za(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return P(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Ja(r);for(let s of e){let i=s.rank;for(let o=0;o1){let c=Rr(1,l).concat([0]);n.push(Je(o,c)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=Je(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(Rr(0,i-1));s=Je(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r{if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an Array");if(!Array.isArray(e))throw new B("`inputs` should be an Array");if(t.length!==e.length)throw new B(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:Qt(r,0));let n=t[0];for(let r=1;r{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new B("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return P(()=>YA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new B("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new B("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new B(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return P(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s3||t.shape.length>3)throw new De("batchDot is not implemented for tensors of 4D or higher rank yet");if(_.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),_.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new De("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return P(()=>{let i;if(r>a){i=r-a;let l=[];for(let c=0;cr){i=a-r;let l=[];for(let c=0;c0){let l;r>a?l=r+a-3:l=r-1;let c=[];for(let u=l;u"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new B(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new B(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>Gc(a,e[s].shape.length)):r=[Gc(this.axes,t.shape.length),Gc(this.axes,n.shape.length)],this.normalize&&(t=Yp(t,r[0]),n=Yp(n,r[1])),hae(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Gc(this.axes,e.length),Gc(this.axes,t.length)],n}computeOutputShape(e){_.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};o2.className="Dot";re.registerClass(o2);var l2=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e);return Dc(()=>Pp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};l2.className="GaussianNoise";re.registerClass(l2);var u2=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?Dc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(Pp(n.shape,1,r))},()=>n,t.training||!1):n})}};u2.className="GaussianDropout";re.registerClass(u2);var c2=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Dc(()=>{let r=ze(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=ja(Sl(n),this.rate);o=Mc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>ze(e),t.training||!1)}return e})}};c2.className="AlphaDropout";re.registerClass(c2);function qc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=Xb(e,t,n,r,a,s);else if(e.rank===3)i=Kb(e,t,n,r,a,s);else if(e.rank===4)i=Zb(e,t,n,r,a,s);else throw new De(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function dae(e,t,n,r,a=.001){return P(()=>{let s=Dd(e,r),i=s.mean,o=s.variance;return[qc(e,i,o,n,t,a),i,o]})}function pae(e,t,n,r,a=.001){return P(()=>{let s=Dd(e,r),i=s.mean,o=s.variance,l=[];for(let p of Rr(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let c=i.reshape(l),u=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[qc(e,c,u,d,h,a),i,o]})}function fae(e,t,n,r,a=.001){return _.arraysEqual(r.slice().sort(),Rr(0,e.rank-1))?dae(e,t,n,r,a):pae(e,t,n,r,a)}var h2=class extends qe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.movingMeanInitializer=gt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=gt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Vt(e.betaConstraint),this.gammaConstraint=Vt(e.gammaConstraint),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer)}build(e){e=at(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new B(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ft({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training,r=ze(e),a=r.shape,s=a.length,i=Rr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Di(1,s);l[o]=a[o];let c=i.slice();c.sort();let u=!_.arraysEqual(c,Rr(0,s).slice(0,s-1)),h=()=>{if(u){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return qc(r,A,y,g,x,this.epsilon)}else return qc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,m]=fae(r,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(A,y,g)=>{P(()=>{let x=1-g,v=A.read(),b=v.sub(y).mul(x);A.write(v.sub(b))})};return(()=>{f(this.movingMean,p,this.momentum),f(this.movingVariance,m,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:St(this.betaInitializer),gammaInitializer:St(this.gammaInitializer),movingMeanInitializer:St(this.movingMeanInitializer),movingVarianceInitializer:St(this.movingVarianceInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer),betaConstraint:Bt(this.betaConstraint),gammaConstraint:Bt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};h2.className="BatchNormalization";re.registerClass(h2);var d2=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=at(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Za(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=ze(e),r=n.shape,a=r.length;return P(()=>{let s=!0,{mean:i,variance:o}=Dd(n,this.axis,s),l=Di(1,a);for(let m of this.axis)l[m]=r[m];let c=m=>m!=null&&m.shape.length!==a&&this.axis!==[a-1]?m.reshape(l):m,u=c(this.gamma.read()),h=c(this.beta.read()),d=[],p=[];for(let m=0;m{if(e.rank!==4)throw new B(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new B("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Er()),n!=="channelsLast"&&n!=="channelsFirst")throw new B(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],da(e,r)})}var p2=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Er():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new B(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new B(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new B(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){e=at(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return P(()=>mae(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};p2.className="ZeroPadding2D";re.registerClass(p2);function h0(e,t,n,r,a,s){return P(()=>{Ct(a),Kv(s),ar(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=Er()),s==null&&(s="max"),e=$y(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=nc(e,t,n,o):i=Zu(e,t,n,o),a==="channelsFirst"&&(i=Je(i,[0,3,1,2])),i})}function d4(e,t,n,r,a,s){return P(()=>{Ct(a),Kv(s),ar(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=Er()),s==null&&(s="max"),e=i4(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Fm(e,t,n,o):i=gm(e,t,n,o),a==="channelsFirst"&&(i=Je(i,[0,4,1,2,3])),i})}var p4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new B(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(qt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new B(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ar(this.padding),this.inputSpec=[new Ft({ndim:3})]}computeOutputShape(e){e=at(e);let t=Dr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return P(()=>{this.invokeCallHook(e,t),e=Fc(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Ua(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},f2=class extends p4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),ar(r),h0(e,t,n,r,a,"max")}};f2.className="MaxPooling1D";re.registerClass(f2);var m2=class extends p4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),ar(r),h0(e,t,n,r,a,"avg")}};m2.className="AveragePooling1D";re.registerClass(m2);var f4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new B(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];qt(this.poolSize,"poolSize"),qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),ar(this.padding),this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Dr(t,this.poolSize[0],this.padding,this.strides[0]),n=Dr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},A2=class extends f4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),ar(r),h0(e,t,n,r,a,"max")}};A2.className="MaxPooling2D";re.registerClass(A2);var y2=class extends f4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),ar(r),h0(e,t,n,r,a,"avg")}};y2.className="AveragePooling2D";re.registerClass(y2);var m4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new B(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];qt(this.poolSize,"poolSize"),qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),ar(this.padding),this.inputSpec=[new Ft({ndim:5})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Dr(t,this.poolSize[0],this.padding,this.strides[0]),n=Dr(n,this.poolSize[1],this.padding,this.strides[1]),r=Dr(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},g2=class extends m4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),ar(r),d4(e,t,n,r,a,"max")}};g2.className="MaxPooling3D";re.registerClass(g2);var x2=class extends m4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),ar(r),d4(e,t,n,r,a,"avg")}};x2.className="AveragePooling3D";re.registerClass(x2);var A4=class extends qe{constructor(e){super(e);this.inputSpec=[new Ft({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new De}},b2=class extends A4{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=ze(e);return It(n,1)})}};b2.className="GlobalAveragePooling1D";re.registerClass(b2);var w2=class extends A4{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=ze(e);return Rn(n,1)})}};w2.className="GlobalMaxPooling1D";re.registerClass(w2);var y4=class extends qe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new De}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},_2=class extends y4{call(e,t){return P(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?It(n,[1,2]):It(n,[2,3])})}};_2.className="GlobalAveragePooling2D";re.registerClass(_2);var v2=class extends y4{call(e,t){return P(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Rn(n,[1,2]):Rn(n,[2,3])})}};v2.className="GlobalMaxPooling2D";re.registerClass(v2);var g4=class extends qe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=$r(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},k2=class extends g4{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=at(e),e.length<3)throw new B(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=at(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return P(()=>(e=ze(e),c4((n,r)=>[ze(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};k2.className="TimeDistributed";re.registerClass(k2);function Aae(e){zi(Nte,"BidirectionalMergeMode",e)}var yae="concat",I2=class extends g4{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=$r(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=$r(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?yae:e.mergeMode,Aae(this.mergeMode),e.weights)throw new De("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):Fn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=u4(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new B("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Ft({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(r!=null)throw new De("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Fr;for(let l of s)if(l instanceof Fr!==o)throw new B("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let h=super.apply(l,t);return this.inputSpec=u,h}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Wn(a,1));let i;return this.mergeMode==="concat"?i=YA([r,a]):this.mergeMode==="sum"?i=se(r,a):this.mergeMode==="ave"?i=z(.5,se(r,a)):this.mergeMode==="mul"?i=z(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Pi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Pi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=$r(t.layer);if(delete t.layer,t.numConstants!=null)throw new De("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};I2.className="Bidirectional";re.registerClass(I2);function jte(e){return new ql(e)}function Ute(e){return new Ry(e)}function Hte(e){return new Ty(e)}function Gte(e){return new Ey(e)}function qte(e){return new Cy(e)}function Xte(e){return new Fy(e)}function Kte(e){return new My(e)}function Zte(e){return new s0(e)}function Yte(e){return new jc(e)}function Jte(e){return new Oy(e)}function Qte(e){return new Uc(e)}function ene(e){return new zy(e)}function tne(e){return new Py(e)}function nne(e){return new Ly(e)}function rne(e){return new Wy(e)}function ane(e){return new By(e)}function sne(e){return new Ky(e)}function ine(e){return new qy(e)}function one(e){return new c0(e)}function lne(e){return new Gy(e)}function une(e){return new Xy(e)}function cne(e){return new Zy(e)}function hne(e){return new Yy(e)}function dne(e){return new Jy(e)}function pne(e){return new e2(e)}function fne(e){return new t2(e)}function mne(e){return new r2(e)}function Ane(e){return new i2(e)}function yne(e){return new a2(e)}function gne(e){return new s2(e)}function xne(e){return new n2(e)}function bne(e){return new o2(e)}function wne(e){return new h2(e)}function _ne(e){return new d2(e)}function vne(e){return new p2(e)}function iy(e){return new m2(e)}function kne(e){return iy(e)}function Ine(e){return iy(e)}function oy(e){return new y2(e)}function Sne(e){return oy(e)}function Nne(e){return oy(e)}function ly(e){return new x2(e)}function Tne(e){return ly(e)}function Ene(e){return ly(e)}function Cne(e){return new b2(e)}function Rne(e){return new _2(e)}function l6(e){return new w2(e)}function u6(e){return new v2(e)}function c6(e){return new f2(e)}function h6(e){return new A2(e)}function Mne(e){return new g2(e)}function Fne(e){return new jy(e)}function $ne(e){return new l0(e)}function Dne(e){return new Uy(e)}function One(e){return new Hc(e)}function zne(e){return new Vy(e)}function Pne(e){return new o0(e)}function Lne(e){return new Hy(e)}function Wne(e){return new u0(e)}function Bne(e){return new Yr(e)}function Vne(e){return new i0(e)}function jne(e){return new I2(e)}function Une(e){return new k2(e)}var Hne=l6,Gne=u6,qne=c6,Xne=h6;function Kne(e){return new l2(e)}function Zne(e){return new u2(e)}function Yne(e){return new c2(e)}function Jne(e){return new Qy(e)}var x4={};Me(x4,{MAPE:()=>Tae,MSE:()=>Rae,binaryAccuracy:()=>gae,binaryCrossentropy:()=>xae,categoricalAccuracy:()=>wae,categoricalCrossentropy:()=>_ae,cosineProximity:()=>Iae,mape:()=>Eae,meanAbsoluteError:()=>Sae,meanAbsolutePercentageError:()=>Nae,meanSquaredError:()=>Cae,mse:()=>Mae,precision:()=>vae,recall:()=>kae,sparseCategoricalAccuracy:()=>bae});function gae(e,t){return fy(e,t)}function xae(e,t){return S6(e,t)}function bae(e,t){return N6(e,t)}function wae(e,t){return my(e,t)}function _ae(e,t){return Ay(e,t)}function vae(e,t){return I6(e,t)}function kae(e,t){return yre(e,t)}function Iae(e,t){return dy(e,t)}function Sae(e,t){return Jp(e,t)}function Nae(e,t){return Kl(e,t)}function Tae(e,t){return Kl(e,t)}function Eae(e,t){return Kl(e,t)}function Cae(e,t){return Wi(e,t)}function Rae(e,t){return Wi(e,t)}function Mae(e,t){return Wi(e,t)}var b4={};Me(b4,{modelFromJSON:()=>Yre});var w4={};Me(w4,{l1:()=>$ae,l1l2:()=>Fae,l2:()=>Dae});function Fae(e){return new Bc(e)}function $ae(e){return sae(e)}function Dae(e){return iae(e)}var _4=class extends Xl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof xa))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function d0(e,t){return et}var k4=class extends _4{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new De("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=d0:this.mode==="max"?this.monitorFunc=v4:this.monitor.indexOf("acc")!==-1?this.monitorFunc=v4:this.monitorFunc=d0,this.monitorFunc===d0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===d0?Infinity:-Infinity}async onEpochEnd(e,t){await Qa(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Oae(e){return new k4(e)}var zae={earlyStopping:Oae},Or;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Or||(Or={}));var I4;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(I4||(I4={}));var S2={};function Pae(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};S2[e]=n}function S4(e){return S2[e]}function Lae(e){delete S2[e]}function I(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return yn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>yn(h,n,r,a));let c=yn(t.inputNames.slice(o)[0],n,r,a),u=c.dataSync();return s.type==="number"?u[0]:_.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function yn(e,t,n,r){let[a,s]=jn(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[p0(a,o)]);return i!==void 0?t[p0(a,i)][s]:void 0}function Wae(e,t,n){return t[p0(e,n.currentContextId)]}function ba(e,t){let[n,r]=jn(e);return[p0(n,t&&t.currentContextId),r]}function p0(e,t){return t?`${e}-${t}`:e}function jn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function f0(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function wa(e){return e.kept?e:Br(e)}var N4={};Me(N4,{json:()=>Bae});var Bae=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],T4={};Me(T4,{json:()=>Vae});var Vae=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],E4={};Me(E4,{json:()=>jae});var jae=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],C4={};Me(C4,{json:()=>Uae});var Uae=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],R4={};Me(R4,{json:()=>Hae});var Hae=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],M4={};Me(M4,{json:()=>Gae});var Gae=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],F4={};Me(F4,{json:()=>qae});var qae=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],$4={};Me($4,{json:()=>Xae});var Xae=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],D4={};Me(D4,{json:()=>Kae});var Kae=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],O4={};Me(O4,{json:()=>Zae});var Zae=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],z4={};Me(z4,{json:()=>Yae});var Yae=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],P4={};Me(P4,{json:()=>Jae});var Jae=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],L4={};Me(L4,{json:()=>Qae});var Qae=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],W4={};Me(W4,{json:()=>ese});var ese=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],B4={};Me(B4,{json:()=>tse});var tse=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],V4={};Me(V4,{json:()=>nse});var nse=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],j4={};Me(j4,{json:()=>rse});var rse=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],H4=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[N4,T4,E4,C4,R4,M4,F4,z4,O4,$4,P4,L4,W4,B4,V4,j4,D4],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?r.push(m[f.name]):f.op==="Const"?a.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(m=>{let f=i[m];f.inputNames.forEach(A=>{let[y]=ba(A);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(u).length===0?h.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(u).forEach(m=>{let[f]=ba(m),A=i[f];A!=null&&(A.signatureKey=u[m],l.push(A))}),Object.keys(c).length>0?Object.keys(c).forEach(m=>{let[f]=ba(m),A=i[f];A&&(A.signatureKey=c[m],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=S4(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=N2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=N2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=D2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=D2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=E2(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=E2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=$2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=$2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=T2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=T2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=z2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=z2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=F2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=F2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=O2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=O2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=R2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=R2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=M2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=M2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=U4(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=U4(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&r.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=ba(c.name),h={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:C2(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,s.push(h),a[u]=h}),Object.keys(a).forEach(c=>{let u=a[c];u.inputNames.forEach(h=>{let[d]=ba(h);u.inputs.push(a[d]),a[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,h]=ba(o[c.name]),d=a[u];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function ase(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function G4(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):ase(e);return t?n:n.toLowerCase()}function N2(e,t,n,r=!1){let a=e[t];return a!=null?G4(a.s,r):n}function T2(e,t,n){let r=e[t];return r?r.b:n}function E2(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function C2(e){switch(typeof e=="string"&&(e=Or[e]),e){case Or.DT_FLOAT:return"float32";case Or.DT_INT32:case Or.DT_INT64:case Or.DT_INT8:case Or.DT_UINT8:return"int32";case Or.DT_BOOL:return"bool";case Or.DT_DOUBLE:return"float32";case Or.DT_STRING:return"string";default:return null}}function U4(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function R2(e,t,n){let r=e[t];return r&&r.type?C2(r.type):n}function M2(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>C2(a)):n}function q4(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function F2(e,t,n){let r=e[t];return r&&r.shape?q4(r.shape):n}function $2(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function D2(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>G4(s,r)):n}function O2(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>q4(a)):n}function z2(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var sse=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return yn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return yn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return E2(this.node.rawAttrs,e,t);if(n.s!=null)return N2(this.node.rawAttrs,e,t);if(n.b!=null)return T2(this.node.rawAttrs,e,t);if(n.shape!=null)return F2(this.node.rawAttrs,e,t);if(n.type!=null)return R2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return $2(this.node.rawAttrs,e,t);if(n.list.s!=null)return D2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return O2(this.node.rawAttrs,e,t);if(n.list.b!=null)return z2(this.node.rawAttrs,e,t);if(n.list.type!=null)return M2(this.node.rawAttrs,e,t)}return t}},ise=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[La(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[Dm(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[z(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[Ae(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[km(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[_d(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ye(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Il(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Ur(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[pa(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[Gd(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},ose=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(I("x",e,t,n))];case"Acos":return[lm(I("x",e,t,n))];case"Acosh":return[um(I("x",e,t,n))];case"Asin":return[hm(I("x",e,t,n))];case"Asinh":return[dm(I("x",e,t,n))];case"Atan":return[pm(I("x",e,t,n))];case"Atan2":return[fm(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[mm(I("x",e,t,n))];case"Ceil":return[xm(I("x",e,t,n))];case"Complex":return[Da(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Ju(I("x",e,t,n))];case"Cosh":return[Nd(I("x",e,t,n))];case"Elu":return[_l(I("x",e,t,n))];case"Erf":return[Im(I("x",e,t,n))];case"Exp":return[Qn(I("x",e,t,n))];case"Expm1":return[Sm(I("x",e,t,n))];case"Floor":return[vl(I("x",e,t,n))];case"Log":return[zn(I("x",e,t,n))];case"Log1p":return[Rd(I("x",e,t,n))];case"Imag":return[Ed(I("x",e,t,n))];case"Neg":return[kt(I("x",e,t,n))];case"Reciprocal":return[Pm(I("x",e,t,n))];case"Real":return[sc(I("x",e,t,n))];case"Relu":return[Hr(I("x",e,t,n))];case"Round":return[Lm(I("x",e,t,n))];case"Selu":return[Wd(I("x",e,t,n))];case"Sigmoid":return[Tn(I("x",e,t,n))];case"Sin":return[Bd(I("x",e,t,n))];case"Sign":return[Bm(I("x",e,t,n))];case"Sinh":return[Vd(I("x",e,t,n))];case"Softplus":return[_i(I("x",e,t,n))];case"Sqrt":return[en(I("x",e,t,n))];case"Square":return[it(I("x",e,t,n))];case"Tanh":return[gi(I("x",e,t,n))];case"Tan":return[Um(I("x",e,t,n))];case"ClipByValue":return[En(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Pd(I("x",e,t,n))];case"Rsqrt":return[Ld(yn(e.inputNames[0],t,n))];case"Prod":return[Od(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[ec(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[ac(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[Tm(yn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function xr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){_.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;rn+` Shapes ${e} and ${t} must match`)}}}function X4(e){return!(typeof e=="number"||e.some(t=>t<0))}function Xc(e,t,n){let r=P2(e,n),a=!X4(r);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(a&&t.forEach(s=>{r=P2(s.shape,r)}),!X4(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function P2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=a>=0?a:s}return n}var lse=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ve(0),Ht(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, + because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),xr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Ht(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,mr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is - ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];z(()=>{t=H(t,[1,n,a]);for(let o=0;o{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);xr(t,a.shape,"TensorList shape mismatch: "),Ht(a)}),this.idTensor=xe(0),this.maxNumElements=r,Ht(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Yc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);xr(e,this.elementShape,"TensorList shape mismatch: ");let r=Zc(this.elementShape,this.tensors,e);return z(()=>{let a=this.tensors.map(s=>H(s,r));return cn(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Zc(this.elementShape,this.tensors,e),r=this.tensors.pop();return xr(r.shape,e,"TensorList shape mismatch: "),H(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(xr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Ht(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);xr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=Zc(this.elementShape,this.tensors,t);return H(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);xr(this.elementShape,t.shape,"TensorList shape mismatch: "),Ht(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);xr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=Zc(this.elementShape,this.tensors,n);return e.length===0?Ir([],[0].concat(r)):z(()=>{let a=e.map(s=>H(this.tensors[s],r));return cn(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);xr(this.elementShape,t,"TensorList shape mismatch: ");let n=Zc(this.elementShape,this.tensors,t);return this.size()===0?Ir([],[0].concat(n)):z(()=>{let r=this.tensors.map(a=>H(a,n));return rt(r,0)})}};function gse(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);xr(a,t,"TensorList shape mismatch: ");let s=mr(e);return new Yc(s,t,r)}function xse(e,t,n){return new Yc([],e,t,n)}function wse(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Yc([],n,e.dtype,r),i=mr(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function bse(e,t,n){let r=0,a=t.map(u=>(r+=u,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to + ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];P(()=>{t=H(t,[1,n,a]);for(let o=0;o{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);xr(t,a.shape,"TensorList shape mismatch: "),Ht(a)}),this.idTensor=ve(0),this.maxNumElements=r,Ht(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Kc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);xr(e,this.elementShape,"TensorList shape mismatch: ");let r=Xc(this.elementShape,this.tensors,e);return P(()=>{let a=this.tensors.map(s=>H(s,r));return cn(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Xc(this.elementShape,this.tensors,e),r=this.tensors.pop();return xr(r.shape,e,"TensorList shape mismatch: "),H(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(xr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Ht(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);xr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=Xc(this.elementShape,this.tensors,t);return H(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);xr(this.elementShape,t.shape,"TensorList shape mismatch: "),Ht(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);xr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=Xc(this.elementShape,this.tensors,n);return e.length===0?Sr([],[0].concat(r)):P(()=>{let a=e.map(s=>H(this.tensors[s],r));return cn(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);xr(this.elementShape,t,"TensorList shape mismatch: ");let n=Xc(this.elementShape,this.tensors,t);return this.size()===0?Sr([],[0].concat(n)):P(()=>{let r=this.tensors.map(a=>H(a,n));return ot(r,0)})}};function use(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);xr(a,t,"TensorList shape mismatch: ");let s=mr(e);return new Kc(s,t,r)}function cse(e,t,n){return new Kc([],e,t,n)}function hse(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Kc([],n,e.dtype,r),i=mr(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function dse(e,t,n){let r=0,a=t.map(u=>(r+=u,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is - ${r}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Wg(s,n),o=r===0?0:e.size/r,l=z(()=>{let u=[];e=H(e,[1,r,o]);for(let h=0;h{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),a=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),a=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let h=c.map(p=>p.id);u.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return c}case"LoopCond":{let r=I("pred",e,t,n);return[wa(r)]}case"Switch":{let r=I("pred",e,t,n),a=I("data",e,t,n);return a.kept||(a=wa(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>yn(a,t,n)!==void 0);if(r){let a=yn(r,t,n);return[wa(a)]}return}case"Enter":{let r=I("frameName",e,t,n),a=I("tensor",e,t,n);return n.enterFrame(r),[wa(a)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[wa(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[wa(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),a=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new yse(c,a,r,s,l,i,o);return n.addTensorArray(u),[u.idTensor,xe(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=I("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),a=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[xe(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),a=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=wse(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=xse(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),a=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=gse(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),a=n.getTensorList(r.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),a=I("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=bse(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function e8(e,t,n){let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),u=m0(e,t,n),h=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[p,f]=I("args",e,t,n),m=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:h,dilations:d,biasArg:p,preluArg:f,activationFunc:a,leakyreluAlpha:m}}var vse=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[Sd(I("x",e,t,n),I("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=m0(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[ca(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=e8(e,t,n);return[Ua.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=e8(e,t,n);return[Ua.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),s=m0(e,t,n);return[Nd(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=m0(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[bl(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[vm(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Ju(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[ac(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=wb(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[wm(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Dm(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dilations",e,t,n),i=r[1],o=r[2],l=s[1],c=s[2];return[Im(I("x",e,t,n),I("filter",e,t,n),[i,o],a,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},kse=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),s=I("value",e,t,n);return[tc(r,s,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("num",e,t,n);return[pb(r,a,s)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),s=I("seed",e,t,n);return[bb(r,a,s)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[ml(r,a,s,i)]}case"Ones":return[Pn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Ln(I("x",e,t,n))];case"RandomUniform":return[Sl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("step",e,t,n);return[Pd(r,a,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Xd(r,a,s,I("dtype",e,t,n),i)]}case"Zeros":return[Rt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[He(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Bg(e,t,n){let r=I("boxes",e,t,n),a=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Ise=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=Bg(e,t,n),c=await Le.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Bg(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Le.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Bg(e,t,n);return[await Le.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=ge(I("condition",e,t,n),"bool"),a=[await Km(r)];return r.dispose(),a}case"ListDiff":return kb(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Sse=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),s=I("sorted",e,t,n),i=qm(r,a,s);return[i.values,i.indices]}case"Unique":{let r=I("x",e,t,n),a=Kd(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),s=Kd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nse=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[yn(e.name,t,n)||r];case"Placeholder":return[yn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[wa(c)]}case"IdentityN":return I("x",e,t,n).map(c=>wa(c));case"Snapshot":let a=I("x",e,t,n);return[wa(a)];case"Shape":return[sn(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>sn(c.shape));case"Size":return[xe(I("x",e,t,n).size,"int32")];case"Rank":return[xe(I("x",e,t,n).rank,"int32")];case"NoOp":return[xe(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;ce.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return xe(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),z(()=>{let r=mr(t),a=n.length,s=r.length;_.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i{let r=[];for(let a=0;a{switch(e.op){case"HashTable":case"HashTableV2":{let a=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new Tse(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let a=I("tableHandle",e,t,n,r);return[r.getHashTableById(a.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Cse=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Le.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Le.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Le.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Rse=(e,t,n)=>{switch(e.op){case"Equal":return[Wa(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[vi(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[pr(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[Va(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Rd(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[wi(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[fr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[rc(I("a",e,t,n))];case"LogicalOr":return[Dd(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Cn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Mse=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ve(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[cb(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Je(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[Ua.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Fse=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[gi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[gi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[Rm(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[uc(I("x",e,t,n))];case"LogSoftmax":return[$d(I("x",e,t,n))];case"SparseToDense":return[Zm(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},$se=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Rn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[It(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[kl(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Te(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[kd(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Zu(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[mi(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[dm(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[zd(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Ed(I("x",e,t,n),i,o,l)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),s=I("size",e,t,n);return[nb(r,a,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[lb(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Dse=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,r),[rt(s,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[xi(r,ge(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[xi(s,ge(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i{let r=I("axis",e,t,n),a=I("tensors",e,t,n),s=a[0].shape,i=ja(a[0]).shape,o=a.map(l=>{let c=_.arraysEqual(l.shape,s);if(!c&&!_.arraysEqual(ja(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:H(l,s)});return[cn(o,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return mr(a,r)}case"Tile":{let r=I("reps",e,t,n);return[Ba(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return Lt(s,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),s=I("shape",e,t,n);return[Tb(r,a,s)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[Eb(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[Zm(r,s,a,s.dtype===i.dtype?i:ge(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ose=(e,t,n)=>{switch(e.op){case"SparseReshape":{let{outputIndices:r,outputShape:a}=Ub.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[r,a]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},zse=(e,t,n)=>{switch(e.op){case"FFT":return[cc(I("x",e,t,n))];case"IFFT":return[Nl(I("x",e,t,n))];case"RFFT":return[hc(I("x",e,t,n))];case"IRFFT":return[Gd(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Pse=(e,t,n)=>{switch(e.op){case"Cast":return[ge(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[Qt(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[ja(I("x",e,t,n),r)]}case"Reshape":return[H(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[Om(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[ha(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[sc(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[Qu(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[km(I("x",e,t,n),r,a)]}case"BroadcastTo":return[xl(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function t8(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return z(()=>mse(s,i,o));case"basic_math":return z(()=>Ase(s,i,o));case"control":return _se(s,i,o);case"convolution":return z(()=>vse(s,i,o));case"creation":return z(()=>kse(s,i,o));case"dynamic":return Ise(s,i,o);case"evaluation":return z(()=>Sse(s,i,o));case"image":return z(()=>Cse(s,i,o));case"graph":return z(()=>Nse(s,i,o));case"logical":return z(()=>Rse(s,i,o));case"matrices":return z(()=>Mse(s,i,o));case"normalization":return z(()=>Fse(s,i,o));case"reduction":return z(()=>$se(s,i,o));case"slice_join":return z(()=>Dse(s,i,o));case"sparse":return z(()=>Ose(s,i,o));case"spectral":return z(()=>zse(s,i,o));case"transformation":return z(()=>Pse(s,i,o));case"hash_table":return Ese(s,i,o,r);case"custom":let l=R4(s.op);if(l&&l.customExecutor)return l.customExecutor(new fse(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return _.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var n8=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function a8(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>jn(d)[0]),u=[];r!=null&&(u=r.map(d=>jn(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((r8(d)||Lse(d)||Wse(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Bse(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(u=>jn(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{r.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{r.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{r.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return c}var Vse=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],jse=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Use=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function r8(e){return Vse.indexOf(e.op)>=0}function Lse(e){return jse.indexOf(e.op)>=0}function Wse(e){return Use.indexOf(e.op)>=0}var Vg=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Vg(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=a8(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return Bse(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(u=>this.graph.nodes[jn(u)[0]]),a=t.map(u=>jn(u)[0]),s=a.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return z(()=>{let u=new n8(this.weightMap,l,c,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,A]=jn(f),y=[];y[A]=e[f],h[m]=y});let d=this.getFrozenTensorIds(h),p={};for(let f=0;fyn(f,h,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Kae(o.name,n,r);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!a.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new n8(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>yn(h,i,s)),l=o.map(h=>h.id),c=Object.keys(e).map(h=>e[h].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.kept&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[jn(g)[0]]),i=n.map(g=>jn(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:h}=a8(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[x,v]=jn(g),w=[];w[v]=e[g],p[x]=w});let f={},m=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,m,i,f,l);await Promise.all(g)}u==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!r8(g)&&!yn(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw u!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${c}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let h="";if(u.node.op==="Enter"&&I("isConstant",u.node,r,n)&&([h]=xa(u.node.name,n)),r[u.node.name]==null){let d=t8(u.node,r,n,this._resourceManager);h||([h]=xa(u.node.name,n));let p=n.currentContext;_.isPromise(d)?c.push(d.then(f=>(r[h]=f,n.currentContext=p,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l),f))):(r[h]=d,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l))}else this.processChildNodes(u.node,t,n,r,a,l)}return c}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=xa(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!yn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!yn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=jn(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);_.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&_.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=jn(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=jn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Hse=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Gse="?tfjs-format=file",qse="model.json",s8=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Hse}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Nn.browserHTTPRequest(e,this.loadOptions);else{let t=Nn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Nn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=Nn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Vg(Z4.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=Z4.Instance.transformGraph(e.modelInitializer);this.initializer=new Vg(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Nn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Pe)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function ct(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${qse}${Gse}`);let n=new s8(e,t);return await n.load(),n}var Xse="3.5.0",i8={};Me(i8,{CSVDataset:()=>l8,Dataset:()=>Jl,FileDataSource:()=>u8,TextLineDataset:()=>o8,URLDataSource:()=>c8,array:()=>Kse,csv:()=>Yse,func:()=>Jse,generator:()=>Qse,microphone:()=>tie,version_data:()=>nie,webcam:()=>eie,zip:()=>Zse});var rie=so(p5()),aie=so(p5());function sie(e,t){return A0(e,t)}function A0(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Ql(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=A0(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function iie(e,t=d8){return h8(e,t)}function h8(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Ql(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(c=>c[i]),l=h8(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function d8(e){return e===null?null:Ql(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function p8(e,t){let n=new Map;A0(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(_.isPromise(a)){let s=await a;n.set(r,s)}}return A0(e,t,n)}function Ql(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Pe))}function lie(e){return e==null||oie(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Pe||_.isTypedArray(e)}function oie(e){return e===null||typeof e!="object"&&typeof e!="function"}function cie(e){return sie(e,uie)}function uie(e){return e instanceof Pe?{value:e.clone(),recurse:!1}:Ql(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var f8=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},jg=class extends f8{constructor(){super(jg.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;rt===!0)}rowMajorBatch(e,t=!0){return new xie(this,e,t)}columnMajorBatch(e,t=!0,n=d8){return this.rowMajorBatch(e,t).map(r=>iie(r,n))}concatenate(e,t){return new A8(m8([this,e]),t)}take(e){return e<0||e==null?this:new gie(this,e)}skip(e){return e<0||e==null?this:new yie(this,e)}prefetch(e){return new g8(this,e)}shuffle(e,t){return new kie(this,e,t)}serial(){return new Aie(this)}},hie=class extends Xt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:cie(e),done:!1}}},die=class extends Xt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Aie=class extends Xt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},yie=class extends Xt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},xie=class extends Xt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},wie=class extends Xt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;_e(e.value)}}},bie=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=vr.getTensorsInContainer(e.value),n=this.transform(e.value),r=vr.getTensorsInContainer(n);for(let a of t)vr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},_ie=class extends Xt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},y8=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=vr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=vr.getTensorsInContainer(n);for(let a of t)vr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Hg=class extends Xt{constructor(){super();this.outputQueue=new jg,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},vie=class extends Hg{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=vr.getTensorsInContainer(e.value),n=this.transform(e.value),r=vr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)vr.isTensorInList(a,r)||a.dispose();return!0}},A8=class extends Xt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ns;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ns||(ns={}));var fie=class extends Xt{constructor(e,t=ns.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof Xt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await p8(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ns.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ns.SHORTEST:return{value:null,done:!0};case ns.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},g8=class extends Xt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new f8(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},kie=class extends g8{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=aie.alea(n||_.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Jl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;_.assert(e>0,()=>`batchSize needs to be positive, but it is - ${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),Un(async()=>(await n.iterator()).columnMajorBatch(e,t,Iie),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Un(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Un(async()=>(await t.iterator()).filter(r=>z(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Un(async()=>(await t.iterator()).map(n=>z(()=>e(n))),this.size)}mapAsync(e){let t=this;return Un(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Un(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Un(async()=>{let r=Ug(async()=>({value:await t.iterator(),done:!1}));return pie(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=rie.alea(t||_.now().toString());return Un(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Un(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Jl.MAX_BUFFER_SIZE=1e4;function Un(e,t=null){return new class extends Jl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function Kse(e){return Un(async()=>m8(e),e.length)}function Zse(e){if(!Ql(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await p8(e,r=>{if(r instanceof Jl)return{value:r.iterator(),recurse:!1};if(Ql(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return mie(n,ns.SHORTEST)},t)}function Iie(e){if(e===null)return null;let t=e[0];return lie(t)?{value:Sie(e),recurse:!1}:{value:null,recurse:!0}}function Sie(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Pe?cn(e):Ir(e)}var o8=class extends Jl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` -`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},y0='"',Jc=Symbol("out"),x8=Symbol("field"),g0=Symbol("quote"),Gg=Symbol("quoteafterquote"),w8=Symbol("quoteinquote"),l8=class extends Jl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new o8(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(_.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&_.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(_.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new b8(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(_.sizeFromShape(t));return n.set(e,n.length-e.length),Ir(n,t)}},_8=class extends Xt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=sn([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=er([s,a,o,i],[1,4])}else this.cropBox=er([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new _8(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&_.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=pi.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return z(()=>{let t=Qt(ge(e,"float32"),0),n;n=Le.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return H(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},v8=class{},k8=class extends Xt{split(e){return new Nie(this,e)}},Nie=class extends k8{constructor(e,t){super();this.upstream=e,this.impl=new Tie(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Tie=class extends Hg{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Cie=class extends Xt{decodeUTF8(){return new Eie(this)}},Eie=class extends k8{constructor(e){super();this.upstream=e,this.impl=new Rie(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Rie=class extends Hg{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=z9();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},I8=class extends Cie{constructor(e,t={}){super();this.file=e,this.options=t,_.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function Fie(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=Mie(e));let a=await _.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new I8(s,t)}else throw new Error(a.statusText)}var Mie=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function S8(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var u8=class extends v8{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(S8(this.input)&&J().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new I8(this.input,this.options)}},c8=class extends v8{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return S8(this.url)?new u8(this.url,this.fileOptions).iterator():Fie(this.url,this.fileOptions)}};function Yse(e,t={}){return new l8(new c8(e),t)}function Jse(e){let t=Ug(e);return Un(async()=>t)}function Qse(e){return Un(async()=>{let t=await e();return Ug(()=>t.next())})}async function eie(e,t){return _8.create(e,t)}async function tie(e){return b8.create(e)}var nie="3.5.0",$ie={tfjs:(vf==null?void 0:vf.version)||void 0,"tfjs-core":(kf==null?void 0:kf.version)||void 0,"tfjs-data":(If==null?void 0:If.version)||void 0,"tfjs-layers":(Sf==null?void 0:Sf.version)||void 0,"tfjs-converter":(Nf==null?void 0:Nf.version)||void 0,"tfjs-backend-cpu":v_||void 0,"tfjs-backend-webgl":G3||void 0,"tfjs-backend-wasm":zv||void 0};var Hn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function N8(){if(!um(Hn.name)){le("backend registration:",Hn.name);try{Hn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Hn.width,Hn.height):document.createElement("canvas")}catch(e){le("error: cannot create canvas:",e);return}try{Hn.gl=Hn.canvas.getContext("webgl2",Hn.webGLattr)}catch(e){le("error: cannot get WebGL2 context:",e);return}try{yp(2,Hn.gl)}catch(e){le("error: cannot set WebGL2 context:",e);return}try{let e=new bp(Hn.gl);yl(Hn.name,()=>new Bl(e),Hn.priority)}catch(e){le("error: cannot register WebGL backend:",e);return}try{cl("webgl").forEach(t=>{let n={...t,backendName:Hn.name};ui(n)})}catch(e){le("error: cannot update WebGL backend registration:",e);return}try{_r.set("WEBGL_VERSION",2)}catch(e){le("error: cannot set WebGL backend flags:",e);return}le("backend registered:",Hn.name)}}var qg={};lr(qg,{load:()=>Xg,predict:()=>_0});var x0={};function gn(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(i=>i.kernelTimeMs>0).reduce((i,o)=>i+=o.kernelTimeMs,0),a=t.kernels.map((i,o)=>(i.id=o,i)).filter(i=>i.kernelTimeMs>0).sort((i,o)=>o.kernelTimeMs-i.kernelTimeMs),s=t.kernels.map((i,o)=>(i.id=o,i)).filter(i=>i.totalBytesSnapshot>0).sort((i,o)=>o.totalBytesSnapshot-i.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n),x0[e]={model:e,newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s},le("profiler",e,x0[e])}var wr,w0={age:0},b0=Number.MAX_SAFE_INTEGER;async function Xg(e){return wr?e.debug&&le("cached model:",wr.modelUrl):(wr=await ct(pt(e.modelBasePath,e.face.age.modelPath)),!wr||!wr.modelUrl?le("load model failed:",e.face.age.modelPath):e.debug&&le("load model:",wr.modelUrl)),wr}async function _0(e,t){return wr?b00?(b0++,w0):(t.videoOptimized?b0=0:b0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Le.resizeBilinear(e,[wr.inputs[0].shape[2],wr.inputs[0].shape[1]],!1),a=P(r,[255]);_e(r);let s,i={age:0};if(!t.profile)t.face.age.enabled&&(s=await wr.predict(a));else{let o=t.face.age.enabled?await an(()=>wr.predict(a)):{};s=o.result.clone(),o.result.dispose(),gn("age",o)}if(a.dispose(),s){let o=s.dataSync();i.age=Math.trunc(10*o[0])/10}s.dispose(),w0=i,n(i)})):null}var Kg={};lr(Kg,{load:()=>Qg,predict:()=>k0});var sr,Zg={gender:""},v0=Number.MAX_SAFE_INTEGER,Yg=!1,Jg=[.2989,.587,.114];async function Qg(e){return sr?e.debug&&le("cached model:",sr.modelUrl):(sr=await ct(pt(e.modelBasePath,e.face.gender.modelPath)),Yg=sr.inputs[0].shape[3]===1,!sr||!sr.modelUrl?le("load model failed:",e.face.gender.modelPath):e.debug&&le("load model:",sr.modelUrl)),sr}async function k0(e,t){return sr?v0{let r=Le.resizeBilinear(e,[sr.inputs[0].shape[2],sr.inputs[0].shape[1]],!1),a;Yg?a=z(()=>{let[o,l,c]=Lt(r,3,3),u=P(o,Jg[0]),h=P(l,Jg[1]),d=P(c,Jg[2]);return Pa([u,h,d]).sub(.5).mul(2)}):a=P(r,[255]),_e(r);let s,i={gender:"",confidence:0};if(!t.profile)t.face.gender.enabled&&(s=await sr.predict(a));else{let o=t.face.gender.enabled?await an(()=>sr.predict(a)):{};s=o.result.clone(),o.result.dispose(),gn("gender",o)}if(a.dispose(),s)if(Array.isArray(s)){let o=s[0].dataSync(),l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l)),s.forEach(c=>_e(c))}else{let o=s.dataSync();if(Yg)(o[0]>t.face.gender.minConfidence||o[1]>t.face.gender.minConfidence)&&(i.gender=o[0]>o[1]?"female":"male",i.confidence=o[0]>o[1]?Math.trunc(100*o[0])/100:Math.trunc(100*o[1])/100);else{let l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l))}s.dispose()}Zg=i,n(i)})):null}var e2={};lr(e2,{load:()=>r2,predict:()=>S0});var Die=["angry","disgust","fear","happy","sad","surprise","neutral"],br,t2=[],I0=Number.MAX_SAFE_INTEGER,n2=[.2989,.587,.114];async function r2(e){return br?e.debug&&le("cached model:",br.modelUrl):(br=await ct(pt(e.modelBasePath,e.face.emotion.modelPath)),!br||!br.modelUrl?le("load model failed:",e.face.emotion.modelPath):e.debug&&le("load model:",br.modelUrl)),br}async function S0(e,t){return br?I00?(I0++,t2):(t.videoOptimized?I0=0:I0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Le.resizeBilinear(e,[br.inputs[0].shape[2],br.inputs[0].shape[1]],!1),[a,s,i]=Lt(r,3,3);r.dispose();let o=P(a,n2[0]),l=P(s,n2[1]),c=P(i,n2[2]);a.dispose(),s.dispose(),i.dispose();let u=Pa([o,l,c]);o.dispose(),l.dispose(),c.dispose();let h=z(()=>u.sub(.5).mul(2));u.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let f=await an(()=>br.predict(h));p=f.result.dataSync(),f.result.dispose(),gn("emotion",f)}else{let f=await br.predict(h);p=f.dataSync(),_e(f)}for(let f=0;ft.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*p[f])/100),emotion:Die[f]});d.sort((f,m)=>m.score-f.score)}h.dispose(),t2=d,n(d)})):null}var Gn;async function a2(e){return Gn?e.debug&&le("cached model:",Gn.modelUrl):(Gn=await ct(pt(e.modelBasePath,e.face.embedding.modelPath)),!Gn||!Gn.modelUrl?le("load model failed:",e.face.embedding.modelPath):e.debug&&le("load model:",Gn.modelUrl)),Gn}function T8(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(Math.trunc(1e3*(1-r))/1e3,0)}function Oie(e){return z(()=>{let n=[[.05,.15,.85,.85]],r=e.image||e.tensor;if(!(r instanceof Pe))return null;let a=r.shape.length===3?Le.cropAndResize(Qt(r,0),n,[0],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]):Le.cropAndResize(r,n,[0],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]),s=[.2989,.587,.114],[i,o,l]=Lt(a,3,3),c=P(i,s[0]),u=P(o,s[1]),h=P(l,s[2]),d=Pa([c,u,h]),p=cn([d,d,d],3).squeeze(4),f=p.sub(p.min());return f.div(f.max())})}async function s2(e,t){return Gn?new Promise(async n=>{let r=[];if(t.face.embedding.enabled){let a=Oie(e);if(!t.profile)r=z(()=>[...Gn.predict(a).reshape([128,2]).logSumExp(1).dataSync()]);else{let s=await an(()=>Gn.predict({img_inputs:a}));r=[...s.result.dataSync()],s.result.dispose(),gn("emotion",s)}_e(a)}n(r)}):[]}var i2={};lr(i2,{enhance:()=>u2,load:()=>o2,match:()=>E8,predict:()=>E0,similarity:()=>l2});var qn,N0={age:0},T0=Number.MAX_SAFE_INTEGER;async function o2(e){return qn?e.debug&&le("cached model:",qn.modelUrl):(qn=await ct(pt(e.modelBasePath,e.face.description.modelPath)),!qn||!qn.modelUrl?le("load model failed:",e.face.description.modelPath):e.debug&&le("load model:",qn.modelUrl)),qn}function l2(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=5*e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(0,100-r)/100}function E8(e,t,n=0){let r={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return r;for(let a of t)if(a.embedding&&a.name){let s=l2(e,a.embedding);s>n&&s>r.similarity&&(r={...a,similarity:s})}return r}function u2(e){return z(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Pe))return null;let r=[[.05,.15,.85,.85]];return(n.shape.length===3?Le.cropAndResize(Qt(n,0),r,[0],[qn.inputs[0].shape[2],qn.inputs[0].shape[1]]):Le.cropAndResize(n,r,[0],[qn.inputs[0].shape[2],qn.inputs[0].shape[1]])).mul(255)})}async function E0(e,t){return qn?T00?(T0++,N0):(t.videoOptimized?T0=0:T0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=u2(e),a,s={age:0,gender:"unknown",genderConfidence:0,descriptor:[]};if(!t.profile)t.face.description.enabled&&(a=await qn.predict(r));else{let i=t.face.description.enabled?await an(()=>qn.predict(r)):{};a=i.result,gn("faceres",i)}_e(r),a&&(z(()=>{let i=a.find(h=>h.shape[1]===1).dataSync(),o=Math.trunc(200*Math.abs(i[0]-.5))/100;o>t.face.gender.minConfidence&&(s.gender=i[0]<=.5?"female":"male",s.genderConfidence=Math.min(.99,o));let l=a.find(h=>h.shape[1]===100).argMax(1).dataSync()[0],c=a.find(h=>h.shape[1]===100).dataSync();s.age=Math.round(c[l-1]>c[l+1]?10*l-100*c[l-1]:10*l+100*c[l+1])/10;let u=a.find(h=>h.shape[1]===1024);s.descriptor=[...u.dataSync()]}),a.forEach(i=>_e(i))),N0=s,n(s)})):null}var zie=(e,t)=>{let n=A=>A*180/Math.PI,r=A=>{let y=Math.sqrt(A[0]*A[0]+A[1]*A[1]+A[2]*A[2]);return A[0]/=y,A[1]/=y,A[2]/=y,A},a=(A,y)=>{let g=A[0]-y[0],x=A[1]-y[1],v=A[2]-y[2];return[g,x,v]},s=(A,y)=>{let g=A[1]*y[2]-A[2]*y[1],x=A[2]*y[0]-A[0]*y[2],v=A[0]*y[1]-A[1]*y[0];return[g,x,v]},i=A=>{let[y,g,x,v,w,b,k,N,C]=A,F,O,L;return v<1?v>-1?(L=Math.asin(v),O=Math.atan2(-k,y),F=Math.atan2(-b,w)):(L=-Math.PI/2,O=-Math.atan2(N,C),F=0):(L=Math.PI/2,O=Math.atan2(N,C),F=0),{pitch:2*-F,yaw:2*-O,roll:2*-L}},o=A=>{let y=(x,v,w,b)=>Math.atan2(b-v,w-x);return{pitch:y(A[10][1],A[10][2],A[152][1],A[152][2]),yaw:y(A[33][0],A[33][2],A[263][0],A[263][2]),roll:y(A[33][0],A[33][1],A[263][0],A[263][1])}},l=e.meshRaw;if(!l||l.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1]};let c=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[l[10],l[152],l[234],l[454]].map(A=>[A[0]*t[0]/c,A[1]*t[1]/c,A[2]]),h=r(a(u[1],u[0])),d=r(a(u[3],u[2])),p=r(s(d,h));d=s(h,p);let f=[d[0],d[1],d[2],h[0],h[1],h[2],p[0],p[1],p[2]];return{angle:i(f),matrix:f}},c2=async(e,t)=>{var u,h,d,p,f,m,A;let n,r,a,s,i,o,l=[];e.state="run:face",n=Ye();let c=await((u=e.models.face)==null?void 0:u.estimateFaces(t,e.config));if(e.perf.face=Math.trunc(Ye()-n),!c)return[];for(let y of c){if(e.analyze("Get Face"),!y.image||y.image.isDisposedInternal){le("Face object is disposed:",y.image);continue}let g=zie(y,[t.shape[2],t.shape[1]]);e.analyze("Start Age:"),e.config.async?r=e.config.face.age.enabled?_0(y.image,e.config):{}:(e.state="run:age",n=Ye(),r=e.config.face.age.enabled?await _0(y.image,e.config):{},e.perf.age=Math.trunc(Ye()-n)),e.analyze("Start Gender:"),e.config.async?a=e.config.face.gender.enabled?k0(y.image,e.config):{}:(e.state="run:gender",n=Ye(),a=e.config.face.gender.enabled?await k0(y.image,e.config):{},e.perf.gender=Math.trunc(Ye()-n)),e.analyze("Start Emotion:"),e.config.async?s=e.config.face.emotion.enabled?S0(y.image,e.config):{}:(e.state="run:emotion",n=Ye(),s=e.config.face.emotion.enabled?await S0(y.image,e.config):{},e.perf.emotion=Math.trunc(Ye()-n)),e.analyze("End Emotion:"),e.analyze("Start Embedding:"),e.config.async?i=e.config.face.embedding.enabled?s2(y,e.config):[]:(e.state="run:embedding",n=Ye(),i=e.config.face.embedding.enabled?await s2(y,e.config):[],e.perf.embedding=Math.trunc(Ye()-n)),e.analyze("End Embedding:"),e.analyze("Start Description:"),e.config.async?o=e.config.face.description.enabled?E0(y,e.config):[]:(e.state="run:description",n=Ye(),o=e.config.face.description.enabled?await E0(y.image,e.config):[],e.perf.embedding=Math.trunc(Ye()-n)),e.analyze("End Description:"),e.config.async&&([r,a,s,i,o]=await Promise.all([r,a,s,i,o])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((h=y==null?void 0:y.annotations)==null?void 0:h.leftEyeIris)&&((d=y==null?void 0:y.annotations)==null?void 0:d.rightEyeIris)&&(delete y.annotations.leftEyeIris,delete y.annotations.rightEyeIris);let x=((p=y.annotations)==null?void 0:p.leftEyeIris)&&((f=y.annotations)==null?void 0:f.rightEyeIris)?11.7*Math.max(Math.abs(y.annotations.leftEyeIris[3][0]-y.annotations.leftEyeIris[1][0]),Math.abs(y.annotations.rightEyeIris[4][1]-y.annotations.rightEyeIris[2][1])):0;l.push({...y,age:o.age||r.age,gender:o.gender||a.gender,genderConfidence:o.genderConfidence||a.confidence,embedding:o.descriptor||i,emotion:s,iris:x!==0?Math.trunc(x)/100:0,rotation:g,tensor:e.config.face.detector.return?(m=y.image)==null?void 0:m.squeeze():null}),(A=y.image)==null||A.dispose(),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.perf.face&&delete e.perf.face,e.perf.age&&delete e.perf.age,e.perf.gender&&delete e.perf.gender,e.perf.emotion&&delete e.perf.emotion),l};var A2={};lr(A2,{MediaPipeFaceMesh:()=>y2,load:()=>g2,triangulation:()=>L8,uvmap:()=>W8});var C8=6;function Pie(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r({startEndTensor:e,startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});function Wie(e,t,n){let r=Re(e,[0,1],[-1,2]),a=se(r,t),s=Re(e,[0,3],[-1,2]),i=Ae(s,n),o=Ae(a,n),l=Ae(i,2),c=ye(o,l),u=se(o,l),h=P(c,n),d=P(u,n);return wl([h,d],1)}var R8=class{constructor(t,n){this.model=t,this.anchorsData=Pie(t.inputs[0].shape[1]),this.anchors=er(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,r,a]=z(()=>{let d=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),p=this.model.predict(d),f;if(Array.isArray(p)){let g=p.sort((b,k)=>b.size-k.size),x=rt([g[0],g[2]],2),v=rt([g[1],g[3]],2);f=rt([v,x],1).squeeze(0)}else f=p.squeeze();let m=Wie(f,this.anchors,[this.inputSize,this.inputSize]),A=Re(f,[0,0],[-1,1]),y=Tn(A).squeeze();return[f,m,y]}),s=await Le.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),i=s.arraySync();s.dispose();let l=i.map(h=>Re(r,[h,0],[1,-1])).map(h=>{let d=h.arraySync();return h.dispose(),d}),c=a.dataSync(),u=[];for(let h=0;hthis.config.face.detector.minConfidence){let f=Lie(l[h]),m=this.anchorsData[d],A=z(()=>Re(n,[d,C8-1],[1,-1]).squeeze().reshape([C8,-1]));u.push({box:f,landmarks:A,anchor:m,confidence:p})}}return n.dispose(),r.dispose(),a.dispose(),{boxes:u,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function M8(e){let t=await ct(pt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new R8(t,e);return!t||!t.modelUrl?le("load model failed:",e.face.detector.modelPath):e.debug&&le("load model:",t.modelUrl),n}function F8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function Qc(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function eu(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function tu(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Le.cropAndResize(t,s,[0],n)}function C0(e,t=1.5){let n=eu(e),r=Qc(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function R0(e){let t=eu(e),n=Qc(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}var M0=[[1,0,0],[0,1,0],[0,0,1]];function Bie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function h2(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Bie(n)}function $8(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function rs(e,t){let n=0;for(let r=0;reh[e]),nle=Uie.map(e=>eh[e]),rle=Hie.map(e=>eh[e]);var p2=Qr.leftEyeLower0,f2=Qr.rightEyeLower0,nu={leftBounds:[p2[0],p2[p2.length-1]],rightBounds:[f2[0],f2[f2.length-1]]},$0={count:468,mouth:13,symmetryLine:[13,Qr.midwayBetweenEyes[0]]},P8={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},ru={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function D0(e,t,n,r){for(let a=0;a[s[0]/this.meshSize*(h[0]-this.meshSize/2),s[1]/this.meshSize*(h[1]-this.meshSize/2),h[2]]),o=r!==0?F0(r,[0,0]):M0,l=r!==0?i.map(h=>[...z8(h,o),h[2]]):i,c=r!==0?O8(a):M0,u=[...eu({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(h=>[h[0]+rs(u,c[0]),h[1]+rs(u,c[1]),h[2]])}getLeftToRightEyeDepthDifference(t){let n=t[nu.leftBounds[0]][2],r=t[nu.rightBounds[0]][2];return n-r}getEyeBox(t,n,r,a,s=!1){let i=R0(C0(this.calculateLandmarksBoundingBox([t[r],t[a]]),this.irisEnlarge)),o=Qc(i),l=Le.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&_r.flags.IS_BROWSER&&(l=Le.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,r,a=!1){let s=[];for(let i=0;i{let c=i;return l===2?c=a:l===4&&(c=s),[o[0],o[1],c]})}async predict(t,n){let r=!1,a;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(a=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,!n.videoOptimized||a&&a.boxes&&(!n.face.mesh.enabled||a.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let i of a.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(r=!0)}if(n.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),r){if(!a||!a.boxes||a.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=z(()=>this.storedBoxes.map((i,o)=>{let l=i.confidence,c,u=0,h;if(n.face.detector.rotation&&n.face.mesh.enabled&&_r.flags.IS_BROWSER){let[w,b]=i.landmarks.length>=$0.count?$0.symmetryLine:P8.symmetryLine;u=h2(i.landmarks[w],i.landmarks[b]);let k=eu({startPoint:i.startPoint,endPoint:i.endPoint}),N=[k[0]/t.shape[2],k[1]/t.shape[1]],C=Le.rotateWithOffset(t,u,0,N);h=F0(-u,k),n.face.mesh.enabled?c=tu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.meshSize,this.meshSize]).div(255):c=tu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.boxSize,this.boxSize]).div(255)}else{h=M0;let w=t.clone();n.face.mesh.enabled?c=tu({startPoint:i.startPoint,endPoint:i.endPoint},w,[this.meshSize,this.meshSize]).div(255):c=tu({startPoint:i.startPoint,endPoint:i.endPoint},w,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{coords:null,box:i,faceConfidence:null,boxConfidence:l,confidence:i.confidence,image:c};let[,d,p]=this.meshDetector.predict(c),f=d.dataSync()[0];if(f=$0.count?$0.symmetryLine:P8.symmetryLine;u=h2(i.landmarks[w],i.landmarks[b]);let k=eu({startPoint:i.startPoint,endPoint:i.endPoint}),N=[k[0]/t.shape[2],k[1]/t.shape[1]],C=Le.rotateWithOffset(t.toFloat(),u,0,N);h=F0(-u,k),c=tu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.meshSize,this.meshSize]).div(255)}let x={coords:g,box:i,faceConfidence:f,boxConfidence:l,image:c,rawCoords:A},v=R0(i);return this.storedBoxes[o]={...v,landmarks:y,confidence:i.confidence,faceConfidence:f},x}));return s=s.filter(i=>i!==null),n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.faceConfidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s,landmarks:t}}};var y2=class{constructor(t,n,r,a){this.facePipeline=new m2(t,n,r),this.config=a}async estimateFaces(t,n){let r=await this.facePipeline.predict(t,n),a=[];for(let s of r||[]){if(s.isDisposedInternal)continue;let i=s.coords?s.coords.arraySync():[],o=i.map(h=>[h[0]/t.shape[2],h[1]/t.shape[1],h[2]/this.facePipeline.meshSize]),l={};if(i&&i.length>0)for(let h of Object.keys(Qr))l[h]=Qr[h].map(d=>i[d]);let c=s.box?[Math.max(0,s.box.startPoint[0]),Math.max(0,s.box.startPoint[1]),Math.min(t.shape[2],s.box.endPoint[0])-Math.max(0,s.box.startPoint[0]),Math.min(t.shape[1],s.box.endPoint[1])-Math.max(0,s.box.startPoint[1])]:0,u=s.box?[s.box.startPoint[0]/t.shape[2],s.box.startPoint[1]/t.shape[1],(s.box.endPoint[0]-s.box.startPoint[0])/t.shape[2],(s.box.endPoint[1]-s.box.startPoint[1])/t.shape[1]]:[];a.push({confidence:Math.round(100*s.faceConfidence||100*s.boxConfidence||0)/100,boxConfidence:Math.round(100*s.boxConfidence)/100,faceConfidence:Math.round(100*s.faceConfidence)/100,box:c,boxRaw:u,mesh:i,meshRaw:o,annotations:l,image:s.image?s.image.clone():null}),s.coords&&s.coords.dispose(),s.image&&s.image.dispose()}return a}},Kt=[null,null,null];async function g2(e){return!Kt[0]&&e.face.enabled||!Kt[1]&&e.face.mesh.enabled||!Kt[2]&&e.face.iris.enabled?(Kt=await Promise.all([!Kt[0]&&e.face.enabled?M8(e):null,!Kt[1]&&e.face.mesh.enabled?ct(pt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Kt[2]&&e.face.iris.enabled?ct(pt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Kt[1]||!Kt[1].modelUrl?le("load model failed:",e.face.mesh.modelPath):e.debug&&le("load model:",Kt[1].modelUrl)),e.face.iris.enabled&&(!Kt[2]||!Kt[1].modelUrl?le("load model failed:",e.face.iris.modelPath):e.debug&&le("load model:",Kt[2].modelUrl))):e.debug&&(le("cached model:",Kt[0].model.modelUrl),le("cached model:",Kt[1].modelUrl),le("cached model:",Kt[2].modelUrl)),new y2(Kt[0],Kt[1],Kt[2],e)}var L8=ji,W8=eh;var N2={};lr(N2,{PoseNet:()=>T2,load:()=>E2});var Gie=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];function qie(e){let[t,n,r,a]=e;return{offsets:t,heatmap:n,displacementFwd:r,displacementBwd:a}}var x2=class{constructor(t){this.model=t,this.inputSize=t.inputs[0].shape[1]}predict(t){return z(()=>{let r=t.resizeBilinear([this.inputSize,this.inputSize]).toFloat().div(127.5).sub(1),s=this.model.execute(r,Gie).map(o=>o.squeeze([0])),i=qie(s);return{heatmapScores:i.heatmap.sigmoid(),offsets:i.offsets,displacementFwd:i.displacementFwd,displacementBwd:i.displacementBwd}})}dispose(){this.model.dispose()}};var au=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],su=au.length,th=au.reduce((e,t,n)=>(e[t]=n,e),{}),Xie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Kie=Xie.map(([e,t])=>[th[e],th[t]]),B8=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function V8(e,t){let n=su,r=[];for(let a=0;a[n.get(s,i,o),n.get(s,i,o+su)],a=()=>{let s=[];for(let i=0;ie.toTensor().mul(xe(t,"int32")).toFloat().add(a()))}function U8(e){let t=(s,i)=>z(()=>{let o=s.div(xe(i,"int32"));return s.sub(o.mul(xe(i,"int32")))}),[n,r,a]=e.shape;return z(()=>{let i=e.reshape([n*r,a]).argMax(0),o=i.div(xe(r,"int32")).expandDims(1),l=t(i,r).expandDims(1);return rt([o,l],1)})}function O0(e){let t=e.reduce(({maxX:n,maxY:r,minX:a,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(n,i),maxY:Math.max(r,o),minX:Math.min(a,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function w2(e,[t,n],[r,a]){let s=(o,l,c)=>({score:o.score,box:[Math.trunc(o.box[0]*c),Math.trunc(o.box[1]*l),Math.trunc(o.box[2]*c),Math.trunc(o.box[3]*l)],keypoints:o.keypoints.map(({score:u,part:h,position:d})=>({score:u,part:h,position:{x:Math.trunc(d.x*c),y:Math.trunc(d.y*l)}}))});return e.map(o=>s(o,t/r,n/a))}var b2=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(nn?n:e}function H8(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}function k2(e,t){return{x:e.x+t.x,y:e.y+t.y}}var G8=B8.map(([e,t])=>[th[e],th[t]]),I2=G8.map(([,e])=>e),q8=G8.map(([e])=>e),Zie=16;function Yie(e,t,n){let r=n.shape[2]/2;return{y:n.get(t.y,t.x,e),x:n.get(t.y,t.x,r+e)}}function S2(e,t,n,r){return{y:v2(Math.round(e.y/t),0,n-1),x:v2(Math.round(e.x/t),0,r-1)}}function X8(e,t,n,r,a,s,i,o=2){let[l,c]=r.shape,u=S2(t.position,s,l,c),h=Yie(e,u,i),p=k2(t.position,h);for(let A=0;A=0;--d){let p=I2[d],f=q8[d];l[p]&&!l[f]&&(l[f]=X8(d,l[p],f,t,n,r,s))}for(let d=0;df>n).map((f,m)=>(h+=f,{position:{y:c[2*m+0],x:c[2*m+1]},part:au[m],score:f}));r.dispose(),l.dispose();let p=O0(d);return{keypoints:d,box:p,score:Math.round(100*h/d.length)/100}}var Jie=1,Y8=16;function Qie(e,t,n,r,a,s){let[i,o]=s.shape,l=!0,c=Math.max(n-a,0),u=Math.min(n+a+1,i);for(let h=c;ht){l=!1;break}if(!l)break}return l}function eoe(e,t,n){let[r,a,s]=n.shape,i=new b2(r*a*s,({score:o})=>o);for(let o=0;o{let i=s[a].position;return H8(r,n,i.y,i.x)<=t})}function toe(e,t,n){return n.reduce((a,{position:s,score:i},o)=>(J8(e,t,s,o)||(a+=i),a),0)/n.length}function Q8(e,t,n,r,a,s,i){let o=[],l=eoe(i,Jie,e),c=a^2;for(;o.lengthi&&o.push({keypoints:d,box:f,score:Math.round(100*p)/100})}return o}var Ui;async function noe(e,t,n,r){let a=s=>Promise.all(s.map(i=>i.buffer()));return new Promise(async s=>{let i=await a([t.heatmapScores,t.offsets,t.displacementFwd,t.displacementBwd]),o=i[0],l=i[1],c=i[2],u=i[3],h=await Q8(o,l,c,u,n.body.nmsRadius,n.body.maxDetections,n.body.scoreThreshold),d=w2(h,[e.shape[1],e.shape[2]],[r,r]);s(d)})}async function roe(e,t,n,r){return new Promise(async a=>{let s=await Z8(t.heatmapScores,t.offsets,n.body.scoreThreshold),i=w2([s],[e.shape[1],e.shape[2]],[r,r]);a(i)})}var T2=class{constructor(t){this.baseModel=t,this.inputSize=t.model.inputs[0].shape[1]}async estimatePoses(t,n){let r=this.baseModel.predict(t,n),a=n.body.maxDetections<2?await roe(t,r,n,this.inputSize):await noe(t,r,n,this.inputSize);return r.heatmapScores.dispose(),r.offsets.dispose(),r.displacementFwd.dispose(),r.displacementBwd.dispose(),a}dispose(){this.baseModel.dispose()}};async function E2(e){Ui?e.debug&&le("cached model:",Ui.modelUrl):(Ui=await ct(pt(e.modelBasePath,e.body.modelPath)),!Ui||!Ui.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",Ui.modelUrl));let t=new x2(Ui);return new T2(t)}var $2={};lr($2,{HandPose:()=>O2,load:()=>z2});function P0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function nh(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function ek(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Le.cropAndResize(t,s,[0],n)}function tk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function L0(e,t=1.5){let n=nh(e),r=P0(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function W0(e){let t=nh(e),n=P0(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var C2=class{constructor(t,n,r){this.model=t,this.anchors=r.map(a=>[a.x_center,a.y_center]),this.anchorsTensor=er(this.anchors),this.inputSize=n,this.inputSizeTensor=sn([n,n]),this.doubleInputSizeTensor=sn([n*2,n*2])}normalizeBoxes(t){return z(()=>{let n=Re(t,[0,0],[-1,2]),r=Re(t,[0,2],[-1,2]),a=se(Ae(n,this.inputSizeTensor),this.anchorsTensor),s=Ae(r,this.doubleInputSizeTensor),i=P(ye(a,s),this.inputSizeTensor),o=P(se(a,s),this.inputSizeTensor);return wl([i,o],1)})}normalizeLandmarks(t,n){return z(()=>{let r=se(Ae(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return P(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),a=r.squeeze();r.dispose();let s=z(()=>Tn(Re(a,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Re(a,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let c=await Le.nonMaxSuppressionAsync(l,i,n.hand.maxHands,n.hand.iouThreshold,n.hand.scoreThreshold),u=c.arraySync();s.dispose(),c.dispose();let h=[];for(let d of u)if(i[d]>=n.hand.minConfidence){let p=Re(l,[d,0],[1,-1]),f=Re(a,[d,5],[1,14]),m=z(()=>this.normalizeLandmarks(f,d).reshape([-1,2]));f.dispose(),h.push({box:p,palmLandmarks:m,confidence:i[d]})}return a.dispose(),l.dispose(),h}async estimateHandBounds(t,n){let r=t.shape[1],a=t.shape[2],s=z(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let c=l.box.dataSync(),u=c.slice(0,2),h=c.slice(2,4),d=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(tk({startPoint:u,endPoint:h,palmLandmarks:d,confidence:l.confidence},[a/this.inputSize,r/this.inputSize]))}return o}};function aoe(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function nk(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return aoe(n)}var rk=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function as(e,t){let n=0;for(let r=0;rM2([...s,1],n)),a=this.calculateLandmarksBoundingBox(r);return L0(W0(a),ioe)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=L0(W0(n),ik);r.palmLandmarks=[];for(let a=0;a[i[0]*(p[0]-this.inputSize/2),i[1]*(p[1]-this.inputSize/2),i[2]*p[2]]),l=R2(r,[0,0]),c=o.map(p=>[...M2(p,l),p[2]]),u=sk(a),h=[...nh(n),1],d=[as(h,u[0]),as(h,u[1])];return c.map(p=>[p[0]+d[0],p[1]+d[1],p[2]])}async estimateHands(t,n){let r=!1,a;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(a=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==n.hand.maxHands||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(r=!0));let s=[];n.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let i=0;i=n.hand.minConfidence){let x=H(y,[-1,3]),v=x.arraySync();y.dispose(),x.dispose();let w=this.transformRawCoords(v,p,l,d),b=this.getBoxForHandLandmarks(w);this.storedBoxes[i]=b;let k={landmarks:w,confidence:g,box:{topLeft:b.startPoint,bottomRight:b.endPoint}};s.push(k)}else this.storedBoxes[i]=null;y.dispose()}else{let l=L0(W0(o),ik),c={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(c)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s}}};var lk=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var D2={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},O2=class{constructor(t){this.handPipeline=t}static getAnnotations(){return D2}async estimateHands(t,n){let r=await this.handPipeline.estimateHands(t,n);if(!r)return[];let a=[];for(let s of r){let i={};if(s.landmarks)for(let c of Object.keys(D2))i[c]=D2[c].map(u=>s.landmarks[u]);let o=s.box?[Math.max(0,s.box.topLeft[0]),Math.max(0,s.box.topLeft[1]),Math.min(t.shape[2],s.box.bottomRight[0])-Math.max(0,s.box.topLeft[0]),Math.min(t.shape[1],s.box.bottomRight[1])-Math.max(0,s.box.topLeft[1])]:[],l=[s.box.topLeft[0]/t.shape[2],s.box.topLeft[1]/t.shape[1],(s.box.bottomRight[0]-s.box.topLeft[0])/t.shape[2],(s.box.bottomRight[1]-s.box.topLeft[1])/t.shape[1]];a.push({confidence:Math.round(100*s.confidence)/100,box:o,boxRaw:l,landmarks:s.landmarks,annotations:i})}return a}},ea,ta;async function z2(e){!ea||!ta?([ea,ta]=await Promise.all([e.hand.enabled?ct(pt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?ct(pt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!ea||!ea.modelUrl?le("load model failed:",e.hand.detector.modelPath):e.debug&&le("load model:",ea.modelUrl),!ta||!ta.modelUrl?le("load model failed:",e.hand.skeleton.modelPath):e.debug&&le("load model:",ta.modelUrl))):(e.debug&&le("cached model:",ea.modelUrl),e.debug&&le("cached model:",ta.modelUrl));let t=new C2(ea,ea==null?void 0:ea.inputs[0].shape[2],lk),n=new F2(t,ta,ta==null?void 0:ta.inputs[0].shape[2]);return new O2(n)}var P2={};lr(P2,{load:()=>L2,predict:()=>W2});var uk=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],ck=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var xn;async function L2(e){return xn?e.debug&&le("cached model:",xn.modelUrl):(xn=await ct(pt(e.modelBasePath,e.body.modelPath)),xn.width=parseInt(xn.signature.inputs["input_1:0"].tensorShape.dim[2].size),xn.height=parseInt(xn.signature.inputs["input_1:0"].tensorShape.dim[1].size),!xn||!xn.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",xn.modelUrl)),xn}async function W2(e,t){if(!xn||!t.body.enabled)return null;let n={width:e.shape[2],height:e.shape[1]},r=Le.resizeBilinear(e,[xn.width,xn.height],!1),a=Ae(r,[255]);r.dispose();let s;if(t.profile){let u=await an(()=>xn.predict(a));s=u.result.find(h=>h.size===195||h.size===155).dataSync(),u.result.forEach(h=>h.dispose()),gn("blazepose",u)}else{let u=await xn.predict(a);s=u.find(h=>h.size===195||h.size===155).dataSync(),u.forEach(h=>h.dispose())}a.dispose();let i=[],o=s.length===195?uk:ck,l=5;for(let u=0;uh.score>u?h.score:u,0),keypoints:i}]}var wn,rh=[],B0=Number.MAX_SAFE_INTEGER,uoe=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function B2(e){return wn?e.debug&&le("cached model:",wn.modelUrl):(wn=await ct(pt(e.modelBasePath,e.body.modelPath)),!wn||!wn.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",wn.modelUrl)),wn}function coe(e,t){let[n,r]=e.shape;return z(()=>{let a=(o,l)=>ye(o,P(Ae(o,xe(l,"int32")),xe(l,"int32"))),s=H(e,[r*n]),i=Rn(s,0).dataSync()[0];if(i>t){let o=mi(s,0),l=a(o,n).dataSync()[0],c=Ae(o,xe(n,"int32")).dataSync()[0];return[l,c,i]}return[0,0,i]})}async function V2(e,t){return wn?B00?(B0++,rh):(t.videoOptimized?B0=0:B0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=z(()=>{let i=Le.resizeBilinear(e,[wn.inputs[0].shape[2],wn.inputs[0].shape[1]],!1);return P(i,2).sub(1)}),a;if(!t.profile)t.body.enabled&&(a=await wn.predict(r));else{let i=t.body.enabled?await an(()=>wn.predict(r)):{};a=i.result.clone(),i.result.dispose(),gn("body",i)}if(r.dispose(),a){let i=[],o=a.squeeze();_e(a);let l=o.unstack(2);_e(o);for(let c=0;ct.body.scoreThreshold&&i.push({id:c,score:Math.round(100*d)/100,part:uoe[c],positionRaw:{xRaw:u/wn.inputs[0].shape[2],yRaw:h/wn.inputs[0].shape[1]},position:{x:Math.round(e.shape[2]*u/wn.inputs[0].shape[2]),y:Math.round(e.shape[1]*h/wn.inputs[0].shape[1])}})}l.forEach(c=>_e(c)),rh=i}let s=rh.reduce((i,o)=>o.score>i?o.score:i,0);n([{score:s,keypoints:rh}])})):null}var j2={};lr(j2,{load:()=>H2,predict:()=>G2});var V0=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var bn,U2=[],j0=Number.MAX_SAFE_INTEGER,U0=2.5;async function H2(e){if(bn)e.debug&&le("cached model:",bn.modelUrl);else{bn=await ct(pt(e.modelBasePath,e.object.modelPath));let t=Object.values(bn.modelSignature.inputs);if(bn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!bn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!bn||!bn.modelUrl?le("load model failed:",e.object.modelPath):e.debug&&le("load model:",bn.modelUrl)}return bn}async function hoe(e,t,n,r){let a=0,s=[];for(let c of[1,2,4])z(()=>{var A,y;let u=c*13,h=(A=e.find(g=>g.shape[1]===u**2&&g.shape[2]===V0.length))==null?void 0:A.squeeze(),d=(y=e.find(g=>g.shape[1]===u**2&&g.shape[2]r.object.minConfidence&&x!==61){let w=(.5+Math.trunc(g%u))/u,b=(.5+Math.trunc(g/u))/u,k=f[g].map(U=>U*(u/c/t)),[N,C]=[w-U0/c*k[0],b-U0/c*k[1]],[F,O]=[w+U0/c*k[2]-N,b+U0/c*k[3]-C],L=[N,C,F,O];L=L.map(U=>Math.max(0,Math.min(U,1)));let V=[L[0]*n[0],L[1]*n[1],L[2]*n[0],L[3]*n[1]],j={id:a++,strideSize:c,score:Math.round(100*v)/100,class:x+1,label:V0[x].label,center:[Math.trunc(n[0]*w),Math.trunc(n[1]*b)],centerRaw:[w,b],box:V.map(U=>Math.trunc(U)),boxRaw:L};s.push(j)}}});e.forEach(c=>_e(c));let i=s.map(c=>c.boxRaw),o=s.map(c=>c.score),l=[];if(i&&i.length>0){let c=await Le.nonMaxSuppressionAsync(i,o,r.object.maxResults,r.object.iouThreshold,r.object.minConfidence);l=c.dataSync(),_e(c)}return s=s.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),s}async function G2(e,t){return bn?j00?(j0++,U2):(t.videoOptimized?j0=0:j0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=[e.shape[2],e.shape[1]],a=Le.resizeBilinear(e,[bn.inputSize,bn.inputSize],!1),s=a.div(255),i=s.transpose([0,3,1,2]);s.dispose(),a.dispose();let o;if(!t.profile)t.object.enabled&&(o=await bn.predict(i));else{let c=t.object.enabled?await an(()=>bn.predict(i)):{};o=c.result,gn("object",c)}i.dispose();let l=await hoe(o,bn.inputSize,r,t);U2=l,n(l)})):null}var hk=e=>{if(!e)return[];let t=[];for(let n=0;nl.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.yl.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},dk=e=>{if(!e)return[];let t=[];for(let n=0;n0){let r=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${r<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},pk=e=>{if(!e)return[];let t=[];for(let n=0;n.033||h>.033)&&(c=!1),d>.033&&t.push({iris:n,gesture:"looking right"}),h>.033&&t.push({iris:n,gesture:"looking left"});let p=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].annotations.rightEyeIris[0][1],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].annotations.leftEyeIris[0][1];(f<.015||p<.015||f>.03||p>.03)&&(c=!1),(f<.015||p<.015)&&t.push({iris:n,gesture:"looking down"}),(f>.03||p>.03)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},fk=e=>{if(!e)return[];let t=[];for(let n=0;n0){let a=r.reduce((i,o)=>i.position[2]i.position[1]X2});function doe(e,t,n){let r=function(o,l,c){let u=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(u,(h,d)=>(c[d]=0,h))},a=function(o,l){let c=e.createShader(l);if(e.shaderSource(c,o),e.compileShader(c),!e.getShaderParameter(c,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(c));return c};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function mk(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,c=null,u=null,h={},d=e.canvas||document.createElement("canvas"),p={},f={INTERMEDIATE:1},m=d.getContext("webgl");if(!m)throw new Error("Filter: getContext() failed");this.addFilter=function(w){let b=Array.prototype.slice.call(arguments,1),k=h[w];i.push({func:k,args:b})},this.reset=function(){i=[]};let A=function(w,b){if(!(w===o&&b===l)){if(d.width=w,o=w,d.height=b,l=b,!c){let k=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);c=m.createBuffer(),m.bindBuffer(m.ARRAY_BUFFER,c),m.bufferData(m.ARRAY_BUFFER,k,m.STATIC_DRAW),m.pixelStorei(m.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}m.viewport(0,0,o,l),s=[null,null]}},y=function(w,b){let k=m.createFramebuffer();m.bindFramebuffer(m.FRAMEBUFFER,k);let N=m.createRenderbuffer();m.bindRenderbuffer(m.RENDERBUFFER,N);let C=m.createTexture();return m.bindTexture(m.TEXTURE_2D,C),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,w,b,0,m.RGBA,m.UNSIGNED_BYTE,null),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.framebufferTexture2D(m.FRAMEBUFFER,m.COLOR_ATTACHMENT0,m.TEXTURE_2D,C,0),m.bindTexture(m.TEXTURE_2D,null),m.bindFramebuffer(m.FRAMEBUFFER,null),{fbo:k,texture:C}},g=function(w){return s[w]=s[w]||y(o,l),s[w]},x=function(w=null){var C,F;let b=null,k=null,N=!1;t===0?b=n:b=(C=g(a))==null?void 0:C.texture,t++,r&&!(w&f.INTERMEDIATE)?(k=null,N=t%2==0):(a=(a+1)%2,k=(F=g(a))==null?void 0:F.fbo),m.bindTexture(m.TEXTURE_2D,b),m.bindFramebuffer(m.FRAMEBUFFER,k),m.uniform1f(u.uniform.flipY,N?-1:1),m.drawArrays(m.TRIANGLES,0,6)};this.apply=function(w){if(A(w.width,w.height),t=0,n||(n=m.createTexture()),m.bindTexture(m.TEXTURE_2D,n),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.NEAREST),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.NEAREST),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,m.RGBA,m.UNSIGNED_BYTE,w),i.length===0)return x(),d;for(let b=0;b{let u=[];e=H(e,[1,r,o]);for(let h=0;h{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),a=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),a=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let h=c.map(p=>p.id);u.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return c}case"LoopCond":{let r=I("pred",e,t,n);return[wa(r)]}case"Switch":{let r=I("pred",e,t,n),a=I("data",e,t,n);return a.kept||(a=wa(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>yn(a,t,n)!==void 0);if(r){let a=yn(r,t,n);return[wa(a)]}return}case"Enter":{let r=I("frameName",e,t,n),a=I("tensor",e,t,n);return n.enterFrame(r),[wa(a)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[wa(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[wa(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),a=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new lse(c,a,r,s,l,i,o);return n.addTensorArray(u),[u.idTensor,ve(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=I("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),a=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[ve(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),a=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=hse(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=cse(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),a=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=use(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),a=n.getTensorList(r.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),a=I("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=dse(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function K4(e,t,n){let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),u=f0(e,t,n),h=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[p,m]=I("args",e,t,n),f=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:h,dilations:d,biasArg:p,preluArg:m,activationFunc:a,leakyreluAlpha:f}}var fse=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[Id(I("x",e,t,n),I("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=f0(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[ha(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=K4(e,t,n);return[Ha.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=K4(e,t,n);return[Ha.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),s=f0(e,t,n);return[Sd(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=f0(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[wl(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[wm(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Zu(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[nc(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=mw(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[gm(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Fm(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dilations",e,t,n),i=r[1],o=r[2],l=s[1],c=s[2];return[vm(I("x",e,t,n),I("filter",e,t,n),[i,o],a,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},mse=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),s=I("value",e,t,n);return[Qu(r,s,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("num",e,t,n);return[lw(r,a,s)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),s=I("seed",e,t,n);return[Aw(r,a,s)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[ml(r,a,s,i)]}case"Ones":return[Pn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Ln(I("x",e,t,n))];case"RandomUniform":return[Sl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("step",e,t,n);return[zd(r,a,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[qd(r,a,s,I("dtype",e,t,n),i)]}case"Zeros":return[Rt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[He(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function L2(e,t,n){let r=I("boxes",e,t,n),a=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Ase=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=L2(e,t,n),c=await Le.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=L2(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Le.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=L2(e,t,n);return[await Le.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=ge(I("condition",e,t,n),"bool"),a=[await qm(r)];return r.dispose(),a}case"ListDiff":return xw(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},yse=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),s=I("sorted",e,t,n),i=Hm(r,a,s);return[i.values,i.indices]}case"Unique":{let r=I("x",e,t,n),a=Xd(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),s=Xd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},gse=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[yn(e.name,t,n)||r];case"Placeholder":return[yn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[wa(c)]}case"IdentityN":return I("x",e,t,n).map(c=>wa(c));case"Snapshot":let a=I("x",e,t,n);return[wa(a)];case"Shape":return[sn(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>sn(c.shape));case"Size":return[ve(I("x",e,t,n).size,"int32")];case"Rank":return[ve(I("x",e,t,n).rank,"int32")];case"NoOp":return[ve(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;ce.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ve(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),P(()=>{let r=mr(t),a=n.length,s=r.length;_.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i{let r=[];for(let a=0;a{switch(e.op){case"HashTable":case"HashTableV2":{let a=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new xse(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let a=I("tableHandle",e,t,n,r);return[r.getHashTableById(a.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},wse=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Le.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Le.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Le.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},_se=(e,t,n)=>{switch(e.op){case"Equal":return[Ba(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[ki(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[pr(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[ja(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Cd(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[wi(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[fr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[tc(I("a",e,t,n))];case"LogicalOr":return[$d(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Cn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},vse=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ve(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[sw(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Je(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[Ha.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kse=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[xi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[xi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[Em(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[oc(I("x",e,t,n))];case"LogSoftmax":return[Fd(I("x",e,t,n))];case"SparseToDense":return[Xm(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ise=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Rn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[It(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[kl(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Te(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[vd(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Xu(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[Ai(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[cm(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Od(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Td(I("x",e,t,n),i,o,l)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),s=I("size",e,t,n);return[Yb(r,a,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[rw(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Sse=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,r),[ot(s,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[bi(r,ge(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[bi(s,ge(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i{let r=I("axis",e,t,n),a=I("tensors",e,t,n),s=a[0].shape,i=Ua(a[0]).shape,o=a.map(l=>{let c=_.arraysEqual(l.shape,s);if(!c&&!_.arraysEqual(Ua(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:H(l,s)});return[cn(o,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return mr(a,r)}case"Tile":{let r=I("reps",e,t,n);return[Va(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return Lt(s,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),s=I("shape",e,t,n);return[vw(r,a,s)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[kw(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[Xm(r,s,a,s.dtype===i.dtype?i:ge(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nse=(e,t,n)=>{switch(e.op){case"SparseReshape":{let{outputIndices:r,outputShape:a}=Lw.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[r,a]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Tse=(e,t,n)=>{switch(e.op){case"FFT":return[lc(I("x",e,t,n))];case"IFFT":return[Nl(I("x",e,t,n))];case"RFFT":return[uc(I("x",e,t,n))];case"IRFFT":return[Hd(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ese=(e,t,n)=>{switch(e.op){case"Cast":return[ge(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[Qt(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[Ua(I("x",e,t,n),r)]}case"Reshape":return[H(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[$m(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[da(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[rc(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[Yu(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[_m(I("x",e,t,n),r,a)]}case"BroadcastTo":return[xl(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Z4(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return P(()=>ise(s,i,o));case"basic_math":return P(()=>ose(s,i,o));case"control":return pse(s,i,o);case"convolution":return P(()=>fse(s,i,o));case"creation":return P(()=>mse(s,i,o));case"dynamic":return Ase(s,i,o);case"evaluation":return P(()=>yse(s,i,o));case"image":return P(()=>wse(s,i,o));case"graph":return P(()=>gse(s,i,o));case"logical":return P(()=>_se(s,i,o));case"matrices":return P(()=>vse(s,i,o));case"normalization":return P(()=>kse(s,i,o));case"reduction":return P(()=>Ise(s,i,o));case"slice_join":return P(()=>Sse(s,i,o));case"sparse":return P(()=>Nse(s,i,o));case"spectral":return P(()=>Tse(s,i,o));case"transformation":return P(()=>Ese(s,i,o));case"hash_table":return bse(s,i,o,r);case"custom":let l=S4(s.op);if(l&&l.customExecutor)return l.customExecutor(new sse(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return _.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var Y4=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Q4(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>jn(d)[0]),u=[];r!=null&&(u=r.map(d=>jn(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((J4(d)||Cse(d)||Rse(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Mse(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(u=>jn(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{r.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{r.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{r.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return c}var Fse=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],$se=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Dse=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function J4(e){return Fse.indexOf(e.op)>=0}function Cse(e){return $se.indexOf(e.op)>=0}function Rse(e){return Dse.indexOf(e.op)>=0}var W2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new W2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=Q4(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return Mse(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(u=>this.graph.nodes[jn(u)[0]]),a=t.map(u=>jn(u)[0]),s=a.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return P(()=>{let u=new Y4(this.weightMap,l,c,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,A]=jn(m),y=[];y[A]=e[m],h[f]=y});let d=this.getFrozenTensorIds(h),p={};for(let m=0;myn(m,h,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Wae(o.name,n,r);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!a.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new Y4(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>yn(h,i,s)),l=o.map(h=>h.id),c=Object.keys(e).map(h=>e[h].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.kept&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[jn(g)[0]]),i=n.map(g=>jn(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:h}=Q4(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[x,v]=jn(g),b=[];b[v]=e[g],p[x]=b});let m={},f=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,f,i,m,l);await Promise.all(g)}u==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!J4(g)&&!yn(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw u!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${c}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let h="";if(u.node.op==="Enter"&&I("isConstant",u.node,r,n)&&([h]=ba(u.node.name,n)),r[u.node.name]==null){let d=Z4(u.node,r,n,this._resourceManager);h||([h]=ba(u.node.name,n));let p=n.currentContext;_.isPromise(d)?c.push(d.then(m=>(r[h]=m,n.currentContext=p,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l),m))):(r[h]=d,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l))}else this.processChildNodes(u.node,t,n,r,a,l)}return c}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=ba(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!yn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!yn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=jn(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);_.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&_.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=jn(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=jn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Ose=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},zse="?tfjs-format=file",Pse="model.json",e8=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Ose}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Nn.browserHTTPRequest(e,this.loadOptions);else{let t=Nn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Nn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=Nn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new W2(H4.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=H4.Instance.transformGraph(e.modelInitializer);this.initializer=new W2(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Nn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Pe)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function ct(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${Pse}${zse}`);let n=new e8(e,t);return await n.load(),n}var Lse="3.5.0",t8={};Me(t8,{CSVDataset:()=>r8,Dataset:()=>Jl,FileDataSource:()=>a8,TextLineDataset:()=>n8,URLDataSource:()=>s8,array:()=>Wse,csv:()=>Vse,func:()=>jse,generator:()=>Use,microphone:()=>Gse,version_data:()=>qse,webcam:()=>Hse,zip:()=>Bse});var Xse=so(l5()),Kse=so(l5());function Zse(e,t){return m0(e,t)}function m0(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Ql(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=m0(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function Yse(e,t=o8){return i8(e,t)}function i8(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Ql(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(c=>c[i]),l=i8(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function o8(e){return e===null?null:Ql(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function l8(e,t){let n=new Map;m0(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(_.isPromise(a)){let s=await a;n.set(r,s)}}return m0(e,t,n)}function Ql(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Pe))}function Qse(e){return e==null||Jse(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Pe||_.isTypedArray(e)}function Jse(e){return e===null||typeof e!="object"&&typeof e!="function"}function tie(e){return Zse(e,eie)}function eie(e){return e instanceof Pe?{value:e.clone(),recurse:!1}:Ql(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var u8=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},B2=class extends u8{constructor(){super(B2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;rt===!0)}rowMajorBatch(e,t=!0){return new cie(this,e,t)}columnMajorBatch(e,t=!0,n=o8){return this.rowMajorBatch(e,t).map(r=>Yse(r,n))}concatenate(e,t){return new h8(c8([this,e]),t)}take(e){return e<0||e==null?this:new uie(this,e)}skip(e){return e<0||e==null?this:new lie(this,e)}prefetch(e){return new p8(this,e)}shuffle(e,t){return new mie(this,e,t)}serial(){return new oie(this)}},nie=class extends Xt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:tie(e),done:!1}}},rie=class extends Xt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},oie=class extends Xt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},lie=class extends Xt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},cie=class extends Xt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},hie=class extends Xt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;we(e.value)}}},die=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=kr.getTensorsInContainer(e.value),n=this.transform(e.value),r=kr.getTensorsInContainer(n);for(let a of t)kr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},pie=class extends Xt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},d8=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=kr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=kr.getTensorsInContainer(n);for(let a of t)kr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},j2=class extends Xt{constructor(){super();this.outputQueue=new B2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},fie=class extends j2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=kr.getTensorsInContainer(e.value),n=this.transform(e.value),r=kr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)kr.isTensorInList(a,r)||a.dispose();return!0}},h8=class extends Xt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},rs;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(rs||(rs={}));var sie=class extends Xt{constructor(e,t=rs.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof Xt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await l8(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case rs.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case rs.SHORTEST:return{value:null,done:!0};case rs.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},p8=class extends Xt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new u8(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},mie=class extends p8{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Kse.alea(n||_.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Jl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;_.assert(e>0,()=>`batchSize needs to be positive, but it is + ${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),Un(async()=>(await n.iterator()).columnMajorBatch(e,t,Aie),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Un(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Un(async()=>(await t.iterator()).filter(r=>P(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Un(async()=>(await t.iterator()).map(n=>P(()=>e(n))),this.size)}mapAsync(e){let t=this;return Un(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Un(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Un(async()=>{let r=V2(async()=>({value:await t.iterator(),done:!1}));return aie(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=Xse.alea(t||_.now().toString());return Un(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Un(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Jl.MAX_BUFFER_SIZE=1e4;function Un(e,t=null){return new class extends Jl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function Wse(e){return Un(async()=>c8(e),e.length)}function Bse(e){if(!Ql(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await l8(e,r=>{if(r instanceof Jl)return{value:r.iterator(),recurse:!1};if(Ql(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return iie(n,rs.SHORTEST)},t)}function Aie(e){if(e===null)return null;let t=e[0];return Qse(t)?{value:yie(e),recurse:!1}:{value:null,recurse:!0}}function yie(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Pe?cn(e):Sr(e)}var n8=class extends Jl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` +`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},A0='"',Zc=Symbol("out"),f8=Symbol("field"),y0=Symbol("quote"),U2=Symbol("quoteafterquote"),m8=Symbol("quoteinquote"),r8=class extends Jl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new n8(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(_.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&_.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(_.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new A8(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(_.sizeFromShape(t));return n.set(e,n.length-e.length),Sr(n,t)}},y8=class extends Xt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=sn([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=er([s,a,o,i],[1,4])}else this.cropBox=er([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new y8(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&_.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=fi.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return P(()=>{let t=Qt(ge(e,"float32"),0),n;n=Le.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return H(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},g8=class{},x8=class extends Xt{split(e){return new gie(this,e)}},gie=class extends x8{constructor(e,t){super();this.upstream=e,this.impl=new xie(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},xie=class extends j2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},wie=class extends Xt{decodeUTF8(){return new bie(this)}},bie=class extends x8{constructor(e){super();this.upstream=e,this.impl=new _ie(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},_ie=class extends j2{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=T9();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},b8=class extends wie{constructor(e,t={}){super();this.file=e,this.options=t,_.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function kie(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=vie(e));let a=await _.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new b8(s,t)}else throw new Error(a.statusText)}var vie=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function w8(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var a8=class extends g8{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(w8(this.input)&&J().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new b8(this.input,this.options)}},s8=class extends g8{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return w8(this.url)?new a8(this.url,this.fileOptions).iterator():kie(this.url,this.fileOptions)}};function Vse(e,t={}){return new r8(new s8(e),t)}function jse(e){let t=V2(e);return Un(async()=>t)}function Use(e){return Un(async()=>{let t=await e();return V2(()=>t.next())})}async function Hse(e,t){return y8.create(e,t)}async function Gse(e){return A8.create(e)}var qse="3.5.0",Iie={tfjs:(wf==null?void 0:wf.version)||void 0,"tfjs-core":(_f==null?void 0:_f.version)||void 0,"tfjs-data":(vf==null?void 0:vf.version)||void 0,"tfjs-layers":(kf==null?void 0:kf.version)||void 0,"tfjs-converter":(If==null?void 0:If.version)||void 0,"tfjs-backend-cpu":g_||void 0,"tfjs-backend-webgl":B3||void 0,"tfjs-backend-wasm":Mv||void 0};var Hn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function _8(){if(!om(Hn.name)){le("backend registration:",Hn.name);try{Hn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Hn.width,Hn.height):document.createElement("canvas")}catch(e){le("error: cannot create canvas:",e);return}try{Hn.gl=Hn.canvas.getContext("webgl2",Hn.webGLattr)}catch(e){le("error: cannot get WebGL2 context:",e);return}try{Ap(2,Hn.gl)}catch(e){le("error: cannot set WebGL2 context:",e);return}try{let e=new bp(Hn.gl);yl(Hn.name,()=>new Bl(e),Hn.priority)}catch(e){le("error: cannot register WebGL backend:",e);return}try{cl("webgl").forEach(t=>{let n={...t,backendName:Hn.name};ci(n)})}catch(e){le("error: cannot update WebGL backend registration:",e);return}try{vr.set("WEBGL_VERSION",2)}catch(e){le("error: cannot set WebGL backend flags:",e);return}le("backend registered:",Hn.name)}}var H2={};lr(H2,{load:()=>G2,predict:()=>w0});var g0={};function gn(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(i=>i.kernelTimeMs>0).reduce((i,o)=>i+=o.kernelTimeMs,0),a=t.kernels.map((i,o)=>(i.id=o,i)).filter(i=>i.kernelTimeMs>0).sort((i,o)=>o.kernelTimeMs-i.kernelTimeMs),s=t.kernels.map((i,o)=>(i.id=o,i)).filter(i=>i.totalBytesSnapshot>0).sort((i,o)=>o.totalBytesSnapshot-i.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n),g0[e]={model:e,newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s},le("profiler",e,g0[e])}var br,x0={age:0},b0=Number.MAX_SAFE_INTEGER;async function G2(e){return br?e.debug&&le("cached model:",br.modelUrl):(br=await ct(pt(e.modelBasePath,e.face.age.modelPath)),!br||!br.modelUrl?le("load model failed:",e.face.age.modelPath):e.debug&&le("load model:",br.modelUrl)),br}async function w0(e,t){return br?b00?(b0++,x0):(t.videoOptimized?b0=0:b0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Le.resizeBilinear(e,[br.inputs[0].shape[2],br.inputs[0].shape[1]],!1),a=z(r,[255]);we(r);let s,i={age:0};if(!t.profile)t.face.age.enabled&&(s=await br.predict(a));else{let o=t.face.age.enabled?await an(()=>br.predict(a)):{};s=o.result.clone(),o.result.dispose(),gn("age",o)}if(a.dispose(),s){let o=s.dataSync();i.age=Math.trunc(10*o[0])/10}s.dispose(),x0=i,n(i)})):null}var q2={};lr(q2,{load:()=>Y2,predict:()=>v0});var sr,X2={gender:""},_0=Number.MAX_SAFE_INTEGER,K2=!1,Z2=[.2989,.587,.114];async function Y2(e){return sr?e.debug&&le("cached model:",sr.modelUrl):(sr=await ct(pt(e.modelBasePath,e.face.gender.modelPath)),K2=sr.inputs[0].shape[3]===1,!sr||!sr.modelUrl?le("load model failed:",e.face.gender.modelPath):e.debug&&le("load model:",sr.modelUrl)),sr}async function v0(e,t){return sr?_0{let r=Le.resizeBilinear(e,[sr.inputs[0].shape[2],sr.inputs[0].shape[1]],!1),a;K2?a=P(()=>{let[o,l,c]=Lt(r,3,3),u=z(o,Z2[0]),h=z(l,Z2[1]),d=z(c,Z2[2]);return La([u,h,d]).sub(.5).mul(2)}):a=z(r,[255]),we(r);let s,i={gender:"",confidence:0};if(!t.profile)t.face.gender.enabled&&(s=await sr.predict(a));else{let o=t.face.gender.enabled?await an(()=>sr.predict(a)):{};s=o.result.clone(),o.result.dispose(),gn("gender",o)}if(a.dispose(),s)if(Array.isArray(s)){let o=s[0].dataSync(),l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l)),s.forEach(c=>we(c))}else{let o=s.dataSync();if(K2)(o[0]>t.face.gender.minConfidence||o[1]>t.face.gender.minConfidence)&&(i.gender=o[0]>o[1]?"female":"male",i.confidence=o[0]>o[1]?Math.trunc(100*o[0])/100:Math.trunc(100*o[1])/100);else{let l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l))}s.dispose()}X2=i,n(i)})):null}var J2={};lr(J2,{load:()=>tg,predict:()=>I0});var Sie=["angry","disgust","fear","happy","sad","surprise","neutral"],wr,Q2=[],k0=Number.MAX_SAFE_INTEGER,eg=[.2989,.587,.114];async function tg(e){return wr?e.debug&&le("cached model:",wr.modelUrl):(wr=await ct(pt(e.modelBasePath,e.face.emotion.modelPath)),!wr||!wr.modelUrl?le("load model failed:",e.face.emotion.modelPath):e.debug&&le("load model:",wr.modelUrl)),wr}async function I0(e,t){return wr?k00?(k0++,Q2):(t.videoOptimized?k0=0:k0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Le.resizeBilinear(e,[wr.inputs[0].shape[2],wr.inputs[0].shape[1]],!1),[a,s,i]=Lt(r,3,3);r.dispose();let o=z(a,eg[0]),l=z(s,eg[1]),c=z(i,eg[2]);a.dispose(),s.dispose(),i.dispose();let u=La([o,l,c]);o.dispose(),l.dispose(),c.dispose();let h=P(()=>u.sub(.5).mul(2));u.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let m=await an(()=>wr.predict(h));p=m.result.dataSync(),m.result.dispose(),gn("emotion",m)}else{let m=await wr.predict(h);p=m.dataSync(),we(m)}for(let m=0;mt.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*p[m])/100),emotion:Sie[m]});d.sort((m,f)=>f.score-m.score)}h.dispose(),Q2=d,n(d)})):null}var Gn;async function ng(e){return Gn?e.debug&&le("cached model:",Gn.modelUrl):(Gn=await ct(pt(e.modelBasePath,e.face.embedding.modelPath)),!Gn||!Gn.modelUrl?le("load model failed:",e.face.embedding.modelPath):e.debug&&le("load model:",Gn.modelUrl)),Gn}function v8(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(Math.trunc(1e3*(1-r))/1e3,0)}function Nie(e){return P(()=>{let n=[[.05,.15,.85,.85]],r=e.image||e.tensor;if(!(r instanceof Pe))return null;let a=r.shape.length===3?Le.cropAndResize(Qt(r,0),n,[0],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]):Le.cropAndResize(r,n,[0],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]),s=[.2989,.587,.114],[i,o,l]=Lt(a,3,3),c=z(i,s[0]),u=z(o,s[1]),h=z(l,s[2]),d=La([c,u,h]),p=cn([d,d,d],3).squeeze(4),m=p.sub(p.min());return m.div(m.max())})}async function rg(e,t){return Gn?new Promise(async n=>{let r=[];if(t.face.embedding.enabled){let a=Nie(e);if(!t.profile)r=P(()=>[...Gn.predict(a).reshape([128,2]).logSumExp(1).dataSync()]);else{let s=await an(()=>Gn.predict({img_inputs:a}));r=[...s.result.dataSync()],s.result.dispose(),gn("emotion",s)}we(a)}n(r)}):[]}var ag={};lr(ag,{enhance:()=>og,load:()=>sg,match:()=>k8,predict:()=>T0,similarity:()=>ig});var qn,S0={age:0},N0=Number.MAX_SAFE_INTEGER;async function sg(e){return qn?e.debug&&le("cached model:",qn.modelUrl):(qn=await ct(pt(e.modelBasePath,e.face.description.modelPath)),!qn||!qn.modelUrl?le("load model failed:",e.face.description.modelPath):e.debug&&le("load model:",qn.modelUrl)),qn}function ig(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=5*e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(0,100-r)/100}function k8(e,t,n=0){let r={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return r;for(let a of t)if(a.embedding&&a.name){let s=ig(e,a.embedding);s>n&&s>r.similarity&&(r={...a,similarity:s})}return r}function og(e){return P(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Pe))return null;let r=[[.05,.15,.85,.85]];return(n.shape.length===3?Le.cropAndResize(Qt(n,0),r,[0],[qn.inputs[0].shape[2],qn.inputs[0].shape[1]]):Le.cropAndResize(n,r,[0],[qn.inputs[0].shape[2],qn.inputs[0].shape[1]])).mul(255)})}async function T0(e,t){return qn?N00?(N0++,S0):(t.videoOptimized?N0=0:N0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=og(e),a,s={age:0,gender:"unknown",genderConfidence:0,descriptor:[]};if(!t.profile)t.face.description.enabled&&(a=await qn.predict(r));else{let i=t.face.description.enabled?await an(()=>qn.predict(r)):{};a=i.result,gn("faceres",i)}we(r),a&&(P(()=>{let i=a.find(h=>h.shape[1]===1).dataSync(),o=Math.trunc(200*Math.abs(i[0]-.5))/100;o>t.face.gender.minConfidence&&(s.gender=i[0]<=.5?"female":"male",s.genderConfidence=Math.min(.99,o));let l=a.find(h=>h.shape[1]===100).argMax(1).dataSync()[0],c=a.find(h=>h.shape[1]===100).dataSync();s.age=Math.round(c[l-1]>c[l+1]?10*l-100*c[l-1]:10*l+100*c[l+1])/10;let u=a.find(h=>h.shape[1]===1024);s.descriptor=[...u.dataSync()]}),a.forEach(i=>we(i))),S0=s,n(s)})):null}var Tie=(e,t)=>{let n=A=>A*180/Math.PI,r=A=>{let y=Math.sqrt(A[0]*A[0]+A[1]*A[1]+A[2]*A[2]);return A[0]/=y,A[1]/=y,A[2]/=y,A},a=(A,y)=>{let g=A[0]-y[0],x=A[1]-y[1],v=A[2]-y[2];return[g,x,v]},s=(A,y)=>{let g=A[1]*y[2]-A[2]*y[1],x=A[2]*y[0]-A[0]*y[2],v=A[0]*y[1]-A[1]*y[0];return[g,x,v]},i=A=>{let[y,g,x,v,b,w,k,N,C]=A,F,O,L;return v<1?v>-1?(L=Math.asin(v),O=Math.atan2(-k,y),F=Math.atan2(-w,b)):(L=-Math.PI/2,O=-Math.atan2(N,C),F=0):(L=Math.PI/2,O=Math.atan2(N,C),F=0),{pitch:2*-F,yaw:2*-O,roll:2*-L}},o=A=>{let y=(x,v,b,w)=>Math.atan2(w-v,b-x);return{pitch:y(A[10][1],A[10][2],A[152][1],A[152][2]),yaw:y(A[33][0],A[33][2],A[263][0],A[263][2]),roll:y(A[33][0],A[33][1],A[263][0],A[263][1])}},l=e.meshRaw;if(!l||l.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1]};let c=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[l[10],l[152],l[234],l[454]].map(A=>[A[0]*t[0]/c,A[1]*t[1]/c,A[2]]),h=r(a(u[1],u[0])),d=r(a(u[3],u[2])),p=r(s(d,h));d=s(h,p);let m=[d[0],d[1],d[2],h[0],h[1],h[2],p[0],p[1],p[2]];return{angle:i(m),matrix:m}},lg=async(e,t)=>{var u,h,d,p,m,f,A;let n,r,a,s,i,o,l=[];e.state="run:face",n=Ye();let c=await((u=e.models.face)==null?void 0:u.estimateFaces(t,e.config));if(e.perf.face=Math.trunc(Ye()-n),!c)return[];for(let y of c){if(e.analyze("Get Face"),!y.image||y.image.isDisposedInternal){le("Face object is disposed:",y.image);continue}let g=Tie(y,[t.shape[2],t.shape[1]]);e.analyze("Start Age:"),e.config.async?r=e.config.face.age.enabled?w0(y.image,e.config):{}:(e.state="run:age",n=Ye(),r=e.config.face.age.enabled?await w0(y.image,e.config):{},e.perf.age=Math.trunc(Ye()-n)),e.analyze("Start Gender:"),e.config.async?a=e.config.face.gender.enabled?v0(y.image,e.config):{}:(e.state="run:gender",n=Ye(),a=e.config.face.gender.enabled?await v0(y.image,e.config):{},e.perf.gender=Math.trunc(Ye()-n)),e.analyze("Start Emotion:"),e.config.async?s=e.config.face.emotion.enabled?I0(y.image,e.config):{}:(e.state="run:emotion",n=Ye(),s=e.config.face.emotion.enabled?await I0(y.image,e.config):{},e.perf.emotion=Math.trunc(Ye()-n)),e.analyze("End Emotion:"),e.analyze("Start Embedding:"),e.config.async?i=e.config.face.embedding.enabled?rg(y,e.config):[]:(e.state="run:embedding",n=Ye(),i=e.config.face.embedding.enabled?await rg(y,e.config):[],e.perf.embedding=Math.trunc(Ye()-n)),e.analyze("End Embedding:"),e.analyze("Start Description:"),e.config.async?o=e.config.face.description.enabled?T0(y,e.config):[]:(e.state="run:description",n=Ye(),o=e.config.face.description.enabled?await T0(y.image,e.config):[],e.perf.embedding=Math.trunc(Ye()-n)),e.analyze("End Description:"),e.config.async&&([r,a,s,i,o]=await Promise.all([r,a,s,i,o])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((h=y==null?void 0:y.annotations)==null?void 0:h.leftEyeIris)&&((d=y==null?void 0:y.annotations)==null?void 0:d.rightEyeIris)&&(delete y.annotations.leftEyeIris,delete y.annotations.rightEyeIris);let x=((p=y.annotations)==null?void 0:p.leftEyeIris)&&((m=y.annotations)==null?void 0:m.rightEyeIris)?11.7*Math.max(Math.abs(y.annotations.leftEyeIris[3][0]-y.annotations.leftEyeIris[1][0]),Math.abs(y.annotations.rightEyeIris[4][1]-y.annotations.rightEyeIris[2][1])):0;l.push({...y,age:o.age||r.age,gender:o.gender||a.gender,genderConfidence:o.genderConfidence||a.confidence,embedding:o.descriptor||i,emotion:s,iris:x!==0?Math.trunc(x)/100:0,rotation:g,tensor:e.config.face.detector.return?(f=y.image)==null?void 0:f.squeeze():null}),(A=y.image)==null||A.dispose(),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.perf.face&&delete e.perf.face,e.perf.age&&delete e.perf.age,e.perf.gender&&delete e.perf.gender,e.perf.emotion&&delete e.perf.emotion),l};var fg={};lr(fg,{MediaPipeFaceMesh:()=>mg,load:()=>Ag,triangulation:()=>$8,uvmap:()=>D8});var I8=6;function Eie(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r({startEndTensor:e,startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});function Rie(e,t,n){let r=Re(e,[0,1],[-1,2]),a=se(r,t),s=Re(e,[0,3],[-1,2]),i=Ae(s,n),o=Ae(a,n),l=Ae(i,2),c=ye(o,l),u=se(o,l),h=z(c,n),d=z(u,n);return bl([h,d],1)}var S8=class{constructor(t,n){this.model=t,this.anchorsData=Eie(t.inputs[0].shape[1]),this.anchors=er(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,r,a]=P(()=>{let d=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),p=this.model.predict(d),m;if(Array.isArray(p)){let g=p.sort((w,k)=>w.size-k.size),x=ot([g[0],g[2]],2),v=ot([g[1],g[3]],2);m=ot([v,x],1).squeeze(0)}else m=p.squeeze();let f=Rie(m,this.anchors,[this.inputSize,this.inputSize]),A=Re(m,[0,0],[-1,1]),y=Tn(A).squeeze();return[m,f,y]}),s=await Le.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),i=s.arraySync();s.dispose();let l=i.map(h=>Re(r,[h,0],[1,-1])).map(h=>{let d=h.arraySync();return h.dispose(),d}),c=a.dataSync(),u=[];for(let h=0;hthis.config.face.detector.minConfidence){let m=Cie(l[h]),f=this.anchorsData[d],A=P(()=>Re(n,[d,I8-1],[1,-1]).squeeze().reshape([I8,-1]));u.push({box:m,landmarks:A,anchor:f,confidence:p})}}return n.dispose(),r.dispose(),a.dispose(),{boxes:u,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function N8(e){let t=await ct(pt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new S8(t,e);return!t||!t.modelUrl?le("load model failed:",e.face.detector.modelPath):e.debug&&le("load model:",t.modelUrl),n}function T8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function Yc(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function eu(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function tu(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Le.cropAndResize(t,s,[0],n)}function E0(e,t=1.5){let n=eu(e),r=Yc(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function C0(e){let t=eu(e),n=Yc(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}var R0=[[1,0,0],[0,1,0],[0,0,1]];function Mie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function ug(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Mie(n)}function E8(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function as(e,t){let n=0;for(let r=0;rJc[e]),Voe=Die.map(e=>Jc[e]),joe=Oie.map(e=>Jc[e]);var hg=ea.leftEyeLower0,dg=ea.rightEyeLower0,nu={leftBounds:[hg[0],hg[hg.length-1]],rightBounds:[dg[0],dg[dg.length-1]]},F0={count:468,mouth:13,symmetryLine:[13,ea.midwayBetweenEyes[0]]},F8={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},ru={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function $0(e,t,n,r){for(let a=0;a[s[0]/this.meshSize*(h[0]-this.meshSize/2),s[1]/this.meshSize*(h[1]-this.meshSize/2),h[2]]),o=r!==0?M0(r,[0,0]):R0,l=r!==0?i.map(h=>[...M8(h,o),h[2]]):i,c=r!==0?R8(a):R0,u=[...eu({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(h=>[h[0]+as(u,c[0]),h[1]+as(u,c[1]),h[2]])}getLeftToRightEyeDepthDifference(t){let n=t[nu.leftBounds[0]][2],r=t[nu.rightBounds[0]][2];return n-r}getEyeBox(t,n,r,a,s=!1){let i=C0(E0(this.calculateLandmarksBoundingBox([t[r],t[a]]),this.irisEnlarge)),o=Yc(i),l=Le.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&vr.flags.IS_BROWSER&&(l=Le.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,r,a=!1){let s=[];for(let i=0;i{let c=i;return l===2?c=a:l===4&&(c=s),[o[0],o[1],c]})}async predict(t,n){let r=!1,a;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(a=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,!n.videoOptimized||a&&a.boxes&&(!n.face.mesh.enabled||a.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let i of a.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(r=!0)}if(n.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),r){if(!a||!a.boxes||a.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=P(()=>this.storedBoxes.map((i,o)=>{let l=i.confidence,c,u=0,h;if(n.face.detector.rotation&&n.face.mesh.enabled&&vr.flags.IS_BROWSER){let[b,w]=i.landmarks.length>=F0.count?F0.symmetryLine:F8.symmetryLine;u=ug(i.landmarks[b],i.landmarks[w]);let k=eu({startPoint:i.startPoint,endPoint:i.endPoint}),N=[k[0]/t.shape[2],k[1]/t.shape[1]],C=Le.rotateWithOffset(t,u,0,N);h=M0(-u,k),n.face.mesh.enabled?c=tu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.meshSize,this.meshSize]).div(255):c=tu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.boxSize,this.boxSize]).div(255)}else{h=R0;let b=t.clone();n.face.mesh.enabled?c=tu({startPoint:i.startPoint,endPoint:i.endPoint},b,[this.meshSize,this.meshSize]).div(255):c=tu({startPoint:i.startPoint,endPoint:i.endPoint},b,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{coords:null,box:i,faceConfidence:null,boxConfidence:l,confidence:i.confidence,image:c};let[,d,p]=this.meshDetector.predict(c),m=d.dataSync()[0];if(m=F0.count?F0.symmetryLine:F8.symmetryLine;u=ug(i.landmarks[b],i.landmarks[w]);let k=eu({startPoint:i.startPoint,endPoint:i.endPoint}),N=[k[0]/t.shape[2],k[1]/t.shape[1]],C=Le.rotateWithOffset(t.toFloat(),u,0,N);h=M0(-u,k),c=tu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.meshSize,this.meshSize]).div(255)}let x={coords:g,box:i,faceConfidence:m,boxConfidence:l,image:c,rawCoords:A},v=C0(i);return this.storedBoxes[o]={...v,landmarks:y,confidence:i.confidence,faceConfidence:m},x}));return s=s.filter(i=>i!==null),n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.faceConfidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s,landmarks:t}}};var mg=class{constructor(t,n,r,a){this.facePipeline=new pg(t,n,r),this.config=a}async estimateFaces(t,n){let r=await this.facePipeline.predict(t,n),a=[];for(let s of r||[]){if(s.isDisposedInternal)continue;let i=s.coords?s.coords.arraySync():[],o=i.map(h=>[h[0]/t.shape[2],h[1]/t.shape[1],h[2]/this.facePipeline.meshSize]),l={};if(i&&i.length>0)for(let h of Object.keys(ea))l[h]=ea[h].map(d=>i[d]);let c=s.box?[Math.max(0,s.box.startPoint[0]),Math.max(0,s.box.startPoint[1]),Math.min(t.shape[2],s.box.endPoint[0])-Math.max(0,s.box.startPoint[0]),Math.min(t.shape[1],s.box.endPoint[1])-Math.max(0,s.box.startPoint[1])]:0,u=s.box?[s.box.startPoint[0]/t.shape[2],s.box.startPoint[1]/t.shape[1],(s.box.endPoint[0]-s.box.startPoint[0])/t.shape[2],(s.box.endPoint[1]-s.box.startPoint[1])/t.shape[1]]:[];a.push({confidence:Math.round(100*s.faceConfidence||100*s.boxConfidence||0)/100,boxConfidence:Math.round(100*s.boxConfidence)/100,faceConfidence:Math.round(100*s.faceConfidence)/100,box:c,boxRaw:u,mesh:i,meshRaw:o,annotations:l,image:s.image?s.image.clone():null}),s.coords&&s.coords.dispose(),s.image&&s.image.dispose()}return a}},Kt=[null,null,null];async function Ag(e){return!Kt[0]&&e.face.enabled||!Kt[1]&&e.face.mesh.enabled||!Kt[2]&&e.face.iris.enabled?(Kt=await Promise.all([!Kt[0]&&e.face.enabled?N8(e):null,!Kt[1]&&e.face.mesh.enabled?ct(pt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Kt[2]&&e.face.iris.enabled?ct(pt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Kt[1]||!Kt[1].modelUrl?le("load model failed:",e.face.mesh.modelPath):e.debug&&le("load model:",Kt[1].modelUrl)),e.face.iris.enabled&&(!Kt[2]||!Kt[1].modelUrl?le("load model failed:",e.face.iris.modelPath):e.debug&&le("load model:",Kt[2].modelUrl))):e.debug&&(le("cached model:",Kt[0].model.modelUrl),le("cached model:",Kt[1].modelUrl),le("cached model:",Kt[2].modelUrl)),new mg(Kt[0],Kt[1],Kt[2],e)}var $8=Ui,D8=Jc;var _g={};lr(_g,{load:()=>kg,predict:()=>vg});var Qc=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],O8=Qc.length,eh=Qc.reduce((e,t,n)=>(e[t]=n,e),{}),zie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Pie=zie.map(([e,t])=>[eh[e],eh[t]]),z8=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function P8(e){let t=e.reduce(({maxX:n,maxY:r,minX:a,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(n,i),maxY:Math.max(r,o),minX:Math.min(a,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function L8(e,[t,n],[r,a]){let s=(o,l,c)=>({score:o.score,box:[Math.trunc(o.box[0]*c),Math.trunc(o.box[1]*l),Math.trunc(o.box[2]*c),Math.trunc(o.box[3]*l)],keypoints:o.keypoints.map(({score:u,part:h,position:d})=>({score:u,part:h,position:{x:Math.trunc(d.x*c),y:Math.trunc(d.y*l)}}))});return e.map(o=>s(o,t/r,n/a))}var yg=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(nn?n:e}function W8(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}function wg(e,t){return{x:e.x+t.x,y:e.y+t.y}}var D0=1,B8=16;function V8(e,t,n,r,a,s,i,o=2){let l=g=>({y:i.get(g.y,g.x,e),x:i.get(g.y,g.x,i.shape[2]/2+e)}),c=(g,x,v)=>({y:bg(Math.round(g.y/s),0,x-1),x:bg(Math.round(g.x/s),0,v-1)}),[u,h]=r.shape,d=c(t.position,u,h),p=l(d),f=wg(t.position,p);for(let g=0;g[eh[f],eh[A]]),o=i.map(([,f])=>f),l=i.map(([f])=>f),c=t.shape[2],u=o.length,h=new Array(c),{part:d,score:p}=e,m=xg(d,r,n);h[d.id]={score:p,part:Qc[d.id],position:m};for(let f=u-1;f>=0;--f){let A=o[f],y=l[f];h[A]&&!h[y]&&(h[y]=V8(f,h[A],y,t,n,r,s))}for(let f=0;ft){o=!1;break}if(!o)break}return o}function Bie(e,t){let[n,r,a]=t.shape,s=new yg(n*r*a,({score:i})=>i);for(let i=0;i{let i=s[a].position;return W8(r,n,i.y,i.x)<=t})}function Vie(e,t,n){return n.reduce((a,{position:s,score:i},o)=>(j8(e,t,s,o)||(a+=i),a),0)/n.length}function U8(e,t,n,r,a,s,i){let o=[],l=Bie(i,t),c=a**2;for(;o.lengthA.score>i),m=Vie(o,c,p),f=P8(p);m>i&&o.push({keypoints:p,box:f,score:Math.round(100*m)/100})}return o}var _r,jie=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function vg(e,t){let n=P(()=>{let o=e.resizeBilinear([_r.inputs[0].shape[2],_r.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),c=_r.execute(o,jie).map(u=>u.squeeze([0]));return c[1]=c[1].sigmoid(),c}),r=await Promise.all(n.map(i=>i.buffer()));for(let i of n)i.dispose();let a=await U8(r[0],r[1],r[2],r[3],t.body.nmsRadius,t.body.maxDetections,t.body.scoreThreshold);return L8(a,[e.shape[1],e.shape[2]],[_r.inputs[0].shape[2],_r.inputs[0].shape[1]])}async function kg(e){return _r?e.debug&&le("cached model:",_r.modelUrl):(_r=await ct(pt(e.modelBasePath,e.body.modelPath)),!_r||!_r.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",_r.modelUrl)),_r}var Eg={};lr(Eg,{HandPose:()=>Rg,load:()=>Mg});function O0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function th(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function H8(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Le.cropAndResize(t,s,[0],n)}function G8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function z0(e,t=1.5){let n=th(e),r=O0(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function P0(e){let t=th(e),n=O0(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var Ig=class{constructor(t,n,r){this.model=t,this.anchors=r.map(a=>[a.x_center,a.y_center]),this.anchorsTensor=er(this.anchors),this.inputSize=n,this.inputSizeTensor=sn([n,n]),this.doubleInputSizeTensor=sn([n*2,n*2])}normalizeBoxes(t){return P(()=>{let n=Re(t,[0,0],[-1,2]),r=Re(t,[0,2],[-1,2]),a=se(Ae(n,this.inputSizeTensor),this.anchorsTensor),s=Ae(r,this.doubleInputSizeTensor),i=z(ye(a,s),this.inputSizeTensor),o=z(se(a,s),this.inputSizeTensor);return bl([i,o],1)})}normalizeLandmarks(t,n){return P(()=>{let r=se(Ae(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return z(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),a=r.squeeze();r.dispose();let s=P(()=>Tn(Re(a,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Re(a,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let c=await Le.nonMaxSuppressionAsync(l,i,n.hand.maxHands,n.hand.iouThreshold,n.hand.scoreThreshold),u=c.arraySync();s.dispose(),c.dispose();let h=[];for(let d of u)if(i[d]>=n.hand.minConfidence){let p=Re(l,[d,0],[1,-1]),m=Re(a,[d,5],[1,14]),f=P(()=>this.normalizeLandmarks(m,d).reshape([-1,2]));m.dispose(),h.push({box:p,palmLandmarks:f,confidence:i[d]})}return a.dispose(),l.dispose(),h}async estimateHandBounds(t,n){let r=t.shape[1],a=t.shape[2],s=P(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let c=l.box.dataSync(),u=c.slice(0,2),h=c.slice(2,4),d=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(G8({startPoint:u,endPoint:h,palmLandmarks:d,confidence:l.confidence},[a/this.inputSize,r/this.inputSize]))}return o}};function Uie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function q8(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Uie(n)}var X8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ss(e,t){let n=0;for(let r=0;rNg([...s,1],n)),a=this.calculateLandmarksBoundingBox(r);return z0(P0(a),Gie)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=z0(P0(n),Y8);r.palmLandmarks=[];for(let a=0;a[i[0]*(p[0]-this.inputSize/2),i[1]*(p[1]-this.inputSize/2),i[2]*p[2]]),l=Sg(r,[0,0]),c=o.map(p=>[...Ng(p,l),p[2]]),u=Z8(a),h=[...th(n),1],d=[ss(h,u[0]),ss(h,u[1])];return c.map(p=>[p[0]+d[0],p[1]+d[1],p[2]])}async estimateHands(t,n){let r=!1,a;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(a=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==n.hand.maxHands||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(r=!0));let s=[];n.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let i=0;i=n.hand.minConfidence){let x=H(y,[-1,3]),v=x.arraySync();y.dispose(),x.dispose();let b=this.transformRawCoords(v,p,l,d),w=this.getBoxForHandLandmarks(b);this.storedBoxes[i]=w;let k={landmarks:b,confidence:g,box:{topLeft:w.startPoint,bottomRight:w.endPoint}};s.push(k)}else this.storedBoxes[i]=null;y.dispose()}else{let l=z0(P0(o),Y8),c={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(c)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s}}};var Q8=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var Cg={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},Rg=class{constructor(t){this.handPipeline=t}static getAnnotations(){return Cg}async estimateHands(t,n){let r=await this.handPipeline.estimateHands(t,n);if(!r)return[];let a=[];for(let s of r){let i={};if(s.landmarks)for(let c of Object.keys(Cg))i[c]=Cg[c].map(u=>s.landmarks[u]);let o=s.box?[Math.max(0,s.box.topLeft[0]),Math.max(0,s.box.topLeft[1]),Math.min(t.shape[2],s.box.bottomRight[0])-Math.max(0,s.box.topLeft[0]),Math.min(t.shape[1],s.box.bottomRight[1])-Math.max(0,s.box.topLeft[1])]:[],l=[s.box.topLeft[0]/t.shape[2],s.box.topLeft[1]/t.shape[1],(s.box.bottomRight[0]-s.box.topLeft[0])/t.shape[2],(s.box.bottomRight[1]-s.box.topLeft[1])/t.shape[1]];a.push({confidence:Math.round(100*s.confidence)/100,box:o,boxRaw:l,landmarks:s.landmarks,annotations:i})}return a}},ta,na;async function Mg(e){!ta||!na?([ta,na]=await Promise.all([e.hand.enabled?ct(pt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?ct(pt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!ta||!ta.modelUrl?le("load model failed:",e.hand.detector.modelPath):e.debug&&le("load model:",ta.modelUrl),!na||!na.modelUrl?le("load model failed:",e.hand.skeleton.modelPath):e.debug&&le("load model:",na.modelUrl))):(e.debug&&le("cached model:",ta.modelUrl),e.debug&&le("cached model:",na.modelUrl));let t=new Ig(ta,ta==null?void 0:ta.inputs[0].shape[2],Q8),n=new Tg(t,na,na==null?void 0:na.inputs[0].shape[2]);return new Rg(n)}var Fg={};lr(Fg,{load:()=>$g,predict:()=>Dg});var ek=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],tk=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var xn;async function $g(e){return xn?e.debug&&le("cached model:",xn.modelUrl):(xn=await ct(pt(e.modelBasePath,e.body.modelPath)),xn.width=parseInt(xn.signature.inputs["input_1:0"].tensorShape.dim[2].size),xn.height=parseInt(xn.signature.inputs["input_1:0"].tensorShape.dim[1].size),!xn||!xn.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",xn.modelUrl)),xn}async function Dg(e,t){if(!xn||!t.body.enabled)return null;let n={width:e.shape[2],height:e.shape[1]},r=Le.resizeBilinear(e,[xn.width,xn.height],!1),a=Ae(r,[255]);r.dispose();let s;if(t.profile){let u=await an(()=>xn.predict(a));s=u.result.find(h=>h.size===195||h.size===155).dataSync(),u.result.forEach(h=>h.dispose()),gn("blazepose",u)}else{let u=await xn.predict(a);s=u.find(h=>h.size===195||h.size===155).dataSync(),u.forEach(h=>h.dispose())}a.dispose();let i=[],o=s.length===195?ek:tk,l=5;for(let u=0;uh.score>u?h.score:u,0),keypoints:i}]}var bn,nh=[],L0=Number.MAX_SAFE_INTEGER,Kie=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function Og(e){return bn?e.debug&&le("cached model:",bn.modelUrl):(bn=await ct(pt(e.modelBasePath,e.body.modelPath)),!bn||!bn.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",bn.modelUrl)),bn}function Zie(e,t){let[n,r]=e.shape;return P(()=>{let a=(o,l)=>ye(o,z(Ae(o,ve(l,"int32")),ve(l,"int32"))),s=H(e,[r*n]),i=Rn(s,0).dataSync()[0];if(i>t){let o=Ai(s,0),l=a(o,n).dataSync()[0],c=Ae(o,ve(n,"int32")).dataSync()[0];return[l,c,i]}return[0,0,i]})}async function zg(e,t){return bn?L00?(L0++,nh):(t.videoOptimized?L0=0:L0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=P(()=>{let i=Le.resizeBilinear(e,[bn.inputs[0].shape[2],bn.inputs[0].shape[1]],!1);return z(i,2).sub(1)}),a;if(!t.profile)t.body.enabled&&(a=await bn.predict(r));else{let i=t.body.enabled?await an(()=>bn.predict(r)):{};a=i.result.clone(),i.result.dispose(),gn("body",i)}if(r.dispose(),a){let i=[],o=a.squeeze();we(a);let l=o.unstack(2);we(o);for(let c=0;ct.body.scoreThreshold&&i.push({id:c,score:Math.round(100*d)/100,part:Kie[c],positionRaw:{xRaw:u/bn.inputs[0].shape[2],yRaw:h/bn.inputs[0].shape[1]},position:{x:Math.round(e.shape[2]*u/bn.inputs[0].shape[2]),y:Math.round(e.shape[1]*h/bn.inputs[0].shape[1])}})}l.forEach(c=>we(c)),nh=i}let s=nh.reduce((i,o)=>o.score>i?o.score:i,0);n([{score:s,keypoints:nh}])})):null}var Pg={};lr(Pg,{load:()=>Wg,predict:()=>Bg});var W0=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var wn,Lg=[],B0=Number.MAX_SAFE_INTEGER,V0=2.5;async function Wg(e){if(wn)e.debug&&le("cached model:",wn.modelUrl);else{wn=await ct(pt(e.modelBasePath,e.object.modelPath));let t=Object.values(wn.modelSignature.inputs);if(wn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!wn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!wn||!wn.modelUrl?le("load model failed:",e.object.modelPath):e.debug&&le("load model:",wn.modelUrl)}return wn}async function Yie(e,t,n,r){let a=0,s=[];for(let c of[1,2,4])P(()=>{var A,y;let u=c*13,h=(A=e.find(g=>g.shape[1]===u**2&&g.shape[2]===W0.length))==null?void 0:A.squeeze(),d=(y=e.find(g=>g.shape[1]===u**2&&g.shape[2]r.object.minConfidence&&x!==61){let b=(.5+Math.trunc(g%u))/u,w=(.5+Math.trunc(g/u))/u,k=m[g].map(U=>U*(u/c/t)),[N,C]=[b-V0/c*k[0],w-V0/c*k[1]],[F,O]=[b+V0/c*k[2]-N,w+V0/c*k[3]-C],L=[N,C,F,O];L=L.map(U=>Math.max(0,Math.min(U,1)));let V=[L[0]*n[0],L[1]*n[1],L[2]*n[0],L[3]*n[1]],j={id:a++,strideSize:c,score:Math.round(100*v)/100,class:x+1,label:W0[x].label,center:[Math.trunc(n[0]*b),Math.trunc(n[1]*w)],centerRaw:[b,w],box:V.map(U=>Math.trunc(U)),boxRaw:L};s.push(j)}}});e.forEach(c=>we(c));let i=s.map(c=>c.boxRaw),o=s.map(c=>c.score),l=[];if(i&&i.length>0){let c=await Le.nonMaxSuppressionAsync(i,o,r.object.maxResults,r.object.iouThreshold,r.object.minConfidence);l=c.dataSync(),we(c)}return s=s.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),s}async function Bg(e,t){return wn?B00?(B0++,Lg):(t.videoOptimized?B0=0:B0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=[e.shape[2],e.shape[1]],a=Le.resizeBilinear(e,[wn.inputSize,wn.inputSize],!1),s=a.div(255),i=s.transpose([0,3,1,2]);s.dispose(),a.dispose();let o;if(!t.profile)t.object.enabled&&(o=await wn.predict(i));else{let c=t.object.enabled?await an(()=>wn.predict(i)):{};o=c.result,gn("object",c)}i.dispose();let l=await Yie(o,wn.inputSize,r,t);Lg=l,n(l)})):null}var nk=e=>{if(!e)return[];let t=[];for(let n=0;nl.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.yl.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},rk=e=>{if(!e)return[];let t=[];for(let n=0;n0){let r=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${r<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},ak=e=>{if(!e)return[];let t=[];for(let n=0;n.033||h>.033)&&(c=!1),d>.033&&t.push({iris:n,gesture:"looking right"}),h>.033&&t.push({iris:n,gesture:"looking left"});let p=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].annotations.rightEyeIris[0][1],m=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].annotations.leftEyeIris[0][1];(m<.015||p<.015||m>.03||p>.03)&&(c=!1),(m<.015||p<.015)&&t.push({iris:n,gesture:"looking down"}),(m>.03||p>.03)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},sk=e=>{if(!e)return[];let t=[];for(let n=0;n0){let a=r.reduce((i,o)=>i.position[2]i.position[1]jg});function Jie(e,t,n){let r=function(o,l,c){let u=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(u,(h,d)=>(c[d]=0,h))},a=function(o,l){let c=e.createShader(l);if(e.shaderSource(c,o),e.compileShader(c),!e.getShaderParameter(c,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(c));return c};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function ik(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,c=null,u=null,h={},d=e.canvas||document.createElement("canvas"),p={},m={INTERMEDIATE:1},f=d.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(b){let w=Array.prototype.slice.call(arguments,1),k=h[b];i.push({func:k,args:w})},this.reset=function(){i=[]};let A=function(b,w){if(!(b===o&&w===l)){if(d.width=b,o=b,d.height=w,l=w,!c){let k=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);c=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,c),f.bufferData(f.ARRAY_BUFFER,k,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,o,l),s=[null,null]}},y=function(b,w){let k=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,k);let N=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,N);let C=f.createTexture();return f.bindTexture(f.TEXTURE_2D,C),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,b,w,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,C,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:k,texture:C}},g=function(b){return s[b]=s[b]||y(o,l),s[b]},x=function(b=null){var C,F;let w=null,k=null,N=!1;t===0?w=n:w=(C=g(a))==null?void 0:C.texture,t++,r&&!(b&m.INTERMEDIATE)?(k=null,N=t%2==0):(a=(a+1)%2,k=(F=g(a))==null?void 0:F.fbo),f.bindTexture(f.TEXTURE_2D,w),f.bindFramebuffer(f.FRAMEBUFFER,k),f.uniform1f(u.uniform.flipY,N?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(b){if(A(b.width,b.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,b),i.length===0)return x(),d;for(let w=0;w0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,i=a,o=s;if(i>H0&&(i=H0,o=i*s/a),o>H0&&(o=H0,i=o*a/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=a*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/a)),!i||!o)throw new Error("Human: Input cannot determine dimension");(!Ee||(Ee==null?void 0:Ee.width)!==i||(Ee==null?void 0:Ee.height)!==o)&&(Ee=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),(Ee==null?void 0:Ee.width)!==i&&(Ee.width=i),(Ee==null?void 0:Ee.height)!==o&&(Ee.height=o));let l=Ee.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(a,0),l.scale(-1,1),l.drawImage(e,0,0,a,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,a,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),t.filter.enabled){if((!$t||!wt||Ee.width!==wt.width||(Ee==null?void 0:Ee.height)!==(wt==null?void 0:wt.height))&&(wt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height):document.createElement("canvas"),(wt==null?void 0:wt.width)!==(Ee==null?void 0:Ee.width)&&(wt.width=Ee==null?void 0:Ee.width),(wt==null?void 0:wt.height)!==(Ee==null?void 0:Ee.height)&&(wt.height=Ee==null?void 0:Ee.height),$t=_r.flags.IS_BROWSER?new mk({canvas:wt}):null),!$t)return{tensor:null,canvas:Ee};$t.reset(),$t.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&$t.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&$t.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&$t.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&$t.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&$t.addFilter("hue",t.filter.hue),t.filter.negative&&$t.addFilter("negative"),t.filter.sepia&&$t.addFilter("sepia"),t.filter.vintage&&$t.addFilter("brownie"),t.filter.sepia&&$t.addFilter("sepia"),t.filter.kodachrome&&$t.addFilter("kodachrome"),t.filter.technicolor&&$t.addFilter("technicolor"),t.filter.polaroid&&$t.addFilter("polaroid"),t.filter.pixelate!==0&&$t.addFilter("pixelate",t.filter.pixelate),$t.apply(Ee)}else wt=Ee,$t&&($t=null);let c;if(wt.data){let h=[wt.height,wt.width,3];c=wd(wt.data,h,"int32")}else if(wt instanceof ImageData)c=pi.fromPixels(wt);else if(t.backend==="webgl"||t.backend==="humangl"){let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(wt,0,0),c=pi.fromPixels(h)}else{let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(wt,0,0);let p=d==null?void 0:d.getImageData(0,0,i,o);c=pi.fromPixels(p)}let u=c.toFloat();n=u.expandDims(0),c.dispose(),u.dispose()}let r=t.filter.return?wt:null;return{tensor:n,canvas:r}}var K2={};lr(K2,{all:()=>foe,body:()=>gk,canvas:()=>poe,face:()=>yk,gesture:()=>Ak,hand:()=>xk,object:()=>wk,options:()=>Hi});var ht={backend:"webgl",modelBasePath:"../models/",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface-back.json",rotation:!1,maxFaces:10,skipFrames:21,skipInitial:!1,minConfidence:.2,iouThreshold:.1,scoreThreshold:.2,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:31},emotion:{enabled:!0,minConfidence:.1,skipFrames:32,modelPath:"emotion.json"},age:{enabled:!1,modelPath:"age.json",skipFrames:33},gender:{enabled:!1,minConfidence:.1,modelPath:"gender.json",skipFrames:34},embedding:{enabled:!1,modelPath:"mobileface.json"}},body:{enabled:!0,modelPath:"posenet.json",maxDetections:1,scoreThreshold:.3,nmsRadius:20},hand:{enabled:!0,rotation:!1,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"nanodet.json",minConfidence:.2,iouThreshold:.4,maxResults:10,skipFrames:41}};var Hi={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!1,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1,calculateHandBox:!0};function G0(e,t,n,r=0,a){e.fillStyle=a.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:a.color,e.beginPath(),e.arc(t,n,a.pointSize,0,2*Math.PI),e.fill()}function Gi(e,t,n,r,a,s){if(e.beginPath(),s.useCurves){let i=(t+t+r)/2,o=(n+n+a)/2;e.ellipse(i,o,r/2,a/2,0,0,2*Math.PI)}else e.lineWidth=s.lineWidth,e.moveTo(t+s.roundRect,n),e.lineTo(t+r-s.roundRect,n),e.quadraticCurveTo(t+r,n,t+r,n+s.roundRect),e.lineTo(t+r,n+a-s.roundRect),e.quadraticCurveTo(t+r,n+a,t+r-s.roundRect,n+a),e.lineTo(t+s.roundRect,n+a),e.quadraticCurveTo(t,n+a,t,n+a-s.roundRect),e.lineTo(t,n+s.roundRect),e.quadraticCurveTo(t,n,t+s.roundRect,n),e.closePath();e.stroke()}function Z2(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let r of t)e.strokeStyle=n.useDepth&&r[2]?`rgba(${127.5+2*r[2]}, ${127.5-2*r[2]}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r[2]?`rgba(${127.5+2*r[2]}, ${127.5-2*r[2]}, 255, 0.3)`:n.color,e.lineTo(r[0],parseInt(r[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function ah(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Z2(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let r=0;r1&&l[1].length>0){let c=o[1]>0?`#${o[1]}`:"",u=`${o[0]} ${c}: ${l[1]}`;r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(u,8,2+s*r.lineHeight)),a.fillStyle=r.labelColor,a.fillText(u,6,0+s*r.lineHeight),s+=1}}}async function yk(e,t,n){let r=Yn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a)for(let s of t){a.font=r.font,a.strokeStyle=r.color,a.fillStyle=r.color,r.drawBoxes&&(r.useRawBoxes?Gi(a,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],r):Gi(a,s.box[0],s.box[1],s.box[2],s.box[3],r));let i=[];if(i.push(`face confidence: ${Math.trunc(100*s.confidence)}%`),s.genderConfidence&&i.push(`${s.gender||""} ${Math.trunc(100*s.genderConfidence)}% confident`),s.age&&i.push(`age: ${s.age||""}`),s.iris&&i.push(`iris distance: ${s.iris}`),s.emotion&&s.emotion.length>0){let o=s.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.push(o.join(" "))}s.rotation&&s.rotation.angle&&s.rotation.angle.roll&&i.push(`roll: ${Math.trunc(100*s.rotation.angle.roll)/100} yaw:${Math.trunc(100*s.rotation.angle.yaw)/100} pitch:${Math.trunc(100*s.rotation.angle.pitch)/100}`),i.length===0&&i.push("face"),a.fillStyle=r.color;for(let o=i.length-1;o>=0;o--){let l=Math.max(s.box[0],0),c=o*r.lineHeight+s.box[1];r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(i[o],l+5,c+16)),a.fillStyle=r.labelColor,a.fillText(i[o],l+4,c+15)}if(a.lineWidth=1,s.mesh&&s.mesh.length>0){if(r.drawPoints)for(let o of s.mesh)G0(a,o[0],o[1],o[2],r);if(r.drawPolygons){a.lineWidth=1;for(let o=0;os.mesh[c]);Z2(a,l,r)}if(s.annotations&&s.annotations.leftEyeIris){a.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,a.beginPath();let o=Math.abs(s.annotations.leftEyeIris[3][0]-s.annotations.leftEyeIris[1][0])/2,l=Math.abs(s.annotations.leftEyeIris[4][1]-s.annotations.leftEyeIris[2][1])/2;a.ellipse(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),r.fillPolygons&&(a.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,a.fill())}if(s.annotations&&s.annotations.rightEyeIris){a.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,a.beginPath();let o=Math.abs(s.annotations.rightEyeIris[3][0]-s.annotations.rightEyeIris[1][0])/2,l=Math.abs(s.annotations.rightEyeIris[4][1]-s.annotations.rightEyeIris[2][1])/2;a.ellipse(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),r.fillPolygons&&(a.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,a.fill())}}}}}var ss=[];async function gk(e,t,n){let r=Yn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round";for(let s=0;sl.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),ah(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),o.length===4&&Z2(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftKnee"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftAnkle"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHeel"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftFoot"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),ah(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightKnee"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightAnkle"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHeel"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightFoot"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),ah(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftElbow"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftWrist"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftPalm"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),ah(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightElbow"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightWrist"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightPalm"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),ah(a,o,r)}}}}async function xk(e,t,n){let r=Yn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round",a.font=r.font;for(let s of t){if(r.drawBoxes){a.strokeStyle=r.color,a.fillStyle=r.color;let i;if(!r.calculateHandBox)i=r.useRawBoxes?s.boxRaw:s.box;else if(i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],s.landmarks&&s.landmarks.length>0){for(let o of s.landmarks)o[0]i[2]&&(i[2]=o[0]),o[1]>i[3]&&(i[3]=o[1]);i[2]-=i[0],i[3]-=i[1]}r.useRawBoxes?Gi(a,e.width*i[0],e.height*i[1],e.width*i[2],e.height*i[3],r):Gi(a,i[0],i[1],i[2],i[3],r),r.drawLabels&&(r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText("hand",i[0]+3,1+i[1]+r.lineHeight,i[2])),a.fillStyle=r.labelColor,a.fillText("hand",i[0]+2,0+i[1]+r.lineHeight,i[2])),a.stroke()}if(r.drawPoints&&s.landmarks&&s.landmarks.length>0)for(let i of s.landmarks)a.fillStyle=r.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:r.color,G0(a,i[0],i[1],0,r);if(r.drawPolygons){let i=o=>{if(!!o)for(let l=0;l0?l-1:0][0],o[l>0?l-1:0][1]),a.lineTo(o[l][0],o[l][1]),a.stroke()};i(s.annotations.indexFinger),i(s.annotations.middleFinger),i(s.annotations.ringFinger),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function wk(e,t,n){let r=Yn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round",a.font=r.font;for(let s of t)if(r.drawBoxes){if(a.strokeStyle=r.color,a.fillStyle=r.color,r.useRawBoxes?Gi(a,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],r):Gi(a,s.box[0],s.box[1],s.box[2],s.box[3],r),r.drawLabels){let i=`${Math.round(100*s.score)}% ${s.label}`;r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(i,s.box[0]+3,1+s.box[1]+r.lineHeight,s.box[2])),a.fillStyle=r.labelColor,a.fillText(i,s.box[0]+2,0+s.box[1]+r.lineHeight,s.box[2])}a.stroke()}}}async function poe(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function foe(e,t,n){let r=Yn(Hi,n);!t||!e||e instanceof HTMLCanvasElement&&(yk(e,t.face,r),gk(e,t.body,r),xk(e,t.hand,r),Ak(e,t.gesture,r),wk(e,t.object,r))}var q0=` +`),h.brightness=function(b){let w=(b||0)+1;h.colorMatrix([w,0,0,0,0,0,w,0,0,0,0,0,w,0,0,0,0,0,1,0])},h.saturation=function(b){let w=(b||0)*2/3+1,k=(w-1)*-.5;h.colorMatrix([w,k,k,0,0,k,w,k,0,0,k,k,w,0,0,0,0,0,1,0])},h.desaturate=function(){h.saturation(-1)},h.contrast=function(b){let w=(b||0)+1,k=-128*(w-1);h.colorMatrix([w,0,0,0,k,0,w,0,0,k,0,0,w,0,k,0,0,0,1,0])},h.negative=function(){h.contrast(-2)},h.hue=function(b){b=(b||0)/180*Math.PI;let w=Math.cos(b),k=Math.sin(b),N=.213,C=.715,F=.072;h.colorMatrix([N+w*(1-N)+k*-N,C+w*-C+k*-C,F+w*-F+k*(1-F),0,0,N+w*-N+k*.143,C+w*(1-C)+k*.14,F+w*-F+k*-.283,0,0,N+w*-N+k*-(1-N),C+w*-C+k*C,F+w*(1-F)+k*F,0,0,0,0,0,1,0])},h.desaturateLuminance=function(){h.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},h.sepia=function(){h.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},h.brownie=function(){h.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},h.vintagePinhole=function(){h.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},h.kodachrome=function(){h.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},h.technicolor=function(){h.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},h.polaroid=function(){h.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},h.shiftToBGR=function(){h.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},h.convolution=function(b){let w=new Float32Array(b),k=1/o,N=1/l,C=v(h.convolution.SHADER);f.uniform1fv(C.uniform.m,w),f.uniform2f(C.uniform.px,k,N),x()},h.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(` +`),h.detectEdges=function(){h.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},h.sobelX=function(){h.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},h.sobelY=function(){h.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},h.sharpen=function(b){let w=b||1;h.convolution.call(this,[0,-1*w,0,-1*w,1+4*w,-1*w,0,-1*w,0])},h.emboss=function(b){let w=b||1;h.convolution.call(this,[-2*w,-1*w,0,-1*w,1,1*w,0,1*w,2*w])},h.blur=function(b){let w=b/7/o,k=b/7/l,N=v(h.blur.SHADER);f.uniform2f(N.uniform.px,0,k),x(m.INTERMEDIATE),f.uniform2f(N.uniform.px,w,0),x()},h.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(` +`),h.pixelate=function(b){let w=b/o,k=b/l,N=v(h.pixelate.SHADER);f.uniform2f(N.uniform.size,w,k),x()},h.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(` +`)}var j0=2048,Ee,bt,$t;function jg(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof Pe)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof Pe)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Br(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let a=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,i=a,o=s;if(i>j0&&(i=j0,o=i*s/a),o>j0&&(o=j0,i=o*a/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=a*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/a)),!i||!o)throw new Error("Human: Input cannot determine dimension");(!Ee||(Ee==null?void 0:Ee.width)!==i||(Ee==null?void 0:Ee.height)!==o)&&(Ee=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),(Ee==null?void 0:Ee.width)!==i&&(Ee.width=i),(Ee==null?void 0:Ee.height)!==o&&(Ee.height=o));let l=Ee.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(a,0),l.scale(-1,1),l.drawImage(e,0,0,a,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,a,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),t.filter.enabled){if((!$t||!bt||Ee.width!==bt.width||(Ee==null?void 0:Ee.height)!==(bt==null?void 0:bt.height))&&(bt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height):document.createElement("canvas"),(bt==null?void 0:bt.width)!==(Ee==null?void 0:Ee.width)&&(bt.width=Ee==null?void 0:Ee.width),(bt==null?void 0:bt.height)!==(Ee==null?void 0:Ee.height)&&(bt.height=Ee==null?void 0:Ee.height),$t=vr.flags.IS_BROWSER?new ik({canvas:bt}):null),!$t)return{tensor:null,canvas:Ee};$t.reset(),$t.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&$t.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&$t.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&$t.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&$t.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&$t.addFilter("hue",t.filter.hue),t.filter.negative&&$t.addFilter("negative"),t.filter.sepia&&$t.addFilter("sepia"),t.filter.vintage&&$t.addFilter("brownie"),t.filter.sepia&&$t.addFilter("sepia"),t.filter.kodachrome&&$t.addFilter("kodachrome"),t.filter.technicolor&&$t.addFilter("technicolor"),t.filter.polaroid&&$t.addFilter("polaroid"),t.filter.pixelate!==0&&$t.addFilter("pixelate",t.filter.pixelate),$t.apply(Ee)}else bt=Ee,$t&&($t=null);let c;if(bt.data){let h=[bt.height,bt.width,3];c=xd(bt.data,h,"int32")}else if(bt instanceof ImageData)c=fi.fromPixels(bt);else if(t.backend==="webgl"||t.backend==="humangl"){let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(bt,0,0),c=fi.fromPixels(h)}else{let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(bt,0,0);let p=d==null?void 0:d.getImageData(0,0,i,o);c=fi.fromPixels(p)}let u=c.toFloat();n=u.expandDims(0),c.dispose(),u.dispose()}let r=t.filter.return?bt:null;return{tensor:n,canvas:r}}var Ug={};lr(Ug,{all:()=>eoe,body:()=>uk,canvas:()=>Qie,face:()=>lk,gesture:()=>ok,hand:()=>ck,object:()=>hk,options:()=>Hi});var ht={backend:"webgl",modelBasePath:"../models/",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface-back.json",rotation:!1,maxFaces:10,skipFrames:21,skipInitial:!1,minConfidence:.2,iouThreshold:.1,scoreThreshold:.2,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:31},emotion:{enabled:!0,minConfidence:.1,skipFrames:32,modelPath:"emotion.json"},age:{enabled:!1,modelPath:"age.json",skipFrames:33},gender:{enabled:!1,minConfidence:.1,modelPath:"gender.json",skipFrames:34},embedding:{enabled:!1,modelPath:"mobileface.json"}},body:{enabled:!0,modelPath:"posenet.json",maxDetections:1,scoreThreshold:.2,nmsRadius:20},hand:{enabled:!0,rotation:!1,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"nanodet.json",minConfidence:.2,iouThreshold:.4,maxResults:10,skipFrames:41}};var Hi={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!1,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1,calculateHandBox:!0};function U0(e,t,n,r=0,a){e.fillStyle=a.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:a.color,e.beginPath(),e.arc(t,n,a.pointSize,0,2*Math.PI),e.fill()}function Gi(e,t,n,r,a,s){if(e.beginPath(),s.useCurves){let i=(t+t+r)/2,o=(n+n+a)/2;e.ellipse(i,o,r/2,a/2,0,0,2*Math.PI)}else e.lineWidth=s.lineWidth,e.moveTo(t+s.roundRect,n),e.lineTo(t+r-s.roundRect,n),e.quadraticCurveTo(t+r,n,t+r,n+s.roundRect),e.lineTo(t+r,n+a-s.roundRect),e.quadraticCurveTo(t+r,n+a,t+r-s.roundRect,n+a),e.lineTo(t+s.roundRect,n+a),e.quadraticCurveTo(t,n+a,t,n+a-s.roundRect),e.lineTo(t,n+s.roundRect),e.quadraticCurveTo(t,n,t+s.roundRect,n),e.closePath();e.stroke()}function Hg(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let r of t)e.strokeStyle=n.useDepth&&r[2]?`rgba(${127.5+2*r[2]}, ${127.5-2*r[2]}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r[2]?`rgba(${127.5+2*r[2]}, ${127.5-2*r[2]}, 255, 0.3)`:n.color,e.lineTo(r[0],parseInt(r[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function rh(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Hg(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let r=0;r1&&l[1].length>0){let c=o[1]>0?`#${o[1]}`:"",u=`${o[0]} ${c}: ${l[1]}`;r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(u,8,2+s*r.lineHeight)),a.fillStyle=r.labelColor,a.fillText(u,6,0+s*r.lineHeight),s+=1}}}async function lk(e,t,n){let r=Yn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a)for(let s of t){a.font=r.font,a.strokeStyle=r.color,a.fillStyle=r.color,r.drawBoxes&&(r.useRawBoxes?Gi(a,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],r):Gi(a,s.box[0],s.box[1],s.box[2],s.box[3],r));let i=[];if(i.push(`face confidence: ${Math.trunc(100*s.confidence)}%`),s.genderConfidence&&i.push(`${s.gender||""} ${Math.trunc(100*s.genderConfidence)}% confident`),s.age&&i.push(`age: ${s.age||""}`),s.iris&&i.push(`iris distance: ${s.iris}`),s.emotion&&s.emotion.length>0){let o=s.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.push(o.join(" "))}s.rotation&&s.rotation.angle&&s.rotation.angle.roll&&i.push(`roll: ${Math.trunc(100*s.rotation.angle.roll)/100} yaw:${Math.trunc(100*s.rotation.angle.yaw)/100} pitch:${Math.trunc(100*s.rotation.angle.pitch)/100}`),i.length===0&&i.push("face"),a.fillStyle=r.color;for(let o=i.length-1;o>=0;o--){let l=Math.max(s.box[0],0),c=o*r.lineHeight+s.box[1];r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(i[o],l+5,c+16)),a.fillStyle=r.labelColor,a.fillText(i[o],l+4,c+15)}if(a.lineWidth=1,s.mesh&&s.mesh.length>0){if(r.drawPoints)for(let o of s.mesh)U0(a,o[0],o[1],o[2],r);if(r.drawPolygons){a.lineWidth=1;for(let o=0;os.mesh[c]);Hg(a,l,r)}if(s.annotations&&s.annotations.leftEyeIris){a.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,a.beginPath();let o=Math.abs(s.annotations.leftEyeIris[3][0]-s.annotations.leftEyeIris[1][0])/2,l=Math.abs(s.annotations.leftEyeIris[4][1]-s.annotations.leftEyeIris[2][1])/2;a.ellipse(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),r.fillPolygons&&(a.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,a.fill())}if(s.annotations&&s.annotations.rightEyeIris){a.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,a.beginPath();let o=Math.abs(s.annotations.rightEyeIris[3][0]-s.annotations.rightEyeIris[1][0])/2,l=Math.abs(s.annotations.rightEyeIris[4][1]-s.annotations.rightEyeIris[2][1])/2;a.ellipse(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),r.fillPolygons&&(a.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,a.fill())}}}}}var is=[];async function uk(e,t,n){let r=Yn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round";for(let s=0;sl.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),o.length===4&&Hg(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftKnee"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftAnkle"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHeel"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftFoot"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightKnee"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightAnkle"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHeel"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightFoot"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftElbow"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftWrist"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftPalm"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightElbow"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightWrist"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightPalm"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r)}}}}async function ck(e,t,n){let r=Yn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round",a.font=r.font;for(let s of t){if(r.drawBoxes){a.strokeStyle=r.color,a.fillStyle=r.color;let i;if(!r.calculateHandBox)i=r.useRawBoxes?s.boxRaw:s.box;else if(i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],s.landmarks&&s.landmarks.length>0){for(let o of s.landmarks)o[0]i[2]&&(i[2]=o[0]),o[1]>i[3]&&(i[3]=o[1]);i[2]-=i[0],i[3]-=i[1]}r.useRawBoxes?Gi(a,e.width*i[0],e.height*i[1],e.width*i[2],e.height*i[3],r):Gi(a,i[0],i[1],i[2],i[3],r),r.drawLabels&&(r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText("hand",i[0]+3,1+i[1]+r.lineHeight,i[2])),a.fillStyle=r.labelColor,a.fillText("hand",i[0]+2,0+i[1]+r.lineHeight,i[2])),a.stroke()}if(r.drawPoints&&s.landmarks&&s.landmarks.length>0)for(let i of s.landmarks)a.fillStyle=r.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:r.color,U0(a,i[0],i[1],0,r);if(r.drawPolygons){let i=o=>{if(!!o)for(let l=0;l0?l-1:0][0],o[l>0?l-1:0][1]),a.lineTo(o[l][0],o[l][1]),a.stroke()};i(s.annotations.indexFinger),i(s.annotations.middleFinger),i(s.annotations.ringFinger),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function hk(e,t,n){let r=Yn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round",a.font=r.font;for(let s of t)if(r.drawBoxes){if(a.strokeStyle=r.color,a.fillStyle=r.color,r.useRawBoxes?Gi(a,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],r):Gi(a,s.box[0],s.box[1],s.box[2],s.box[3],r),r.drawLabels){let i=`${Math.round(100*s.score)}% ${s.label}`;r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(i,s.box[0]+3,1+s.box[1]+r.lineHeight,s.box[2])),a.fillStyle=r.labelColor,a.fillText(i,s.box[0]+2,0+s.box[1]+r.lineHeight,s.box[2])}a.stroke()}}}async function Qie(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function eoe(e,t,n){let r=Yn(Hi,n);!t||!e||e instanceof HTMLCanvasElement&&(lk(e,t.face,r),uk(e,t.body,r),ck(e,t.hand,r),ok(e,t.gesture,r),hk(e,t.object,r))}var H0=` /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob @@ -4344,7 +4344,7 @@ PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1 8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3 ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY -euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,X0=` +euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,G0=` /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA @@ -4912,7 +4912,7 @@ AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ -2Q==`;var bk="1.6.1";var iu,sh,ih,qi,K0,oh,Z0,Y0,J0,Aoe=class{constructor(t={}){iu.set(this,void 0);sh.set(this,void 0);ih.set(this,void 0);qi.set(this,void 0);this.analyze=(...t)=>{if(!ur(this,sh))return;let n=this.tf.engine().state.numTensors,r=ur(this,iu);us(this,iu,n);let a=n-r;a!==0&&le(...t,a)};K0.set(this,t=>{if(!ur(this,ih))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Pe))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});oh.set(this,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let r=Ye();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&le("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&le("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let a=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&le(`wasm execution: ${a?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),this.config.debug&&!a&&le("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&N8();try{await this.tf.setBackend(this.config.backend)}catch(a){le("error: cannot set backend:",this.config.backend,a)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),this.config.deallocate&&(le("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let a=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&le(`gl version:${a.getParameter(a.VERSION)} renderer:${a.getParameter(a.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(Ye()-r)}});Z0.set(this,async()=>{let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),n,r;switch(this.config.warmup){case"face":n=await t(q0);break;case"full":n=await t(X0);break;default:n=null}if(n){let a=await createImageBitmap(n);r=await this.detect(a,this.config),a.close()}return r});Y0.set(this,async()=>new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+q0;break;case"full":case"body":r=1200,n="data:image/jpeg;base64,"+X0;break;default:n=null}let a=new Image;a.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");s.width=a.naturalWidth,s.height=a.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(a,0,0);let o=await this.detect(s,this.config);t(o)},n?a.src=n:t(null)}));J0.set(this,async()=>{let t=a=>Buffer.from(a,"base64"),n;if(this.config.warmup==="face"&&(n=t(q0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(X0)),!n)return null;let r;if(typeof void 0!="undefined"){let a=(void 0).decodeJpeg(n),s=a.expandDims(0);this.tf.dispose(a),r=await this.detect(s,this.config),this.tf.dispose(s)}else this.config.debug&&le("Warmup tfjs-node not loaded");return r});this.tf=gu,this.draw=K2,this.version=bk,this.config=Yn(ht,t),this.state="idle",us(this,iu,0),us(this,sh,!1),us(this,ih,!1),us(this,qi,!0),this.perf={},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,faceres:null},this.image=n=>X2(n,this.config),this.classes={facemesh:A2,age:qg,gender:Kg,emotion:e2,faceres:i2,body:this.config.body.modelPath.includes("posenet")?N2:P2,hand:$2,nanodet:j2},this.faceTriangulation=L8,this.faceUVMap=W8,this.sysinfo=c5()}profileData(){return this.config.profile?x0:{}}similarity(t,n){return this.config.face.description.enabled?l2(t,n):this.config.face.embedding.enabled?T8(t,n):0}enhance(t){return u2(t)}match(t,n,r=0){return E8(t,n,r)}async load(t={}){this.state="load";let n=Ye();t&&(this.config=Yn(this.config,t)),ur(this,qi)&&(this.config.debug&&le(`version: ${this.version}`),this.config.debug&&le(`tfjs version: ${this.tf.version_core}`),this.config.debug&&le("platform:",this.sysinfo.platform),this.config.debug&&le("agent:",this.sysinfo.agent),await ur(this,oh).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&le("configuration:",this.config),this.config.debug&&le("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.efficientpose,this.models.nanodet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?g2(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?Xg(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?Qg(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?r2(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?a2(this.config):null),this.models.handpose||(this.config.hand.enabled?z2(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?E2(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?L2(this.config):null),this.models.efficientpose||(this.config.body.enabled&&this.config.body.modelPath.includes("efficientpose")?B2(this.config):null),this.models.nanodet||(this.config.object.enabled?H2(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?o2(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await g2(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await Xg(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await Qg(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await r2(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await a2(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await z2(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await E2(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await L2(this.config)),this.config.body.enabled&&!this.models.efficientpose&&this.config.body.modelPath.includes("efficientpose")&&(this.models.efficientpose=await B2(this.config)),this.config.object.enabled&&!this.models.nanodet&&(this.models.nanodet=await H2(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await o2(this.config))),ur(this,qi)&&(this.config.debug&&le("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),us(this,qi,!1));let r=Math.trunc(Ye()-n);r>(this.perf.load||0)&&(this.perf.load=r)}async detect(t,n={}){return new Promise(async r=>{var A,y,g,x;this.state="config";let a;this.config=Yn(this.config,n),this.state="check";let s=ur(this,K0).call(this,t);s&&(le(s,t),r({error:s}));let i=Ye();await ur(this,oh).call(this),await this.load(),this.config.scoped&&this.tf.engine().startScope(),this.analyze("Start Scope:");let o;t&&this.config.videoOptimized&&(typeof HTMLImageElement!="undefined"&&t instanceof HTMLImageElement||typeof Image!="undefined"&&t instanceof Image||typeof ImageData!="undefined"&&t instanceof ImageData||typeof ImageBitmap!="undefined"&&q2 instanceof ImageBitmap)&&(le("disabling video optimization"),o=this.config.videoOptimized,this.config.videoOptimized=!1),a=Ye();let l=X2(t,this.config);if(!l||!l.tensor){le("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(Ye()-a),this.analyze("Get Image:");let c,u,h,d,p;this.config.async?(h=this.config.face.enabled?c2(this,l.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",a=Ye(),h=this.config.face.enabled?await c2(this,l.tensor):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.face=p)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?(A=this.models.posenet)==null?void 0:A.estimatePoses(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?W2(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(c=this.config.body.enabled?V2(l.tensor,this.config):[]),this.perf.body&&delete this.perf.body):(this.state="run:body",a=Ye(),this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?await((y=this.models.posenet)==null?void 0:y.estimatePoses(l.tensor,this.config)):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?await W2(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(c=this.config.body.enabled?await V2(l.tensor,this.config):[]),p=Math.trunc(Ye()-a),p>0&&(this.perf.body=p)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(u=this.config.hand.enabled?(g=this.models.handpose)==null?void 0:g.estimateHands(l.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",a=Ye(),u=this.config.hand.enabled?await((x=this.models.handpose)==null?void 0:x.estimateHands(l.tensor,this.config)):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.hand=p)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(d=this.config.object.enabled?G2(l.tensor,this.config):[],this.perf.object&&delete this.perf.object):(this.state="run:object",a=Ye(),d=this.config.object.enabled?await G2(l.tensor,this.config):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.object=p)),this.analyze("End Object:"),this.config.async&&([h,c,u,d]=await Promise.all([h,c,u,d])),_e(l.tensor),this.config.scoped&&this.tf.engine().endScope(),this.analyze("End Scope:");let f=[];this.config.gesture.enabled&&(a=Ye(),f=[...dk(h),...hk(c),...fk(u),...pk(h)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(Ye()-a)),o&&(this.config.videoOptimized=o),this.perf.total=Math.trunc(Ye()-i),this.state="idle";let m={face:h,body:c,hand:u,gesture:f,object:d,performance:this.perf,canvas:l.canvas};r(m)})}async warmup(t={}){let n=Ye();if(t&&(this.config=Yn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let r=this.config.videoOptimized;this.config.videoOptimized=!1;let a;typeof createImageBitmap=="function"?a=await ur(this,Z0).call(this):typeof Image!="undefined"?a=await ur(this,Y0).call(this):a=await ur(this,J0).call(this),this.config.videoOptimized=r;let s=Ye();return this.config.debug&&le("Warmup",this.config.warmup,Math.round(s-n),"ms",a),a}};iu=new WeakMap,sh=new WeakMap,ih=new WeakMap,qi=new WeakMap,K0=new WeakMap,oh=new WeakMap,Z0=new WeakMap,Y0=new WeakMap,J0=new WeakMap;export{Aoe as Human,Aoe as default}; +2Q==`;var dk="1.6.1";var au,ah,sh,qi,q0,ih,X0,K0,Z0,noe=class{constructor(t={}){au.set(this,void 0);ah.set(this,void 0);sh.set(this,void 0);qi.set(this,void 0);this.analyze=(...t)=>{if(!ur(this,ah))return;let n=this.tf.engine().state.numTensors,r=ur(this,au);cs(this,au,n);let a=n-r;a!==0&&le(...t,a)};q0.set(this,t=>{if(!ur(this,sh))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Pe))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});ih.set(this,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let r=Ye();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&le("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&le("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let a=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&le(`wasm execution: ${a?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),this.config.debug&&!a&&le("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&_8();try{await this.tf.setBackend(this.config.backend)}catch(a){le("error: cannot set backend:",this.config.backend,a)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),this.config.deallocate&&(le("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let a=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&le(`gl version:${a.getParameter(a.VERSION)} renderer:${a.getParameter(a.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(Ye()-r)}});X0.set(this,async()=>{let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),n,r;switch(this.config.warmup){case"face":n=await t(H0);break;case"full":n=await t(G0);break;default:n=null}if(n){let a=await createImageBitmap(n);r=await this.detect(a,this.config),a.close()}return r});K0.set(this,async()=>new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+H0;break;case"full":case"body":r=1200,n="data:image/jpeg;base64,"+G0;break;default:n=null}let a=new Image;a.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");s.width=a.naturalWidth,s.height=a.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(a,0,0);let o=await this.detect(s,this.config);t(o)},n?a.src=n:t(null)}));Z0.set(this,async()=>{let t=a=>Buffer.from(a,"base64"),n;if(this.config.warmup==="face"&&(n=t(H0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(G0)),!n)return null;let r;if(typeof void 0!="undefined"){let a=(void 0).decodeJpeg(n),s=a.expandDims(0);this.tf.dispose(a),r=await this.detect(s,this.config),this.tf.dispose(s)}else this.config.debug&&le("Warmup tfjs-node not loaded");return r});this.tf=Au,this.draw=Ug,this.version=dk,this.config=Yn(ht,t),this.state="idle",cs(this,au,0),cs(this,ah,!1),cs(this,sh,!1),cs(this,qi,!0),this.perf={},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,faceres:null},this.image=n=>jg(n,this.config),this.classes={facemesh:fg,age:H2,gender:q2,emotion:J2,faceres:ag,body:this.config.body.modelPath.includes("posenet")?_g:Fg,hand:Eg,nanodet:Pg},this.faceTriangulation=$8,this.faceUVMap=D8,this.sysinfo=s5()}profileData(){return this.config.profile?g0:{}}similarity(t,n){return this.config.face.description.enabled?ig(t,n):this.config.face.embedding.enabled?v8(t,n):0}enhance(t){return og(t)}match(t,n,r=0){return k8(t,n,r)}async load(t={}){this.state="load";let n=Ye();t&&(this.config=Yn(this.config,t)),ur(this,qi)&&(this.config.debug&&le(`version: ${this.version}`),this.config.debug&&le(`tfjs version: ${this.tf.version_core}`),this.config.debug&&le("platform:",this.sysinfo.platform),this.config.debug&&le("agent:",this.sysinfo.agent),await ur(this,ih).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&le("configuration:",this.config),this.config.debug&&le("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.efficientpose,this.models.nanodet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?Ag(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?G2(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?Y2(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?tg(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?ng(this.config):null),this.models.handpose||(this.config.hand.enabled?Mg(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?kg(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?$g(this.config):null),this.models.efficientpose||(this.config.body.enabled&&this.config.body.modelPath.includes("efficientpose")?Og(this.config):null),this.models.nanodet||(this.config.object.enabled?Wg(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?sg(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await Ag(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await G2(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await Y2(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await tg(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await ng(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await Mg(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await kg(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await $g(this.config)),this.config.body.enabled&&!this.models.efficientpose&&this.config.body.modelPath.includes("efficientpose")&&(this.models.efficientpose=await Og(this.config)),this.config.object.enabled&&!this.models.nanodet&&(this.models.nanodet=await Wg(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await sg(this.config))),ur(this,qi)&&(this.config.debug&&le("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),cs(this,qi,!1));let r=Math.trunc(Ye()-n);r>(this.perf.load||0)&&(this.perf.load=r)}async detect(t,n={}){return new Promise(async r=>{var A,y;this.state="config";let a;this.config=Yn(this.config,n),this.state="check";let s=ur(this,q0).call(this,t);s&&(le(s,t),r({error:s}));let i=Ye();await ur(this,ih).call(this),await this.load(),this.config.scoped&&this.tf.engine().startScope(),this.analyze("Start Scope:");let o;t&&this.config.videoOptimized&&(typeof HTMLImageElement!="undefined"&&t instanceof HTMLImageElement||typeof Image!="undefined"&&t instanceof Image||typeof ImageData!="undefined"&&t instanceof ImageData||typeof ImageBitmap!="undefined"&&Vg instanceof ImageBitmap)&&(le("disabling video optimization"),o=this.config.videoOptimized,this.config.videoOptimized=!1),a=Ye();let l=jg(t,this.config);if(!l||!l.tensor){le("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(Ye()-a),this.analyze("Get Image:");let c,u,h,d,p;this.config.async?(h=this.config.face.enabled?lg(this,l.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",a=Ye(),h=this.config.face.enabled?await lg(this,l.tensor):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.face=p)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?vg(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?Dg(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(c=this.config.body.enabled?zg(l.tensor,this.config):[]),this.perf.body&&delete this.perf.body):(this.state="run:body",a=Ye(),this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?await vg(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?await Dg(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(c=this.config.body.enabled?await zg(l.tensor,this.config):[]),p=Math.trunc(Ye()-a),p>0&&(this.perf.body=p)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(u=this.config.hand.enabled?(A=this.models.handpose)==null?void 0:A.estimateHands(l.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",a=Ye(),u=this.config.hand.enabled?await((y=this.models.handpose)==null?void 0:y.estimateHands(l.tensor,this.config)):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.hand=p)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(d=this.config.object.enabled?Bg(l.tensor,this.config):[],this.perf.object&&delete this.perf.object):(this.state="run:object",a=Ye(),d=this.config.object.enabled?await Bg(l.tensor,this.config):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.object=p)),this.analyze("End Object:"),this.config.async&&([h,c,u,d]=await Promise.all([h,c,u,d])),we(l.tensor),this.config.scoped&&this.tf.engine().endScope(),this.analyze("End Scope:");let m=[];this.config.gesture.enabled&&(a=Ye(),m=[...rk(h),...nk(c),...sk(u),...ak(h)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(Ye()-a)),o&&(this.config.videoOptimized=o),this.perf.total=Math.trunc(Ye()-i),this.state="idle";let f={face:h,body:c,hand:u,gesture:m,object:d,performance:this.perf,canvas:l.canvas};r(f)})}async warmup(t={}){let n=Ye();if(t&&(this.config=Yn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let r=this.config.videoOptimized;this.config.videoOptimized=!1;let a;typeof createImageBitmap=="function"?a=await ur(this,X0).call(this):typeof Image!="undefined"?a=await ur(this,K0).call(this):a=await ur(this,Z0).call(this),this.config.videoOptimized=r;let s=Ye();return this.config.debug&&le("Warmup",this.config.warmup,Math.round(s-n),"ms",a),a}};au=new WeakMap,ah=new WeakMap,sh=new WeakMap,qi=new WeakMap,q0=new WeakMap,ih=new WeakMap,X0=new WeakMap,K0=new WeakMap,Z0=new WeakMap;export{noe as Human,noe as default}; /** * @license * Copyright 2017 Google LLC. All Rights Reserved. diff --git a/dist/human.esm.js.map b/dist/human.esm.js.map index 290ca2d5..e9e04cbf 100644 --- a/dist/human.esm.js.map +++ b/dist/human.esm.js.map @@ -1,7 +1,7 @@ { "version": 3, - "sources": ["../src/helpers.ts", "../src/sysinfo.ts", "../node_modules/.pnpm/node-fetch@2.6.1/node_modules/node-fetch/browser.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js", "(disabled):crypto", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js", "(disabled):path", "(disabled):worker_threads", "(disabled):perf_hooks", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js", "../node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/backend.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/util_base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/environment.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/global_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/kernel_names.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/kernel_registry.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/profiler.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tensor_format.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tensor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tensor_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/engine.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/device_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/flags.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tensor_util_env.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/operation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/io_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/router_registry.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/indexed_db.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/local_storage.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/model_management.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/platforms/platform_browser.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/platforms/platform_node.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/clone.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/print.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/base_side_effects.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/io.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/browser_files.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/progress.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/weights_loader.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/http.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/passthrough.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/one_hot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/confusion_matrix.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/browser.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/gather_nd_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/scatter_nd_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/serialization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/test_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/globals.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/floorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/div.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/add_n.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/all.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/arg_max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/arg_min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/basic_lstm_cell.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batch_to_space_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/broadcast_to.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/clip_by_value.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dense_bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/depth_to_space.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dilation2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/broadcast_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/where.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/zeros_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/div_no_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/expand_dims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/eye.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/gather.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/greater_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/is_finite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/is_inf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/is_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/leaky_relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/less_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/linspace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/local_response_normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log_sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log_softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/axis_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log_sum_exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_and.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_not.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_or.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_xor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_with_argmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/zeros.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/ones.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/meshgrid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mirror_pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/moments.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/multi_rnn_cell.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/not_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/ones_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/outer_product.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/space_to_batch_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/rand.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/rand_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/random_gamma.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/random_normal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/random_uniform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/scalar.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/separable_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/setdiff1d_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/fft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/ifft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/irfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/split.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/rfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/squared_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/squeeze.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/stack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/strided_slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor5d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor6d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/topk.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/truncated_normal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/unsorted_segment_sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/unstack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/variable.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/where_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/where_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/boolean_mask.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/norm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/moving_average.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/scatter_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse_to_dense_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse_to_dense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/gather_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dropout_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dropout.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/in_top_k.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused_ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d_native_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d_native_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/hamming_window.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/hann_window.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/frame.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/stft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/crop_and_resize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/flip_left_right.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/rotate_with_offset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/nonmax_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/non_max_suppression_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/non_max_suppression_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_with_score.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_with_score_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_padded.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_padded_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/resize_bilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/resize_nearest_neighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/band_part.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/gram_schmidt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/qr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/loss_ops_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/compute_weighted_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/absolute_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/cosine_distance.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/hinge_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/huber_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/log_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/mean_squared_error.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/sigmoid_cross_entropy.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/softmax_cross_entropy.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse/sparse_reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adadelta_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adagrad_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adam_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adamax_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/sgd_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/momentum_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/rmsprop_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/optimizer_constructors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/train.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/browser_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/backend_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reduce_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/rotate_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/array_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/selu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/erf_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/complex_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/einsum_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/split_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/segment_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/kernel_impls.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/cpu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/backend_cpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/binary_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/zeros_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/binary_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Bincount_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/unary_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/unary_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Concat_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherV2_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LinSpace_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Max_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transpose_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Range_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseReshape_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StridedSlice_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tile_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/TopK_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unique_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LeakyRelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/fused_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/BatchMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/_FusedMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AddN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/All.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ArgMax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ArgMin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/pool_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/BatchNorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/BatchToSpaceND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Clip.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ComplexAbs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv2DBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv3DBackpropFilterV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv3DBackpropInputV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/CropAndResize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DenseBincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthToSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthwiseConv2dNative.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthwiseConv2dNativeBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthwiseConv2dNativeBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Dilation2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Dilation2DBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Dilation2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/EluGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ExpandDims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/RealDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/fft_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FlipLeftRight.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FloorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FusedConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FusedDepthwiseConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IFFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IsFinite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IsInf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IsNaN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LinSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LogicalAnd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LogicalNot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LogicalOr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LRN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LRNGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPoolWithArgmax_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPoolWithArgmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MirrorPad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NonMaxSuppressionV3.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NonMaxSuppressionV4.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NonMaxSuppressionV5.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/OneHot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ZerosLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/OnesLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Pack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/PadV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeBilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeBilinearGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeNearestNeighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeNearestNeighborGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/RotateWithOffset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Scatter_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ScatterNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Select.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SpaceToBatchND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseReshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseToDense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SplitV.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StridedSlice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/TopK.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unpack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/UnsortedSegmentSum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/register_all_kernels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/webgl_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/canvas_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/tex_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/flags_webgl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/glsl_version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/shader_compiler_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/decode_matrix_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/decode_matrix_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_float_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_float_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_matrix_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_matrix_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gpgpu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gpgpu_context.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/shader_compiler.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gpgpu_math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/packing_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pack_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reshape_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/texture_manager.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/unaryop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/unaryop_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/unpack_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/backend_webgl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/webgl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/binaryop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/binaryop_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LeakyRelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/kernel_funcs_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mulmat_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/binaryop_complex_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mean_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reduce_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/reduce.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/transpose_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/transpose_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Transpose_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sum_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchMatMul_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/_FusedMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/addn_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/addn_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AddN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/All.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/argminmax_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/argminmax_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/arg_min_max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ArgMax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ArgMin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pool_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/avg_pool_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/batchnorm_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/batchnorm_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchNorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/slice_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/slice_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchToSpaceND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/int.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/clip_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/clip_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ClipByValue.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/complex_abs_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ComplexAbs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/concat_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/concat_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Concat_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/im2col_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2D_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2DBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv3DBackpropFilterV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv3DBackpropInputV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/crop_and_resize_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/CropAndResize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/cumsum_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DenseBincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/depth_to_space_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthToSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_gpu_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_packed_gpu_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthwiseConv2dNative.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_backprop_gpu_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthwiseConv2dNativeBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthwiseConv2dNativeBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/diag_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/dilation_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Dilation2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/EluGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ExpandDims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/fft_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FFT_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/fill_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/flip_left_right_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FlipLeftRight.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FloorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FromPixels_utils/from_pixels_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FromPixels_utils/from_pixels_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FromPixels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FusedConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FusedDepthwiseConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gather_nd_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/GatherNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gather_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/GatherV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IFFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IsFinite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IsInf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IsNaN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LinSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LogicalAnd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LogicalNot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LogicalOr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/lrn_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/lrn_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LRN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/lrn_grad_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LRNGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Max_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/max_pool_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPoolWithArgmax_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPoolWithArgmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Mean_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mirror_pad_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mirror_pad_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MirrorPad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/multinomial_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/RealDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NonMaxSuppressionV3.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NonMaxSuppressionV4.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NonMaxSuppressionV5.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/onehot_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/OneHot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ZerosLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/OnesLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Pack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pad_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pad_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/PadV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_bilinear_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_bilinear_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeBilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_bilinear_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeBilinearGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_nearest_neighbor_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeNearestNeighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_nearest_neighbor_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeNearestNeighborGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reverse_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reverse_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/rotate_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/RotateWithOffset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/scatter_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ScatterNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/select_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Select.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SpaceToBatchND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SparseReshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SparseToDense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SplitV.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/strided_slice_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/StridedSlice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/tile_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/TopK.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/transform_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Unpack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/segment_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/UnsortedSegmentSum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/register_all_kernels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/_FusedMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/unary_kernel.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/binary_kernel.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/AddN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/kernel_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/All.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ArgMax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/AvgPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/BatchMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ClipByValue.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernel_utils/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Conv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Conv2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/CropAndResize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/DepthToSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/DepthwiseConv2dNative.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ExpandDims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FlipLeftRight.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FloorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FusedBatchNorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FusedConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FusedDepthwiseConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/GatherNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/GatherV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/LeakyRelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/LogicalAnd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/MaxPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/MirrorPad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppression_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppressionV3.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppressionV4.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppressionV5.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/OneHot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/OnesLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Pack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/PadV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/RealDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ResizeBilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/RotateWithOffset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ScatterNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Select.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/SplitV.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/StridedSlice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/TopK.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Unpack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ZerosLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/register_all_kernels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/flags_wasm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/backend_wasm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.worker.js", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/all.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/arg_max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/arg_min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as_scalar.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as_type.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as5d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/avg_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/batch_to_space_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/batchnorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/broadcast_to.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/clip_by_value.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/conv1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/conv2d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/depth_to_space.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/dilation2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/div_no_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/div.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/dot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/expand_dims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/fft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/flatten.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/floorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/gather.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/greater_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/ifft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/irfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/is_finite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/is_inf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/is_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/leaky_relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/less_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/local_response_normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log_sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log_softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log_sum_exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_and.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_not.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_or.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_xor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/max_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mirror_pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/norm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/not_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/one_hot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/ones_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reshape_as.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/resize_bilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/resize_nearest_neighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/rfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/separable_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/space_to_batch_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/split.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/squared_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/squeeze.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/stack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/strided_slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/to_bool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/to_float.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/to_int.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/topk.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/unsorted_segment_sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/unstack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/where.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/zeros_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/register_all_chained_ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Abs_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Acos_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Acosh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Add_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/AddN_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ArgMax_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ArgMin_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Asin_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Asinh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Atan2_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Atan_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Atanh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_3d_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/AvgPool3D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/AvgPool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/BatchMatMul_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/BatchToSpaceND_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/BroadcastTo_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cast_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Ceil_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ClipByValue_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ComplexAbs_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Concat_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Conv2D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Conv2DBackpropInput_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Conv3D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cos_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cosh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cumsum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/DepthwiseConv2dNative_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Dilation2D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Elu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Erf_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Exp_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ExpandDims_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Expm1_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Floor_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/FloorDiv_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/FusedBatchNorm_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/GatherV2_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/GreaterEqual_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Identity_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/IsFinite_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/IsInf_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/IsNan_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/LeakyRelu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Log1p_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Log_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/LogSoftmax_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/local_response_normalization_backprop.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/LRN_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/min_max_grad_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Max_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Maximum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_3d_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/MaxPool3D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/MaxPool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Mean_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Min_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Minimum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/MirrorPad_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Mod_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Multiply_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Neg_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/OneHot_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/OnesLike_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Pack_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/PadV2_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Pow_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Prelu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/RealDiv_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Reciprocal_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Relu6_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Relu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Reshape_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ResizeBilinear_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ResizeNearestNeighbor_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Reverse_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Round_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Rsqrt_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Select_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Selu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sigmoid_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sign_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sin_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sinh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Slice_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Softmax_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Softplus_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/SpaceToBatchND_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/SplitV_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sqrt_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Square_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/SquaredDifference_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Step_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sub_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Tan_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Tanh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Tile_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Transpose_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Unpack_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/UnsortedSegmentSum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ZerosLike_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/register_all_gradients.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_constraints.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/backend/common.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/errors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/generic_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/constraints.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_initializers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/keras_format/common.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/common.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/math_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/backend/tfjs_backend.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/keras_format/initializer_config.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/initializers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_layers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/backend/state.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/types_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/variable_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/variables.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/topology.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/input_layer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/logs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/base_callbacks.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/serialization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/losses.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/metrics.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/optimizers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/user_defined_metadata.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/layer_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/serialization_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/container.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/training_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/training_dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/training_tensors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/training.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/models.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/activations.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/regularizers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/advanced_activations.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/conv_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/convolutional.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/convolutional_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/recurrent.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/convolutional_recurrent.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/core.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/embeddings.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/merge.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/noise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/padding.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/pooling.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/wrappers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_metrics.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_models.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_regularizers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/callbacks.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/data/compiled_api.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/custom_op/register.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/arithmetic.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/basic_math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/control.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/convolution.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/creation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/dynamic.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/evaluation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/graph.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/hash_table.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/image.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/logical.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/matrices.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/reduction.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/slice_join.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/spectral.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/transformation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/operation_mapper.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/custom_op/node_value_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/arithmetic_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/basic_math_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/tensor_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/tensor_array.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/tensor_list.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/control_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/convolution_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/creation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/dynamic_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/evaluation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/graph_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/hash_table.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/hash_table_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/image_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/logical_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/matrices_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/normalization_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/reduction_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/slice_join_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/sparse_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/spectral_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/transformation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/operation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/execution_context.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/model_analysis.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/graph_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/resource_manager.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/graph_model.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/lazy_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/deep_map.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/deep_clone.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/ring_buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/growing_ring_buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/datasets/text_line_dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/datasets/csv_dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/microphone_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/webcam_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/datasource.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/string_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/byte_chunk_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/file_chunk_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/url_chunk_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/source_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/sources/file_data_source.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/sources/url_data_source.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/readers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/version.ts", "../src/tfjs/tf-browser.ts", "../src/tfjs/backend.ts", "../src/age/age.ts", "../src/profile.ts", "../src/gender/gender.ts", "../src/emotion/emotion.ts", "../src/embedding/embedding.ts", "../src/faceres/faceres.ts", "../src/faceall.ts", "../src/blazeface/facemesh.ts", "../src/blazeface/blazeface.ts", "../src/blazeface/box.ts", "../src/blazeface/util.ts", "../src/blazeface/coords.ts", "../src/blazeface/facepipeline.ts", "../src/posenet/posenet.ts", "../src/posenet/posenetModel.ts", "../src/posenet/keypoints.ts", "../src/posenet/decodeParts.ts", "../src/posenet/utils.ts", "../src/posenet/decodeSingle.ts", "../src/posenet/decodeMultiple.ts", "../src/handpose/handpose.ts", "../src/handpose/box.ts", "../src/handpose/handdetector.ts", "../src/handpose/util.ts", "../src/handpose/handpipeline.ts", "../src/handpose/anchors.ts", "../src/blazepose/blazepose.ts", "../src/blazepose/annotations.ts", "../src/efficientpose/efficientpose.ts", "../src/nanodet/nanodet.ts", "../src/nanodet/labels.ts", "../src/gesture/gesture.ts", "../src/image/image.ts", "../src/image/imagefx.js", "../src/draw/draw.ts", "../src/config.ts", "../src/sample.ts", "../src/human.ts"], - "sourcesContent": ["// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`Human: ModelPath Error: ${path} Expecting JSON file`);\n return path;\n}\n\n// helper function: wrapper around console output\nexport function log(...msg) {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n // eslint-disable-next-line no-console\n if (msg) console.log(ts, 'Human:', ...msg);\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: perform deep merge of multiple objects so it allows full inheriance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n", "export function info(): { platform: string, agent: string } {\n let platform;\n let agent;\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw && raw[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n platform = platformMatch ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n agent = navigator.userAgent.replace(raw[0], '');\n if (platform[1]) agent = agent.replace(raw[1], '');\n agent = agent.replace(/ /g, ' ');\n }\n } else if (typeof process !== 'undefined') {\n platform = `${process.platform} ${process.arch}`;\n agent = `NodeJS ${process.version}`;\n }\n return { platform, agent };\n}\n", "", "// A port of an algorithm by Johannes Baag\u00F8e , 2010\n// http://baagoe.com/en/RandomMusings/javascript/\n// https://github.com/nquinlan/better-random-numbers-for-javascript-mirror\n// Original work is under MIT license -\n\n// Copyright (C) 2010 by Johannes Baag\u00F8e \n//\n// Permission is hereby granted, free of charge, to any person obtaining a copy\n// of this software and associated documentation files (the \"Software\"), to deal\n// in the Software without restriction, including without limitation the rights\n// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n// copies of the Software, and to permit persons to whom the Software is\n// furnished to do so, subject to the following conditions:\n// \n// The above copyright notice and this permission notice shall be included in\n// all copies or substantial portions of the Software.\n// \n// THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\n// THE SOFTWARE.\n\n\n\n(function(global, module, define) {\n\nfunction Alea(seed) {\n var me = this, mash = Mash();\n\n me.next = function() {\n var t = 2091639 * me.s0 + me.c * 2.3283064365386963e-10; // 2^-32\n me.s0 = me.s1;\n me.s1 = me.s2;\n return me.s2 = t - (me.c = t | 0);\n };\n\n // Apply the seeding algorithm from Baagoe.\n me.c = 1;\n me.s0 = mash(' ');\n me.s1 = mash(' ');\n me.s2 = mash(' ');\n me.s0 -= mash(seed);\n if (me.s0 < 0) { me.s0 += 1; }\n me.s1 -= mash(seed);\n if (me.s1 < 0) { me.s1 += 1; }\n me.s2 -= mash(seed);\n if (me.s2 < 0) { me.s2 += 1; }\n mash = null;\n}\n\nfunction copy(f, t) {\n t.c = f.c;\n t.s0 = f.s0;\n t.s1 = f.s1;\n t.s2 = f.s2;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new Alea(seed),\n state = opts && opts.state,\n prng = xg.next;\n prng.int32 = function() { return (xg.next() * 0x100000000) | 0; }\n prng.double = function() {\n return prng() + (prng() * 0x200000 | 0) * 1.1102230246251565e-16; // 2^-53\n };\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nfunction Mash() {\n var n = 0xefc8249d;\n\n var mash = function(data) {\n data = data.toString();\n for (var i = 0; i < data.length; i++) {\n n += data.charCodeAt(i);\n var h = 0.02519603282416938 * n;\n n = h >>> 0;\n h -= n;\n h *= n;\n n = h >>> 0;\n h -= n;\n n += h * 0x100000000; // 2^32\n }\n return (n >>> 0) * 2.3283064365386963e-10; // 2^-32\n };\n\n return mash;\n}\n\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.alea = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xor128\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n\n // Set up generator function.\n me.next = function() {\n var t = me.x ^ (me.x << 11);\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n return me.w ^= (me.w >>> 19) ^ t ^ (t >>> 8);\n };\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor128 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorwow\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var t = (me.x ^ (me.x >>> 2));\n me.x = me.y; me.y = me.z; me.z = me.w; me.w = me.v;\n return (me.d = (me.d + 362437 | 0)) +\n (me.v = (me.v ^ (me.v << 4)) ^ (t ^ (t << 1))) | 0;\n };\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.v = 0;\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n if (k == strseed.length) {\n me.d = me.x << 10 ^ me.x >>> 4;\n }\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n t.v = f.v;\n t.d = f.d;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorwow = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorshift7\" algorithm by\n// Fran\u00E7ois Panneton and Pierre L'ecuyer:\n// \"On the Xorgshift Random Number Generators\"\n// http://saluc.engr.uconn.edu/refs/crypto/rng/panneton05onthexorshift.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n // Update xor generator.\n var X = me.x, i = me.i, t, v, w;\n t = X[i]; t ^= (t >>> 7); v = t ^ (t << 24);\n t = X[(i + 1) & 7]; v ^= t ^ (t >>> 10);\n t = X[(i + 3) & 7]; v ^= t ^ (t >>> 3);\n t = X[(i + 4) & 7]; v ^= t ^ (t << 7);\n t = X[(i + 7) & 7]; t = t ^ (t << 13); v ^= t ^ (t << 9);\n X[i] = v;\n me.i = (i + 1) & 7;\n return v;\n };\n\n function init(me, seed) {\n var j, w, X = [];\n\n if (seed === (seed | 0)) {\n // Seed state array using a 32-bit integer.\n w = X[0] = seed;\n } else {\n // Seed state using a string.\n seed = '' + seed;\n for (j = 0; j < seed.length; ++j) {\n X[j & 7] = (X[j & 7] << 15) ^\n (seed.charCodeAt(j) + X[(j + 1) & 7] << 13);\n }\n }\n // Enforce an array length of 8, not all zeroes.\n while (X.length < 8) X.push(0);\n for (j = 0; j < 8 && X[j] === 0; ++j);\n if (j == 8) w = X[7] = -1; else w = X[j];\n\n me.x = X;\n me.i = 0;\n\n // Discard an initial 256 values.\n for (j = 256; j > 0; --j) {\n me.next();\n }\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.x = f.x.slice();\n t.i = f.i;\n return t;\n}\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.x) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorshift7 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n", "// A Javascript implementaion of Richard Brent's Xorgens xor4096 algorithm.\n//\n// This fast non-cryptographic random number generator is designed for\n// use in Monte-Carlo algorithms. It combines a long-period xorshift\n// generator with a Weyl generator, and it passes all common batteries\n// of stasticial tests for randomness while consuming only a few nanoseconds\n// for each prng generated. For background on the generator, see Brent's\n// paper: \"Some long-period random number generators using shifts and xors.\"\n// http://arxiv.org/pdf/1004.3115v1.pdf\n//\n// Usage:\n//\n// var xor4096 = require('xor4096');\n// random = xor4096(1); // Seed with int32 or string.\n// assert.equal(random(), 0.1520436450538547); // (0, 1) range, 53 bits.\n// assert.equal(random.int32(), 1806534897); // signed int32, 32 bits.\n//\n// For nonzero numeric keys, this impelementation provides a sequence\n// identical to that by Brent's xorgens 3 implementaion in C. This\n// implementation also provides for initalizing the generator with\n// string seeds, or for saving and restoring the state of the generator.\n//\n// On Chrome, this prng benchmarks about 2.1 times slower than\n// Javascript's built-in Math.random().\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n var w = me.w,\n X = me.X, i = me.i, t, v;\n // Update Weyl generator.\n me.w = w = (w + 0x61c88647) | 0;\n // Update xor generator.\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n // Update Xor generator array state.\n v = X[i] = v ^ t;\n me.i = i;\n // Result is the combination.\n return (v + (w ^ (w >>> 16))) | 0;\n };\n\n function init(me, seed) {\n var t, v, i, j, w, X = [], limit = 128;\n if (seed === (seed | 0)) {\n // Numeric seeds initialize v, which is used to generates X.\n v = seed;\n seed = null;\n } else {\n // String seeds are mixed into v and X one character at a time.\n seed = seed + '\\0';\n v = 0;\n limit = Math.max(limit, seed.length);\n }\n // Initialize circular array and weyl value.\n for (i = 0, j = -32; j < limit; ++j) {\n // Put the unicode characters into the array, and shuffle them.\n if (seed) v ^= seed.charCodeAt((j + 32) % seed.length);\n // After 32 shuffles, take v as the starting w value.\n if (j === 0) w = v;\n v ^= v << 10;\n v ^= v >>> 15;\n v ^= v << 4;\n v ^= v >>> 13;\n if (j >= 0) {\n w = (w + 0x61c88647) | 0; // Weyl.\n t = (X[j & 127] ^= (v + w)); // Combine xor and weyl to init array.\n i = (0 == t) ? i + 1 : 0; // Count zeroes.\n }\n }\n // We have detected all zeroes; make the key nonzero.\n if (i >= 128) {\n X[(seed && seed.length || 0) & 127] = -1;\n }\n // Run the generator 512 times to further mix the state before using it.\n // Factoring this as a function slows the main generator, so it is just\n // unrolled here. The weyl generator is not advanced while warming up.\n i = 127;\n for (j = 4 * 128; j > 0; --j) {\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n X[i] = v ^ t;\n }\n // Storing state as object members is faster than using closure variables.\n me.w = w;\n me.X = X;\n me.i = i;\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.i = f.i;\n t.w = f.w;\n t.X = f.X.slice();\n return t;\n};\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.X) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor4096 = impl;\n}\n\n})(\n this, // window object or global\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n", "// A Javascript implementaion of the \"Tyche-i\" prng algorithm by\n// Samuel Neves and Filipe Araujo.\n// See https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var b = me.b, c = me.c, d = me.d, a = me.a;\n b = (b << 25) ^ (b >>> 7) ^ c;\n c = (c - d) | 0;\n d = (d << 24) ^ (d >>> 8) ^ a;\n a = (a - b) | 0;\n me.b = b = (b << 20) ^ (b >>> 12) ^ c;\n me.c = c = (c - d) | 0;\n me.d = (d << 16) ^ (c >>> 16) ^ a;\n return me.a = (a - b) | 0;\n };\n\n /* The following is non-inverted tyche, which has better internal\n * bit diffusion, but which is about 25% slower than tyche-i in JS.\n me.next = function() {\n var a = me.a, b = me.b, c = me.c, d = me.d;\n a = (me.a + me.b | 0) >>> 0;\n d = me.d ^ a; d = d << 16 ^ d >>> 16;\n c = me.c + d | 0;\n b = me.b ^ c; b = b << 12 ^ d >>> 20;\n me.a = a = a + b | 0;\n d = d ^ a; me.d = d = d << 8 ^ d >>> 24;\n me.c = c = c + d | 0;\n b = b ^ c;\n return me.b = (b << 7 ^ b >>> 25);\n }\n */\n\n me.a = 0;\n me.b = 0;\n me.c = 2654435769 | 0;\n me.d = 1367130551;\n\n if (seed === Math.floor(seed)) {\n // Integer seed.\n me.a = (seed / 0x100000000) | 0;\n me.b = seed | 0;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 20; k++) {\n me.b ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.a = f.a;\n t.b = f.b;\n t.c = f.c;\n t.d = f.d;\n return t;\n};\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.tychei = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "", "/*\nCopyright 2014 David Bau.\n\nPermission is hereby granted, free of charge, to any person obtaining\na copy of this software and associated documentation files (the\n\"Software\"), to deal in the Software without restriction, including\nwithout limitation the rights to use, copy, modify, merge, publish,\ndistribute, sublicense, and/or sell copies of the Software, and to\npermit persons to whom the Software is furnished to do so, subject to\nthe following conditions:\n\nThe above copyright notice and this permission notice shall be\nincluded in all copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND,\nEXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF\nMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.\nIN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY\nCLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,\nTORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE\nSOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\n\n*/\n\n(function (pool, math) {\n//\n// The following constants are related to IEEE 754 limits.\n//\nvar global = this,\n width = 256, // each RC4 output is 0 <= x < 256\n chunks = 6, // at least six RC4 outputs for each double\n digits = 52, // there are 52 significant digits in a double\n rngname = 'random', // rngname: name for Math.random and Math.seedrandom\n startdenom = math.pow(width, chunks),\n significance = math.pow(2, digits),\n overflow = significance * 2,\n mask = width - 1,\n nodecrypto; // node.js crypto module, initialized at the bottom.\n\n//\n// seedrandom()\n// This is the seedrandom function described above.\n//\nfunction seedrandom(seed, options, callback) {\n var key = [];\n options = (options == true) ? { entropy: true } : (options || {});\n\n // Flatten the seed string or build one from local entropy if needed.\n var shortseed = mixkey(flatten(\n options.entropy ? [seed, tostring(pool)] :\n (seed == null) ? autoseed() : seed, 3), key);\n\n // Use the seed to initialize an ARC4 generator.\n var arc4 = new ARC4(key);\n\n // This function returns a random double in [0, 1) that contains\n // randomness in every bit of the mantissa of the IEEE 754 value.\n var prng = function() {\n var n = arc4.g(chunks), // Start with a numerator n < 2 ^ 48\n d = startdenom, // and denominator d = 2 ^ 48.\n x = 0; // and no 'extra last byte'.\n while (n < significance) { // Fill up all significant digits by\n n = (n + x) * width; // shifting numerator and\n d *= width; // denominator and generating a\n x = arc4.g(1); // new least-significant-byte.\n }\n while (n >= overflow) { // To avoid rounding up, before adding\n n /= 2; // last byte, shift everything\n d /= 2; // right using integer math until\n x >>>= 1; // we have exactly the desired bits.\n }\n return (n + x) / d; // Form the number within [0, 1).\n };\n\n prng.int32 = function() { return arc4.g(4) | 0; }\n prng.quick = function() { return arc4.g(4) / 0x100000000; }\n prng.double = prng;\n\n // Mix the randomness into accumulated entropy.\n mixkey(tostring(arc4.S), pool);\n\n // Calling convention: what to return as a function of prng, seed, is_math.\n return (options.pass || callback ||\n function(prng, seed, is_math_call, state) {\n if (state) {\n // Load the arc4 state from the given state if it has an S array.\n if (state.S) { copy(state, arc4); }\n // Only provide the .state method if requested via options.state.\n prng.state = function() { return copy(arc4, {}); }\n }\n\n // If called as a method of Math (Math.seedrandom()), mutate\n // Math.random because that is how seedrandom.js has worked since v1.0.\n if (is_math_call) { math[rngname] = prng; return seed; }\n\n // Otherwise, it is a newer calling convention, so return the\n // prng directly.\n else return prng;\n })(\n prng,\n shortseed,\n 'global' in options ? options.global : (this == math),\n options.state);\n}\nmath['seed' + rngname] = seedrandom;\n\n//\n// ARC4\n//\n// An ARC4 implementation. The constructor takes a key in the form of\n// an array of at most (width) integers that should be 0 <= x < (width).\n//\n// The g(count) method returns a pseudorandom integer that concatenates\n// the next (count) outputs from ARC4. Its return value is a number x\n// that is in the range 0 <= x < (width ^ count).\n//\nfunction ARC4(key) {\n var t, keylen = key.length,\n me = this, i = 0, j = me.i = me.j = 0, s = me.S = [];\n\n // The empty key [] is treated as [0].\n if (!keylen) { key = [keylen++]; }\n\n // Set up S using the standard key scheduling algorithm.\n while (i < width) {\n s[i] = i++;\n }\n for (i = 0; i < width; i++) {\n s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))];\n s[j] = t;\n }\n\n // The \"g\" method returns the next (count) outputs as one number.\n (me.g = function(count) {\n // Using instance members instead of closure state nearly doubles speed.\n var t, r = 0,\n i = me.i, j = me.j, s = me.S;\n while (count--) {\n t = s[i = mask & (i + 1)];\n r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)]) + (s[j] = t))];\n }\n me.i = i; me.j = j;\n return r;\n // For robust unpredictability, the function call below automatically\n // discards an initial batch of values. This is called RC4-drop[256].\n // See http://google.com/search?q=rsa+fluhrer+response&btnI\n })(width);\n}\n\n//\n// copy()\n// Copies internal state of ARC4 to or from a plain object.\n//\nfunction copy(f, t) {\n t.i = f.i;\n t.j = f.j;\n t.S = f.S.slice();\n return t;\n};\n\n//\n// flatten()\n// Converts an object tree to nested arrays of strings.\n//\nfunction flatten(obj, depth) {\n var result = [], typ = (typeof obj), prop;\n if (depth && typ == 'object') {\n for (prop in obj) {\n try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {}\n }\n }\n return (result.length ? result : typ == 'string' ? obj : obj + '\\0');\n}\n\n//\n// mixkey()\n// Mixes a string seed into a key that is an array of integers, and\n// returns a shortened string seed that is equivalent to the result key.\n//\nfunction mixkey(seed, key) {\n var stringseed = seed + '', smear, j = 0;\n while (j < stringseed.length) {\n key[mask & j] =\n mask & ((smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++));\n }\n return tostring(key);\n}\n\n//\n// autoseed()\n// Returns an object for autoseeding, using window.crypto and Node crypto\n// module if available.\n//\nfunction autoseed() {\n try {\n var out;\n if (nodecrypto && (out = nodecrypto.randomBytes)) {\n // The use of 'out' to remember randomBytes makes tight minified code.\n out = out(width);\n } else {\n out = new Uint8Array(width);\n (global.crypto || global.msCrypto).getRandomValues(out);\n }\n return tostring(out);\n } catch (e) {\n var browser = global.navigator,\n plugins = browser && browser.plugins;\n return [+new Date, global, plugins, global.screen, tostring(pool)];\n }\n}\n\n//\n// tostring()\n// Converts an array of charcodes to a string\n//\nfunction tostring(a) {\n return String.fromCharCode.apply(0, a);\n}\n\n//\n// When seedrandom.js is loaded, we immediately mix a few bits\n// from the built-in RNG into the entropy pool. Because we do\n// not want to interfere with deterministic PRNG state later,\n// seedrandom will not call math.random on its own again after\n// initialization.\n//\nmixkey(math.random(), pool);\n\n//\n// Nodejs and AMD support: export the implementation as a module using\n// either convention.\n//\nif ((typeof module) == 'object' && module.exports) {\n module.exports = seedrandom;\n // When in node.js, try using crypto package for autoseeding.\n try {\n nodecrypto = require('crypto');\n } catch (ex) {}\n} else if ((typeof define) == 'function' && define.amd) {\n define(function() { return seedrandom; });\n}\n\n// End anonymous scope, and pass initial values.\n})(\n [], // pool: entropy pool starts empty\n Math // math: package containing random, pow, and seedrandom\n);\n", "// A library of seedable RNGs implemented in Javascript.\n//\n// Usage:\n//\n// var seedrandom = require('seedrandom');\n// var random = seedrandom(1); // or any seed.\n// var x = random(); // 0 <= x < 1. Every bit is random.\n// var x = random.quick(); // 0 <= x < 1. 32 bits of randomness.\n\n// alea, a 53-bit multiply-with-carry generator by Johannes Baag\u00F8e.\n// Period: ~2^116\n// Reported to pass all BigCrush tests.\nvar alea = require('./lib/alea');\n\n// xor128, a pure xor-shift generator by George Marsaglia.\n// Period: 2^128-1.\n// Reported to fail: MatrixRank and LinearComp.\nvar xor128 = require('./lib/xor128');\n\n// xorwow, George Marsaglia's 160-bit xor-shift combined plus weyl.\n// Period: 2^192-2^32\n// Reported to fail: CollisionOver, SimpPoker, and LinearComp.\nvar xorwow = require('./lib/xorwow');\n\n// xorshift7, by Fran\u00E7ois Panneton and Pierre L'ecuyer, takes\n// a different approach: it adds robustness by allowing more shifts\n// than Marsaglia's original three. It is a 7-shift generator\n// with 256 bits, that passes BigCrush with no systmatic failures.\n// Period 2^256-1.\n// No systematic BigCrush failures reported.\nvar xorshift7 = require('./lib/xorshift7');\n\n// xor4096, by Richard Brent, is a 4096-bit xor-shift with a\n// very long period that also adds a Weyl generator. It also passes\n// BigCrush with no systematic failures. Its long period may\n// be useful if you have many generators and need to avoid\n// collisions.\n// Period: 2^4128-2^32.\n// No systematic BigCrush failures reported.\nvar xor4096 = require('./lib/xor4096');\n\n// Tyche-i, by Samuel Neves and Filipe Araujo, is a bit-shifting random\n// number generator derived from ChaCha, a modern stream cipher.\n// https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n// Period: ~2^127\n// No systematic BigCrush failures reported.\nvar tychei = require('./lib/tychei');\n\n// The original ARC4-based prng included in this library.\n// Period: ~2^1600\nvar sr = require('./seedrandom');\n\nsr.alea = alea;\nsr.xor128 = xor128;\nsr.xorwow = xorwow;\nsr.xorshift7 = xorshift7;\nsr.xor4096 = xor4096;\nsr.tychei = tychei;\n\nmodule.exports = sr;\n", "", "", "", "\nvar WasmBackendModuleThreadedSimd = (function() {\n var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined;\n if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename;\n return (\nfunction(WasmBackendModuleThreadedSimd) {\n WasmBackendModuleThreadedSimd = WasmBackendModuleThreadedSimd || {};\n\nfunction GROWABLE_HEAP_I8(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAP8}function GROWABLE_HEAP_U8(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPU8}function GROWABLE_HEAP_I32(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAP32}function GROWABLE_HEAP_U32(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPU32}function GROWABLE_HEAP_F64(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPF64}var Module=typeof WasmBackendModuleThreadedSimd!==\"undefined\"?WasmBackendModuleThreadedSimd:{};var readyPromiseResolve,readyPromiseReject;Module[\"ready\"]=new Promise(function(resolve,reject){readyPromiseResolve=resolve;readyPromiseReject=reject});var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key]}}var arguments_=[];var thisProgram=\"./this.program\";var quit_=function(status,toThrow){throw toThrow};var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;ENVIRONMENT_IS_WEB=typeof window===\"object\";ENVIRONMENT_IS_WORKER=typeof importScripts===\"function\";ENVIRONMENT_IS_NODE=typeof process===\"object\"&&typeof process.versions===\"object\"&&typeof process.versions.node===\"string\";ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var ENVIRONMENT_IS_PTHREAD=Module[\"ENVIRONMENT_IS_PTHREAD\"]||false;if(ENVIRONMENT_IS_PTHREAD){buffer=Module[\"buffer\"]}var scriptDirectory=\"\";function locateFile(path){if(Module[\"locateFile\"]){return Module[\"locateFile\"](path,scriptDirectory)}return scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle;var nodeFS;var nodePath;if(ENVIRONMENT_IS_NODE){if(ENVIRONMENT_IS_WORKER){scriptDirectory=require(\"path\").dirname(scriptDirectory)+\"/\"}else{scriptDirectory=__dirname+\"/\"}read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require(\"fs\");if(!nodePath)nodePath=require(\"path\");filename=nodePath[\"normalize\"](filename);return nodeFS[\"readFileSync\"](filename,binary?null:\"utf8\")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret};if(process[\"argv\"].length>1){thisProgram=process[\"argv\"][1].replace(/\\\\/g,\"/\")}arguments_=process[\"argv\"].slice(2);process[\"on\"](\"uncaughtException\",function(ex){if(!(ex instanceof ExitStatus)){throw ex}});process[\"on\"](\"unhandledRejection\",abort);quit_=function(status){process[\"exit\"](status)};Module[\"inspect\"]=function(){return\"[Emscripten Module object]\"};var nodeWorkerThreads;try{nodeWorkerThreads=require(\"worker_threads\")}catch(e){console.error('The \"worker_threads\" module is not supported in this node.js build - perhaps a newer version is needed?');throw e}global.Worker=nodeWorkerThreads.Worker}else if(ENVIRONMENT_IS_SHELL){if(typeof read!=\"undefined\"){read_=function shell_read(f){return read(f)}}readBinary=function readBinary(f){var data;if(typeof readbuffer===\"function\"){return new Uint8Array(readbuffer(f))}data=read(f,\"binary\");assert(typeof data===\"object\");return data};if(typeof scriptArgs!=\"undefined\"){arguments_=scriptArgs}else if(typeof arguments!=\"undefined\"){arguments_=arguments}if(typeof quit===\"function\"){quit_=function(status){quit(status)}}if(typeof print!==\"undefined\"){if(typeof console===\"undefined\")console={};console.log=print;console.warn=console.error=typeof printErr!==\"undefined\"?printErr:print}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href}else if(typeof document!==\"undefined\"&&document.currentScript){scriptDirectory=document.currentScript.src}if(typeof _scriptDir !== \"undefined\" && _scriptDir){scriptDirectory=_scriptDir}if(scriptDirectory.indexOf(\"blob:\")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf(\"/\")+1)}else{scriptDirectory=\"\"}if(ENVIRONMENT_IS_NODE){read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require(\"fs\");if(!nodePath)nodePath=require(\"path\");filename=nodePath[\"normalize\"](filename);return nodeFS[\"readFileSync\"](filename,binary?null:\"utf8\")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret}}else{read_=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.send(null);return xhr.responseText};if(ENVIRONMENT_IS_WORKER){readBinary=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.responseType=\"arraybuffer\";xhr.send(null);return new Uint8Array(xhr.response)}}readAsync=function(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,true);xhr.responseType=\"arraybuffer\";xhr.onload=function(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}onerror()};xhr.onerror=onerror;xhr.send(null)}}setWindowTitle=function(title){document.title=title}}else{}if(ENVIRONMENT_IS_NODE){if(typeof performance===\"undefined\"){global.performance=require(\"perf_hooks\").performance}}var out=Module[\"print\"]||console.log.bind(console);var err=Module[\"printErr\"]||console.warn.bind(console);for(key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key]}}moduleOverrides=null;if(Module[\"arguments\"])arguments_=Module[\"arguments\"];if(Module[\"thisProgram\"])thisProgram=Module[\"thisProgram\"];if(Module[\"quit\"])quit_=Module[\"quit\"];var Atomics_load=Atomics.load;var Atomics_store=Atomics.store;var Atomics_compareExchange=Atomics.compareExchange;var wasmBinary;if(Module[\"wasmBinary\"])wasmBinary=Module[\"wasmBinary\"];var noExitRuntime=Module[\"noExitRuntime\"]||true;if(typeof WebAssembly!==\"object\"){abort(\"no native wasm support detected\")}var wasmMemory;var wasmModule;var ABORT=false;var EXITSTATUS;function assert(condition,text){if(!condition){abort(\"Assertion failed: \"+text)}}function getCFunc(ident){var func=Module[\"_\"+ident];assert(func,\"Cannot call unknown function \"+ident+\", make sure it is exported\");return func}function ccall(ident,returnType,argTypes,args,opts){var toC={\"string\":function(str){var ret=0;if(str!==null&&str!==undefined&&str!==0){var len=(str.length<<2)+1;ret=stackAlloc(len);stringToUTF8(str,ret,len)}return ret},\"array\":function(arr){var ret=stackAlloc(arr.length);writeArrayToMemory(arr,ret);return ret}};function convertReturnValue(ret){if(returnType===\"string\")return UTF8ToString(ret);if(returnType===\"boolean\")return Boolean(ret);return ret}var func=getCFunc(ident);var cArgs=[];var stack=0;if(args){for(var i=0;i=endIdx)){var u0=heap[idx++];if(!u0)return str;if(!(u0&128)){str+=String.fromCharCode(u0);continue}var u1=heap[idx++]&63;if((u0&224)==192){str+=String.fromCharCode((u0&31)<<6|u1);continue}var u2=heap[idx++]&63;if((u0&240)==224){u0=(u0&15)<<12|u1<<6|u2}else{u0=(u0&7)<<18|u1<<12|u2<<6|heap[idx++]&63}if(u0<65536){str+=String.fromCharCode(u0)}else{var ch=u0-65536;str+=String.fromCharCode(55296|ch>>10,56320|ch&1023)}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(GROWABLE_HEAP_U8(),ptr,maxBytesToRead):\"\"}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6;heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18;heap[outIdx++]=128|u>>12&63;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}}heap[outIdx]=0;return outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,GROWABLE_HEAP_U8(),outPtr,maxBytesToWrite)}function lengthBytesUTF8(str){var len=0;for(var i=0;i=55296&&u<=57343)u=65536+((u&1023)<<10)|str.charCodeAt(++i)&1023;if(u<=127)++len;else if(u<=2047)len+=2;else if(u<=65535)len+=3;else len+=4}return len}function writeArrayToMemory(array,buffer){GROWABLE_HEAP_I8().set(array,buffer)}function alignUp(x,multiple){if(x%multiple>0){x+=multiple-x%multiple}return x}var buffer,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBufferAndViews(buf){buffer=buf;Module[\"HEAP8\"]=HEAP8=new Int8Array(buf);Module[\"HEAP16\"]=HEAP16=new Int16Array(buf);Module[\"HEAP32\"]=HEAP32=new Int32Array(buf);Module[\"HEAPU8\"]=HEAPU8=new Uint8Array(buf);Module[\"HEAPU16\"]=HEAPU16=new Uint16Array(buf);Module[\"HEAPU32\"]=HEAPU32=new Uint32Array(buf);Module[\"HEAPF32\"]=HEAPF32=new Float32Array(buf);Module[\"HEAPF64\"]=HEAPF64=new Float64Array(buf)}var INITIAL_MEMORY=Module[\"INITIAL_MEMORY\"]||16777216;if(ENVIRONMENT_IS_PTHREAD){wasmMemory=Module[\"wasmMemory\"];buffer=Module[\"buffer\"]}else{if(Module[\"wasmMemory\"]){wasmMemory=Module[\"wasmMemory\"]}else{wasmMemory=new WebAssembly.Memory({\"initial\":INITIAL_MEMORY/65536,\"maximum\":2147483648/65536,\"shared\":true});if(!(wasmMemory.buffer instanceof SharedArrayBuffer)){err(\"requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag\");if(ENVIRONMENT_IS_NODE){console.log(\"(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)\")}throw Error(\"bad memory\")}}}if(wasmMemory){buffer=wasmMemory.buffer}INITIAL_MEMORY=buffer.byteLength;updateGlobalBufferAndViews(buffer);var wasmTable;var __ATPRERUN__=[];var __ATINIT__=[];var __ATMAIN__=[];var __ATEXIT__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;var runtimeExited=false;if(!ENVIRONMENT_IS_PTHREAD)__ATINIT__.push({func:function(){___wasm_call_ctors()}});function preRun(){if(ENVIRONMENT_IS_PTHREAD)return;if(Module[\"preRun\"]){if(typeof Module[\"preRun\"]==\"function\")Module[\"preRun\"]=[Module[\"preRun\"]];while(Module[\"preRun\"].length){addOnPreRun(Module[\"preRun\"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=true;if(ENVIRONMENT_IS_PTHREAD)return;callRuntimeCallbacks(__ATINIT__)}function preMain(){if(ENVIRONMENT_IS_PTHREAD)return;callRuntimeCallbacks(__ATMAIN__)}function exitRuntime(){if(ENVIRONMENT_IS_PTHREAD)return;runtimeExited=true}function postRun(){if(ENVIRONMENT_IS_PTHREAD)return;if(Module[\"postRun\"]){if(typeof Module[\"postRun\"]==\"function\")Module[\"postRun\"]=[Module[\"postRun\"]];while(Module[\"postRun\"].length){addOnPostRun(Module[\"postRun\"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function addRunDependency(id){assert(!ENVIRONMENT_IS_PTHREAD,\"addRunDependency cannot be used in a pthread worker\");runDependencies++;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}Module[\"preloadedImages\"]={};Module[\"preloadedAudios\"]={};function abort(what){if(Module[\"onAbort\"]){Module[\"onAbort\"](what)}if(ENVIRONMENT_IS_PTHREAD)console.error(\"Pthread aborting at \"+(new Error).stack);what+=\"\";err(what);ABORT=true;EXITSTATUS=1;what=\"abort(\"+what+\"). Build with -s ASSERTIONS=1 for more info.\";var e=new WebAssembly.RuntimeError(what);readyPromiseReject(e);throw e}function hasPrefix(str,prefix){return String.prototype.startsWith?str.startsWith(prefix):str.indexOf(prefix)===0}var dataURIPrefix=\"data:application/octet-stream;base64,\";function isDataURI(filename){return hasPrefix(filename,dataURIPrefix)}var fileURIPrefix=\"file://\";function isFileURI(filename){return hasPrefix(filename,fileURIPrefix)}var wasmBinaryFile=\"tfjs-backend-wasm-threaded-simd.wasm\";if(!isDataURI(wasmBinaryFile)){wasmBinaryFile=locateFile(wasmBinaryFile)}function getBinary(file){try{if(file==wasmBinaryFile&&wasmBinary){return new Uint8Array(wasmBinary)}if(readBinary){return readBinary(file)}else{throw\"both async and sync fetching of the wasm failed\"}}catch(err){abort(err)}}function getBinaryPromise(){if(!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)){if(typeof fetch===\"function\"&&!isFileURI(wasmBinaryFile)){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){if(!response[\"ok\"]){throw\"failed to load wasm binary file at '\"+wasmBinaryFile+\"'\"}return response[\"arrayBuffer\"]()}).catch(function(){return getBinary(wasmBinaryFile)})}else{if(readAsync){return new Promise(function(resolve,reject){readAsync(wasmBinaryFile,function(response){resolve(new Uint8Array(response))},reject)})}}}return Promise.resolve().then(function(){return getBinary(wasmBinaryFile)})}function createWasm(){var info={\"a\":asmLibraryArg};function receiveInstance(instance,module){var exports=instance.exports;Module[\"asm\"]=exports;wasmTable=Module[\"asm\"][\"F\"];wasmModule=module;if(!ENVIRONMENT_IS_PTHREAD){var numWorkersToLoad=PThread.unusedWorkers.length;PThread.unusedWorkers.forEach(function(w){PThread.loadWasmModuleToWorker(w,function(){if(!--numWorkersToLoad)removeRunDependency(\"wasm-instantiate\")})})}}if(!ENVIRONMENT_IS_PTHREAD){addRunDependency(\"wasm-instantiate\")}function receiveInstantiatedSource(output){receiveInstance(output[\"instance\"],output[\"module\"])}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){return WebAssembly.instantiate(binary,info)}).then(receiver,function(reason){err(\"failed to asynchronously prepare wasm: \"+reason);abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming===\"function\"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&typeof fetch===\"function\"){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiatedSource,function(reason){err(\"wasm streaming compile failed: \"+reason);err(\"falling back to ArrayBuffer instantiation\");return instantiateArrayBuffer(receiveInstantiatedSource)})})}else{return instantiateArrayBuffer(receiveInstantiatedSource)}}if(Module[\"instantiateWasm\"]){try{var exports=Module[\"instantiateWasm\"](info,receiveInstance);return exports}catch(e){err(\"Module.instantiateWasm callback failed with error: \"+e);return false}}instantiateAsync().catch(readyPromiseReject);return{}}var ASM_CONSTS={9816:function(){throw\"Canceled!\"},9834:function($0,$1){setTimeout(function(){__emscripten_do_dispatch_to_thread($0,$1)},0)}};function initPthreadsJS(){PThread.initRuntime()}function callRuntimeCallbacks(callbacks){while(callbacks.length>0){var callback=callbacks.shift();if(typeof callback==\"function\"){callback(Module);continue}var func=callback.func;if(typeof func===\"number\"){if(callback.arg===undefined){wasmTable.get(func)()}else{wasmTable.get(func)(callback.arg)}}else{func(callback.arg===undefined?null:callback.arg)}}}function _emscripten_futex_wake(addr,count){if(addr<=0||addr>GROWABLE_HEAP_I8().length||addr&3!=0||count<0)return-28;if(count==0)return 0;if(count>=2147483647)count=Infinity;var mainThreadWaitAddress=Atomics.load(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2);var mainThreadWoken=0;if(mainThreadWaitAddress==addr){var loadedAddr=Atomics.compareExchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,mainThreadWaitAddress,0);if(loadedAddr==mainThreadWaitAddress){--count;mainThreadWoken=1;if(count<=0)return 1}}var ret=Atomics.notify(GROWABLE_HEAP_I32(),addr>>2,count);if(ret>=0)return ret+mainThreadWoken;throw\"Atomics.notify returned an unexpected value \"+ret}Module[\"_emscripten_futex_wake\"]=_emscripten_futex_wake;function killThread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! killThread() can only ever be called from main application thread!\";if(!pthread_ptr)throw\"Internal Error! Null pthread_ptr in killThread!\";GROWABLE_HEAP_I32()[pthread_ptr+12>>2]=0;var pthread=PThread.pthreads[pthread_ptr];pthread.worker.terminate();PThread.freeThreadData(pthread);PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(pthread.worker),1);pthread.worker.pthread=undefined}function cancelThread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! cancelThread() can only ever be called from main application thread!\";if(!pthread_ptr)throw\"Internal Error! Null pthread_ptr in cancelThread!\";var pthread=PThread.pthreads[pthread_ptr];pthread.worker.postMessage({\"cmd\":\"cancel\"})}function cleanupThread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! cleanupThread() can only ever be called from main application thread!\";if(!pthread_ptr)throw\"Internal Error! Null pthread_ptr in cleanupThread!\";var pthread=PThread.pthreads[pthread_ptr];if(pthread){GROWABLE_HEAP_I32()[pthread_ptr+12>>2]=0;var worker=pthread.worker;PThread.returnWorkerToPool(worker)}}var PThread={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){var pthreadPoolSize=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2));for(var i=0;i>2]=tb;var headPtr=tb+152;GROWABLE_HEAP_I32()[headPtr>>2]=headPtr;var tlsMemory=_malloc(512);for(var i=0;i<128;++i)GROWABLE_HEAP_U32()[tlsMemory/4+i]=0;Atomics.store(GROWABLE_HEAP_U32(),tb+100>>2,tlsMemory);Atomics.store(GROWABLE_HEAP_U32(),tb+40>>2,tb);__emscripten_thread_init(tb,!ENVIRONMENT_IS_WORKER,1);_emscripten_register_main_browser_thread_id(tb)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){while(PThread.threadExitHandlers.length>0){PThread.threadExitHandlers.pop()()}if(ENVIRONMENT_IS_PTHREAD&&_pthread_self())___pthread_tsd_run_dtors()},runExitHandlersAndDeinitThread:function(tb,exitCode){Atomics.store(GROWABLE_HEAP_U32(),tb+56>>2,1);Atomics.store(GROWABLE_HEAP_U32(),tb+60>>2,0);PThread.runExitHandlers();Atomics.store(GROWABLE_HEAP_U32(),tb+4>>2,exitCode);Atomics.store(GROWABLE_HEAP_U32(),tb+0>>2,1);_emscripten_futex_wake(tb+0,2147483647);__emscripten_thread_init(0,0,0)},threadExit:function(exitCode){var tb=_pthread_self();if(tb){PThread.runExitHandlersAndDeinitThread(tb,exitCode);if(ENVIRONMENT_IS_PTHREAD){postMessage({\"cmd\":\"exit\"})}}},threadCancel:function(){PThread.runExitHandlersAndDeinitThread(_pthread_self(),-1);postMessage({\"cmd\":\"cancelDone\"})},terminateAllThreads:function(){for(var t in PThread.pthreads){var pthread=PThread.pthreads[t];if(pthread&&pthread.worker){PThread.returnWorkerToPool(pthread.worker)}}PThread.pthreads={};for(var i=0;i>2];GROWABLE_HEAP_I32()[pthread.threadInfoStruct+100>>2]=0;_free(tlsMemory);_free(pthread.threadInfoStruct)}pthread.threadInfoStruct=0;if(pthread.allocatedOwnStack&&pthread.stackBase)_free(pthread.stackBase);pthread.stackBase=0;if(pthread.worker)pthread.worker.pthread=null},returnWorkerToPool:function(worker){PThread.runWithoutMainThreadQueuedCalls(function(){delete PThread.pthreads[worker.pthread.threadInfoStruct];PThread.unusedWorkers.push(worker);PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(worker),1);PThread.freeThreadData(worker.pthread);worker.pthread=undefined})},runWithoutMainThreadQueuedCalls:function(func){GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls>>2]=0;try{func()}finally{GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls>>2]=1}},receiveObjectTransfer:function(data){},loadWasmModuleToWorker:function(worker,onFinishedLoading){worker.onmessage=function(e){var d=e[\"data\"];var cmd=d[\"cmd\"];if(worker.pthread)PThread.currentProxiedOperationCallerThread=worker.pthread.threadInfoStruct;if(d[\"targetThread\"]&&d[\"targetThread\"]!=_pthread_self()){var thread=PThread.pthreads[d.targetThread];if(thread){thread.worker.postMessage(e.data,d[\"transferList\"])}else{console.error('Internal error! Worker sent a message \"'+cmd+'\" to target pthread '+d[\"targetThread\"]+\", but that thread no longer exists!\")}PThread.currentProxiedOperationCallerThread=undefined;return}if(cmd===\"processQueuedMainThreadWork\"){_emscripten_main_thread_process_queued_calls()}else if(cmd===\"spawnThread\"){spawnThread(e.data)}else if(cmd===\"cleanupThread\"){cleanupThread(d[\"thread\"])}else if(cmd===\"killThread\"){killThread(d[\"thread\"])}else if(cmd===\"cancelThread\"){cancelThread(d[\"thread\"])}else if(cmd===\"loaded\"){worker.loaded=true;if(onFinishedLoading)onFinishedLoading(worker);if(worker.runPthread){worker.runPthread();delete worker.runPthread}}else if(cmd===\"print\"){out(\"Thread \"+d[\"threadId\"]+\": \"+d[\"text\"])}else if(cmd===\"printErr\"){err(\"Thread \"+d[\"threadId\"]+\": \"+d[\"text\"])}else if(cmd===\"alert\"){alert(\"Thread \"+d[\"threadId\"]+\": \"+d[\"text\"])}else if(cmd===\"exit\"){var detached=worker.pthread&&Atomics.load(GROWABLE_HEAP_U32(),worker.pthread.threadInfoStruct+64>>2);if(detached){PThread.returnWorkerToPool(worker)}}else if(cmd===\"exitProcess\"){try{exit(d[\"returnCode\"])}catch(e){if(e instanceof ExitStatus)return;throw e}}else if(cmd===\"cancelDone\"){PThread.returnWorkerToPool(worker)}else if(cmd===\"objectTransfer\"){PThread.receiveObjectTransfer(e.data)}else if(e.data.target===\"setimmediate\"){worker.postMessage(e.data)}else{err(\"worker sent an unknown command \"+cmd)}PThread.currentProxiedOperationCallerThread=undefined};worker.onerror=function(e){err(\"pthread sent an error! \"+e.filename+\":\"+e.lineno+\": \"+e.message)};if(ENVIRONMENT_IS_NODE){worker.on(\"message\",function(data){worker.onmessage({data:data})});worker.on(\"error\",function(data){worker.onerror(data)});worker.on(\"exit\",function(data){})}worker.postMessage({\"cmd\":\"load\",\"urlOrBlob\":Module[\"mainScriptUrlOrBlob\"]||_scriptDir,\"wasmMemory\":wasmMemory,\"wasmModule\":wasmModule})},allocateUnusedWorker:function(){var pthreadMainJs=locateFile(\"tfjs-backend-wasm-threaded-simd.worker.js\");PThread.unusedWorkers.push(new Worker(pthreadMainJs))},getNewWorker:function(){if(PThread.unusedWorkers.length==0){PThread.allocateUnusedWorker();PThread.loadWasmModuleToWorker(PThread.unusedWorkers[0])}if(PThread.unusedWorkers.length>0)return PThread.unusedWorkers.pop();else return null},busySpinWait:function(msecs){var t=performance.now()+msecs;while(performance.now()>2]=value;return value}function _atexit(func,arg){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(1,1,func,arg)}function __emscripten_notify_thread_queue(targetThreadId,mainThreadId){if(targetThreadId==mainThreadId){postMessage({\"cmd\":\"processQueuedMainThreadWork\"})}else if(ENVIRONMENT_IS_PTHREAD){postMessage({\"targetThread\":targetThreadId,\"cmd\":\"processThreadQueue\"})}else{var pthread=PThread.pthreads[targetThreadId];var worker=pthread&&pthread.worker;if(!worker){return}worker.postMessage({\"cmd\":\"processThreadQueue\"})}return 1}function _abort(){abort()}function _emscripten_asm_const_int(code,sigPtr,argbuf){var args=readAsmConstArgs(sigPtr,argbuf);return ASM_CONSTS[code].apply(null,args)}function _emscripten_conditional_set_current_thread_status(expectedStatus,newStatus){}function _emscripten_futex_wait(addr,val,timeout){if(addr<=0||addr>GROWABLE_HEAP_I8().length||addr&3!=0)return-28;if(!ENVIRONMENT_IS_WEB){var ret=Atomics.wait(GROWABLE_HEAP_I32(),addr>>2,val,timeout);if(ret===\"timed-out\")return-73;if(ret===\"not-equal\")return-6;if(ret===\"ok\")return 0;throw\"Atomics.wait returned an unexpected value \"+ret}else{if(Atomics.load(GROWABLE_HEAP_I32(),addr>>2)!=val){return-6}var tNow=performance.now();var tEnd=tNow+timeout;var lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,addr);while(1){tNow=performance.now();if(tNow>tEnd){lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,0);return-73}lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,0);if(lastAddr==0){break}_emscripten_main_thread_process_queued_calls();if(Atomics.load(GROWABLE_HEAP_I32(),addr>>2)!=val){return-6}lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,addr)}return 0}}function _emscripten_memcpy_big(dest,src,num){GROWABLE_HEAP_U8().copyWithin(dest,src,src+num)}function _emscripten_num_logical_cores(){if(ENVIRONMENT_IS_NODE)return require(\"os\").cpus().length;return navigator[\"hardwareConcurrency\"]}function _emscripten_proxy_to_main_thread_js(index,sync){var numCallArgs=arguments.length-2;var stack=stackSave();var serializedNumCallArgs=numCallArgs;var args=stackAlloc(serializedNumCallArgs*8);var b=args>>3;for(var i=0;i>=2;while(ch=GROWABLE_HEAP_U8()[sigPtr++]){var double=ch<105;if(double&&buf&1)buf++;readAsmConstArgsArray.push(double?GROWABLE_HEAP_F64()[buf++>>1]:GROWABLE_HEAP_I32()[buf]);++buf}return readAsmConstArgsArray}function _emscripten_receive_on_main_thread_js(index,numCallArgs,args){_emscripten_receive_on_main_thread_js_callArgs.length=numCallArgs;var b=args>>3;for(var i=0;i>>16);updateGlobalBufferAndViews(wasmMemory.buffer);return 1}catch(e){}}function _emscripten_resize_heap(requestedSize){var oldSize=_emscripten_get_heap_size();if(requestedSize<=oldSize){return false}var maxHeapSize=2147483648;if(requestedSize>maxHeapSize){return false}for(var cutDown=1;cutDown<=4;cutDown*=2){var overGrownHeapSize=oldSize*(1+.2/cutDown);overGrownHeapSize=Math.min(overGrownHeapSize,requestedSize+100663296);var newSize=Math.min(maxHeapSize,alignUp(Math.max(requestedSize,overGrownHeapSize),65536));var replacement=emscripten_realloc_buffer(newSize);if(replacement){return true}}return false}var JSEvents={inEventHandler:0,removeAllEventListeners:function(){for(var i=JSEvents.eventHandlers.length-1;i>=0;--i){JSEvents._removeHandler(i)}JSEvents.eventHandlers=[];JSEvents.deferredCalls=[]},registerRemoveEventListeners:function(){if(!JSEvents.removeEventListenersRegistered){__ATEXIT__.push(JSEvents.removeAllEventListeners);JSEvents.removeEventListenersRegistered=true}},deferredCalls:[],deferCall:function(targetFunction,precedence,argsList){function arraysHaveEqualContent(arrA,arrB){if(arrA.length!=arrB.length)return false;for(var i in arrA){if(arrA[i]!=arrB[i])return false}return true}for(var i in JSEvents.deferredCalls){var call=JSEvents.deferredCalls[i];if(call.targetFunction==targetFunction&&arraysHaveEqualContent(call.argsList,argsList)){return}}JSEvents.deferredCalls.push({targetFunction:targetFunction,precedence:precedence,argsList:argsList});JSEvents.deferredCalls.sort(function(x,y){return x.precedence>2]=eventTypeId;GROWABLE_HEAP_I32()[varargs+4>>2]=eventData;GROWABLE_HEAP_I32()[varargs+8>>2]=userData;__emscripten_call_on_thread(0,targetThread,637534208,eventHandlerFunc,eventData,varargs);stackRestore(stackTop)},getTargetThreadForEventCallback:function(targetThread){switch(targetThread){case 1:return 0;case 2:return PThread.currentProxiedOperationCallerThread;default:return targetThread}},getNodeNameForTarget:function(target){if(!target)return\"\";if(target==window)return\"#window\";if(target==screen)return\"#screen\";return target&&target.nodeName?target.nodeName:\"\"},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function stringToNewUTF8(jsString){var length=lengthBytesUTF8(jsString)+1;var cString=_malloc(length);stringToUTF8(jsString,cString,length);return cString}function _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread,targetCanvas,width,height){var stackTop=stackSave();var varargs=stackAlloc(12);var targetCanvasPtr=0;if(targetCanvas){targetCanvasPtr=stringToNewUTF8(targetCanvas)}GROWABLE_HEAP_I32()[varargs>>2]=targetCanvasPtr;GROWABLE_HEAP_I32()[varargs+4>>2]=width;GROWABLE_HEAP_I32()[varargs+8>>2]=height;__emscripten_call_on_thread(0,targetThread,657457152,0,targetCanvasPtr,varargs);stackRestore(stackTop)}function _emscripten_set_offscreencanvas_size_on_target_thread(targetThread,targetCanvas,width,height){targetCanvas=targetCanvas?UTF8ToString(targetCanvas):\"\";_emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread,targetCanvas,width,height)}function maybeCStringToJsString(cString){return cString>2?UTF8ToString(cString):cString}var specialHTMLTargets=[0,typeof document!==\"undefined\"?document:0,typeof window!==\"undefined\"?window:0];function findEventTarget(target){target=maybeCStringToJsString(target);var domElement=specialHTMLTargets[target]||(typeof document!==\"undefined\"?document.querySelector(target):undefined);return domElement}function findCanvasEventTarget(target){return findEventTarget(target)}function _emscripten_set_canvas_element_size_calling_thread(target,width,height){var canvas=findCanvasEventTarget(target);if(!canvas)return-4;if(canvas.canvasSharedPtr){GROWABLE_HEAP_I32()[canvas.canvasSharedPtr>>2]=width;GROWABLE_HEAP_I32()[canvas.canvasSharedPtr+4>>2]=height}if(canvas.offscreenCanvas||!canvas.controlTransferredOffscreen){if(canvas.offscreenCanvas)canvas=canvas.offscreenCanvas;var autoResizeViewport=false;if(canvas.GLctxObject&&canvas.GLctxObject.GLctx){var prevViewport=canvas.GLctxObject.GLctx.getParameter(2978);autoResizeViewport=prevViewport[0]===0&&prevViewport[1]===0&&prevViewport[2]===canvas.width&&prevViewport[3]===canvas.height}canvas.width=width;canvas.height=height;if(autoResizeViewport){canvas.GLctxObject.GLctx.viewport(0,0,width,height)}}else if(canvas.canvasSharedPtr){var targetThread=GROWABLE_HEAP_I32()[canvas.canvasSharedPtr+8>>2];_emscripten_set_offscreencanvas_size_on_target_thread(targetThread,target,width,height);return 1}else{return-4}return 0}function _emscripten_set_canvas_element_size_main_thread(target,width,height){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(2,1,target,width,height);return _emscripten_set_canvas_element_size_calling_thread(target,width,height)}function _emscripten_set_canvas_element_size(target,width,height){var canvas=findCanvasEventTarget(target);if(canvas){return _emscripten_set_canvas_element_size_calling_thread(target,width,height)}else{return _emscripten_set_canvas_element_size_main_thread(target,width,height)}}function _emscripten_set_current_thread_status(newStatus){}function _emscripten_set_thread_name(threadId,name){}function __webgl_enable_ANGLE_instanced_arrays(ctx){var ext=ctx.getExtension(\"ANGLE_instanced_arrays\");if(ext){ctx[\"vertexAttribDivisor\"]=function(index,divisor){ext[\"vertexAttribDivisorANGLE\"](index,divisor)};ctx[\"drawArraysInstanced\"]=function(mode,first,count,primcount){ext[\"drawArraysInstancedANGLE\"](mode,first,count,primcount)};ctx[\"drawElementsInstanced\"]=function(mode,count,type,indices,primcount){ext[\"drawElementsInstancedANGLE\"](mode,count,type,indices,primcount)};return 1}}function __webgl_enable_OES_vertex_array_object(ctx){var ext=ctx.getExtension(\"OES_vertex_array_object\");if(ext){ctx[\"createVertexArray\"]=function(){return ext[\"createVertexArrayOES\"]()};ctx[\"deleteVertexArray\"]=function(vao){ext[\"deleteVertexArrayOES\"](vao)};ctx[\"bindVertexArray\"]=function(vao){ext[\"bindVertexArrayOES\"](vao)};ctx[\"isVertexArray\"]=function(vao){return ext[\"isVertexArrayOES\"](vao)};return 1}}function __webgl_enable_WEBGL_draw_buffers(ctx){var ext=ctx.getExtension(\"WEBGL_draw_buffers\");if(ext){ctx[\"drawBuffers\"]=function(n,bufs){ext[\"drawBuffersWEBGL\"](n,bufs)};return 1}}function __webgl_enable_WEBGL_multi_draw(ctx){return!!(ctx.multiDrawWebgl=ctx.getExtension(\"WEBGL_multi_draw\"))}var GL={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function recordError(errorCode){if(!GL.lastError){GL.lastError=errorCode}},getNewId:function(table){var ret=GL.counter++;for(var i=table.length;i>2]:-1;source+=UTF8ToString(GROWABLE_HEAP_I32()[string+i*4>>2],len<0?undefined:len)}return source},createContext:function(canvas,webGLContextAttributes){var ctx=canvas.getContext(\"webgl\",webGLContextAttributes);if(!ctx)return 0;var handle=GL.registerContext(ctx,webGLContextAttributes);return handle},registerContext:function(ctx,webGLContextAttributes){var handle=_malloc(8);GROWABLE_HEAP_I32()[handle+4>>2]=_pthread_self();var context={handle:handle,attributes:webGLContextAttributes,version:webGLContextAttributes.majorVersion,GLctx:ctx};if(ctx.canvas)ctx.canvas.GLctxObject=context;GL.contexts[handle]=context;if(typeof webGLContextAttributes.enableExtensionsByDefault===\"undefined\"||webGLContextAttributes.enableExtensionsByDefault){GL.initExtensions(context)}return handle},makeContextCurrent:function(contextHandle){GL.currentContext=GL.contexts[contextHandle];Module.ctx=GLctx=GL.currentContext&&GL.currentContext.GLctx;return!(contextHandle&&!GLctx)},getContext:function(contextHandle){return GL.contexts[contextHandle]},deleteContext:function(contextHandle){if(GL.currentContext===GL.contexts[contextHandle])GL.currentContext=null;if(typeof JSEvents===\"object\")JSEvents.removeAllHandlersOnTarget(GL.contexts[contextHandle].GLctx.canvas);if(GL.contexts[contextHandle]&&GL.contexts[contextHandle].GLctx.canvas)GL.contexts[contextHandle].GLctx.canvas.GLctxObject=undefined;_free(GL.contexts[contextHandle].handle);GL.contexts[contextHandle]=null},initExtensions:function(context){if(!context)context=GL.currentContext;if(context.initExtensionsDone)return;context.initExtensionsDone=true;var GLctx=context.GLctx;__webgl_enable_ANGLE_instanced_arrays(GLctx);__webgl_enable_OES_vertex_array_object(GLctx);__webgl_enable_WEBGL_draw_buffers(GLctx);GLctx.disjointTimerQueryExt=GLctx.getExtension(\"EXT_disjoint_timer_query\");__webgl_enable_WEBGL_multi_draw(GLctx);var exts=GLctx.getSupportedExtensions()||[];exts.forEach(function(ext){if(ext.indexOf(\"lose_context\")<0&&ext.indexOf(\"debug\")<0){GLctx.getExtension(ext)}})},populateUniformTable:function(program){var p=GL.programs[program];var ptable=GL.programInfos[program]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1};var utable=ptable.uniforms;var numUniforms=GLctx.getProgramParameter(p,35718);for(var i=0;i>2;var powerPreference=GROWABLE_HEAP_I32()[a+(24>>2)];var contextAttributes={\"alpha\":!!GROWABLE_HEAP_I32()[a+(0>>2)],\"depth\":!!GROWABLE_HEAP_I32()[a+(4>>2)],\"stencil\":!!GROWABLE_HEAP_I32()[a+(8>>2)],\"antialias\":!!GROWABLE_HEAP_I32()[a+(12>>2)],\"premultipliedAlpha\":!!GROWABLE_HEAP_I32()[a+(16>>2)],\"preserveDrawingBuffer\":!!GROWABLE_HEAP_I32()[a+(20>>2)],\"powerPreference\":__emscripten_webgl_power_preferences[powerPreference],\"failIfMajorPerformanceCaveat\":!!GROWABLE_HEAP_I32()[a+(28>>2)],majorVersion:GROWABLE_HEAP_I32()[a+(32>>2)],minorVersion:GROWABLE_HEAP_I32()[a+(36>>2)],enableExtensionsByDefault:GROWABLE_HEAP_I32()[a+(40>>2)],explicitSwapControl:GROWABLE_HEAP_I32()[a+(44>>2)],proxyContextToMainThread:GROWABLE_HEAP_I32()[a+(48>>2)],renderViaOffscreenBackBuffer:GROWABLE_HEAP_I32()[a+(52>>2)]};var canvas=findCanvasEventTarget(target);if(!canvas){return 0}if(contextAttributes.explicitSwapControl){return 0}var contextHandle=GL.createContext(canvas,contextAttributes);return contextHandle}function _emscripten_webgl_create_context(a0,a1){return _emscripten_webgl_do_create_context(a0,a1)}var SYSCALLS={mappings:{},buffers:[null,[],[]],printChar:function(stream,curr){var buffer=SYSCALLS.buffers[stream];if(curr===0||curr===10){(stream===1?out:err)(UTF8ArrayToString(buffer,0));buffer.length=0}else{buffer.push(curr)}},varargs:undefined,get:function(){SYSCALLS.varargs+=4;var ret=GROWABLE_HEAP_I32()[SYSCALLS.varargs-4>>2];return ret},getStr:function(ptr){var ret=UTF8ToString(ptr);return ret},get64:function(low,high){return low}};function _fd_close(fd){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(3,1,fd);return 0}function _fd_seek(fd,offset_low,offset_high,whence,newOffset){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(4,1,fd,offset_low,offset_high,whence,newOffset)}function _fd_write(fd,iov,iovcnt,pnum){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(5,1,fd,iov,iovcnt,pnum);var num=0;for(var i=0;i>2];var len=GROWABLE_HEAP_I32()[iov+(i*8+4)>>2];for(var j=0;j>2]=num;return 0}function _pthread_cleanup_pop(execute){var routine=PThread.threadExitHandlers.pop();if(execute)routine()}function _pthread_cleanup_push(routine,arg){PThread.threadExitHandlers.push(function(){wasmTable.get(routine)(arg)})}function spawnThread(threadParams){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! spawnThread() can only ever be called from main application thread!\";var worker=PThread.getNewWorker();if(worker.pthread!==undefined)throw\"Internal error!\";if(!threadParams.pthread_ptr)throw\"Internal error, no pthread ptr!\";PThread.runningWorkers.push(worker);var tlsMemory=_malloc(128*4);for(var i=0;i<128;++i){GROWABLE_HEAP_I32()[tlsMemory+i*4>>2]=0}var stackHigh=threadParams.stackBase+threadParams.stackSize;var pthread=PThread.pthreads[threadParams.pthread_ptr]={worker:worker,stackBase:threadParams.stackBase,stackSize:threadParams.stackSize,allocatedOwnStack:threadParams.allocatedOwnStack,threadInfoStruct:threadParams.pthread_ptr};var tis=pthread.threadInfoStruct>>2;Atomics.store(GROWABLE_HEAP_U32(),tis+(64>>2),threadParams.detached);Atomics.store(GROWABLE_HEAP_U32(),tis+(100>>2),tlsMemory);Atomics.store(GROWABLE_HEAP_U32(),tis+(40>>2),pthread.threadInfoStruct);Atomics.store(GROWABLE_HEAP_U32(),tis+(80>>2),threadParams.stackSize);Atomics.store(GROWABLE_HEAP_U32(),tis+(76>>2),stackHigh);Atomics.store(GROWABLE_HEAP_U32(),tis+(104>>2),threadParams.stackSize);Atomics.store(GROWABLE_HEAP_U32(),tis+(104+8>>2),stackHigh);Atomics.store(GROWABLE_HEAP_U32(),tis+(104+12>>2),threadParams.detached);var global_libc=_emscripten_get_global_libc();var global_locale=global_libc+40;Atomics.store(GROWABLE_HEAP_U32(),tis+(172>>2),global_locale);worker.pthread=pthread;var msg={\"cmd\":\"run\",\"start_routine\":threadParams.startRoutine,\"arg\":threadParams.arg,\"threadInfoStruct\":threadParams.pthread_ptr,\"stackBase\":threadParams.stackBase,\"stackSize\":threadParams.stackSize};worker.runPthread=function(){msg.time=performance.now();worker.postMessage(msg,threadParams.transferList)};if(worker.loaded){worker.runPthread();delete worker.runPthread}}function _pthread_create(pthread_ptr,attr,start_routine,arg){if(typeof SharedArrayBuffer===\"undefined\"){err(\"Current environment does not support SharedArrayBuffer, pthreads are not available!\");return 6}if(!pthread_ptr){err(\"pthread_create called with a null thread pointer!\");return 28}var transferList=[];var error=0;if(ENVIRONMENT_IS_PTHREAD&&(transferList.length===0||error)){return _emscripten_sync_run_in_main_thread_4(687865856,pthread_ptr,attr,start_routine,arg)}if(error)return error;var stackSize=0;var stackBase=0;var detached=0;if(attr&&attr!=-1){stackSize=GROWABLE_HEAP_I32()[attr>>2];stackSize+=81920;stackBase=GROWABLE_HEAP_I32()[attr+8>>2];detached=GROWABLE_HEAP_I32()[attr+12>>2]!==0}else{stackSize=2097152}var allocatedOwnStack=stackBase==0;if(allocatedOwnStack){stackBase=_memalign(16,stackSize)}else{stackBase-=stackSize;assert(stackBase>0)}var threadInfoStruct=_malloc(228);for(var i=0;i<228>>2;++i)GROWABLE_HEAP_U32()[(threadInfoStruct>>2)+i]=0;GROWABLE_HEAP_I32()[pthread_ptr>>2]=threadInfoStruct;GROWABLE_HEAP_I32()[threadInfoStruct+12>>2]=threadInfoStruct;var headPtr=threadInfoStruct+152;GROWABLE_HEAP_I32()[headPtr>>2]=headPtr;var threadParams={stackBase:stackBase,stackSize:stackSize,allocatedOwnStack:allocatedOwnStack,detached:detached,startRoutine:start_routine,pthread_ptr:threadInfoStruct,arg:arg,transferList:transferList};if(ENVIRONMENT_IS_PTHREAD){threadParams.cmd=\"spawnThread\";postMessage(threadParams,transferList)}else{spawnThread(threadParams)}return 0}function _sysconf(name){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(6,1,name);switch(name){case 30:return 16384;case 85:var maxHeapSize=2147483648;return maxHeapSize/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:{if(typeof navigator===\"object\")return navigator[\"hardwareConcurrency\"]||1;return 1}}setErrNo(28);return-1}if(!ENVIRONMENT_IS_PTHREAD)PThread.initMainThreadBlock();var GLctx;var proxiedFunctionTable=[null,_atexit,_emscripten_set_canvas_element_size_main_thread,_fd_close,_fd_seek,_fd_write,_sysconf];var asmLibraryArg={\"e\":___assert_fail,\"r\":___call_main,\"x\":__emscripten_notify_thread_queue,\"b\":_abort,\"y\":_emscripten_asm_const_int,\"j\":_emscripten_conditional_set_current_thread_status,\"c\":_emscripten_futex_wait,\"d\":_emscripten_futex_wake,\"f\":_emscripten_get_now,\"p\":_emscripten_memcpy_big,\"z\":_emscripten_num_logical_cores,\"u\":_emscripten_receive_on_main_thread_js,\"q\":_emscripten_resize_heap,\"v\":_emscripten_set_canvas_element_size,\"i\":_emscripten_set_current_thread_status,\"t\":_emscripten_set_thread_name,\"w\":_emscripten_webgl_create_context,\"m\":_fd_close,\"n\":_fd_seek,\"g\":_fd_write,\"o\":initPthreadsJS,\"a\":wasmMemory||Module[\"wasmMemory\"],\"k\":_pthread_cleanup_pop,\"l\":_pthread_cleanup_push,\"h\":_pthread_create,\"s\":_sysconf};var asm=createWasm();var ___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=function(){return(___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=Module[\"asm\"][\"A\"]).apply(null,arguments)};var _init=Module[\"_init\"]=function(){return(_init=Module[\"_init\"]=Module[\"asm\"][\"B\"]).apply(null,arguments)};var _register_tensor=Module[\"_register_tensor\"]=function(){return(_register_tensor=Module[\"_register_tensor\"]=Module[\"asm\"][\"C\"]).apply(null,arguments)};var _dispose_data=Module[\"_dispose_data\"]=function(){return(_dispose_data=Module[\"_dispose_data\"]=Module[\"asm\"][\"D\"]).apply(null,arguments)};var _dispose=Module[\"_dispose\"]=function(){return(_dispose=Module[\"_dispose\"]=Module[\"asm\"][\"E\"]).apply(null,arguments)};var _Abs=Module[\"_Abs\"]=function(){return(_Abs=Module[\"_Abs\"]=Module[\"asm\"][\"G\"]).apply(null,arguments)};var _Add=Module[\"_Add\"]=function(){return(_Add=Module[\"_Add\"]=Module[\"asm\"][\"H\"]).apply(null,arguments)};var _AddN=Module[\"_AddN\"]=function(){return(_AddN=Module[\"_AddN\"]=Module[\"asm\"][\"I\"]).apply(null,arguments)};var _All=Module[\"_All\"]=function(){return(_All=Module[\"_All\"]=Module[\"asm\"][\"J\"]).apply(null,arguments)};var _Any=Module[\"_Any\"]=function(){return(_Any=Module[\"_Any\"]=Module[\"asm\"][\"K\"]).apply(null,arguments)};var _ArgMax=Module[\"_ArgMax\"]=function(){return(_ArgMax=Module[\"_ArgMax\"]=Module[\"asm\"][\"L\"]).apply(null,arguments)};var _AvgPool=Module[\"_AvgPool\"]=function(){return(_AvgPool=Module[\"_AvgPool\"]=Module[\"asm\"][\"M\"]).apply(null,arguments)};var _BatchMatMul=Module[\"_BatchMatMul\"]=function(){return(_BatchMatMul=Module[\"_BatchMatMul\"]=Module[\"asm\"][\"N\"]).apply(null,arguments)};var _Ceil=Module[\"_Ceil\"]=function(){return(_Ceil=Module[\"_Ceil\"]=Module[\"asm\"][\"O\"]).apply(null,arguments)};var _ClipByValue=Module[\"_ClipByValue\"]=function(){return(_ClipByValue=Module[\"_ClipByValue\"]=Module[\"asm\"][\"P\"]).apply(null,arguments)};var _Conv2D=Module[\"_Conv2D\"]=function(){return(_Conv2D=Module[\"_Conv2D\"]=Module[\"asm\"][\"Q\"]).apply(null,arguments)};var _Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=function(){return(_Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=Module[\"asm\"][\"R\"]).apply(null,arguments)};var _Cos=Module[\"_Cos\"]=function(){return(_Cos=Module[\"_Cos\"]=Module[\"asm\"][\"S\"]).apply(null,arguments)};var _CropAndResize=Module[\"_CropAndResize\"]=function(){return(_CropAndResize=Module[\"_CropAndResize\"]=Module[\"asm\"][\"T\"]).apply(null,arguments)};var _Cumsum=Module[\"_Cumsum\"]=function(){return(_Cumsum=Module[\"_Cumsum\"]=Module[\"asm\"][\"U\"]).apply(null,arguments)};var _DepthToSpace=Module[\"_DepthToSpace\"]=function(){return(_DepthToSpace=Module[\"_DepthToSpace\"]=Module[\"asm\"][\"V\"]).apply(null,arguments)};var _DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=function(){return(_DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=Module[\"asm\"][\"W\"]).apply(null,arguments)};var _Equal=Module[\"_Equal\"]=function(){return(_Equal=Module[\"_Equal\"]=Module[\"asm\"][\"X\"]).apply(null,arguments)};var _Exp=Module[\"_Exp\"]=function(){return(_Exp=Module[\"_Exp\"]=Module[\"asm\"][\"Y\"]).apply(null,arguments)};var _FlipLeftRight=Module[\"_FlipLeftRight\"]=function(){return(_FlipLeftRight=Module[\"_FlipLeftRight\"]=Module[\"asm\"][\"Z\"]).apply(null,arguments)};var _Floor=Module[\"_Floor\"]=function(){return(_Floor=Module[\"_Floor\"]=Module[\"asm\"][\"_\"]).apply(null,arguments)};var _FloorDiv=Module[\"_FloorDiv\"]=function(){return(_FloorDiv=Module[\"_FloorDiv\"]=Module[\"asm\"][\"$\"]).apply(null,arguments)};var _FusedBatchNorm=Module[\"_FusedBatchNorm\"]=function(){return(_FusedBatchNorm=Module[\"_FusedBatchNorm\"]=Module[\"asm\"][\"aa\"]).apply(null,arguments)};var _FusedConv2D=Module[\"_FusedConv2D\"]=function(){return(_FusedConv2D=Module[\"_FusedConv2D\"]=Module[\"asm\"][\"ba\"]).apply(null,arguments)};var _FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=function(){return(_FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=Module[\"asm\"][\"ca\"]).apply(null,arguments)};var _Gather=Module[\"_Gather\"]=function(){return(_Gather=Module[\"_Gather\"]=Module[\"asm\"][\"da\"]).apply(null,arguments)};var _GatherNd=Module[\"_GatherNd\"]=function(){return(_GatherNd=Module[\"_GatherNd\"]=Module[\"asm\"][\"ea\"]).apply(null,arguments)};var _Greater=Module[\"_Greater\"]=function(){return(_Greater=Module[\"_Greater\"]=Module[\"asm\"][\"fa\"]).apply(null,arguments)};var _GreaterEqual=Module[\"_GreaterEqual\"]=function(){return(_GreaterEqual=Module[\"_GreaterEqual\"]=Module[\"asm\"][\"ga\"]).apply(null,arguments)};var _LeakyRelu=Module[\"_LeakyRelu\"]=function(){return(_LeakyRelu=Module[\"_LeakyRelu\"]=Module[\"asm\"][\"ha\"]).apply(null,arguments)};var _Less=Module[\"_Less\"]=function(){return(_Less=Module[\"_Less\"]=Module[\"asm\"][\"ia\"]).apply(null,arguments)};var _LessEqual=Module[\"_LessEqual\"]=function(){return(_LessEqual=Module[\"_LessEqual\"]=Module[\"asm\"][\"ja\"]).apply(null,arguments)};var _Log=Module[\"_Log\"]=function(){return(_Log=Module[\"_Log\"]=Module[\"asm\"][\"ka\"]).apply(null,arguments)};var _LogicalAnd=Module[\"_LogicalAnd\"]=function(){return(_LogicalAnd=Module[\"_LogicalAnd\"]=Module[\"asm\"][\"la\"]).apply(null,arguments)};var _Max=Module[\"_Max\"]=function(){return(_Max=Module[\"_Max\"]=Module[\"asm\"][\"ma\"]).apply(null,arguments)};var _MaxPool=Module[\"_MaxPool\"]=function(){return(_MaxPool=Module[\"_MaxPool\"]=Module[\"asm\"][\"na\"]).apply(null,arguments)};var _Maximum=Module[\"_Maximum\"]=function(){return(_Maximum=Module[\"_Maximum\"]=Module[\"asm\"][\"oa\"]).apply(null,arguments)};var _Mean=Module[\"_Mean\"]=function(){return(_Mean=Module[\"_Mean\"]=Module[\"asm\"][\"pa\"]).apply(null,arguments)};var _Min=Module[\"_Min\"]=function(){return(_Min=Module[\"_Min\"]=Module[\"asm\"][\"qa\"]).apply(null,arguments)};var _Minimum=Module[\"_Minimum\"]=function(){return(_Minimum=Module[\"_Minimum\"]=Module[\"asm\"][\"ra\"]).apply(null,arguments)};var _MirrorPad=Module[\"_MirrorPad\"]=function(){return(_MirrorPad=Module[\"_MirrorPad\"]=Module[\"asm\"][\"sa\"]).apply(null,arguments)};var _Multiply=Module[\"_Multiply\"]=function(){return(_Multiply=Module[\"_Multiply\"]=Module[\"asm\"][\"ta\"]).apply(null,arguments)};var _Neg=Module[\"_Neg\"]=function(){return(_Neg=Module[\"_Neg\"]=Module[\"asm\"][\"ua\"]).apply(null,arguments)};var _NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=function(){return(_NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=Module[\"asm\"][\"va\"]).apply(null,arguments)};var _NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=function(){return(_NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=Module[\"asm\"][\"wa\"]).apply(null,arguments)};var _NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=function(){return(_NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=Module[\"asm\"][\"xa\"]).apply(null,arguments)};var _NotEqual=Module[\"_NotEqual\"]=function(){return(_NotEqual=Module[\"_NotEqual\"]=Module[\"asm\"][\"ya\"]).apply(null,arguments)};var _OneHot=Module[\"_OneHot\"]=function(){return(_OneHot=Module[\"_OneHot\"]=Module[\"asm\"][\"za\"]).apply(null,arguments)};var _PadV2=Module[\"_PadV2\"]=function(){return(_PadV2=Module[\"_PadV2\"]=Module[\"asm\"][\"Aa\"]).apply(null,arguments)};var _Pow=Module[\"_Pow\"]=function(){return(_Pow=Module[\"_Pow\"]=Module[\"asm\"][\"Ba\"]).apply(null,arguments)};var _Prelu=Module[\"_Prelu\"]=function(){return(_Prelu=Module[\"_Prelu\"]=Module[\"asm\"][\"Ca\"]).apply(null,arguments)};var _Prod=Module[\"_Prod\"]=function(){return(_Prod=Module[\"_Prod\"]=Module[\"asm\"][\"Da\"]).apply(null,arguments)};var _RealDiv=Module[\"_RealDiv\"]=function(){return(_RealDiv=Module[\"_RealDiv\"]=Module[\"asm\"][\"Ea\"]).apply(null,arguments)};var _Relu=Module[\"_Relu\"]=function(){return(_Relu=Module[\"_Relu\"]=Module[\"asm\"][\"Fa\"]).apply(null,arguments)};var _Relu6=Module[\"_Relu6\"]=function(){return(_Relu6=Module[\"_Relu6\"]=Module[\"asm\"][\"Ga\"]).apply(null,arguments)};var _ResizeBilinear=Module[\"_ResizeBilinear\"]=function(){return(_ResizeBilinear=Module[\"_ResizeBilinear\"]=Module[\"asm\"][\"Ha\"]).apply(null,arguments)};var _Reverse=Module[\"_Reverse\"]=function(){return(_Reverse=Module[\"_Reverse\"]=Module[\"asm\"][\"Ia\"]).apply(null,arguments)};var _RotateWithOffset=Module[\"_RotateWithOffset\"]=function(){return(_RotateWithOffset=Module[\"_RotateWithOffset\"]=Module[\"asm\"][\"Ja\"]).apply(null,arguments)};var _Round=Module[\"_Round\"]=function(){return(_Round=Module[\"_Round\"]=Module[\"asm\"][\"Ka\"]).apply(null,arguments)};var _Rsqrt=Module[\"_Rsqrt\"]=function(){return(_Rsqrt=Module[\"_Rsqrt\"]=Module[\"asm\"][\"La\"]).apply(null,arguments)};var _ScatterNd=Module[\"_ScatterNd\"]=function(){return(_ScatterNd=Module[\"_ScatterNd\"]=Module[\"asm\"][\"Ma\"]).apply(null,arguments)};var _SelectV2=Module[\"_SelectV2\"]=function(){return(_SelectV2=Module[\"_SelectV2\"]=Module[\"asm\"][\"Na\"]).apply(null,arguments)};var _Sigmoid=Module[\"_Sigmoid\"]=function(){return(_Sigmoid=Module[\"_Sigmoid\"]=Module[\"asm\"][\"Oa\"]).apply(null,arguments)};var _Sin=Module[\"_Sin\"]=function(){return(_Sin=Module[\"_Sin\"]=Module[\"asm\"][\"Pa\"]).apply(null,arguments)};var _Softmax=Module[\"_Softmax\"]=function(){return(_Softmax=Module[\"_Softmax\"]=Module[\"asm\"][\"Qa\"]).apply(null,arguments)};var _Sqrt=Module[\"_Sqrt\"]=function(){return(_Sqrt=Module[\"_Sqrt\"]=Module[\"asm\"][\"Ra\"]).apply(null,arguments)};var _Square=Module[\"_Square\"]=function(){return(_Square=Module[\"_Square\"]=Module[\"asm\"][\"Sa\"]).apply(null,arguments)};var _SquaredDifference=Module[\"_SquaredDifference\"]=function(){return(_SquaredDifference=Module[\"_SquaredDifference\"]=Module[\"asm\"][\"Ta\"]).apply(null,arguments)};var _Step=Module[\"_Step\"]=function(){return(_Step=Module[\"_Step\"]=Module[\"asm\"][\"Ua\"]).apply(null,arguments)};var _StridedSlice=Module[\"_StridedSlice\"]=function(){return(_StridedSlice=Module[\"_StridedSlice\"]=Module[\"asm\"][\"Va\"]).apply(null,arguments)};var _Sub=Module[\"_Sub\"]=function(){return(_Sub=Module[\"_Sub\"]=Module[\"asm\"][\"Wa\"]).apply(null,arguments)};var _Sum=Module[\"_Sum\"]=function(){return(_Sum=Module[\"_Sum\"]=Module[\"asm\"][\"Xa\"]).apply(null,arguments)};var _Tan=Module[\"_Tan\"]=function(){return(_Tan=Module[\"_Tan\"]=Module[\"asm\"][\"Ya\"]).apply(null,arguments)};var _Tanh=Module[\"_Tanh\"]=function(){return(_Tanh=Module[\"_Tanh\"]=Module[\"asm\"][\"Za\"]).apply(null,arguments)};var _Tile=Module[\"_Tile\"]=function(){return(_Tile=Module[\"_Tile\"]=Module[\"asm\"][\"_a\"]).apply(null,arguments)};var _TopK=Module[\"_TopK\"]=function(){return(_TopK=Module[\"_TopK\"]=Module[\"asm\"][\"$a\"]).apply(null,arguments)};var _Transpose=Module[\"_Transpose\"]=function(){return(_Transpose=Module[\"_Transpose\"]=Module[\"asm\"][\"ab\"]).apply(null,arguments)};var __FusedMatMul=Module[\"__FusedMatMul\"]=function(){return(__FusedMatMul=Module[\"__FusedMatMul\"]=Module[\"asm\"][\"bb\"]).apply(null,arguments)};var _malloc=Module[\"_malloc\"]=function(){return(_malloc=Module[\"_malloc\"]=Module[\"asm\"][\"cb\"]).apply(null,arguments)};var _free=Module[\"_free\"]=function(){return(_free=Module[\"_free\"]=Module[\"asm\"][\"db\"]).apply(null,arguments)};var ___errno_location=Module[\"___errno_location\"]=function(){return(___errno_location=Module[\"___errno_location\"]=Module[\"asm\"][\"eb\"]).apply(null,arguments)};var _emscripten_get_global_libc=Module[\"_emscripten_get_global_libc\"]=function(){return(_emscripten_get_global_libc=Module[\"_emscripten_get_global_libc\"]=Module[\"asm\"][\"fb\"]).apply(null,arguments)};var _pthread_self=Module[\"_pthread_self\"]=function(){return(_pthread_self=Module[\"_pthread_self\"]=Module[\"asm\"][\"gb\"]).apply(null,arguments)};var ___pthread_tsd_run_dtors=Module[\"___pthread_tsd_run_dtors\"]=function(){return(___pthread_tsd_run_dtors=Module[\"___pthread_tsd_run_dtors\"]=Module[\"asm\"][\"hb\"]).apply(null,arguments)};var _emscripten_main_thread_process_queued_calls=Module[\"_emscripten_main_thread_process_queued_calls\"]=function(){return(_emscripten_main_thread_process_queued_calls=Module[\"_emscripten_main_thread_process_queued_calls\"]=Module[\"asm\"][\"ib\"]).apply(null,arguments)};var _emscripten_current_thread_process_queued_calls=Module[\"_emscripten_current_thread_process_queued_calls\"]=function(){return(_emscripten_current_thread_process_queued_calls=Module[\"_emscripten_current_thread_process_queued_calls\"]=Module[\"asm\"][\"jb\"]).apply(null,arguments)};var _emscripten_register_main_browser_thread_id=Module[\"_emscripten_register_main_browser_thread_id\"]=function(){return(_emscripten_register_main_browser_thread_id=Module[\"_emscripten_register_main_browser_thread_id\"]=Module[\"asm\"][\"kb\"]).apply(null,arguments)};var __emscripten_do_dispatch_to_thread=Module[\"__emscripten_do_dispatch_to_thread\"]=function(){return(__emscripten_do_dispatch_to_thread=Module[\"__emscripten_do_dispatch_to_thread\"]=Module[\"asm\"][\"lb\"]).apply(null,arguments)};var _emscripten_sync_run_in_main_thread_4=Module[\"_emscripten_sync_run_in_main_thread_4\"]=function(){return(_emscripten_sync_run_in_main_thread_4=Module[\"_emscripten_sync_run_in_main_thread_4\"]=Module[\"asm\"][\"mb\"]).apply(null,arguments)};var _emscripten_run_in_main_runtime_thread_js=Module[\"_emscripten_run_in_main_runtime_thread_js\"]=function(){return(_emscripten_run_in_main_runtime_thread_js=Module[\"_emscripten_run_in_main_runtime_thread_js\"]=Module[\"asm\"][\"nb\"]).apply(null,arguments)};var __emscripten_call_on_thread=Module[\"__emscripten_call_on_thread\"]=function(){return(__emscripten_call_on_thread=Module[\"__emscripten_call_on_thread\"]=Module[\"asm\"][\"ob\"]).apply(null,arguments)};var _emscripten_tls_init=Module[\"_emscripten_tls_init\"]=function(){return(_emscripten_tls_init=Module[\"_emscripten_tls_init\"]=Module[\"asm\"][\"pb\"]).apply(null,arguments)};var __emscripten_thread_init=Module[\"__emscripten_thread_init\"]=function(){return(__emscripten_thread_init=Module[\"__emscripten_thread_init\"]=Module[\"asm\"][\"qb\"]).apply(null,arguments)};var stackSave=Module[\"stackSave\"]=function(){return(stackSave=Module[\"stackSave\"]=Module[\"asm\"][\"rb\"]).apply(null,arguments)};var stackRestore=Module[\"stackRestore\"]=function(){return(stackRestore=Module[\"stackRestore\"]=Module[\"asm\"][\"sb\"]).apply(null,arguments)};var stackAlloc=Module[\"stackAlloc\"]=function(){return(stackAlloc=Module[\"stackAlloc\"]=Module[\"asm\"][\"tb\"]).apply(null,arguments)};var _emscripten_stack_set_limits=Module[\"_emscripten_stack_set_limits\"]=function(){return(_emscripten_stack_set_limits=Module[\"_emscripten_stack_set_limits\"]=Module[\"asm\"][\"ub\"]).apply(null,arguments)};var _memalign=Module[\"_memalign\"]=function(){return(_memalign=Module[\"_memalign\"]=Module[\"asm\"][\"vb\"]).apply(null,arguments)};var __emscripten_allow_main_runtime_queued_calls=Module[\"__emscripten_allow_main_runtime_queued_calls\"]=9808;var __emscripten_main_thread_futex=Module[\"__emscripten_main_thread_futex\"]=11432;Module[\"cwrap\"]=cwrap;Module[\"PThread\"]=PThread;Module[\"PThread\"]=PThread;Module[\"wasmMemory\"]=wasmMemory;Module[\"ExitStatus\"]=ExitStatus;var calledRun;function ExitStatus(status){this.name=\"ExitStatus\";this.message=\"Program terminated with exit(\"+status+\")\";this.status=status}dependenciesFulfilled=function runCaller(){if(!calledRun)run();if(!calledRun)dependenciesFulfilled=runCaller};function run(args){args=args||arguments_;if(runDependencies>0){return}if(ENVIRONMENT_IS_PTHREAD){readyPromiseResolve(Module);initRuntime();postMessage({\"cmd\":\"loaded\"});return}preRun();if(runDependencies>0){return}function doRun(){if(calledRun)return;calledRun=true;Module[\"calledRun\"]=true;if(ABORT)return;initRuntime();preMain();readyPromiseResolve(Module);if(Module[\"onRuntimeInitialized\"])Module[\"onRuntimeInitialized\"]();postRun()}if(Module[\"setStatus\"]){Module[\"setStatus\"](\"Running...\");setTimeout(function(){setTimeout(function(){Module[\"setStatus\"](\"\")},1);doRun()},1)}else{doRun()}}Module[\"run\"]=run;function exit(status,implicit){if(implicit&&noExitRuntime&&status===0){return}if(!implicit){if(ENVIRONMENT_IS_PTHREAD){postMessage({\"cmd\":\"exitProcess\",\"returnCode\":status});throw new ExitStatus(status)}else{}}if(noExitRuntime){}else{PThread.terminateAllThreads();EXITSTATUS=status;exitRuntime();if(Module[\"onExit\"])Module[\"onExit\"](status);ABORT=true}quit_(status,new ExitStatus(status))}if(Module[\"preInit\"]){if(typeof Module[\"preInit\"]==\"function\")Module[\"preInit\"]=[Module[\"preInit\"]];while(Module[\"preInit\"].length>0){Module[\"preInit\"].pop()()}}if(ENVIRONMENT_IS_PTHREAD){noExitRuntime=false;PThread.initWorker()}run();\n\n\n return WasmBackendModuleThreadedSimd.ready\n}\n);\n})();\nif (typeof exports === 'object' && typeof module === 'object')\n module.exports = WasmBackendModuleThreadedSimd;\nelse if (typeof define === 'function' && define['amd'])\n define([], function() { return WasmBackendModuleThreadedSimd; });\nelse if (typeof exports === 'object')\n exports[\"WasmBackendModuleThreadedSimd\"] = WasmBackendModuleThreadedSimd;\n", "\nvar WasmBackendModule = (function() {\n var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined;\n if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename;\n return (\nfunction(WasmBackendModule) {\n WasmBackendModule = WasmBackendModule || {};\n\nvar Module=typeof WasmBackendModule!==\"undefined\"?WasmBackendModule:{};var readyPromiseResolve,readyPromiseReject;Module[\"ready\"]=new Promise(function(resolve,reject){readyPromiseResolve=resolve;readyPromiseReject=reject});var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key]}}var arguments_=[];var thisProgram=\"./this.program\";var quit_=function(status,toThrow){throw toThrow};var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;ENVIRONMENT_IS_WEB=typeof window===\"object\";ENVIRONMENT_IS_WORKER=typeof importScripts===\"function\";ENVIRONMENT_IS_NODE=typeof process===\"object\"&&typeof process.versions===\"object\"&&typeof process.versions.node===\"string\";ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var scriptDirectory=\"\";function locateFile(path){if(Module[\"locateFile\"]){return Module[\"locateFile\"](path,scriptDirectory)}return scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle;var nodeFS;var nodePath;if(ENVIRONMENT_IS_NODE){if(ENVIRONMENT_IS_WORKER){scriptDirectory=require(\"path\").dirname(scriptDirectory)+\"/\"}else{scriptDirectory=__dirname+\"/\"}read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require(\"fs\");if(!nodePath)nodePath=require(\"path\");filename=nodePath[\"normalize\"](filename);return nodeFS[\"readFileSync\"](filename,binary?null:\"utf8\")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret};if(process[\"argv\"].length>1){thisProgram=process[\"argv\"][1].replace(/\\\\/g,\"/\")}arguments_=process[\"argv\"].slice(2);process[\"on\"](\"uncaughtException\",function(ex){if(!(ex instanceof ExitStatus)){throw ex}});process[\"on\"](\"unhandledRejection\",abort);quit_=function(status){process[\"exit\"](status)};Module[\"inspect\"]=function(){return\"[Emscripten Module object]\"}}else if(ENVIRONMENT_IS_SHELL){if(typeof read!=\"undefined\"){read_=function shell_read(f){return read(f)}}readBinary=function readBinary(f){var data;if(typeof readbuffer===\"function\"){return new Uint8Array(readbuffer(f))}data=read(f,\"binary\");assert(typeof data===\"object\");return data};if(typeof scriptArgs!=\"undefined\"){arguments_=scriptArgs}else if(typeof arguments!=\"undefined\"){arguments_=arguments}if(typeof quit===\"function\"){quit_=function(status){quit(status)}}if(typeof print!==\"undefined\"){if(typeof console===\"undefined\")console={};console.log=print;console.warn=console.error=typeof printErr!==\"undefined\"?printErr:print}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href}else if(typeof document!==\"undefined\"&&document.currentScript){scriptDirectory=document.currentScript.src}if(_scriptDir){scriptDirectory=_scriptDir}if(scriptDirectory.indexOf(\"blob:\")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf(\"/\")+1)}else{scriptDirectory=\"\"}{read_=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.send(null);return xhr.responseText};if(ENVIRONMENT_IS_WORKER){readBinary=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.responseType=\"arraybuffer\";xhr.send(null);return new Uint8Array(xhr.response)}}readAsync=function(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,true);xhr.responseType=\"arraybuffer\";xhr.onload=function(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}onerror()};xhr.onerror=onerror;xhr.send(null)}}setWindowTitle=function(title){document.title=title}}else{}var out=Module[\"print\"]||console.log.bind(console);var err=Module[\"printErr\"]||console.warn.bind(console);for(key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key]}}moduleOverrides=null;if(Module[\"arguments\"])arguments_=Module[\"arguments\"];if(Module[\"thisProgram\"])thisProgram=Module[\"thisProgram\"];if(Module[\"quit\"])quit_=Module[\"quit\"];var wasmBinary;if(Module[\"wasmBinary\"])wasmBinary=Module[\"wasmBinary\"];var noExitRuntime=Module[\"noExitRuntime\"]||true;if(typeof WebAssembly!==\"object\"){abort(\"no native wasm support detected\")}var wasmMemory;var ABORT=false;var EXITSTATUS;function assert(condition,text){if(!condition){abort(\"Assertion failed: \"+text)}}function getCFunc(ident){var func=Module[\"_\"+ident];assert(func,\"Cannot call unknown function \"+ident+\", make sure it is exported\");return func}function ccall(ident,returnType,argTypes,args,opts){var toC={\"string\":function(str){var ret=0;if(str!==null&&str!==undefined&&str!==0){var len=(str.length<<2)+1;ret=stackAlloc(len);stringToUTF8(str,ret,len)}return ret},\"array\":function(arr){var ret=stackAlloc(arr.length);writeArrayToMemory(arr,ret);return ret}};function convertReturnValue(ret){if(returnType===\"string\")return UTF8ToString(ret);if(returnType===\"boolean\")return Boolean(ret);return ret}var func=getCFunc(ident);var cArgs=[];var stack=0;if(args){for(var i=0;i=endIdx))++endPtr;if(endPtr-idx>16&&heap.subarray&&UTF8Decoder){return UTF8Decoder.decode(heap.subarray(idx,endPtr))}else{var str=\"\";while(idx>10,56320|ch&1023)}}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(HEAPU8,ptr,maxBytesToRead):\"\"}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6;heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18;heap[outIdx++]=128|u>>12&63;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}}heap[outIdx]=0;return outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,HEAPU8,outPtr,maxBytesToWrite)}function writeArrayToMemory(array,buffer){HEAP8.set(array,buffer)}function alignUp(x,multiple){if(x%multiple>0){x+=multiple-x%multiple}return x}var buffer,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBufferAndViews(buf){buffer=buf;Module[\"HEAP8\"]=HEAP8=new Int8Array(buf);Module[\"HEAP16\"]=HEAP16=new Int16Array(buf);Module[\"HEAP32\"]=HEAP32=new Int32Array(buf);Module[\"HEAPU8\"]=HEAPU8=new Uint8Array(buf);Module[\"HEAPU16\"]=HEAPU16=new Uint16Array(buf);Module[\"HEAPU32\"]=HEAPU32=new Uint32Array(buf);Module[\"HEAPF32\"]=HEAPF32=new Float32Array(buf);Module[\"HEAPF64\"]=HEAPF64=new Float64Array(buf)}var INITIAL_MEMORY=Module[\"INITIAL_MEMORY\"]||16777216;var wasmTable;var __ATPRERUN__=[];var __ATINIT__=[];var __ATMAIN__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;__ATINIT__.push({func:function(){___wasm_call_ctors()}});function preRun(){if(Module[\"preRun\"]){if(typeof Module[\"preRun\"]==\"function\")Module[\"preRun\"]=[Module[\"preRun\"]];while(Module[\"preRun\"].length){addOnPreRun(Module[\"preRun\"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=true;callRuntimeCallbacks(__ATINIT__)}function preMain(){callRuntimeCallbacks(__ATMAIN__)}function postRun(){if(Module[\"postRun\"]){if(typeof Module[\"postRun\"]==\"function\")Module[\"postRun\"]=[Module[\"postRun\"]];while(Module[\"postRun\"].length){addOnPostRun(Module[\"postRun\"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function addRunDependency(id){runDependencies++;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}Module[\"preloadedImages\"]={};Module[\"preloadedAudios\"]={};function abort(what){if(Module[\"onAbort\"]){Module[\"onAbort\"](what)}what+=\"\";err(what);ABORT=true;EXITSTATUS=1;what=\"abort(\"+what+\"). Build with -s ASSERTIONS=1 for more info.\";var e=new WebAssembly.RuntimeError(what);readyPromiseReject(e);throw e}function hasPrefix(str,prefix){return String.prototype.startsWith?str.startsWith(prefix):str.indexOf(prefix)===0}var dataURIPrefix=\"data:application/octet-stream;base64,\";function isDataURI(filename){return hasPrefix(filename,dataURIPrefix)}var fileURIPrefix=\"file://\";function isFileURI(filename){return hasPrefix(filename,fileURIPrefix)}var wasmBinaryFile=\"tfjs-backend-wasm.wasm\";if(!isDataURI(wasmBinaryFile)){wasmBinaryFile=locateFile(wasmBinaryFile)}function getBinary(file){try{if(file==wasmBinaryFile&&wasmBinary){return new Uint8Array(wasmBinary)}if(readBinary){return readBinary(file)}else{throw\"both async and sync fetching of the wasm failed\"}}catch(err){abort(err)}}function getBinaryPromise(){if(!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)){if(typeof fetch===\"function\"&&!isFileURI(wasmBinaryFile)){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){if(!response[\"ok\"]){throw\"failed to load wasm binary file at '\"+wasmBinaryFile+\"'\"}return response[\"arrayBuffer\"]()}).catch(function(){return getBinary(wasmBinaryFile)})}else{if(readAsync){return new Promise(function(resolve,reject){readAsync(wasmBinaryFile,function(response){resolve(new Uint8Array(response))},reject)})}}}return Promise.resolve().then(function(){return getBinary(wasmBinaryFile)})}function createWasm(){var info={\"a\":asmLibraryArg};function receiveInstance(instance,module){var exports=instance.exports;Module[\"asm\"]=exports;wasmMemory=Module[\"asm\"][\"i\"];updateGlobalBufferAndViews(wasmMemory.buffer);wasmTable=Module[\"asm\"][\"o\"];removeRunDependency(\"wasm-instantiate\")}addRunDependency(\"wasm-instantiate\");function receiveInstantiatedSource(output){receiveInstance(output[\"instance\"])}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){return WebAssembly.instantiate(binary,info)}).then(receiver,function(reason){err(\"failed to asynchronously prepare wasm: \"+reason);abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming===\"function\"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&typeof fetch===\"function\"){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiatedSource,function(reason){err(\"wasm streaming compile failed: \"+reason);err(\"falling back to ArrayBuffer instantiation\");return instantiateArrayBuffer(receiveInstantiatedSource)})})}else{return instantiateArrayBuffer(receiveInstantiatedSource)}}if(Module[\"instantiateWasm\"]){try{var exports=Module[\"instantiateWasm\"](info,receiveInstance);return exports}catch(e){err(\"Module.instantiateWasm callback failed with error: \"+e);return false}}instantiateAsync().catch(readyPromiseReject);return{}}function callRuntimeCallbacks(callbacks){while(callbacks.length>0){var callback=callbacks.shift();if(typeof callback==\"function\"){callback(Module);continue}var func=callback.func;if(typeof func===\"number\"){if(callback.arg===undefined){wasmTable.get(func)()}else{wasmTable.get(func)(callback.arg)}}else{func(callback.arg===undefined?null:callback.arg)}}}function _abort(){abort()}function _emscripten_memcpy_big(dest,src,num){HEAPU8.copyWithin(dest,src,src+num)}function _emscripten_get_heap_size(){return HEAPU8.length}function emscripten_realloc_buffer(size){try{wasmMemory.grow(size-buffer.byteLength+65535>>>16);updateGlobalBufferAndViews(wasmMemory.buffer);return 1}catch(e){}}function _emscripten_resize_heap(requestedSize){var oldSize=_emscripten_get_heap_size();var maxHeapSize=2147483648;if(requestedSize>maxHeapSize){return false}for(var cutDown=1;cutDown<=4;cutDown*=2){var overGrownHeapSize=oldSize*(1+.2/cutDown);overGrownHeapSize=Math.min(overGrownHeapSize,requestedSize+100663296);var newSize=Math.min(maxHeapSize,alignUp(Math.max(requestedSize,overGrownHeapSize),65536));var replacement=emscripten_realloc_buffer(newSize);if(replacement){return true}}return false}var SYSCALLS={mappings:{},buffers:[null,[],[]],printChar:function(stream,curr){var buffer=SYSCALLS.buffers[stream];if(curr===0||curr===10){(stream===1?out:err)(UTF8ArrayToString(buffer,0));buffer.length=0}else{buffer.push(curr)}},varargs:undefined,get:function(){SYSCALLS.varargs+=4;var ret=HEAP32[SYSCALLS.varargs-4>>2];return ret},getStr:function(ptr){var ret=UTF8ToString(ptr);return ret},get64:function(low,high){return low}};function _fd_close(fd){return 0}function _fd_seek(fd,offset_low,offset_high,whence,newOffset){}function _fd_write(fd,iov,iovcnt,pnum){var num=0;for(var i=0;i>2];var len=HEAP32[iov+(i*8+4)>>2];for(var j=0;j>2]=num;return 0}function _pthread_create(){return 6}function setErrNo(value){HEAP32[___errno_location()>>2]=value;return value}function _sysconf(name){switch(name){case 30:return 16384;case 85:var maxHeapSize=2147483648;return maxHeapSize/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:{if(typeof navigator===\"object\")return navigator[\"hardwareConcurrency\"]||1;return 1}}setErrNo(28);return-1}var asmLibraryArg={\"a\":_abort,\"d\":_emscripten_memcpy_big,\"e\":_emscripten_resize_heap,\"f\":_fd_close,\"c\":_fd_seek,\"b\":_fd_write,\"g\":_pthread_create,\"h\":_sysconf};var asm=createWasm();var ___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=function(){return(___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=Module[\"asm\"][\"j\"]).apply(null,arguments)};var _init=Module[\"_init\"]=function(){return(_init=Module[\"_init\"]=Module[\"asm\"][\"k\"]).apply(null,arguments)};var _register_tensor=Module[\"_register_tensor\"]=function(){return(_register_tensor=Module[\"_register_tensor\"]=Module[\"asm\"][\"l\"]).apply(null,arguments)};var _dispose_data=Module[\"_dispose_data\"]=function(){return(_dispose_data=Module[\"_dispose_data\"]=Module[\"asm\"][\"m\"]).apply(null,arguments)};var _dispose=Module[\"_dispose\"]=function(){return(_dispose=Module[\"_dispose\"]=Module[\"asm\"][\"n\"]).apply(null,arguments)};var _Abs=Module[\"_Abs\"]=function(){return(_Abs=Module[\"_Abs\"]=Module[\"asm\"][\"p\"]).apply(null,arguments)};var _Add=Module[\"_Add\"]=function(){return(_Add=Module[\"_Add\"]=Module[\"asm\"][\"q\"]).apply(null,arguments)};var _AddN=Module[\"_AddN\"]=function(){return(_AddN=Module[\"_AddN\"]=Module[\"asm\"][\"r\"]).apply(null,arguments)};var _All=Module[\"_All\"]=function(){return(_All=Module[\"_All\"]=Module[\"asm\"][\"s\"]).apply(null,arguments)};var _Any=Module[\"_Any\"]=function(){return(_Any=Module[\"_Any\"]=Module[\"asm\"][\"t\"]).apply(null,arguments)};var _ArgMax=Module[\"_ArgMax\"]=function(){return(_ArgMax=Module[\"_ArgMax\"]=Module[\"asm\"][\"u\"]).apply(null,arguments)};var _AvgPool=Module[\"_AvgPool\"]=function(){return(_AvgPool=Module[\"_AvgPool\"]=Module[\"asm\"][\"v\"]).apply(null,arguments)};var _BatchMatMul=Module[\"_BatchMatMul\"]=function(){return(_BatchMatMul=Module[\"_BatchMatMul\"]=Module[\"asm\"][\"w\"]).apply(null,arguments)};var _Ceil=Module[\"_Ceil\"]=function(){return(_Ceil=Module[\"_Ceil\"]=Module[\"asm\"][\"x\"]).apply(null,arguments)};var _ClipByValue=Module[\"_ClipByValue\"]=function(){return(_ClipByValue=Module[\"_ClipByValue\"]=Module[\"asm\"][\"y\"]).apply(null,arguments)};var _Conv2D=Module[\"_Conv2D\"]=function(){return(_Conv2D=Module[\"_Conv2D\"]=Module[\"asm\"][\"z\"]).apply(null,arguments)};var _Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=function(){return(_Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=Module[\"asm\"][\"A\"]).apply(null,arguments)};var _Cos=Module[\"_Cos\"]=function(){return(_Cos=Module[\"_Cos\"]=Module[\"asm\"][\"B\"]).apply(null,arguments)};var _CropAndResize=Module[\"_CropAndResize\"]=function(){return(_CropAndResize=Module[\"_CropAndResize\"]=Module[\"asm\"][\"C\"]).apply(null,arguments)};var _Cumsum=Module[\"_Cumsum\"]=function(){return(_Cumsum=Module[\"_Cumsum\"]=Module[\"asm\"][\"D\"]).apply(null,arguments)};var _DepthToSpace=Module[\"_DepthToSpace\"]=function(){return(_DepthToSpace=Module[\"_DepthToSpace\"]=Module[\"asm\"][\"E\"]).apply(null,arguments)};var _DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=function(){return(_DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=Module[\"asm\"][\"F\"]).apply(null,arguments)};var _Equal=Module[\"_Equal\"]=function(){return(_Equal=Module[\"_Equal\"]=Module[\"asm\"][\"G\"]).apply(null,arguments)};var _Exp=Module[\"_Exp\"]=function(){return(_Exp=Module[\"_Exp\"]=Module[\"asm\"][\"H\"]).apply(null,arguments)};var _FlipLeftRight=Module[\"_FlipLeftRight\"]=function(){return(_FlipLeftRight=Module[\"_FlipLeftRight\"]=Module[\"asm\"][\"I\"]).apply(null,arguments)};var _Floor=Module[\"_Floor\"]=function(){return(_Floor=Module[\"_Floor\"]=Module[\"asm\"][\"J\"]).apply(null,arguments)};var _FloorDiv=Module[\"_FloorDiv\"]=function(){return(_FloorDiv=Module[\"_FloorDiv\"]=Module[\"asm\"][\"K\"]).apply(null,arguments)};var _FusedBatchNorm=Module[\"_FusedBatchNorm\"]=function(){return(_FusedBatchNorm=Module[\"_FusedBatchNorm\"]=Module[\"asm\"][\"L\"]).apply(null,arguments)};var _FusedConv2D=Module[\"_FusedConv2D\"]=function(){return(_FusedConv2D=Module[\"_FusedConv2D\"]=Module[\"asm\"][\"M\"]).apply(null,arguments)};var _FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=function(){return(_FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=Module[\"asm\"][\"N\"]).apply(null,arguments)};var _Gather=Module[\"_Gather\"]=function(){return(_Gather=Module[\"_Gather\"]=Module[\"asm\"][\"O\"]).apply(null,arguments)};var _GatherNd=Module[\"_GatherNd\"]=function(){return(_GatherNd=Module[\"_GatherNd\"]=Module[\"asm\"][\"P\"]).apply(null,arguments)};var _Greater=Module[\"_Greater\"]=function(){return(_Greater=Module[\"_Greater\"]=Module[\"asm\"][\"Q\"]).apply(null,arguments)};var _GreaterEqual=Module[\"_GreaterEqual\"]=function(){return(_GreaterEqual=Module[\"_GreaterEqual\"]=Module[\"asm\"][\"R\"]).apply(null,arguments)};var _LeakyRelu=Module[\"_LeakyRelu\"]=function(){return(_LeakyRelu=Module[\"_LeakyRelu\"]=Module[\"asm\"][\"S\"]).apply(null,arguments)};var _Less=Module[\"_Less\"]=function(){return(_Less=Module[\"_Less\"]=Module[\"asm\"][\"T\"]).apply(null,arguments)};var _LessEqual=Module[\"_LessEqual\"]=function(){return(_LessEqual=Module[\"_LessEqual\"]=Module[\"asm\"][\"U\"]).apply(null,arguments)};var _Log=Module[\"_Log\"]=function(){return(_Log=Module[\"_Log\"]=Module[\"asm\"][\"V\"]).apply(null,arguments)};var _LogicalAnd=Module[\"_LogicalAnd\"]=function(){return(_LogicalAnd=Module[\"_LogicalAnd\"]=Module[\"asm\"][\"W\"]).apply(null,arguments)};var _Max=Module[\"_Max\"]=function(){return(_Max=Module[\"_Max\"]=Module[\"asm\"][\"X\"]).apply(null,arguments)};var _MaxPool=Module[\"_MaxPool\"]=function(){return(_MaxPool=Module[\"_MaxPool\"]=Module[\"asm\"][\"Y\"]).apply(null,arguments)};var _Maximum=Module[\"_Maximum\"]=function(){return(_Maximum=Module[\"_Maximum\"]=Module[\"asm\"][\"Z\"]).apply(null,arguments)};var _Mean=Module[\"_Mean\"]=function(){return(_Mean=Module[\"_Mean\"]=Module[\"asm\"][\"_\"]).apply(null,arguments)};var _Min=Module[\"_Min\"]=function(){return(_Min=Module[\"_Min\"]=Module[\"asm\"][\"$\"]).apply(null,arguments)};var _Minimum=Module[\"_Minimum\"]=function(){return(_Minimum=Module[\"_Minimum\"]=Module[\"asm\"][\"aa\"]).apply(null,arguments)};var _MirrorPad=Module[\"_MirrorPad\"]=function(){return(_MirrorPad=Module[\"_MirrorPad\"]=Module[\"asm\"][\"ba\"]).apply(null,arguments)};var _Multiply=Module[\"_Multiply\"]=function(){return(_Multiply=Module[\"_Multiply\"]=Module[\"asm\"][\"ca\"]).apply(null,arguments)};var _Neg=Module[\"_Neg\"]=function(){return(_Neg=Module[\"_Neg\"]=Module[\"asm\"][\"da\"]).apply(null,arguments)};var _NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=function(){return(_NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=Module[\"asm\"][\"ea\"]).apply(null,arguments)};var _NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=function(){return(_NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=Module[\"asm\"][\"fa\"]).apply(null,arguments)};var _NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=function(){return(_NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=Module[\"asm\"][\"ga\"]).apply(null,arguments)};var _NotEqual=Module[\"_NotEqual\"]=function(){return(_NotEqual=Module[\"_NotEqual\"]=Module[\"asm\"][\"ha\"]).apply(null,arguments)};var _OneHot=Module[\"_OneHot\"]=function(){return(_OneHot=Module[\"_OneHot\"]=Module[\"asm\"][\"ia\"]).apply(null,arguments)};var _PadV2=Module[\"_PadV2\"]=function(){return(_PadV2=Module[\"_PadV2\"]=Module[\"asm\"][\"ja\"]).apply(null,arguments)};var _Pow=Module[\"_Pow\"]=function(){return(_Pow=Module[\"_Pow\"]=Module[\"asm\"][\"ka\"]).apply(null,arguments)};var _Prelu=Module[\"_Prelu\"]=function(){return(_Prelu=Module[\"_Prelu\"]=Module[\"asm\"][\"la\"]).apply(null,arguments)};var _Prod=Module[\"_Prod\"]=function(){return(_Prod=Module[\"_Prod\"]=Module[\"asm\"][\"ma\"]).apply(null,arguments)};var _RealDiv=Module[\"_RealDiv\"]=function(){return(_RealDiv=Module[\"_RealDiv\"]=Module[\"asm\"][\"na\"]).apply(null,arguments)};var _Relu=Module[\"_Relu\"]=function(){return(_Relu=Module[\"_Relu\"]=Module[\"asm\"][\"oa\"]).apply(null,arguments)};var _Relu6=Module[\"_Relu6\"]=function(){return(_Relu6=Module[\"_Relu6\"]=Module[\"asm\"][\"pa\"]).apply(null,arguments)};var _ResizeBilinear=Module[\"_ResizeBilinear\"]=function(){return(_ResizeBilinear=Module[\"_ResizeBilinear\"]=Module[\"asm\"][\"qa\"]).apply(null,arguments)};var _Reverse=Module[\"_Reverse\"]=function(){return(_Reverse=Module[\"_Reverse\"]=Module[\"asm\"][\"ra\"]).apply(null,arguments)};var _RotateWithOffset=Module[\"_RotateWithOffset\"]=function(){return(_RotateWithOffset=Module[\"_RotateWithOffset\"]=Module[\"asm\"][\"sa\"]).apply(null,arguments)};var _Round=Module[\"_Round\"]=function(){return(_Round=Module[\"_Round\"]=Module[\"asm\"][\"ta\"]).apply(null,arguments)};var _Rsqrt=Module[\"_Rsqrt\"]=function(){return(_Rsqrt=Module[\"_Rsqrt\"]=Module[\"asm\"][\"ua\"]).apply(null,arguments)};var _ScatterNd=Module[\"_ScatterNd\"]=function(){return(_ScatterNd=Module[\"_ScatterNd\"]=Module[\"asm\"][\"va\"]).apply(null,arguments)};var _SelectV2=Module[\"_SelectV2\"]=function(){return(_SelectV2=Module[\"_SelectV2\"]=Module[\"asm\"][\"wa\"]).apply(null,arguments)};var _Sigmoid=Module[\"_Sigmoid\"]=function(){return(_Sigmoid=Module[\"_Sigmoid\"]=Module[\"asm\"][\"xa\"]).apply(null,arguments)};var _Sin=Module[\"_Sin\"]=function(){return(_Sin=Module[\"_Sin\"]=Module[\"asm\"][\"ya\"]).apply(null,arguments)};var _Softmax=Module[\"_Softmax\"]=function(){return(_Softmax=Module[\"_Softmax\"]=Module[\"asm\"][\"za\"]).apply(null,arguments)};var _Sqrt=Module[\"_Sqrt\"]=function(){return(_Sqrt=Module[\"_Sqrt\"]=Module[\"asm\"][\"Aa\"]).apply(null,arguments)};var _Square=Module[\"_Square\"]=function(){return(_Square=Module[\"_Square\"]=Module[\"asm\"][\"Ba\"]).apply(null,arguments)};var _SquaredDifference=Module[\"_SquaredDifference\"]=function(){return(_SquaredDifference=Module[\"_SquaredDifference\"]=Module[\"asm\"][\"Ca\"]).apply(null,arguments)};var _Step=Module[\"_Step\"]=function(){return(_Step=Module[\"_Step\"]=Module[\"asm\"][\"Da\"]).apply(null,arguments)};var _StridedSlice=Module[\"_StridedSlice\"]=function(){return(_StridedSlice=Module[\"_StridedSlice\"]=Module[\"asm\"][\"Ea\"]).apply(null,arguments)};var _Sub=Module[\"_Sub\"]=function(){return(_Sub=Module[\"_Sub\"]=Module[\"asm\"][\"Fa\"]).apply(null,arguments)};var _Sum=Module[\"_Sum\"]=function(){return(_Sum=Module[\"_Sum\"]=Module[\"asm\"][\"Ga\"]).apply(null,arguments)};var _Tan=Module[\"_Tan\"]=function(){return(_Tan=Module[\"_Tan\"]=Module[\"asm\"][\"Ha\"]).apply(null,arguments)};var _Tanh=Module[\"_Tanh\"]=function(){return(_Tanh=Module[\"_Tanh\"]=Module[\"asm\"][\"Ia\"]).apply(null,arguments)};var _Tile=Module[\"_Tile\"]=function(){return(_Tile=Module[\"_Tile\"]=Module[\"asm\"][\"Ja\"]).apply(null,arguments)};var _TopK=Module[\"_TopK\"]=function(){return(_TopK=Module[\"_TopK\"]=Module[\"asm\"][\"Ka\"]).apply(null,arguments)};var _Transpose=Module[\"_Transpose\"]=function(){return(_Transpose=Module[\"_Transpose\"]=Module[\"asm\"][\"La\"]).apply(null,arguments)};var __FusedMatMul=Module[\"__FusedMatMul\"]=function(){return(__FusedMatMul=Module[\"__FusedMatMul\"]=Module[\"asm\"][\"Ma\"]).apply(null,arguments)};var _malloc=Module[\"_malloc\"]=function(){return(_malloc=Module[\"_malloc\"]=Module[\"asm\"][\"Na\"]).apply(null,arguments)};var _free=Module[\"_free\"]=function(){return(_free=Module[\"_free\"]=Module[\"asm\"][\"Oa\"]).apply(null,arguments)};var ___errno_location=Module[\"___errno_location\"]=function(){return(___errno_location=Module[\"___errno_location\"]=Module[\"asm\"][\"Pa\"]).apply(null,arguments)};var stackSave=Module[\"stackSave\"]=function(){return(stackSave=Module[\"stackSave\"]=Module[\"asm\"][\"Qa\"]).apply(null,arguments)};var stackRestore=Module[\"stackRestore\"]=function(){return(stackRestore=Module[\"stackRestore\"]=Module[\"asm\"][\"Ra\"]).apply(null,arguments)};var stackAlloc=Module[\"stackAlloc\"]=function(){return(stackAlloc=Module[\"stackAlloc\"]=Module[\"asm\"][\"Sa\"]).apply(null,arguments)};Module[\"cwrap\"]=cwrap;var calledRun;function ExitStatus(status){this.name=\"ExitStatus\";this.message=\"Program terminated with exit(\"+status+\")\";this.status=status}dependenciesFulfilled=function runCaller(){if(!calledRun)run();if(!calledRun)dependenciesFulfilled=runCaller};function run(args){args=args||arguments_;if(runDependencies>0){return}preRun();if(runDependencies>0){return}function doRun(){if(calledRun)return;calledRun=true;Module[\"calledRun\"]=true;if(ABORT)return;initRuntime();preMain();readyPromiseResolve(Module);if(Module[\"onRuntimeInitialized\"])Module[\"onRuntimeInitialized\"]();postRun()}if(Module[\"setStatus\"]){Module[\"setStatus\"](\"Running...\");setTimeout(function(){setTimeout(function(){Module[\"setStatus\"](\"\")},1);doRun()},1)}else{doRun()}}Module[\"run\"]=run;if(Module[\"preInit\"]){if(typeof Module[\"preInit\"]==\"function\")Module[\"preInit\"]=[Module[\"preInit\"]];while(Module[\"preInit\"].length>0){Module[\"preInit\"].pop()()}}run();\n\n\n return WasmBackendModule.ready\n}\n);\n})();\nif (typeof exports === 'object' && typeof module === 'object')\n module.exports = WasmBackendModule;\nelse if (typeof define === 'function' && define['amd'])\n define([], function() { return WasmBackendModule; });\nelse if (typeof exports === 'object')\n exports[\"WasmBackendModule\"] = WasmBackendModule;\n", "// A port of an algorithm by Johannes Baag\u00F8e , 2010\n// http://baagoe.com/en/RandomMusings/javascript/\n// https://github.com/nquinlan/better-random-numbers-for-javascript-mirror\n// Original work is under MIT license -\n\n// Copyright (C) 2010 by Johannes Baag\u00F8e \n//\n// Permission is hereby granted, free of charge, to any person obtaining a copy\n// of this software and associated documentation files (the \"Software\"), to deal\n// in the Software without restriction, including without limitation the rights\n// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n// copies of the Software, and to permit persons to whom the Software is\n// furnished to do so, subject to the following conditions:\n//\n// The above copyright notice and this permission notice shall be included in\n// all copies or substantial portions of the Software.\n//\n// THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\n// THE SOFTWARE.\n\n\n\n(function(global, module, define) {\n\nfunction Alea(seed) {\n var me = this, mash = Mash();\n\n me.next = function() {\n var t = 2091639 * me.s0 + me.c * 2.3283064365386963e-10; // 2^-32\n me.s0 = me.s1;\n me.s1 = me.s2;\n return me.s2 = t - (me.c = t | 0);\n };\n\n // Apply the seeding algorithm from Baagoe.\n me.c = 1;\n me.s0 = mash(' ');\n me.s1 = mash(' ');\n me.s2 = mash(' ');\n me.s0 -= mash(seed);\n if (me.s0 < 0) { me.s0 += 1; }\n me.s1 -= mash(seed);\n if (me.s1 < 0) { me.s1 += 1; }\n me.s2 -= mash(seed);\n if (me.s2 < 0) { me.s2 += 1; }\n mash = null;\n}\n\nfunction copy(f, t) {\n t.c = f.c;\n t.s0 = f.s0;\n t.s1 = f.s1;\n t.s2 = f.s2;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new Alea(seed),\n state = opts && opts.state,\n prng = xg.next;\n prng.int32 = function() { return (xg.next() * 0x100000000) | 0; }\n prng.double = function() {\n return prng() + (prng() * 0x200000 | 0) * 1.1102230246251565e-16; // 2^-53\n };\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nfunction Mash() {\n var n = 0xefc8249d;\n\n var mash = function(data) {\n data = String(data);\n for (var i = 0; i < data.length; i++) {\n n += data.charCodeAt(i);\n var h = 0.02519603282416938 * n;\n n = h >>> 0;\n h -= n;\n h *= n;\n n = h >>> 0;\n h -= n;\n n += h * 0x100000000; // 2^32\n }\n return (n >>> 0) * 2.3283064365386963e-10; // 2^-32\n };\n\n return mash;\n}\n\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.alea = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xor128\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n\n // Set up generator function.\n me.next = function() {\n var t = me.x ^ (me.x << 11);\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n return me.w ^= (me.w >>> 19) ^ t ^ (t >>> 8);\n };\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor128 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorwow\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var t = (me.x ^ (me.x >>> 2));\n me.x = me.y; me.y = me.z; me.z = me.w; me.w = me.v;\n return (me.d = (me.d + 362437 | 0)) +\n (me.v = (me.v ^ (me.v << 4)) ^ (t ^ (t << 1))) | 0;\n };\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.v = 0;\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n if (k == strseed.length) {\n me.d = me.x << 10 ^ me.x >>> 4;\n }\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n t.v = f.v;\n t.d = f.d;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorwow = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorshift7\" algorithm by\n// Fran\u00E7ois Panneton and Pierre L'ecuyer:\n// \"On the Xorgshift Random Number Generators\"\n// http://saluc.engr.uconn.edu/refs/crypto/rng/panneton05onthexorshift.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n // Update xor generator.\n var X = me.x, i = me.i, t, v, w;\n t = X[i]; t ^= (t >>> 7); v = t ^ (t << 24);\n t = X[(i + 1) & 7]; v ^= t ^ (t >>> 10);\n t = X[(i + 3) & 7]; v ^= t ^ (t >>> 3);\n t = X[(i + 4) & 7]; v ^= t ^ (t << 7);\n t = X[(i + 7) & 7]; t = t ^ (t << 13); v ^= t ^ (t << 9);\n X[i] = v;\n me.i = (i + 1) & 7;\n return v;\n };\n\n function init(me, seed) {\n var j, w, X = [];\n\n if (seed === (seed | 0)) {\n // Seed state array using a 32-bit integer.\n w = X[0] = seed;\n } else {\n // Seed state using a string.\n seed = '' + seed;\n for (j = 0; j < seed.length; ++j) {\n X[j & 7] = (X[j & 7] << 15) ^\n (seed.charCodeAt(j) + X[(j + 1) & 7] << 13);\n }\n }\n // Enforce an array length of 8, not all zeroes.\n while (X.length < 8) X.push(0);\n for (j = 0; j < 8 && X[j] === 0; ++j);\n if (j == 8) w = X[7] = -1; else w = X[j];\n\n me.x = X;\n me.i = 0;\n\n // Discard an initial 256 values.\n for (j = 256; j > 0; --j) {\n me.next();\n }\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.x = f.x.slice();\n t.i = f.i;\n return t;\n}\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.x) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorshift7 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n", "// A Javascript implementaion of Richard Brent's Xorgens xor4096 algorithm.\n//\n// This fast non-cryptographic random number generator is designed for\n// use in Monte-Carlo algorithms. It combines a long-period xorshift\n// generator with a Weyl generator, and it passes all common batteries\n// of stasticial tests for randomness while consuming only a few nanoseconds\n// for each prng generated. For background on the generator, see Brent's\n// paper: \"Some long-period random number generators using shifts and xors.\"\n// http://arxiv.org/pdf/1004.3115v1.pdf\n//\n// Usage:\n//\n// var xor4096 = require('xor4096');\n// random = xor4096(1); // Seed with int32 or string.\n// assert.equal(random(), 0.1520436450538547); // (0, 1) range, 53 bits.\n// assert.equal(random.int32(), 1806534897); // signed int32, 32 bits.\n//\n// For nonzero numeric keys, this impelementation provides a sequence\n// identical to that by Brent's xorgens 3 implementaion in C. This\n// implementation also provides for initalizing the generator with\n// string seeds, or for saving and restoring the state of the generator.\n//\n// On Chrome, this prng benchmarks about 2.1 times slower than\n// Javascript's built-in Math.random().\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n var w = me.w,\n X = me.X, i = me.i, t, v;\n // Update Weyl generator.\n me.w = w = (w + 0x61c88647) | 0;\n // Update xor generator.\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n // Update Xor generator array state.\n v = X[i] = v ^ t;\n me.i = i;\n // Result is the combination.\n return (v + (w ^ (w >>> 16))) | 0;\n };\n\n function init(me, seed) {\n var t, v, i, j, w, X = [], limit = 128;\n if (seed === (seed | 0)) {\n // Numeric seeds initialize v, which is used to generates X.\n v = seed;\n seed = null;\n } else {\n // String seeds are mixed into v and X one character at a time.\n seed = seed + '\\0';\n v = 0;\n limit = Math.max(limit, seed.length);\n }\n // Initialize circular array and weyl value.\n for (i = 0, j = -32; j < limit; ++j) {\n // Put the unicode characters into the array, and shuffle them.\n if (seed) v ^= seed.charCodeAt((j + 32) % seed.length);\n // After 32 shuffles, take v as the starting w value.\n if (j === 0) w = v;\n v ^= v << 10;\n v ^= v >>> 15;\n v ^= v << 4;\n v ^= v >>> 13;\n if (j >= 0) {\n w = (w + 0x61c88647) | 0; // Weyl.\n t = (X[j & 127] ^= (v + w)); // Combine xor and weyl to init array.\n i = (0 == t) ? i + 1 : 0; // Count zeroes.\n }\n }\n // We have detected all zeroes; make the key nonzero.\n if (i >= 128) {\n X[(seed && seed.length || 0) & 127] = -1;\n }\n // Run the generator 512 times to further mix the state before using it.\n // Factoring this as a function slows the main generator, so it is just\n // unrolled here. The weyl generator is not advanced while warming up.\n i = 127;\n for (j = 4 * 128; j > 0; --j) {\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n X[i] = v ^ t;\n }\n // Storing state as object members is faster than using closure variables.\n me.w = w;\n me.X = X;\n me.i = i;\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.i = f.i;\n t.w = f.w;\n t.X = f.X.slice();\n return t;\n};\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.X) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor4096 = impl;\n}\n\n})(\n this, // window object or global\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n", "// A Javascript implementaion of the \"Tyche-i\" prng algorithm by\n// Samuel Neves and Filipe Araujo.\n// See https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var b = me.b, c = me.c, d = me.d, a = me.a;\n b = (b << 25) ^ (b >>> 7) ^ c;\n c = (c - d) | 0;\n d = (d << 24) ^ (d >>> 8) ^ a;\n a = (a - b) | 0;\n me.b = b = (b << 20) ^ (b >>> 12) ^ c;\n me.c = c = (c - d) | 0;\n me.d = (d << 16) ^ (c >>> 16) ^ a;\n return me.a = (a - b) | 0;\n };\n\n /* The following is non-inverted tyche, which has better internal\n * bit diffusion, but which is about 25% slower than tyche-i in JS.\n me.next = function() {\n var a = me.a, b = me.b, c = me.c, d = me.d;\n a = (me.a + me.b | 0) >>> 0;\n d = me.d ^ a; d = d << 16 ^ d >>> 16;\n c = me.c + d | 0;\n b = me.b ^ c; b = b << 12 ^ d >>> 20;\n me.a = a = a + b | 0;\n d = d ^ a; me.d = d = d << 8 ^ d >>> 24;\n me.c = c = c + d | 0;\n b = b ^ c;\n return me.b = (b << 7 ^ b >>> 25);\n }\n */\n\n me.a = 0;\n me.b = 0;\n me.c = 2654435769 | 0;\n me.d = 1367130551;\n\n if (seed === Math.floor(seed)) {\n // Integer seed.\n me.a = (seed / 0x100000000) | 0;\n me.b = seed | 0;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 20; k++) {\n me.b ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.a = f.a;\n t.b = f.b;\n t.c = f.c;\n t.d = f.d;\n return t;\n};\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.tychei = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "/*\nCopyright 2019 David Bau.\n\nPermission is hereby granted, free of charge, to any person obtaining\na copy of this software and associated documentation files (the\n\"Software\"), to deal in the Software without restriction, including\nwithout limitation the rights to use, copy, modify, merge, publish,\ndistribute, sublicense, and/or sell copies of the Software, and to\npermit persons to whom the Software is furnished to do so, subject to\nthe following conditions:\n\nThe above copyright notice and this permission notice shall be\nincluded in all copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND,\nEXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF\nMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.\nIN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY\nCLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,\nTORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE\nSOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\n\n*/\n\n(function (global, pool, math) {\n//\n// The following constants are related to IEEE 754 limits.\n//\n\nvar width = 256, // each RC4 output is 0 <= x < 256\n chunks = 6, // at least six RC4 outputs for each double\n digits = 52, // there are 52 significant digits in a double\n rngname = 'random', // rngname: name for Math.random and Math.seedrandom\n startdenom = math.pow(width, chunks),\n significance = math.pow(2, digits),\n overflow = significance * 2,\n mask = width - 1,\n nodecrypto; // node.js crypto module, initialized at the bottom.\n\n//\n// seedrandom()\n// This is the seedrandom function described above.\n//\nfunction seedrandom(seed, options, callback) {\n var key = [];\n options = (options == true) ? { entropy: true } : (options || {});\n\n // Flatten the seed string or build one from local entropy if needed.\n var shortseed = mixkey(flatten(\n options.entropy ? [seed, tostring(pool)] :\n (seed == null) ? autoseed() : seed, 3), key);\n\n // Use the seed to initialize an ARC4 generator.\n var arc4 = new ARC4(key);\n\n // This function returns a random double in [0, 1) that contains\n // randomness in every bit of the mantissa of the IEEE 754 value.\n var prng = function() {\n var n = arc4.g(chunks), // Start with a numerator n < 2 ^ 48\n d = startdenom, // and denominator d = 2 ^ 48.\n x = 0; // and no 'extra last byte'.\n while (n < significance) { // Fill up all significant digits by\n n = (n + x) * width; // shifting numerator and\n d *= width; // denominator and generating a\n x = arc4.g(1); // new least-significant-byte.\n }\n while (n >= overflow) { // To avoid rounding up, before adding\n n /= 2; // last byte, shift everything\n d /= 2; // right using integer math until\n x >>>= 1; // we have exactly the desired bits.\n }\n return (n + x) / d; // Form the number within [0, 1).\n };\n\n prng.int32 = function() { return arc4.g(4) | 0; }\n prng.quick = function() { return arc4.g(4) / 0x100000000; }\n prng.double = prng;\n\n // Mix the randomness into accumulated entropy.\n mixkey(tostring(arc4.S), pool);\n\n // Calling convention: what to return as a function of prng, seed, is_math.\n return (options.pass || callback ||\n function(prng, seed, is_math_call, state) {\n if (state) {\n // Load the arc4 state from the given state if it has an S array.\n if (state.S) { copy(state, arc4); }\n // Only provide the .state method if requested via options.state.\n prng.state = function() { return copy(arc4, {}); }\n }\n\n // If called as a method of Math (Math.seedrandom()), mutate\n // Math.random because that is how seedrandom.js has worked since v1.0.\n if (is_math_call) { math[rngname] = prng; return seed; }\n\n // Otherwise, it is a newer calling convention, so return the\n // prng directly.\n else return prng;\n })(\n prng,\n shortseed,\n 'global' in options ? options.global : (this == math),\n options.state);\n}\n\n//\n// ARC4\n//\n// An ARC4 implementation. The constructor takes a key in the form of\n// an array of at most (width) integers that should be 0 <= x < (width).\n//\n// The g(count) method returns a pseudorandom integer that concatenates\n// the next (count) outputs from ARC4. Its return value is a number x\n// that is in the range 0 <= x < (width ^ count).\n//\nfunction ARC4(key) {\n var t, keylen = key.length,\n me = this, i = 0, j = me.i = me.j = 0, s = me.S = [];\n\n // The empty key [] is treated as [0].\n if (!keylen) { key = [keylen++]; }\n\n // Set up S using the standard key scheduling algorithm.\n while (i < width) {\n s[i] = i++;\n }\n for (i = 0; i < width; i++) {\n s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))];\n s[j] = t;\n }\n\n // The \"g\" method returns the next (count) outputs as one number.\n (me.g = function(count) {\n // Using instance members instead of closure state nearly doubles speed.\n var t, r = 0,\n i = me.i, j = me.j, s = me.S;\n while (count--) {\n t = s[i = mask & (i + 1)];\n r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)]) + (s[j] = t))];\n }\n me.i = i; me.j = j;\n return r;\n // For robust unpredictability, the function call below automatically\n // discards an initial batch of values. This is called RC4-drop[256].\n // See http://google.com/search?q=rsa+fluhrer+response&btnI\n })(width);\n}\n\n//\n// copy()\n// Copies internal state of ARC4 to or from a plain object.\n//\nfunction copy(f, t) {\n t.i = f.i;\n t.j = f.j;\n t.S = f.S.slice();\n return t;\n};\n\n//\n// flatten()\n// Converts an object tree to nested arrays of strings.\n//\nfunction flatten(obj, depth) {\n var result = [], typ = (typeof obj), prop;\n if (depth && typ == 'object') {\n for (prop in obj) {\n try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {}\n }\n }\n return (result.length ? result : typ == 'string' ? obj : obj + '\\0');\n}\n\n//\n// mixkey()\n// Mixes a string seed into a key that is an array of integers, and\n// returns a shortened string seed that is equivalent to the result key.\n//\nfunction mixkey(seed, key) {\n var stringseed = seed + '', smear, j = 0;\n while (j < stringseed.length) {\n key[mask & j] =\n mask & ((smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++));\n }\n return tostring(key);\n}\n\n//\n// autoseed()\n// Returns an object for autoseeding, using window.crypto and Node crypto\n// module if available.\n//\nfunction autoseed() {\n try {\n var out;\n if (nodecrypto && (out = nodecrypto.randomBytes)) {\n // The use of 'out' to remember randomBytes makes tight minified code.\n out = out(width);\n } else {\n out = new Uint8Array(width);\n (global.crypto || global.msCrypto).getRandomValues(out);\n }\n return tostring(out);\n } catch (e) {\n var browser = global.navigator,\n plugins = browser && browser.plugins;\n return [+new Date, global, plugins, global.screen, tostring(pool)];\n }\n}\n\n//\n// tostring()\n// Converts an array of charcodes to a string\n//\nfunction tostring(a) {\n return String.fromCharCode.apply(0, a);\n}\n\n//\n// When seedrandom.js is loaded, we immediately mix a few bits\n// from the built-in RNG into the entropy pool. Because we do\n// not want to interfere with deterministic PRNG state later,\n// seedrandom will not call math.random on its own again after\n// initialization.\n//\nmixkey(math.random(), pool);\n\n//\n// Nodejs and AMD support: export the implementation as a module using\n// either convention.\n//\nif ((typeof module) == 'object' && module.exports) {\n module.exports = seedrandom;\n // When in node.js, try using crypto package for autoseeding.\n try {\n nodecrypto = require('crypto');\n } catch (ex) {}\n} else if ((typeof define) == 'function' && define.amd) {\n define(function() { return seedrandom; });\n} else {\n // When included as a plain script, set up Math.seedrandom global.\n math['seed' + rngname] = seedrandom;\n}\n\n\n// End anonymous scope, and pass initial values.\n})(\n // global: `self` in browsers (including strict mode and web workers),\n // otherwise `this` in Node and other environments\n (typeof self !== 'undefined') ? self : this,\n [], // pool: entropy pool starts empty\n Math // math: package containing random, pow, and seedrandom\n);\n", "// A library of seedable RNGs implemented in Javascript.\n//\n// Usage:\n//\n// var seedrandom = require('seedrandom');\n// var random = seedrandom(1); // or any seed.\n// var x = random(); // 0 <= x < 1. Every bit is random.\n// var x = random.quick(); // 0 <= x < 1. 32 bits of randomness.\n\n// alea, a 53-bit multiply-with-carry generator by Johannes Baag\u00F8e.\n// Period: ~2^116\n// Reported to pass all BigCrush tests.\nvar alea = require('./lib/alea');\n\n// xor128, a pure xor-shift generator by George Marsaglia.\n// Period: 2^128-1.\n// Reported to fail: MatrixRank and LinearComp.\nvar xor128 = require('./lib/xor128');\n\n// xorwow, George Marsaglia's 160-bit xor-shift combined plus weyl.\n// Period: 2^192-2^32\n// Reported to fail: CollisionOver, SimpPoker, and LinearComp.\nvar xorwow = require('./lib/xorwow');\n\n// xorshift7, by Fran\u00E7ois Panneton and Pierre L'ecuyer, takes\n// a different approach: it adds robustness by allowing more shifts\n// than Marsaglia's original three. It is a 7-shift generator\n// with 256 bits, that passes BigCrush with no systmatic failures.\n// Period 2^256-1.\n// No systematic BigCrush failures reported.\nvar xorshift7 = require('./lib/xorshift7');\n\n// xor4096, by Richard Brent, is a 4096-bit xor-shift with a\n// very long period that also adds a Weyl generator. It also passes\n// BigCrush with no systematic failures. Its long period may\n// be useful if you have many generators and need to avoid\n// collisions.\n// Period: 2^4128-2^32.\n// No systematic BigCrush failures reported.\nvar xor4096 = require('./lib/xor4096');\n\n// Tyche-i, by Samuel Neves and Filipe Araujo, is a bit-shifting random\n// number generator derived from ChaCha, a modern stream cipher.\n// https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n// Period: ~2^127\n// No systematic BigCrush failures reported.\nvar tychei = require('./lib/tychei');\n\n// The original ARC4-based prng included in this library.\n// Period: ~2^1600\nvar sr = require('./seedrandom');\n\nsr.alea = alea;\nsr.xor128 = xor128;\nsr.xorwow = xorwow;\nsr.xorshift7 = xorshift7;\nsr.xor4096 = xor4096;\nsr.tychei = tychei;\n\nmodule.exports = sr;\n", "", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Backend, DataId} from '../tensor';\nimport {BackendValues, DataType} from '../types';\n\nexport const EPSILON_FLOAT32 = 1e-7;\nexport const EPSILON_FLOAT16 = 1e-4;\n\n// Required information for all backends.\nexport interface BackendTimingInfo {\n kernelMs: number|{error: string};\n getExtraProfileInfo?(): string; // a field for additional timing information\n // e.g. packing / unpacking for WebGL backend\n}\n\nexport interface TensorStorage {\n read(dataId: DataId): Promise;\n readSync(dataId: DataId): BackendValues;\n disposeData(dataId: DataId, force?: boolean): boolean;\n write(values: BackendValues, shape: number[], dtype: DataType): DataId;\n move(\n dataId: DataId, values: BackendValues, shape: number[], dtype: DataType,\n refCount: number): void;\n memory(): {unreliable: boolean;}; // Backend-specific information.\n /** Returns number of data ids currently in the storage. */\n numDataIds(): number;\n refCount(dataId: DataId): number;\n}\n\n/** Convenient class for storing tensor-related data. */\nexport class DataStorage {\n private data = new WeakMap();\n private dataIdsCount = 0;\n\n constructor(private backend: KernelBackend, private dataMover: DataMover) {}\n\n get(dataId: DataId) {\n if (!this.data.has(dataId)) {\n this.dataMover.moveData(this.backend, dataId);\n }\n return this.data.get(dataId);\n }\n\n set(dataId: DataId, value: T): void {\n this.dataIdsCount++;\n this.data.set(dataId, value);\n }\n\n has(dataId: DataId): boolean {\n return this.data.has(dataId);\n }\n\n delete(dataId: DataId): boolean {\n this.dataIdsCount--;\n return this.data.delete(dataId);\n }\n\n numDataIds(): number {\n return this.dataIdsCount;\n }\n}\n\nexport interface DataMover {\n /**\n * To be called by backends whenever they see a dataId that they don't own.\n * Upon calling this method, the mover will fetch the tensor from another\n * backend and register it with the current active backend.\n */\n moveData(backend: KernelBackend, dataId: DataId): void;\n}\n\nexport interface BackendTimer {\n // check if backend timer is available\n timerAvailable(): boolean;\n time(f: () => void): Promise;\n}\n\n/**\n * The interface that defines the kernels that should be implemented when\n * adding a new backend. New backends don't need to implement every one of the\n * methods, this can be done gradually (throw an error for unimplemented\n * methods).\n */\nexport class KernelBackend implements TensorStorage, Backend, BackendTimer {\n refCount(dataId: DataId): number {\n return notYetImplemented('refCount');\n }\n incRef(dataId: DataId): void {\n return notYetImplemented('incRef');\n }\n timerAvailable(): boolean {\n return true;\n }\n time(f: () => void): Promise {\n return notYetImplemented('time');\n }\n read(dataId: object): Promise {\n return notYetImplemented('read');\n }\n readSync(dataId: object): BackendValues {\n return notYetImplemented('readSync');\n }\n numDataIds(): number {\n return notYetImplemented('numDataIds');\n }\n disposeData(dataId: object, force?: boolean): boolean {\n return notYetImplemented('disposeData');\n }\n write(values: BackendValues, shape: number[], dtype: DataType): DataId {\n return notYetImplemented('write');\n }\n move(\n dataId: DataId, values: BackendValues, shape: number[], dtype: DataType,\n refCount: number): void {\n return notYetImplemented('move');\n }\n memory(): {unreliable: boolean; reasons?: string[]} {\n return notYetImplemented('memory');\n }\n /** Returns the highest precision for floats in bits (e.g. 16 or 32) */\n floatPrecision(): 16|32 {\n return notYetImplemented('floatPrecision');\n }\n /** Returns the smallest representable number. */\n epsilon(): number {\n return this.floatPrecision() === 32 ? EPSILON_FLOAT32 : EPSILON_FLOAT16;\n }\n dispose(): void {\n return notYetImplemented('dispose');\n }\n}\n\nfunction notYetImplemented(kernelName: string): never {\n throw new Error(\n `'${kernelName}' not yet implemented or not found in the registry. ` +\n `This kernel may not be supported by the tfjs backend you have chosen`);\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {DataType, DataTypeMap, FlatVector, NumericDataType, RecursiveArray, TensorLike, TypedArray} from './types';\n\n/**\n * Shuffles the array in-place using Fisher-Yates algorithm.\n *\n * ```js\n * const a = [1, 2, 3, 4, 5];\n * tf.util.shuffle(a);\n * console.log(a);\n * ```\n *\n * @param array The array to shuffle in-place.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\n// tslint:disable-next-line:no-any\nexport function shuffle(array: any[]|Uint32Array|Int32Array|\n Float32Array): void {\n let counter = array.length;\n let temp = 0;\n let index = 0;\n // While there are elements in the array\n while (counter > 0) {\n // Pick a random index\n index = (Math.random() * counter) | 0;\n // Decrease counter by 1\n counter--;\n // And swap the last element with it\n temp = array[counter];\n array[counter] = array[index];\n array[index] = temp;\n }\n}\n\n/**\n * Shuffles two arrays in-place the same way using Fisher-Yates algorithm.\n *\n * ```js\n * const a = [1,2,3,4,5];\n * const b = [11,22,33,44,55];\n * tf.util.shuffleCombo(a, b);\n * console.log(a, b);\n * ```\n *\n * @param array The first array to shuffle in-place.\n * @param array2 The second array to shuffle in-place with the same permutation\n * as the first array.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function shuffleCombo(\n // tslint:disable-next-line:no-any\n array: any[]|Uint32Array|Int32Array|Float32Array,\n // tslint:disable-next-line:no-any\n array2: any[]|Uint32Array|Int32Array|Float32Array): void {\n if (array.length !== array2.length) {\n throw new Error(\n `Array sizes must match to be shuffled together ` +\n `First array length was ${array.length}` +\n `Second array length was ${array2.length}`);\n }\n let counter = array.length;\n let temp, temp2;\n let index = 0;\n // While there are elements in the array\n while (counter > 0) {\n // Pick a random index\n index = (Math.random() * counter) | 0;\n // Decrease counter by 1\n counter--;\n // And swap the last element of each array with it\n temp = array[counter];\n temp2 = array2[counter];\n array[counter] = array[index];\n array2[counter] = array2[index];\n array[index] = temp;\n array2[index] = temp2;\n }\n}\n\n/** Clamps a value to a specified range. */\nexport function clamp(min: number, x: number, max: number): number {\n return Math.max(min, Math.min(x, max));\n}\n\nexport function nearestLargerEven(val: number): number {\n return val % 2 === 0 ? val : val + 1;\n}\n\nexport function sum(arr: number[]): number {\n let sum = 0;\n for (let i = 0; i < arr.length; i++) {\n sum += arr[i];\n }\n return sum;\n}\n\n/**\n * Returns a sample from a uniform [a, b) distribution.\n *\n * @param a The minimum support (inclusive).\n * @param b The maximum support (exclusive).\n * @return A pseudorandom number on the half-open interval [a,b).\n */\nexport function randUniform(a: number, b: number) {\n const r = Math.random();\n return (b * r) + (1 - r) * a;\n}\n\n/** Returns the squared Euclidean distance between two vectors. */\nexport function distSquared(a: FlatVector, b: FlatVector): number {\n let result = 0;\n for (let i = 0; i < a.length; i++) {\n const diff = Number(a[i]) - Number(b[i]);\n result += diff * diff;\n }\n return result;\n}\n\n/**\n * Asserts that the expression is true. Otherwise throws an error with the\n * provided message.\n *\n * ```js\n * const x = 2;\n * tf.util.assert(x === 2, 'x is not 2');\n * ```\n *\n * @param expr The expression to assert (as a boolean).\n * @param msg A function that returns the message to report when throwing an\n * error. We use a function for performance reasons.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function assert(expr: boolean, msg: () => string) {\n if (!expr) {\n throw new Error(typeof msg === 'string' ? msg : msg());\n }\n}\n\nexport function assertShapesMatch(\n shapeA: number[], shapeB: number[], errorMessagePrefix = ''): void {\n assert(\n arraysEqual(shapeA, shapeB),\n () => errorMessagePrefix + ` Shapes ${shapeA} and ${shapeB} must match`);\n}\n\nexport function assertNonNull(a: TensorLike): void {\n assert(\n a != null,\n () => `The input to the tensor constructor must be a non-null value.`);\n}\n\n// NOTE: We explicitly type out what T extends instead of any so that\n// util.flatten on a nested array of number doesn't try to infer T as a\n// number[][], causing us to explicitly type util.flatten().\n/**\n * Flattens an arbitrarily nested array.\n *\n * ```js\n * const a = [[1, 2], [3, 4], [5, [6, [7]]]];\n * const flat = tf.util.flatten(a);\n * console.log(flat);\n * ```\n *\n * @param arr The nested array to flatten.\n * @param result The destination array which holds the elements.\n * @param skipTypedArray If true, avoids flattening the typed arrays. Defaults\n * to false.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function\nflatten|TypedArray>(\n arr: T|RecursiveArray, result: T[] = [], skipTypedArray = false): T[] {\n if (result == null) {\n result = [];\n }\n if (Array.isArray(arr) || isTypedArray(arr) && !skipTypedArray) {\n for (let i = 0; i < arr.length; ++i) {\n flatten(arr[i], result, skipTypedArray);\n }\n } else {\n result.push(arr as T);\n }\n return result;\n}\n\n/**\n * Returns the size (number of elements) of the tensor given its shape.\n *\n * ```js\n * const shape = [3, 4, 2];\n * const size = tf.util.sizeFromShape(shape);\n * console.log(size);\n * ```\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function sizeFromShape(shape: number[]): number {\n if (shape.length === 0) {\n // Scalar.\n return 1;\n }\n let size = shape[0];\n for (let i = 1; i < shape.length; i++) {\n size *= shape[i];\n }\n return size;\n}\n\nexport function isScalarShape(shape: number[]): boolean {\n return shape.length === 0;\n}\n\nexport function arraysEqual(n1: FlatVector, n2: FlatVector) {\n if (n1 === n2) {\n return true;\n }\n if (n1 == null || n2 == null) {\n return false;\n }\n\n if (n1.length !== n2.length) {\n return false;\n }\n for (let i = 0; i < n1.length; i++) {\n if (n1[i] !== n2[i]) {\n return false;\n }\n }\n return true;\n}\n\nexport function isInt(a: number): boolean {\n return a % 1 === 0;\n}\n\nexport function tanh(x: number): number {\n // tslint:disable-next-line:no-any\n if ((Math as any).tanh != null) {\n // tslint:disable-next-line:no-any\n return (Math as any).tanh(x);\n }\n if (x === Infinity) {\n return 1;\n } else if (x === -Infinity) {\n return -1;\n } else {\n const e2x = Math.exp(2 * x);\n return (e2x - 1) / (e2x + 1);\n }\n}\n\nexport function sizeToSquarishShape(size: number): [number, number] {\n const width = Math.ceil(Math.sqrt(size));\n return [width, Math.ceil(size / width)];\n}\n\n/**\n * Creates a new array with randomized indicies to a given quantity.\n *\n * ```js\n * const randomTen = tf.util.createShuffledIndices(10);\n * console.log(randomTen);\n * ```\n *\n * @param number Quantity of how many shuffled indicies to create.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function createShuffledIndices(n: number): Uint32Array {\n const shuffledIndices = new Uint32Array(n);\n for (let i = 0; i < n; ++i) {\n shuffledIndices[i] = i;\n }\n shuffle(shuffledIndices);\n return shuffledIndices;\n}\n\nexport function rightPad(a: string, size: number): string {\n if (size <= a.length) {\n return a;\n }\n return a + ' '.repeat(size - a.length);\n}\n\nexport function repeatedTry(\n checkFn: () => boolean, delayFn = (counter: number) => 0,\n maxCounter?: number): Promise {\n return new Promise((resolve, reject) => {\n let tryCount = 0;\n\n const tryFn = () => {\n if (checkFn()) {\n resolve();\n return;\n }\n\n tryCount++;\n\n const nextBackoff = delayFn(tryCount);\n\n if (maxCounter != null && tryCount >= maxCounter) {\n reject();\n return;\n }\n setTimeout(tryFn, nextBackoff);\n };\n\n tryFn();\n });\n}\n\n/**\n * Given the full size of the array and a shape that may contain -1 as the\n * implicit dimension, returns the inferred shape where -1 is replaced.\n * E.g. For shape=[2, -1, 3] and size=24, it will return [2, 4, 3].\n *\n * @param shape The shape, which may contain -1 in some dimension.\n * @param size The full size (number of elements) of the array.\n * @return The inferred shape where -1 is replaced with the inferred size.\n */\nexport function inferFromImplicitShape(\n shape: number[], size: number): number[] {\n let shapeProd = 1;\n let implicitIdx = -1;\n\n for (let i = 0; i < shape.length; ++i) {\n if (shape[i] >= 0) {\n shapeProd *= shape[i];\n } else if (shape[i] === -1) {\n if (implicitIdx !== -1) {\n throw Error(\n `Shapes can only have 1 implicit size. ` +\n `Found -1 at dim ${implicitIdx} and dim ${i}`);\n }\n implicitIdx = i;\n } else if (shape[i] < 0) {\n throw Error(`Shapes can not be < 0. Found ${shape[i]} at dim ${i}`);\n }\n }\n\n if (implicitIdx === -1) {\n if (size > 0 && size !== shapeProd) {\n throw Error(`Size(${size}) must match the product of shape ${shape}`);\n }\n return shape;\n }\n\n if (shapeProd === 0) {\n throw Error(\n `Cannot infer the missing size in [${shape}] when ` +\n `there are 0 elements`);\n }\n if (size % shapeProd !== 0) {\n throw Error(\n `The implicit shape can't be a fractional number. ` +\n `Got ${size} / ${shapeProd}`);\n }\n\n const newShape = shape.slice();\n newShape[implicitIdx] = size / shapeProd;\n return newShape;\n}\n\nexport function parseAxisParam(\n axis: number|number[], shape: number[]): number[] {\n const rank = shape.length;\n\n // Normalize input\n axis = axis == null ? shape.map((s, i) => i) : [].concat(axis);\n\n // Check for valid range\n assert(\n axis.every(ax => ax >= -rank && ax < rank),\n () =>\n `All values in axis param must be in range [-${rank}, ${rank}) but ` +\n `got axis ${axis}`);\n\n // Check for only integers\n assert(\n axis.every(ax => isInt(ax)),\n () => `All values in axis param must be integers but ` +\n `got axis ${axis}`);\n\n // Handle negative axis.\n return axis.map(a => a < 0 ? rank + a : a);\n}\n\n/** Reduces the shape by removing all dimensions of shape 1. */\nexport function squeezeShape(shape: number[], axis?: number[]):\n {newShape: number[], keptDims: number[]} {\n const newShape: number[] = [];\n const keptDims: number[] = [];\n const isEmptyArray = axis != null && Array.isArray(axis) && axis.length === 0;\n const axes = (axis == null || isEmptyArray) ?\n null :\n parseAxisParam(axis, shape).sort();\n let j = 0;\n for (let i = 0; i < shape.length; ++i) {\n if (axes != null) {\n if (axes[j] === i && shape[i] !== 1) {\n throw new Error(\n `Can't squeeze axis ${i} since its dim '${shape[i]}' is not 1`);\n }\n if ((axes[j] == null || axes[j] > i) && shape[i] === 1) {\n newShape.push(shape[i]);\n keptDims.push(i);\n }\n if (axes[j] <= i) {\n j++;\n }\n }\n if (shape[i] !== 1) {\n newShape.push(shape[i]);\n keptDims.push(i);\n }\n }\n return {newShape, keptDims};\n}\n\nexport function getTypedArrayFromDType(\n dtype: D, size: number): DataTypeMap[D] {\n let values = null;\n if (dtype == null || dtype === 'float32') {\n values = new Float32Array(size);\n } else if (dtype === 'int32') {\n values = new Int32Array(size);\n } else if (dtype === 'bool') {\n values = new Uint8Array(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n return values as DataTypeMap[D];\n}\n\nexport function getArrayFromDType(\n dtype: D, size: number): DataTypeMap[D] {\n let values = null;\n if (dtype == null || dtype === 'float32') {\n values = new Float32Array(size);\n } else if (dtype === 'int32') {\n values = new Int32Array(size);\n } else if (dtype === 'bool') {\n values = new Uint8Array(size);\n } else if (dtype === 'string') {\n values = new Array<'string'>(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n return values as DataTypeMap[D];\n}\n\nexport function checkConversionForErrors(\n vals: DataTypeMap[D]|number[], dtype: D): void {\n for (let i = 0; i < vals.length; i++) {\n const num = vals[i] as number;\n if (isNaN(num) || !isFinite(num)) {\n throw Error(`A tensor of type ${dtype} being uploaded contains ${num}.`);\n }\n }\n}\n\n/** Returns true if the dtype is valid. */\nexport function isValidDtype(dtype: DataType): boolean {\n return dtype === 'bool' || dtype === 'complex64' || dtype === 'float32' ||\n dtype === 'int32' || dtype === 'string';\n}\n\n/**\n * Returns true if the new type can't encode the old type without loss of\n * precision.\n */\nexport function hasEncodingLoss(oldType: DataType, newType: DataType): boolean {\n if (newType === 'complex64') {\n return false;\n }\n if (newType === 'float32' && oldType !== 'complex64') {\n return false;\n }\n if (newType === 'int32' && oldType !== 'float32' && oldType !== 'complex64') {\n return false;\n }\n if (newType === 'bool' && oldType === 'bool') {\n return false;\n }\n return true;\n}\n\nexport function isTypedArray(a: {}): a is Float32Array|Int32Array|Uint8Array {\n return a instanceof Float32Array || a instanceof Int32Array ||\n a instanceof Uint8Array;\n}\n\nexport function bytesPerElement(dtype: DataType): number {\n if (dtype === 'float32' || dtype === 'int32') {\n return 4;\n } else if (dtype === 'complex64') {\n return 8;\n } else if (dtype === 'bool') {\n return 1;\n } else {\n throw new Error(`Unknown dtype ${dtype}`);\n }\n}\n\n/**\n * Returns the approximate number of bytes allocated in the string array - 2\n * bytes per character. Computing the exact bytes for a native string in JS is\n * not possible since it depends on the encoding of the html page that serves\n * the website.\n */\nexport function bytesFromStringArray(arr: Uint8Array[]): number {\n if (arr == null) {\n return 0;\n }\n let bytes = 0;\n arr.forEach(x => bytes += x.length);\n return bytes;\n}\n\n/** Returns true if the value is a string. */\nexport function isString(value: {}): value is string {\n return typeof value === 'string' || value instanceof String;\n}\n\nexport function isBoolean(value: {}): boolean {\n return typeof value === 'boolean';\n}\n\nexport function isNumber(value: {}): boolean {\n return typeof value === 'number';\n}\n\nexport function inferDtype(values: TensorLike): DataType {\n if (Array.isArray(values)) {\n return inferDtype(values[0]);\n }\n if (values instanceof Float32Array) {\n return 'float32';\n } else if (values instanceof Int32Array || values instanceof Uint8Array) {\n return 'int32';\n } else if (isNumber(values)) {\n return 'float32';\n } else if (isString(values)) {\n return 'string';\n } else if (isBoolean(values)) {\n return 'bool';\n }\n return 'float32';\n}\n\nexport function isFunction(f: Function) {\n return !!(f && f.constructor && f.call && f.apply);\n}\n\nexport function nearestDivisor(size: number, start: number): number {\n for (let i = start; i < size; ++i) {\n if (size % i === 0) {\n return i;\n }\n }\n return size;\n}\n\nexport function computeStrides(shape: number[]): number[] {\n const rank = shape.length;\n if (rank < 2) {\n return [];\n }\n\n // Last dimension has implicit stride of 1, thus having D-1 (instead of D)\n // strides.\n const strides = new Array(rank - 1);\n strides[rank - 2] = shape[rank - 1];\n for (let i = rank - 3; i >= 0; --i) {\n strides[i] = strides[i + 1] * shape[i + 1];\n }\n return strides;\n}\n\nfunction createNestedArray(\n offset: number, shape: number[], a: TypedArray, isComplex = false) {\n const ret = new Array();\n if (shape.length === 1) {\n const d = shape[0] * (isComplex ? 2 : 1);\n for (let i = 0; i < d; i++) {\n ret[i] = a[offset + i];\n }\n } else {\n const d = shape[0];\n const rest = shape.slice(1);\n const len = rest.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1);\n for (let i = 0; i < d; i++) {\n ret[i] = createNestedArray(offset + i * len, rest, a, isComplex);\n }\n }\n return ret;\n}\n\n// Provide a nested array of TypedArray in given shape.\nexport function toNestedArray(\n shape: number[], a: TypedArray, isComplex = false) {\n if (shape.length === 0) {\n // Scalar type should return a single number.\n return a[0];\n }\n const size = shape.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1);\n if (size === 0) {\n // A tensor with shape zero should be turned into empty list.\n return [];\n }\n if (size !== a.length) {\n throw new Error(`[${shape}] does not match the input size ${a.length}${\n isComplex ? ' for a complex tensor' : ''}.`);\n }\n\n return createNestedArray(0, shape, a, isComplex);\n}\n\nexport function makeOnesTypedArray(\n size: number, dtype: D): DataTypeMap[D] {\n const array = makeZerosTypedArray(size, dtype);\n for (let i = 0; i < array.length; i++) {\n array[i] = 1;\n }\n return array;\n}\n\nexport function makeZerosTypedArray(\n size: number, dtype: D): DataTypeMap[D] {\n if (dtype == null || dtype === 'float32' || dtype === 'complex64') {\n return new Float32Array(size) as DataTypeMap[D];\n } else if (dtype === 'int32') {\n return new Int32Array(size) as DataTypeMap[D];\n } else if (dtype === 'bool') {\n return new Uint8Array(size) as DataTypeMap[D];\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\n\n/**\n * Make nested `TypedArray` filled with zeros.\n * @param shape The shape information for the nested array.\n * @param dtype dtype of the array element.\n */\nexport function makeZerosNestedTypedArray(\n shape: number[], dtype: D) {\n const size = shape.reduce((prev, curr) => prev * curr, 1);\n if (dtype == null || dtype === 'float32') {\n return toNestedArray(shape, new Float32Array(size));\n } else if (dtype === 'int32') {\n return toNestedArray(shape, new Int32Array(size));\n } else if (dtype === 'bool') {\n return toNestedArray(shape, new Uint8Array(size));\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\n\nexport function assertNonNegativeIntegerDimensions(shape: number[]) {\n shape.forEach(dimSize => {\n assert(\n Number.isInteger(dimSize) && dimSize >= 0,\n () =>\n `Tensor must have a shape comprised of positive integers but got ` +\n `shape [${shape}].`);\n });\n}\n\n/**\n * Computes flat index for a given location (multidimentionsal index) in a\n * Tensor/multidimensional array.\n *\n * @param locs Location in the tensor.\n * @param rank Rank of the tensor.\n * @param strides Tensor strides.\n */\nexport function locToIndex(\n locs: number[], rank: number, strides: number[]): number {\n if (rank === 0) {\n return 0;\n } else if (rank === 1) {\n return locs[0];\n }\n let index = locs[locs.length - 1];\n for (let i = 0; i < locs.length - 1; ++i) {\n index += strides[i] * locs[i];\n }\n return index;\n}\n\n/**\n * Computes the location (multidimensional index) in a tensor/multidimentional\n * array for a given flat index.\n *\n * @param index Index in flat array.\n * @param rank Rank of tensor.\n * @param strides Strides of tensor.\n */\nexport function indexToLoc(\n index: number, rank: number, strides: number[]): number[] {\n if (rank === 0) {\n return [];\n } else if (rank === 1) {\n return [index];\n }\n const locs: number[] = new Array(rank);\n for (let i = 0; i < locs.length - 1; ++i) {\n locs[i] = Math.floor(index / strides[i]);\n index -= locs[i] * strides[i];\n }\n locs[locs.length - 1] = index;\n return locs;\n}\n\n/**\n * This method asserts whether an object is a Promise instance.\n * @param object\n */\n// tslint:disable-next-line: no-any\nexport function isPromise(object: any) {\n // We chose to not use 'obj instanceOf Promise' for two reasons:\n // 1. It only reliably works for es6 Promise, not other Promise\n // implementations.\n // 2. It doesn't work with framework that uses zone.js. zone.js monkey patch\n // the async calls, so it is possible the obj (patched) is comparing to a\n // pre-patched Promise.\n return object && object.then && typeof object.then === 'function';\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Platform} from './platforms/platform';\nimport {isPromise} from './util_base';\n\n// Expects flags from URL in the format ?tfjsflags=FLAG1:1,FLAG2:true.\nconst TENSORFLOWJS_FLAGS_PREFIX = 'tfjsflags';\n\ntype FlagValue = number|boolean;\ntype FlagEvaluationFn = (() => FlagValue)|(() => Promise);\nexport type Flags = {\n [featureName: string]: FlagValue\n};\nexport type FlagRegistryEntry = {\n evaluationFn: FlagEvaluationFn;\n setHook?: (value: FlagValue) => void;\n};\n\n/**\n * The environment contains evaluated flags as well as the registered platform.\n * This is always used as a global singleton and can be retrieved with\n * `tf.env()`.\n *\n * @doc {heading: 'Environment'}\n */\nexport class Environment {\n private flags: Flags = {};\n private flagRegistry: {[flagName: string]: FlagRegistryEntry} = {};\n\n private urlFlags: Flags = {};\n\n platformName: string;\n platform: Platform;\n\n // Jasmine spies on this in 'environment_test.ts'\n getQueryParams = getQueryParams;\n\n // tslint:disable-next-line: no-any\n constructor(public global: any) {\n this.populateURLFlags();\n }\n\n setPlatform(platformName: string, platform: Platform) {\n if (this.platform != null) {\n console.warn(\n `Platform ${this.platformName} has already been set. ` +\n `Overwriting the platform with ${platform}.`);\n }\n this.platformName = platformName;\n this.platform = platform;\n }\n\n registerFlag(\n flagName: string, evaluationFn: FlagEvaluationFn,\n setHook?: (value: FlagValue) => void) {\n this.flagRegistry[flagName] = {evaluationFn, setHook};\n\n // Override the flag value from the URL. This has to happen here because the\n // environment is initialized before flags get registered.\n if (this.urlFlags[flagName] != null) {\n const flagValue = this.urlFlags[flagName];\n console.warn(\n `Setting feature override from URL ${flagName}: ${flagValue}.`);\n this.set(flagName, flagValue);\n }\n }\n\n async getAsync(flagName: string): Promise {\n if (flagName in this.flags) {\n return this.flags[flagName];\n }\n\n this.flags[flagName] = await this.evaluateFlag(flagName);\n return this.flags[flagName];\n }\n\n get(flagName: string): FlagValue {\n if (flagName in this.flags) {\n return this.flags[flagName];\n }\n\n const flagValue = this.evaluateFlag(flagName);\n if (isPromise(flagValue)) {\n throw new Error(\n `Flag ${flagName} cannot be synchronously evaluated. ` +\n `Please use getAsync() instead.`);\n }\n\n this.flags[flagName] = flagValue as number | boolean;\n\n return this.flags[flagName];\n }\n\n getNumber(flagName: string): number {\n return this.get(flagName) as number;\n }\n\n getBool(flagName: string): boolean {\n return this.get(flagName) as boolean;\n }\n\n getFlags(): Flags {\n return this.flags;\n }\n // For backwards compatibility.\n get features(): Flags {\n return this.flags;\n }\n\n set(flagName: string, value: FlagValue): void {\n if (this.flagRegistry[flagName] == null) {\n throw new Error(\n `Cannot set flag ${flagName} as it has not been registered.`);\n }\n this.flags[flagName] = value;\n if (this.flagRegistry[flagName].setHook != null) {\n this.flagRegistry[flagName].setHook(value);\n }\n }\n\n private evaluateFlag(flagName: string): FlagValue|Promise {\n if (this.flagRegistry[flagName] == null) {\n throw new Error(\n `Cannot evaluate flag '${flagName}': no evaluation function found.`);\n }\n return this.flagRegistry[flagName].evaluationFn();\n }\n\n setFlags(flags: Flags) {\n this.flags = Object.assign({}, flags);\n }\n\n reset() {\n this.flags = {};\n this.urlFlags = {};\n this.populateURLFlags();\n }\n\n private populateURLFlags(): void {\n if (typeof this.global === 'undefined' ||\n typeof this.global.location === 'undefined' ||\n typeof this.global.location.search === 'undefined') {\n return;\n }\n\n const urlParams = this.getQueryParams(this.global.location.search);\n if (TENSORFLOWJS_FLAGS_PREFIX in urlParams) {\n const keyValues = urlParams[TENSORFLOWJS_FLAGS_PREFIX].split(',');\n keyValues.forEach(keyValue => {\n const [key, value] = keyValue.split(':') as [string, string];\n this.urlFlags[key] = parseValue(key, value);\n });\n }\n }\n}\n\nexport function getQueryParams(queryString: string): {[key: string]: string} {\n const params = {};\n queryString.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g, (s, ...t) => {\n decodeParam(params, t[0], t[1]);\n return t.join('=');\n });\n return params;\n}\n\nfunction decodeParam(\n params: {[key: string]: string}, name: string, value?: string) {\n params[decodeURIComponent(name)] = decodeURIComponent(value || '');\n}\n\nfunction parseValue(flagName: string, value: string): FlagValue {\n value = value.toLowerCase();\n if (value === 'true' || value === 'false') {\n return value === 'true';\n } else if (`${+ value}` === value) {\n return +value;\n }\n throw new Error(\n `Could not parse value flag value ${value} for flag ${flagName}.`);\n}\n\n/**\n * Returns the current environment (a global singleton).\n *\n * The environment object contains the evaluated feature values as well as the\n * active platform.\n *\n * @doc {heading: 'Environment'}\n */\nexport function env() {\n return ENV;\n}\n\nexport let ENV: Environment = null;\nexport function setEnvironmentGlobal(environment: Environment) {\n ENV = environment;\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// Note that the identifier globalNameSpace is scoped to this module, but will\n// always resolve to the same global object regardless of how the module is\n// resolved.\n// tslint:disable-next-line:no-any\nlet globalNameSpace: {_tfGlobals: Map};\n// tslint:disable-next-line:no-any\nexport function getGlobalNamespace(): {_tfGlobals: Map} {\n if (globalNameSpace == null) {\n // tslint:disable-next-line:no-any\n let ns: any;\n if (typeof (window) !== 'undefined') {\n ns = window;\n } else if (typeof (global) !== 'undefined') {\n ns = global;\n } else if (typeof (process) !== 'undefined') {\n ns = process;\n } else if (typeof (self) !== 'undefined') {\n ns = self;\n } else {\n throw new Error('Could not find a global object');\n }\n globalNameSpace = ns;\n }\n return globalNameSpace;\n}\n\n// tslint:disable-next-line:no-any\nfunction getGlobalMap(): Map {\n const ns = getGlobalNamespace();\n if (ns._tfGlobals == null) {\n ns._tfGlobals = new Map();\n }\n return ns._tfGlobals;\n}\n\n/**\n * Returns a globally accessible 'singleton' object.\n *\n * @param key the name of the object\n * @param init a function to initialize to initialize this object\n * the first time it is fetched.\n */\nexport function getGlobal(key: string, init: () => T): T {\n const globalMap = getGlobalMap();\n if (globalMap.has(key)) {\n return globalMap.get(key);\n } else {\n const singleton = init();\n globalMap.set(key, singleton);\n return globalMap.get(key);\n }\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n// Allow UpperCamelCase variable names\n// tslint:disable: variable-name\n// Unfortunately just enabling PascalCase per file (tslint:enable:\n// allow-pascal-case) doesn't work.\nimport {NamedTensorInfoMap, TensorInfo} from './kernel_registry';\nimport {ExplicitPadding} from './ops/conv_util';\nimport {Activation} from './ops/fused_types';\nimport {DataType, PixelData} from './types';\n\nexport const Abs = 'Abs';\nexport type AbsInputs = UnaryInputs;\n\nexport const Acos = 'Acos';\nexport type AcosInputs = UnaryInputs;\n\nexport const Acosh = 'Acosh';\nexport type AcoshInputs = UnaryInputs;\n\nexport const Add = 'Add';\nexport type AddInputs = BinaryInputs;\n\nexport const AddN = 'AddN';\nexport type AddNInputs = TensorInfo[];\n\nexport const All = 'All';\nexport type AllInputs = Pick;\nexport interface AllAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Any = 'Any';\nexport type AnyInputs = Pick;\nexport interface AnyAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const ArgMax = 'ArgMax';\nexport type ArgMaxInputs = Pick;\nexport interface ArgMaxAttrs {\n axis: number;\n}\n\nexport const ArgMin = 'ArgMin';\nexport type ArgMinInputs = Pick;\nexport interface ArgMinAttrs {\n axis: number;\n}\n\nexport const Asin = 'Asin';\nexport type AsinInputs = UnaryInputs;\n\nexport const Asinh = 'Asinh';\nexport type AsinhInputs = UnaryInputs;\n\nexport const Atan = 'Atan';\nexport type AtanInputs = UnaryInputs;\n\nexport const Atanh = 'Atanh';\nexport type AtanhInputs = UnaryInputs;\n\nexport const Atan2 = 'Atan2';\nexport type Atan2Inputs = BinaryInputs;\n\nexport const AvgPool = 'AvgPool';\nexport type AvgPoolInputs = Pick;\nexport interface AvgPoolAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const AvgPoolGrad = 'AvgPoolGrad';\nexport type AvgPoolGradInputs = Pick;\nexport interface AvgPoolGradAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n}\n\nexport const AvgPool3D = 'AvgPool3D';\nexport type AvgPool3DInputs = Pick;\nexport interface AvgPool3DAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n dataFormat: 'NDHWC'|'NCDHW';\n}\n\nexport const AvgPool3DGrad = 'AvgPool3DGrad';\nexport type AvgPool3DGradInputs = Pick;\nexport interface AvgPool3DGradAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const BatchMatMul = 'BatchMatMul';\nexport type BatchMatMulInputs = Pick;\nexport interface BatchMatMulAttrs {\n transposeA: boolean;\n transposeB: boolean;\n}\n\nexport const BatchToSpaceND = 'BatchToSpaceND';\nexport type BatchToSpaceNDInputs = Pick;\nexport interface BatchToSpaceNDAttrs {\n blockShape: number[];\n crops: number[][];\n}\n\nexport type BinaryInputs = Pick;\n\nexport const Bincount = 'Bincount';\nexport type BincountInputs = Pick;\nexport interface BincountAttrs {\n size: number;\n}\n\nexport const BroadcastTo = 'BroadcastTo';\nexport type BroadcastToInputs = Pick;\nexport interface BroadCastToAttrs {\n shape: number[];\n inputShape: number[]; // for gradient\n}\n\nexport const Cast = 'Cast';\nexport type CastInputs = UnaryInputs;\nexport interface CastAttrs {\n dtype: DataType;\n}\n\nexport const Ceil = 'Ceil';\nexport type CeilInputs = UnaryInputs;\n\nexport const ClipByValue = 'ClipByValue';\nexport type ClipByValueInputs = UnaryInputs;\nexport interface ClipByValueAttrs {\n clipValueMin: number;\n clipValueMax: number;\n}\n\nexport const Complex = 'Complex';\nexport type ComplexInputs = Pick;\n\nexport const ComplexAbs = 'ComplexAbs';\nexport type ComplexAbsInputs = UnaryInputs;\n\nexport const Concat = 'Concat';\nexport type ConcatInputs = TensorInfo[];\nexport interface ConcatAttrs {\n axis: number;\n}\n\nexport const Conv2D = 'Conv2D';\nexport type Conv2DInputs = Pick;\nexport interface Conv2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const Conv2DBackpropFilter = 'Conv2DBackpropFilter';\nexport type Conv2DBackpropFilterInputs = Pick;\nexport interface Conv2DBackpropFilterAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dimRoundingMode?: 'floor'|'round'|'ceil';\n filterShape: [number, number, number, number];\n}\n\nexport const Conv2DBackpropInput = 'Conv2DBackpropInput';\nexport type Conv2DBackpropInputInputs = Pick;\nexport interface Conv2DBackpropInputAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dimRoundingMode?: 'floor'|'round'|'ceil';\n inputShape: [number, number, number, number];\n}\n\nexport const Conv3D = 'Conv3D';\nexport type Conv3DInputs = Pick;\nexport interface Conv3DAttrs {\n strides: [number, number, number]|number;\n pad: 'valid'|'same';\n dataFormat: 'NDHWC'|'NCDHW';\n dilations: [number, number, number]|number;\n}\n\nexport const Conv3DBackpropFilterV2 = 'Conv3DBackpropFilterV2';\nexport type Conv3DBackpropFilterV2Inputs = Pick;\n\nexport interface Conv3DBackpropFilterV2Attrs {\n strides: [number, number, number]|number;\n pad: 'valid'|'same';\n filterShape: [number, number, number, number, number];\n}\n\nexport const Conv3DBackpropInputV2 = 'Conv3DBackpropInputV2';\nexport type Conv3DBackpropInputV2Inputs =\n Pick;\nexport interface Conv3DBackpropInputV2Attrs {\n strides: [number, number, number]|number;\n pad: 'valid'|'same';\n inputShape: [number, number, number, number, number];\n}\n\nexport const Cos = 'Cos';\nexport type CosInputs = UnaryInputs;\n\nexport const Cosh = 'Cosh';\nexport type CoshInputs = UnaryInputs;\n\nexport const Cumsum = 'Cumsum';\nexport type CumsumInputs = Pick;\nexport interface CumsumAttrs {\n axis: number;\n exclusive: boolean;\n reverse: boolean;\n}\n\nexport const CropAndResize = 'CropAndResize';\nexport type CropAndResizeInputs =\n Pick;\nexport interface CropAndResizeAttrs {\n cropSize: [number, number];\n method: 'bilinear'|'nearest';\n extrapolationValue: number;\n}\n\nexport const DenseBincount = 'DenseBincount';\nexport type DenseBincountInputs = Pick;\nexport interface DenseBincountAttrs {\n size: number;\n binaryOutput?: boolean;\n}\n\nexport const DepthToSpace = 'DepthToSpace';\nexport type DepthToSpaceInputs = Pick;\nexport interface DepthToSpaceAttrs {\n blockSize: number;\n dataFormat: 'NHWC'|'NCHW';\n}\n\nexport const DepthwiseConv2dNative = 'DepthwiseConv2dNative';\nexport type DepthwiseConv2dNativeInputs =\n Pick;\nexport interface DepthwiseConv2dNativeAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const DepthwiseConv2dNativeBackpropFilter =\n 'DepthwiseConv2dNativeBackpropFilter';\nexport type DepthwiseConv2dNativeBackpropFilterInputs =\n Pick;\nexport interface DepthwiseConv2dNativeBackpropFilterAttrs {\n strides: [number, number]|number;\n dilations: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n filterShape: [number, number, number, number];\n}\n\nexport const DepthwiseConv2dNativeBackpropInput =\n 'DepthwiseConv2dNativeBackpropInput';\nexport type DepthwiseConv2dNativeBackpropInputInputs =\n Pick;\nexport interface DepthwiseConv2dNativeBackpropInputAttrs {\n strides: [number, number]|number;\n dilations: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n inputShape: [number, number, number, number];\n}\n\nexport const Diag = 'Diag';\nexport type DiagInputs = Pick;\n\nexport const Dilation2D = 'Dilation2D';\nexport type Dilation2DInputs = Pick;\nexport interface Dilation2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dilations: [number, number]|number;\n}\n\nexport const Dilation2DBackpropInput = 'Dilation2DBackpropInput';\nexport type Dilation2DBackpropInputInputs =\n Pick;\n\nexport const Dilation2DBackpropFilter = 'Dilation2DBackpropFilter';\nexport type Dilation2DBackpropFilterInputs =\n Pick;\n\nexport const RealDiv = 'RealDiv';\nexport type RealDivInputs = BinaryInputs;\n\nexport const Einsum = 'Einsum';\nexport type EinsumInputs = TensorInfo[];\nexport interface EinsumAttrs {\n equation: string;\n}\n\nexport const Elu = 'Elu';\nexport type EluInputs = Pick;\n\nexport const EluGrad = 'EluGrad';\nexport type EluGradInputs = Pick;\n\nexport const Erf = 'Erf';\nexport type ErfInputs = UnaryInputs;\n\nexport const Equal = 'Equal';\nexport type EqualInputs = BinaryInputs;\n\nexport const Exp = 'Exp';\nexport type ExpInputs = UnaryInputs;\n\nexport const ExpandDims = 'ExpandDims';\nexport type ExpandDimsInputs = Pick;\nexport interface ExpandDimsAttrs {\n dim: number;\n}\n\nexport const Expm1 = 'Expm1';\nexport type Expm1Inputs = UnaryInputs;\n\nexport const FFT = 'FFT';\nexport type FFTInputs = Pick;\n\nexport const Fill = 'Fill';\nexport interface FillAttrs {\n shape: number[];\n value: number|string;\n dtype: DataType;\n}\n\nexport const FlipLeftRight = 'FlipLeftRight';\nexport type FlipLeftRightInputs = Pick;\n\nexport const Floor = 'Floor';\nexport type FloorInputs = UnaryInputs;\n\nexport const FloorDiv = 'FloorDiv';\nexport type FloorDivInputs = BinaryInputs;\n\nexport const FusedBatchNorm = 'FusedBatchNorm';\nexport type FusedBatchNormInputs =\n Pick;\nexport interface FusedBatchNormAttrs {\n varianceEpsilon: number;\n}\n\nexport const GatherV2 = 'GatherV2';\nexport type GatherV2Inputs = Pick;\nexport interface GatherV2Attrs {\n axis: number;\n batchDims: number;\n}\n\nexport const GatherNd = 'GatherNd';\nexport type GatherNdInputs = Pick;\n\nexport const Greater = 'Greater';\nexport type GreaterInputs = BinaryInputs;\n\nexport const GreaterEqual = 'GreaterEqual';\nexport type GreaterEqualInputs = BinaryInputs;\n\nexport const Identity = 'Identity';\nexport type IdentityInputs = Pick;\n\nexport const IFFT = 'IFFT';\nexport type IFFTInputs = Pick;\n\nexport const Imag = 'Imag';\nexport type ImagInputs = Pick;\n\nexport const IsFinite = 'IsFinite';\nexport type IsFiniteInputs = UnaryInputs;\n\nexport const IsInf = 'IsInf';\nexport type IsInfInputs = UnaryInputs;\n\nexport const IsNan = 'IsNan';\nexport type IsNanInputs = UnaryInputs;\n\nexport const LeakyRelu = 'LeakyRelu';\nexport type LeakyReluInputs = Pick;\nexport interface LeakyReluAttrs {\n alpha: number;\n}\n\nexport const Less = 'Less';\nexport type LessInputs = BinaryInputs;\n\nexport const LessEqual = 'LessEqual';\nexport type LessEqualInputs = BinaryInputs;\n\nexport const LinSpace = 'LinSpace';\nexport interface LinSpaceAttrs {\n start: number;\n stop: number;\n num: number;\n}\nexport const Log = 'Log';\nexport type LogInputs = UnaryInputs;\n\nexport const Log1p = 'Log1p';\nexport type Log1pInputs = UnaryInputs;\n\nexport const LogicalAnd = 'LogicalAnd';\nexport type LogicalAndInputs = BinaryInputs;\n\nexport const LogicalNot = 'LogicalNot';\nexport type LogicalNotInputs = Pick;\n\nexport const LogicalOr = 'LogicalOr';\nexport type LogicalOrInputs = BinaryInputs;\n\nexport const LogSoftmax = 'LogSoftmax';\nexport type LogSoftmaxInputs = Pick;\nexport interface LogSoftmaxAttrs {\n axis: number;\n}\n\nexport const LRN = 'LRN';\nexport type LRNInputs = Pick;\nexport interface LRNAttrs {\n depthRadius: number;\n bias: number;\n alpha: number;\n beta: number;\n}\n\nexport const LRNGrad = 'LRNGrad';\nexport type LRNGradInputs = Pick;\nexport interface LRNGradAttrs {\n depthRadius: number;\n bias: number;\n alpha: number;\n beta: number;\n}\n\nexport const Max = 'Max';\nexport type MaxInputs = Pick;\nexport interface MaxAttrs {\n reductionIndices: number|number[];\n keepDims: boolean;\n}\n\nexport const Maximum = 'Maximum';\nexport type MaximumInputs = BinaryInputs;\n\nexport const MaxPool = 'MaxPool';\nexport type MaxPoolInputs = Pick;\nexport interface MaxPoolAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPoolGrad = 'MaxPoolGrad';\nexport type MaxPoolGradInputs = Pick;\nexport interface MaxPoolGradAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPool3D = 'MaxPool3D';\nexport type MaxPool3DInputs = Pick;\nexport interface MaxPool3DAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dataFormat: 'NDHWC'|'NCDHW';\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPool3DGrad = 'MaxPool3DGrad';\nexport type MaxPool3DGradInputs =\n Pick;\nexport interface MaxPool3DGradAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPoolWithArgmax = 'MaxPoolWithArgmax';\nexport type MaxPoolWithArgmaxInputs = Pick;\nexport interface MaxPoolWithArgmaxAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n includeBatchInIndex: boolean;\n}\n\nexport const Mean = 'Mean';\nexport type MeanInputs = Pick;\nexport interface MeanAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Min = 'Min';\nexport type MinInputs = Pick;\nexport interface MinAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Minimum = 'Minimum';\nexport type MinimumInputs = BinaryInputs;\n\nexport const MirrorPad = 'MirrorPad';\nexport type MirrorPadInputs = Pick;\nexport interface MirrorPadAttrs {\n paddings: Array<[number, number]>;\n mode: 'reflect'|'symmetric';\n}\n\nexport const Mod = 'Mod';\nexport type ModInputs = BinaryInputs;\n\nexport const Multinomial = 'Multinomial';\nexport type MultinomialInputs = Pick;\nexport interface MultinomialAttrs {\n numSamples: number;\n seed: number;\n normalized: boolean;\n}\n\nexport const Multiply = 'Multiply';\nexport type MultiplyInputs = BinaryInputs;\n\nexport const Neg = 'Neg';\nexport type NegInputs = UnaryInputs;\n\nexport const NotEqual = 'NotEqual';\nexport type NotEqualInputs = BinaryInputs;\n\nexport const NonMaxSuppressionV3 = 'NonMaxSuppressionV3';\nexport type NonMaxSuppressionV3Inputs =\n Pick;\nexport interface NonMaxSuppressionV3Attrs {\n maxOutputSize: number;\n iouThreshold: number;\n scoreThreshold: number;\n}\n\nexport const NonMaxSuppressionV4 = 'NonMaxSuppressionV4';\nexport type NonMaxSuppressionV4Inputs =\n Pick;\nexport interface NonMaxSuppressionV4Attrs {\n maxOutputSize: number;\n iouThreshold: number;\n scoreThreshold: number;\n padToMaxOutputSize: boolean;\n}\n\nexport const NonMaxSuppressionV5 = 'NonMaxSuppressionV5';\nexport type NonMaxSuppressionV5Inputs =\n Pick;\nexport interface NonMaxSuppressionV5Attrs {\n maxOutputSize: number;\n iouThreshold: number;\n scoreThreshold: number;\n softNmsSigma: number;\n}\n\nexport const OnesLike = 'OnesLike';\nexport type OnesLikeInputs = UnaryInputs;\n\nexport const OneHot = 'OneHot';\nexport type OneHotInputs = Pick;\nexport interface OneHotAttrs {\n depth: number;\n onValue: number;\n offValue: number;\n}\n\nexport const Pack = 'Pack';\nexport type PackInputs = TensorInfo[];\nexport interface PackAttrs {\n axis: number;\n}\n\nexport const PadV2 = 'PadV2';\nexport type PadV2Inputs = Pick;\nexport interface PadV2Attrs {\n paddings: Array<[number, number]>;\n constantValue: number;\n}\n\nexport const Pool = 'Pool';\nexport type PoolInputs = Pick;\n\nexport const Pow = 'Pow';\nexport type PowInputs = BinaryInputs;\n\nexport const Prelu = 'Prelu';\nexport type PreluInputs = Pick;\n\nexport const Prod = 'Prod';\nexport type ProdInputs = Pick;\nexport interface ProdAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Range = 'Range';\nexport interface RangeAttrs {\n start: number;\n stop: number;\n step: number;\n dtype: 'float32'|'int32';\n}\n\nexport const Real = 'Real';\nexport type RealInputs = Pick;\n\nexport const Reciprocal = 'Reciprocal';\nexport type ReciprocalInputs = UnaryInputs;\n\nexport const Relu = 'Relu';\nexport type ReluInputs = Pick;\n\nexport const Reshape = 'Reshape';\nexport type ReshapeInputs = Pick;\nexport interface ReshapeAttrs {\n shape: number[];\n}\n\nexport const ResizeNearestNeighbor = 'ResizeNearestNeighbor';\nexport type ResizeNearestNeighborInputs = Pick;\nexport interface ResizeNearestNeighborAttrs {\n alignCorners: boolean;\n halfPixelCenters: boolean;\n size: [number, number];\n}\n\nexport const ResizeNearestNeighborGrad = 'ResizeNearestNeighborGrad';\nexport type ResizeNearestNeighborGradInputs =\n Pick;\nexport type ResizeNearestNeighborGradAttrs = ResizeNearestNeighborAttrs;\n\nexport const ResizeBilinear = 'ResizeBilinear';\nexport type ResizeBilinearInputs = Pick;\nexport interface ResizeBilinearAttrs {\n alignCorners: boolean;\n halfPixelCenters: boolean;\n size: [number, number];\n}\n\nexport const ResizeBilinearGrad = 'ResizeBilinearGrad';\nexport type ResizeBilinearGradInputs = Pick;\nexport type ResizeBilinearGradAttrs = ResizeBilinearAttrs;\n\nexport const Relu6 = 'Relu6';\nexport type Relu6Inputs = Pick;\n\nexport const Reverse = 'Reverse';\nexport type ReverseInputs = Pick;\nexport interface ReverseAttrs {\n dims: number|number[];\n}\n\nexport const Round = 'Round';\nexport type RoundInputs = UnaryInputs;\n\nexport const Rsqrt = 'Rsqrt';\nexport type RsqrtInputs = UnaryInputs;\n\nexport const ScatterNd = 'ScatterNd';\nexport type ScatterNdInputs = Pick;\nexport interface ScatterNdAttrs {\n shape: number[];\n}\n\nexport const Select = 'Select';\nexport type SelectInputs = Pick;\n\nexport const Selu = 'Selu';\nexport type SeluInputs = Pick;\n\nexport const Slice = 'Slice';\nexport type SliceInputs = Pick;\nexport interface SliceAttrs {\n begin: number|number[];\n size: number|number[];\n}\nexport const Sin = 'Sin';\nexport type SinInputs = UnaryInputs;\n\nexport const Sinh = 'Sinh';\nexport type SinhInputs = UnaryInputs;\n\nexport const Sign = 'Sign';\nexport type SignInputs = UnaryInputs;\n\nexport const Sigmoid = 'Sigmoid';\nexport type SigmoidInputs = UnaryInputs;\n\nexport const Softplus = 'Softplus';\nexport type SoftplusInputs = UnaryInputs;\n\nexport const Sqrt = 'Sqrt';\nexport type SqrtInputs = UnaryInputs;\n\nexport const Sum = 'Sum';\nexport type SumInputs = Pick;\nexport interface SumAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const SpaceToBatchND = 'SpaceToBatchND';\nexport type SpaceToBatchNDInputs = Pick;\nexport interface SpaceToBatchNDAttrs {\n blockShape: number[];\n paddings: number[][];\n}\n\nexport const SplitV = 'SplitV';\nexport type SplitVInputs = Pick;\nexport interface SplitVAttrs {\n numOrSizeSplits: number[]|number;\n axis: number;\n}\n\nexport const Softmax = 'Softmax';\nexport type SoftmaxInputs = Pick;\nexport interface SoftmaxAttrs {\n dim: number;\n}\n\nexport const SparseReshape = 'SparseReshape';\nexport type SparseReshapeInputs =\n Pick;\n\nexport const SparseToDense = 'SparseToDense';\nexport type SparseToDenseInputs =\n Pick;\nexport interface SparseToDenseAttrs {\n outputShape: number[];\n}\n\nexport const SquaredDifference = 'SquaredDifference';\nexport type SquaredDifferenceInputs = BinaryInputs;\n\nexport const Square = 'Square';\nexport type SquareInputs = Pick;\n\nexport const StridedSlice = 'StridedSlice';\nexport type StridedSliceInputs = Pick;\nexport interface StridedSliceAttrs {\n begin: number[];\n end: number[];\n strides: number[];\n beginMask: number;\n endMask: number;\n ellipsisMask: number;\n newAxisMask: number;\n shrinkAxisMask: number;\n}\n\nexport const Sub = 'Sub';\nexport type SubInputs = BinaryInputs;\n\nexport const Tan = 'Tan';\nexport type TanInputs = UnaryInputs;\n\nexport const Tanh = 'Tanh';\nexport type TanhInputs = UnaryInputs;\n\nexport const Tile = 'Tile';\nexport type TileInputs = Pick;\nexport interface TileAttrs {\n reps: number[];\n}\n\nexport const TopK = 'TopK';\nexport type TopKInputs = Pick;\nexport interface TopKAttrs {\n k: number;\n sorted: boolean;\n}\n\nexport const Transform = 'Transform';\nexport type TransformInputs = Pick;\nexport interface TransformAttrs {\n interpolation: 'nearest'|'bilinear';\n fillMode: 'constant'|'reflect'|'wrap'|'nearest';\n fillValue: number;\n outputShape?: [number, number];\n}\n\nexport const Transpose = 'Transpose';\nexport type TransposeInputs = Pick;\nexport interface TransposeAttrs {\n perm: number[];\n}\n\nexport const Unique = 'Unique';\nexport type UniqueInputs = Pick;\nexport interface UniqueAttrs {\n axis: number;\n}\n\nexport type UnaryInputs = Pick;\n\nexport const Unpack = 'Unpack';\nexport type UnpackInputs = Pick;\nexport interface UnpackAttrs {\n axis: number;\n}\n\nexport const UnsortedSegmentSum = 'UnsortedSegmentSum';\nexport type UnsortedSegmentSumInputs =\n Pick;\nexport interface UnsortedSegmentSumAttrs {\n numSegments: number;\n}\n\nexport const ZerosLike = 'ZerosLike';\nexport type ZerosLikeInputs = UnaryInputs;\n\n/**\n * TensorFlow.js-only kernels\n */\nexport const Step = 'Step';\nexport type StepInputs = UnaryInputs;\nexport interface StepAttrs {\n alpha: number;\n}\n\nexport const FromPixels = 'FromPixels';\nexport interface FromPixelsInputs {\n pixels: PixelData|ImageData|HTMLImageElement|HTMLCanvasElement|\n HTMLVideoElement|ImageBitmap;\n}\nexport interface FromPixelsAttrs {\n numChannels: number;\n}\n\nexport const RotateWithOffset = 'RotateWithOffset';\nexport type RotateWithOffsetInputs = Pick;\nexport interface RotateWithOffsetAttrs {\n radians: number;\n fillValue: number|[number, number, number];\n center: number|[number, number];\n}\n\nexport const _FusedMatMul = '_FusedMatMul';\n// tslint:disable-next-line: class-name\nexport interface _FusedMatMulInputs extends NamedTensorInfoMap {\n a: TensorInfo;\n b: TensorInfo;\n bias?: TensorInfo;\n preluActivationWeights?: TensorInfo;\n}\n// tslint:disable-next-line: class-name\nexport interface _FusedMatMulAttrs {\n transposeA: boolean;\n transposeB: boolean;\n activation: Activation;\n leakyreluAlpha?: number;\n}\n\nexport const FusedConv2D = 'FusedConv2D';\nexport interface FusedConv2DInputs extends NamedTensorInfoMap {\n x: TensorInfo;\n filter: TensorInfo;\n bias?: TensorInfo;\n preluActivationWeights?: TensorInfo;\n}\nexport interface FusedConv2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode: 'floor'|'round'|'ceil';\n activation: Activation;\n leakyreluAlpha?: number;\n}\n\nexport const FusedDepthwiseConv2D = 'FusedDepthwiseConv2D';\nexport interface FusedDepthwiseConv2DInputs extends NamedTensorInfoMap {\n x: TensorInfo;\n filter: TensorInfo;\n bias?: TensorInfo;\n preluActivationWeights?: TensorInfo;\n}\nexport interface FusedDepthwiseConv2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode: 'floor'|'round'|'ceil';\n activation: Activation;\n leakyreluAlpha?: number;\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {env} from './environment';\n\nimport {getGlobal} from './global_util';\nimport {NamedGradientMap} from './tape';\nimport {Tensor} from './tensor';\nimport {DataType, RecursiveArray} from './types';\n\nconst kernelRegistry =\n getGlobal('kernelRegistry', () => new Map());\nconst gradRegistry =\n getGlobal('gradRegistry', () => new Map());\n\nexport type DataId = object;\n\ntype AttributeValue =\n number|number[]|boolean|boolean[]|string|string[]|NamedAttrMap;\n\n/** These are extra non-tensor/primitive params passed to kernel functions. */\nexport type Attribute = AttributeValue|RecursiveArray;\n\n/** Specifies the code to run when executing a kernel. */\nexport type KernelFunc = (params: {\n inputs: NamedTensorInfoMap,\n backend: {},\n attrs?: NamedAttrMap,\n}) => TensorInfo|TensorInfo[];\n\n/** The function to run when computing a gradient during backprop. */\nexport type GradFunc =\n (dy: Tensor|Tensor[], saved: Tensor[], attrs: NamedAttrMap) =>\n NamedGradientMap;\n\n/** Function that gets called after the backend initializes. */\nexport type KernelSetupFunc = (backend: {}) => void;\n/** Function that gets called right before the backend is disposed. */\nexport type KernelDisposeFunc = KernelSetupFunc;\n\n/** Config object for registering a kernel in the global registry. */\nexport interface KernelConfig {\n kernelName: string;\n backendName: string;\n kernelFunc: KernelFunc;\n setupFunc?: KernelSetupFunc;\n disposeFunc?: KernelDisposeFunc;\n}\n\n/** Config object for registering a gradient in the global registry. */\nexport interface GradConfig {\n kernelName: string;\n inputsToSave?: string[];\n // When saveAllInputs is true, all inputs will be saved. Only use this flag\n // if inputs is an array of Tensors.\n saveAllInputs?: boolean;\n outputsToSave?: boolean[];\n gradFunc: GradFunc;\n}\n\n/** Holds metadata for a given tensor. */\nexport interface TensorInfo {\n dataId: DataId;\n shape: number[];\n dtype: DataType;\n}\n\nexport interface NamedTensorInfoMap {\n [name: string]: TensorInfo;\n}\n\nexport interface NamedAttrMap {\n [name: string]: Attribute;\n}\n\n/**\n * Returns the kernel function (code) associated with the provided names.\n *\n * @param kernelName The official name of the kernel.\n * @param backendName The official name of the backend.\n */\nexport function getKernel(\n kernelName: string, backendName: string): KernelConfig {\n const key = makeKey(kernelName, backendName);\n return kernelRegistry.get(key);\n}\n\n/**\n * Returns the registered gradient info associated with the provided kernel.\n * @param kernelName The official TF kernel name.\n */\nexport function getGradient(kernelName: string): GradConfig {\n return gradRegistry.get(kernelName);\n}\n\nexport function getKernelsForBackend(backendName: string): KernelConfig[] {\n const it = kernelRegistry.entries();\n const result: KernelConfig[] = [];\n\n while (true) {\n const {done, value} = it.next();\n if (done) {\n break;\n }\n const [key, config] = value;\n const [backend, ] = key.split('_');\n if (backend === backendName) {\n result.push(config);\n }\n }\n return result;\n}\n\n/**\n * Registers the function (forward pass) for the kernel in a global registry.\n *\n * @param config A config object with the following properties:\n * - `kernelName` The official name of the kernel.\n * - `backendName` The official name of the backend.\n * - `kernelFunc` The function to run during the forward pass of the kernel.\n * - `setupFunc` Optional. Gets called once, after the backend initializes.\n * - `disposeFunc` Optional. Gets called once, right before the backend is\n * disposed.\n */\nexport function registerKernel(config: KernelConfig) {\n const {kernelName, backendName} = config;\n const key = makeKey(kernelName, backendName);\n if (kernelRegistry.has(key)) {\n console.warn(\n `The kernel '${kernelName}' for backend ` +\n `'${backendName}' is already registered`);\n }\n kernelRegistry.set(key, config);\n}\n\n/**\n * Registers a gradient function for a given kernel in the global registry,\n * to be used during the back-propagation of that kernel.\n *\n * @param config An object with the following properties:\n * - `kernelName` The name of the kernel that the gradient function is for.\n * - `gradFunc` The function to run during back-propagation.\n */\nexport function registerGradient(config: GradConfig) {\n const {kernelName} = config;\n\n if (gradRegistry.has(kernelName)) {\n // TODO (yassogba) after 3.0 assess whether we need to keep this gated\n // to debug mode.\n if (env().getBool('DEBUG')) {\n console.warn(`Overriding the gradient for '${kernelName}'`);\n }\n }\n gradRegistry.set(kernelName, config);\n}\n\n/**\n * Removes the kernel function from the registry.\n *\n * @param kernelName The official name of the kernel.\n * @param backendName The official name of the backend.\n *\n */\nexport function unregisterKernel(\n kernelName: string, backendName: string): void {\n const key = makeKey(kernelName, backendName);\n if (!kernelRegistry.has(key)) {\n throw new Error(\n `The kernel '${kernelName}' for backend ` +\n `'${backendName}' is not registered`);\n }\n kernelRegistry.delete(key);\n}\n\n/** Removes the registered gradient from the global registry. */\nexport function unregisterGradient(kernelName: string): void {\n if (!gradRegistry.has(kernelName)) {\n throw new Error(\n `The gradient '${kernelName}' for backend is not registered`);\n }\n gradRegistry.delete(kernelName);\n}\n\n/**\n * Finds kernels that have already been registered to a backend and re-registers\n * them for a new backend. Useful for registering custom backends.\n * @param registeredBackendName Already registered backend.\n * @param newBackendName New backend.\n */\nexport function copyRegisteredKernels(\n registeredBackendName: string, newBackendName: string): void {\n const kernels = getKernelsForBackend(registeredBackendName);\n kernels.forEach(kernelConfig => {\n const newKernelConfig =\n Object.assign({}, kernelConfig, {backendName: newBackendName});\n registerKernel(newKernelConfig);\n });\n}\n\nfunction makeKey(kernelName: string, backendName: string) {\n return `${backendName}_${kernelName}`;\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {env} from './environment';\nimport {BackendValues, DataType, TensorLike, TypedArray} from './types';\nimport * as base from './util_base';\nexport * from './util_base';\n\n/**\n * Create typed array for scalar value. Used for storing in `DataStorage`.\n */\nexport function createScalarValue(\n value: DataType, dtype: DataType): BackendValues {\n if (dtype === 'string') {\n return encodeString(value);\n }\n\n return toTypedArray([value], dtype);\n}\n\nfunction noConversionNeeded(a: TensorLike, dtype: DataType): boolean {\n return (a instanceof Float32Array && dtype === 'float32') ||\n (a instanceof Int32Array && dtype === 'int32') ||\n (a instanceof Uint8Array && dtype === 'bool');\n}\n\nexport function toTypedArray(a: TensorLike, dtype: DataType): TypedArray {\n if (dtype === 'string') {\n throw new Error('Cannot convert a string[] to a TypedArray');\n }\n if (Array.isArray(a)) {\n a = base.flatten(a);\n }\n\n if (env().getBool('DEBUG')) {\n base.checkConversionForErrors(a as number[], dtype);\n }\n if (noConversionNeeded(a, dtype)) {\n return a as TypedArray;\n }\n if (dtype == null || dtype === 'float32' || dtype === 'complex64') {\n return new Float32Array(a as number[]);\n } else if (dtype === 'int32') {\n return new Int32Array(a as number[]);\n } else if (dtype === 'bool') {\n const bool = new Uint8Array((a as number[]).length);\n for (let i = 0; i < bool.length; ++i) {\n if (Math.round((a as number[])[i]) !== 0) {\n bool[i] = 1;\n }\n }\n return bool;\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\n\n/**\n * Returns the current high-resolution time in milliseconds relative to an\n * arbitrary time in the past. It works across different platforms (node.js,\n * browsers).\n *\n * ```js\n * console.log(tf.util.now());\n * ```\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function now(): number {\n return env().platform.now();\n}\n\n/**\n * Returns a platform-specific implementation of\n * [`fetch`](https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API).\n *\n * If `fetch` is defined on the global object (`window`, `process`, etc.),\n * `tf.util.fetch` returns that function.\n *\n * If not, `tf.util.fetch` returns a platform-specific solution.\n *\n * ```js\n * const resource = await tf.util.fetch('https://unpkg.com/@tensorflow/tfjs');\n * // handle response\n * ```\n *\n * @doc {heading: 'Util'}\n */\nexport function fetch(\n path: string, requestInits?: RequestInit): Promise {\n return env().platform.fetch(path, requestInits);\n}\n\n/**\n * Encodes the provided string into bytes using the provided encoding scheme.\n *\n * @param s The string to encode.\n * @param encoding The encoding scheme. Defaults to utf-8.\n *\n * @doc {heading: 'Util'}\n */\nexport function encodeString(s: string, encoding = 'utf-8'): Uint8Array {\n encoding = encoding || 'utf-8';\n return env().platform.encode(s, encoding);\n}\n\n/**\n * Decodes the provided bytes into a string using the provided encoding scheme.\n * @param bytes The bytes to decode.\n *\n * @param encoding The encoding scheme. Defaults to utf-8.\n *\n * @doc {heading: 'Util'}\n */\nexport function decodeString(bytes: Uint8Array, encoding = 'utf-8'): string {\n encoding = encoding || 'utf-8';\n return env().platform.decode(bytes, encoding);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {BackendTimer, BackendTimingInfo} from './backends/backend';\nimport {env} from './environment';\nimport {Tensor} from './tensor';\nimport {NamedTensorMap} from './tensor_types';\nimport {DataType, DataTypeMap, TypedArray} from './types';\nimport * as util from './util';\n\nexport type KernelProfile = {\n kernelName: string,\n outputs: Tensor[],\n inputs: NamedTensorMap,\n timeMs: Promise,\n extraInfo: Promise\n};\n\nexport class Profiler {\n constructor(private backendTimer: BackendTimer, private logger?: Logger) {\n if (logger == null) {\n this.logger = new Logger();\n }\n }\n\n profileKernel(kernelName: string, inputs: NamedTensorMap, f: () => Tensor[]):\n KernelProfile {\n let outputs: Tensor[];\n const holdResultWrapperFn = () => {\n outputs = f();\n };\n let timer: Promise;\n const start = util.now();\n if (this.backendTimer.timerAvailable()) {\n timer = this.backendTimer.time(holdResultWrapperFn);\n } else {\n holdResultWrapperFn();\n for (const output of outputs) {\n output.dataSync();\n }\n timer = Promise.resolve({kernelMs: util.now() - start});\n }\n if (env().getBool('CHECK_COMPUTATION_FOR_ERRORS')) {\n for (let i = 0; i < outputs.length; i++) {\n const output = outputs[i];\n // Dangling promise here because we don't want to propagate up\n // asynchronicity.\n output.data().then(tensorVals => {\n checkComputationForErrors(tensorVals, output.dtype, kernelName);\n });\n }\n }\n\n const kernelProfile = {\n kernelName,\n outputs,\n inputs,\n timeMs: timer.then(timing => timing.kernelMs),\n extraInfo: timer.then(\n timing => timing.getExtraProfileInfo != null ?\n timing.getExtraProfileInfo() :\n '')\n };\n return kernelProfile;\n }\n\n logKernelProfile(kernelProfile: KernelProfile): void {\n const {kernelName, outputs, timeMs, inputs, extraInfo} = kernelProfile;\n\n outputs.forEach(result => {\n Promise.all([result.data(), timeMs, extraInfo]).then(valueContainer => {\n this.logger.logKernelProfile(\n kernelName, result, valueContainer[0], valueContainer[1], inputs,\n valueContainer[2]);\n });\n });\n }\n}\n\nexport function checkComputationForErrors(\n vals: DataTypeMap[D], dtype: D, kernelName: string): boolean {\n if (dtype !== 'float32') {\n // Only floating point computations will generate NaN values\n return false;\n }\n for (let i = 0; i < vals.length; i++) {\n const num = vals[i] as number;\n if (isNaN(num) || !isFinite(num)) {\n // Throwing custom exception so behavior is testable.\n console.warn(`Found ${num} in the result of '${kernelName}'`);\n return true;\n }\n }\n return false;\n}\n\nexport class Logger {\n logKernelProfile(\n name: string, result: Tensor, vals: TypedArray,\n timeMs: number|{error: string}, inputs: NamedTensorMap,\n extraInfo?: string) {\n const time = typeof timeMs === 'number' ? util.rightPad(`${timeMs}ms`, 9) :\n timeMs['error'];\n const paddedName = util.rightPad(name, 25);\n const rank = result.rank;\n const size = result.size;\n const shape = util.rightPad(result.shape.toString(), 14);\n let inputShapesDescription = '';\n\n for (const name in inputs) {\n const input = inputs[name];\n if (input != null) {\n // The input might be a non-tensor (e.g HTMLImageElement), in which case\n // we claim the output shape as input shape.\n const inputShape = input.shape || result.shape;\n const inputRank = inputShape.length;\n inputShapesDescription +=\n `${name}: ${inputRank}D ${inputRank > 0 ? inputShape : ''} `;\n }\n }\n\n console.log(\n `%c${paddedName}\\t%c${time}\\t%c${rank}D ${shape}\\t%c${size}\\t%c${\n inputShapesDescription}\\t%c${extraInfo}`,\n 'font-weight:bold', 'color:red', 'color:blue', 'color: orange',\n 'color: green', 'color: steelblue');\n }\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from './tensor';\nimport {NamedTensorMap} from './tensor_types';\nimport * as util from './util';\n\nexport interface TapeNode {\n id: number;\n kernelName: string;\n outputs: Tensor[];\n inputs: NamedTensorMap;\n // Optional params, defined only for ops with gradient impl.\n gradient?: (dys: Tensor[]) => NamedGradientMap;\n saved?: Tensor[];\n}\n\nexport type NamedGradientMap = {\n [inputName: string]: () => Tensor;\n};\n\n/**\n * Computes a list of TapeNodes that connect x to y, filtering everything else\n * out and preserving the order of the original tape elements.\n *\n * @param tape The tape elements to filter.\n * @param xs The input Tensors.\n * @param y The output Tensor.\n */\nexport function getFilteredNodesXToY(\n tape: TapeNode[], xs: Tensor[], y: Tensor): TapeNode[] {\n // Forward pass to compute all the nodes and Tensors that are transitively a\n // function of x.\n const tensorsFromX: {[tensorId: number]: boolean} = {};\n const nodesFromX: {[nodeId: number]: boolean} = {};\n for (let i = 0; i < xs.length; i++) {\n tensorsFromX[xs[i].id] = true;\n }\n\n for (let i = 0; i < tape.length; i++) {\n const node = tape[i];\n const nodeInputs = node.inputs;\n for (const inputName in nodeInputs) {\n const input = nodeInputs[inputName];\n\n let anyInputFromX = false;\n for (let j = 0; j < xs.length; j++) {\n if (tensorsFromX[input.id]) {\n node.outputs.forEach(output => tensorsFromX[output.id] = true);\n anyInputFromX = true;\n nodesFromX[node.id] = true;\n break;\n }\n }\n\n if (anyInputFromX) {\n break;\n }\n }\n }\n\n // Backward pass to find all of the nodes and Tensors that lead to y.\n const tensorsLeadToY: {[tensorId: number]: boolean} = {};\n tensorsLeadToY[y.id] = true;\n const nodesToY: {[nodeId: number]: boolean} = {};\n\n for (let i = tape.length - 1; i >= 0; i--) {\n const node = tape[i];\n const nodeInputs = node.inputs;\n\n // If any of the outputs lead to y, mark all of the inputs as leading to y.\n for (let j = 0; j < node.outputs.length; j++) {\n if (tensorsLeadToY[node.outputs[j].id]) {\n for (const inputName in nodeInputs) {\n tensorsLeadToY[nodeInputs[inputName].id] = true;\n nodesToY[node.id] = true;\n }\n break;\n }\n }\n }\n\n // Return the paths that come from x and lead to y.\n const filteredTape: TapeNode[] = [];\n for (let i = 0; i < tape.length; i++) {\n const node = tape[i];\n\n if (nodesFromX[node.id] && nodesToY[node.id]) {\n // Prune the inputs from the node that aren't a function of x.\n const prunedInputs: {[inputName: string]: Tensor} = {};\n for (const inputName in node.inputs) {\n const nodeInput = node.inputs[inputName];\n if (tensorsFromX[nodeInput.id]) {\n prunedInputs[inputName] = nodeInput;\n }\n }\n\n // Copy the node and overwrite inputsAndArgs to the pruned version.\n const prunedNode = Object.assign({}, node);\n prunedNode.inputs = prunedInputs;\n prunedNode.outputs = node.outputs;\n\n filteredTape.push(prunedNode);\n }\n }\n\n return filteredTape;\n}\n\n/**\n * Backpropagate gradients through the filtered TapeNodes.\n *\n * @param tensorAccumulatedGradientMap A map of Tensor to its gradient. This map\n * is mutated by this method.\n * @param filteredTape The filtered TapeNodes to backprop through.\n */\nexport function backpropagateGradients(\n tensorAccumulatedGradientMap: {[tensorId: number]: Tensor},\n filteredTape: TapeNode[], tidy: (f: Function) => Tensor,\n add: (a: Tensor, b: Tensor) => Tensor) {\n // Walk the tape backward and keep a map of Tensor to its gradient.\n for (let i = filteredTape.length - 1; i >= 0; i--) {\n const node = filteredTape[i];\n\n const dys: Tensor[] = [];\n node.outputs.forEach(o => {\n const gradTensor = tensorAccumulatedGradientMap[o.id];\n if (gradTensor != null) {\n dys.push(gradTensor);\n } else {\n // This particular output is not in the back-propagation subgraph, so it\n // does not affect the final output, thus we put null for its dy.\n dys.push(null);\n }\n });\n\n if (node.gradient == null) {\n throw new Error(\n `Cannot compute gradient: gradient function not found ` +\n `for ${node.kernelName}.`);\n }\n\n // Backprop dy through this node and accumulate gradients over the inputs.\n const inputGradients = node.gradient(dys);\n\n for (const inputName in node.inputs) {\n if (!(inputName in inputGradients)) {\n throw new Error(\n `Cannot backprop through input ${inputName}. ` +\n `Available gradients found: ${Object.keys(inputGradients)}.`);\n }\n\n // Call the gradient function.\n const dx = tidy(() => inputGradients[inputName]());\n if (dx.dtype !== 'float32') {\n throw new Error(\n `Error in gradient for op ${\n node.kernelName}. The gradient of input ` +\n `${inputName} must have 'float32' dtype, but has '${dx.dtype}'`);\n }\n const x = node.inputs[inputName];\n if (!util.arraysEqual(dx.shape, x.shape)) {\n throw new Error(\n `Error in gradient for op ${\n node.kernelName}. The gradient of input ` +\n `'${inputName}' has shape '${dx.shape}', which does not match ` +\n `the shape of the input '${x.shape}'`);\n }\n\n if (tensorAccumulatedGradientMap[x.id] == null) {\n tensorAccumulatedGradientMap[x.id] = dx;\n } else {\n const curGradient = tensorAccumulatedGradientMap[x.id];\n tensorAccumulatedGradientMap[x.id] = add(curGradient, dx);\n curGradient.dispose();\n }\n }\n }\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {DataType, TypedArray} from './types';\nimport {computeStrides, isString, rightPad, sizeFromShape} from './util';\n\n// Maximum number of values before we decide to show ellipsis.\nconst FORMAT_LIMIT_NUM_VALS = 20;\n// Number of first and last values to show when displaying a, b,...,y, z.\nconst FORMAT_NUM_FIRST_LAST_VALS = 3;\n// Number of significant digits to show.\nconst FORMAT_NUM_SIG_DIGITS = 7;\n\nexport function tensorToString(\n vals: TypedArray|string[], shape: number[], dtype: DataType,\n verbose: boolean) {\n const strides = computeStrides(shape);\n const padPerCol = computeMaxSizePerColumn(vals, shape, dtype, strides);\n const rank = shape.length;\n const valsLines = subTensorToString(vals, shape, dtype, strides, padPerCol);\n const lines = ['Tensor'];\n if (verbose) {\n lines.push(` dtype: ${dtype}`);\n lines.push(` rank: ${rank}`);\n lines.push(` shape: [${shape}]`);\n lines.push(` values:`);\n }\n lines.push(valsLines.map(l => ' ' + l).join('\\n'));\n return lines.join('\\n');\n}\n\nfunction computeMaxSizePerColumn(\n vals: TypedArray|string[], shape: number[], dtype: DataType,\n strides: number[]): number[] {\n const n = sizeFromShape(shape);\n const numCols = strides[strides.length - 1];\n const padPerCol = new Array(numCols).fill(0);\n const rank = shape.length;\n const valuesOrTuples =\n dtype === 'complex64' ? createComplexTuples(vals) : vals;\n\n if (rank > 1) {\n for (let row = 0; row < n / numCols; row++) {\n const offset = row * numCols;\n for (let j = 0; j < numCols; j++) {\n padPerCol[j] = Math.max(\n padPerCol[j],\n valToString(valuesOrTuples[offset + j], 0, dtype).length);\n }\n }\n }\n return padPerCol;\n}\n\nfunction valToString(\n val: number|string|[number, number], pad: number, dtype: DataType) {\n let valStr: string;\n if (Array.isArray(val)) {\n valStr = `${parseFloat(val[0].toFixed(FORMAT_NUM_SIG_DIGITS))} + ` +\n `${parseFloat(val[1].toFixed(FORMAT_NUM_SIG_DIGITS))}j`;\n } else if (isString(val)) {\n valStr = `'${val}'`;\n } else if (dtype === 'bool') {\n valStr = boolNumToString(val);\n } else {\n valStr = parseFloat(val.toFixed(FORMAT_NUM_SIG_DIGITS)).toString();\n }\n\n return rightPad(valStr, pad);\n}\n\nfunction boolNumToString(v: number): string {\n return v === 0 ? 'false' : 'true';\n}\n\nfunction subTensorToString(\n vals: TypedArray|string[], shape: number[], dtype: DataType,\n strides: number[], padPerCol: number[], isLast = true): string[] {\n const storagePerElement = dtype === 'complex64' ? 2 : 1;\n\n const size = shape[0];\n const rank = shape.length;\n if (rank === 0) {\n if (dtype === 'complex64') {\n const complexTuple = createComplexTuples(vals);\n return [valToString(complexTuple[0], 0, dtype)];\n }\n if (dtype === 'bool') {\n return [boolNumToString(vals[0] as number)];\n }\n return [vals[0].toString()];\n }\n\n if (rank === 1) {\n if (size > FORMAT_LIMIT_NUM_VALS) {\n const firstValsSize = FORMAT_NUM_FIRST_LAST_VALS * storagePerElement;\n\n let firstVals = Array.from(\n vals.slice(0, firstValsSize));\n let lastVals = Array.from(vals.slice(\n (size - FORMAT_NUM_FIRST_LAST_VALS) * storagePerElement,\n size * storagePerElement));\n if (dtype === 'complex64') {\n firstVals = createComplexTuples(firstVals);\n lastVals = createComplexTuples(lastVals);\n }\n return [\n '[' +\n firstVals.map((x, i) => valToString(x, padPerCol[i], dtype))\n .join(', ') +\n ', ..., ' +\n lastVals\n .map(\n (x, i) => valToString(\n x, padPerCol[size - FORMAT_NUM_FIRST_LAST_VALS + i], dtype))\n .join(', ') +\n ']'\n ];\n }\n const displayVals: Array =\n dtype === 'complex64' ? createComplexTuples(vals) :\n Array.from(vals);\n\n return [\n '[' +\n displayVals.map((x, i) => valToString(x, padPerCol[i], dtype))\n .join(', ') +\n ']'\n ];\n }\n\n // The array is rank 2 or more.\n const subshape = shape.slice(1);\n const substrides = strides.slice(1);\n const stride = strides[0] * storagePerElement;\n const lines: string[] = [];\n if (size > FORMAT_LIMIT_NUM_VALS) {\n for (let i = 0; i < FORMAT_NUM_FIRST_LAST_VALS; i++) {\n const start = i * stride;\n const end = start + stride;\n lines.push(...subTensorToString(\n vals.slice(start, end), subshape, dtype, substrides, padPerCol,\n false /* isLast */));\n }\n lines.push('...');\n for (let i = size - FORMAT_NUM_FIRST_LAST_VALS; i < size; i++) {\n const start = i * stride;\n const end = start + stride;\n lines.push(...subTensorToString(\n vals.slice(start, end), subshape, dtype, substrides, padPerCol,\n i === size - 1 /* isLast */));\n }\n } else {\n for (let i = 0; i < size; i++) {\n const start = i * stride;\n const end = start + stride;\n lines.push(...subTensorToString(\n vals.slice(start, end), subshape, dtype, substrides, padPerCol,\n i === size - 1 /* isLast */));\n }\n }\n const sep = rank === 2 ? ',' : '';\n lines[0] = '[' + lines[0] + sep;\n for (let i = 1; i < lines.length - 1; i++) {\n lines[i] = ' ' + lines[i] + sep;\n }\n let newLineSep = ',\\n';\n for (let i = 2; i < rank; i++) {\n newLineSep += '\\n';\n }\n lines[lines.length - 1] =\n ' ' + lines[lines.length - 1] + ']' + (isLast ? '' : newLineSep);\n return lines;\n}\n\nfunction createComplexTuples(vals: Array<{}>|\n TypedArray): Array<[number, number]> {\n const complexTuples: Array<[number, number]> = [];\n for (let i = 0; i < vals.length; i += 2) {\n complexTuples.push([vals[i], vals[i + 1]] as [number, number]);\n }\n return complexTuples;\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {getGlobal} from './global_util';\nimport {tensorToString} from './tensor_format';\nimport {ArrayMap, BackendValues, DataType, DataTypeMap, DataValues, NumericDataType, Rank, ShapeMap, SingleValueMap, TypedArray} from './types';\nimport * as util from './util';\nimport {computeStrides, toNestedArray} from './util';\n\nexport interface TensorData {\n dataId?: DataId;\n values?: DataTypeMap[D];\n}\n\n// This interface mimics KernelBackend (in backend.ts), which would create a\n// circular dependency if imported.\nexport interface Backend {}\n\n/**\n * A mutable object, similar to `tf.Tensor`, that allows users to set values\n * at locations before converting to an immutable `tf.Tensor`.\n *\n * See `tf.buffer` for creating a tensor buffer.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\nexport class TensorBuffer {\n size: number;\n shape: ShapeMap[R];\n strides: number[];\n values: DataTypeMap[D];\n\n constructor(shape: ShapeMap[R], public dtype: D, values?: DataTypeMap[D]) {\n this.shape = shape.slice() as ShapeMap[R];\n this.size = util.sizeFromShape(shape);\n\n if (values != null) {\n const n = values.length;\n util.assert(\n n === this.size,\n () => `Length of values '${n}' does not match the size ` +\n `inferred by the shape '${this.size}'.`);\n }\n if (dtype === 'complex64') {\n throw new Error(\n `complex64 dtype TensorBuffers are not supported. Please create ` +\n `a TensorBuffer for the real and imaginary parts separately and ` +\n `call tf.complex(real, imag).`);\n }\n this.values = values || util.getArrayFromDType(dtype, this.size);\n this.strides = computeStrides(shape);\n }\n\n /**\n * Sets a value in the buffer at a given location.\n *\n * @param value The value to set.\n * @param locs The location indices.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\n set(value: SingleValueMap[D], ...locs: number[]): void {\n if (locs.length === 0) {\n locs = [0];\n }\n util.assert(\n locs.length === this.rank,\n () => `The number of provided coordinates (${locs.length}) must ` +\n `match the rank (${this.rank})`);\n\n const index = this.locToIndex(locs);\n this.values[index] = value as number;\n }\n\n /**\n * Returns the value in the buffer at the provided location.\n *\n * @param locs The location indices.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\n get(...locs: number[]): SingleValueMap[D] {\n if (locs.length === 0) {\n locs = [0];\n }\n let i = 0;\n for (const loc of locs) {\n if (loc < 0 || loc >= this.shape[i]) {\n const msg = `Requested out of range element at ${locs}. ` +\n ` Buffer shape=${this.shape}`;\n throw new Error(msg);\n }\n i++;\n }\n let index = locs[locs.length - 1];\n for (let i = 0; i < locs.length - 1; ++i) {\n index += this.strides[i] * locs[i];\n }\n return this.values[index] as SingleValueMap[D];\n }\n\n locToIndex(locs: number[]): number {\n if (this.rank === 0) {\n return 0;\n } else if (this.rank === 1) {\n return locs[0];\n }\n let index = locs[locs.length - 1];\n for (let i = 0; i < locs.length - 1; ++i) {\n index += this.strides[i] * locs[i];\n }\n return index;\n }\n\n indexToLoc(index: number): number[] {\n if (this.rank === 0) {\n return [];\n } else if (this.rank === 1) {\n return [index];\n }\n const locs: number[] = new Array(this.shape.length);\n for (let i = 0; i < locs.length - 1; ++i) {\n locs[i] = Math.floor(index / this.strides[i]);\n index -= locs[i] * this.strides[i];\n }\n locs[locs.length - 1] = index;\n return locs;\n }\n\n get rank() {\n return this.shape.length;\n }\n\n /**\n * Creates an immutable `tf.Tensor` object from the buffer.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\n toTensor(): Tensor {\n return trackerFn().makeTensor(this.values, this.shape, this.dtype) as\n Tensor;\n }\n}\n\nexport interface TensorTracker {\n makeTensor(\n values: DataValues, shape: number[], dtype: DataType,\n backend?: Backend): Tensor;\n makeVariable(\n initialValue: Tensor, trainable?: boolean, name?: string,\n dtype?: DataType): Variable;\n incRef(a: Tensor, backend: Backend): void;\n disposeTensor(t: Tensor): void;\n disposeVariable(v: Variable): void;\n read(dataId: DataId): Promise;\n readSync(dataId: DataId): BackendValues;\n}\n\n/**\n * The Tensor class calls into this handler to delegate chaining operations.\n */\nexport interface OpHandler {\n cast(x: T, dtype: DataType): T;\n buffer(\n shape: ShapeMap[R], dtype: D,\n values?: DataTypeMap[D]): TensorBuffer;\n print(x: T, verbose: boolean): void;\n clone(x: T): T;\n // TODO(yassogba) bring reshape back?\n}\n\n// For tracking tensor creation and disposal.\nlet trackerFn: () => TensorTracker = null;\n// Used by chaining methods to call into ops.\nlet opHandler: OpHandler = null;\n// Used to warn about deprecated methods.\nlet deprecationWarningFn: (msg: string) => void = null;\n// This here so that we can use this method on dev branches and keep the\n// functionality at master.\n// tslint:disable-next-line:no-unused-expression\n[deprecationWarningFn];\n\n/**\n * An external consumer can register itself as the tensor tracker. This way\n * the Tensor class can notify the tracker for every tensor created and\n * disposed.\n */\nexport function setTensorTracker(fn: () => TensorTracker) {\n trackerFn = fn;\n}\n\n/**\n * An external consumer can register itself as the op handler. This way the\n * Tensor class can have chaining methods that call into ops via the op\n * handler.\n */\nexport function setOpHandler(handler: OpHandler) {\n opHandler = handler;\n}\n\n/**\n * Sets the deprecation warning function to be used by this file. This way the\n * Tensor class can be a leaf but still use the environment.\n */\nexport function setDeprecationWarningFn(fn: (msg: string) => void) {\n deprecationWarningFn = fn;\n}\n\n/**\n * We wrap data id since we use weak map to avoid memory leaks.\n * Since we have our own memory management, we have a reference counter\n * mapping a tensor to its data, so there is always a pointer (even if that\n * data is otherwise garbage collectable).\n * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/\n * Global_Objects/WeakMap\n */\nexport type DataId = object; // object instead of {} to force non-primitive.\n\n// Declare this namespace to make Tensor class augmentation work in google3.\nexport declare namespace Tensor {}\n/**\n * A `tf.Tensor` object represents an immutable, multidimensional array of\n * numbers that has a shape and a data type.\n *\n * For performance reasons, functions that create tensors do not necessarily\n * perform a copy of the data passed to them (e.g. if the data is passed as a\n * `Float32Array`), and changes to the data will change the tensor. This is not\n * a feature and is not supported. To avoid this behavior, use the tensor before\n * changing the input data or create a copy with `copy = tf.add(yourTensor, 0)`.\n *\n * See `tf.tensor` for details on how to create a `tf.Tensor`.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\nexport class Tensor {\n /** Unique id of this tensor. */\n readonly id: number;\n /**\n * Id of the bucket holding the data for this tensor. Multiple arrays can\n * point to the same bucket (e.g. when calling array.reshape()).\n */\n dataId: DataId;\n /** The shape of the tensor. */\n readonly shape: ShapeMap[R];\n /** Number of elements in the tensor. */\n readonly size: number;\n /** The data type for the array. */\n readonly dtype: DataType;\n /** The rank type for the array (see `Rank` enum). */\n readonly rankType: R;\n\n /** Whether this tensor has been globally kept. */\n kept = false;\n /** The id of the scope this tensor is being tracked in. */\n scopeId: number;\n\n /**\n * Number of elements to skip in each dimension when indexing. See\n * https://docs.scipy.org/doc/numpy/reference/generated/\\\n * numpy.ndarray.strides.html\n */\n readonly strides: number[];\n\n constructor(shape: ShapeMap[R], dtype: DataType, dataId: DataId, id: number) {\n this.shape = shape.slice() as ShapeMap[R];\n this.dtype = dtype || 'float32';\n this.size = util.sizeFromShape(shape);\n this.strides = computeStrides(shape);\n this.dataId = dataId;\n this.id = id;\n this.rankType = (this.rank < 5 ? this.rank.toString() : 'higher') as R;\n }\n\n get rank(): number {\n return this.shape.length;\n }\n\n /**\n * Returns a promise of `tf.TensorBuffer` that holds the underlying data.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n async buffer(): Promise> {\n const vals = await this.data();\n return opHandler.buffer(this.shape, this.dtype as D, vals);\n }\n\n /**\n * Returns a `tf.TensorBuffer` that holds the underlying data.\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n bufferSync(): TensorBuffer {\n return opHandler.buffer(this.shape, this.dtype as D, this.dataSync());\n }\n\n /**\n * Returns the tensor data as a nested array. The transfer of data is done\n * asynchronously.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n async array(): Promise {\n const vals = await this.data();\n return toNestedArray(this.shape, vals, this.dtype === 'complex64') as\n ArrayMap[R];\n }\n\n /**\n * Returns the tensor data as a nested array. The transfer of data is done\n * synchronously.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n arraySync(): ArrayMap[R] {\n return toNestedArray(\n this.shape, this.dataSync(), this.dtype === 'complex64') as\n ArrayMap[R];\n }\n\n /**\n * Asynchronously downloads the values from the `tf.Tensor`. Returns a\n * promise of `TypedArray` that resolves when the computation has finished.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n async data(): Promise {\n this.throwIfDisposed();\n const data = trackerFn().read(this.dataId);\n if (this.dtype === 'string') {\n const bytes = await data as Uint8Array[];\n try {\n return bytes.map(b => util.decodeString(b)) as DataTypeMap[D];\n } catch {\n throw new Error(\n 'Failed to decode the string bytes into utf-8. ' +\n 'To get the original bytes, call tensor.bytes().');\n }\n }\n return data as Promise;\n }\n\n /**\n * Synchronously downloads the values from the `tf.Tensor`. This blocks the\n * UI thread until the values are ready, which can cause performance issues.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n dataSync(): DataTypeMap[D] {\n this.throwIfDisposed();\n const data = trackerFn().readSync(this.dataId);\n if (this.dtype === 'string') {\n try {\n return (data as Uint8Array[]).map(b => util.decodeString(b)) as\n DataTypeMap[D];\n } catch {\n throw new Error(\n 'Failed to decode the string bytes into utf-8. ' +\n 'To get the original bytes, call tensor.bytes().');\n }\n }\n return data as DataTypeMap[D];\n }\n\n /** Returns the underlying bytes of the tensor's data. */\n async bytes(): Promise {\n this.throwIfDisposed();\n const data = await trackerFn().read(this.dataId);\n if (this.dtype === 'string') {\n return data as Uint8Array[];\n } else {\n return new Uint8Array((data as TypedArray).buffer);\n }\n }\n\n /**\n * Disposes `tf.Tensor` from memory.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n dispose(): void {\n if (this.isDisposed) {\n return;\n }\n trackerFn().disposeTensor(this);\n this.isDisposedInternal = true;\n }\n\n protected isDisposedInternal = false;\n get isDisposed(): boolean {\n return this.isDisposedInternal;\n }\n\n throwIfDisposed() {\n if (this.isDisposed) {\n throw new Error(`Tensor is disposed.`);\n }\n }\n\n /**\n * Prints the `tf.Tensor`. See `tf.print` for details.\n *\n * @param verbose Whether to print verbose information about the tensor,\n * including dtype and size.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n print(verbose = false): void {\n return opHandler.print(this, verbose);\n }\n\n /**\n * Returns a copy of the tensor. See `tf.clone` for details.\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n clone(this: T): T {\n this.throwIfDisposed();\n return opHandler.clone(this);\n }\n\n /**\n * Returns a human-readable description of the tensor. Useful for logging.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n toString(verbose = false): string {\n const vals = this.dataSync();\n return tensorToString(vals, this.shape, this.dtype, verbose);\n }\n\n cast(dtype: DataType): T {\n this.throwIfDisposed();\n return opHandler.cast(this as T, dtype);\n }\n variable(trainable = true, name?: string, dtype?: DataType): Variable {\n this.throwIfDisposed();\n return trackerFn().makeVariable(this, trainable, name, dtype) as\n Variable;\n }\n}\nObject.defineProperty(Tensor, Symbol.hasInstance, {\n value: (instance: Tensor) => {\n // Implementation note: we should use properties of the object that will be\n // defined before the constructor body has finished executing (methods).\n // This is because when this code is transpiled by babel, babel will call\n // classCallCheck before the constructor body is run.\n // See https://github.com/tensorflow/tfjs/issues/3384 for backstory.\n return !!instance && instance.data != null && instance.dataSync != null &&\n instance.throwIfDisposed != null;\n }\n});\n\nexport function getGlobalTensorClass() {\n // Use getGlobal so that we can augment the Tensor class across package\n // boundaries becase the node resolution alg may result in different modules\n // being returned for this file depending on the path they are loaded from.\n return getGlobal('Tensor', () => {\n return Tensor;\n });\n}\n\n// Global side effect. Cache global reference to Tensor class\ngetGlobalTensorClass();\n\nexport interface NumericTensor extends Tensor {\n dtype: NumericDataType;\n dataSync(): DataTypeMap[D];\n data(): Promise;\n}\n\nexport interface StringTensor extends Tensor {\n dtype: 'string';\n dataSync(): DataTypeMap[D];\n data(): Promise;\n}\n\n/** @doclink Tensor */\nexport type Scalar = Tensor;\n/** @doclink Tensor */\nexport type Tensor1D = Tensor;\n/** @doclink Tensor */\nexport type Tensor2D = Tensor;\n/** @doclink Tensor */\nexport type Tensor3D = Tensor;\n/** @doclink Tensor */\nexport type Tensor4D = Tensor;\n/** @doclink Tensor */\nexport type Tensor5D = Tensor;\n/** @doclink Tensor */\nexport type Tensor6D = Tensor;\n\n/**\n * A mutable `tf.Tensor`, useful for persisting state, e.g. for training.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\nexport class Variable extends Tensor {\n name: string;\n\n constructor(\n initialValue: Tensor, public trainable: boolean, name: string,\n tensorId: number) {\n super(\n initialValue.shape, initialValue.dtype, initialValue.dataId, tensorId);\n this.name = name;\n }\n\n /**\n * Assign a new `tf.Tensor` to this variable. The new `tf.Tensor` must have\n * the same shape and dtype as the old `tf.Tensor`.\n *\n * @param newValue New tensor to be assigned to this variable.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n assign(newValue: Tensor): void {\n if (newValue.dtype !== this.dtype) {\n throw new Error(\n `dtype of the new value (${newValue.dtype}) and ` +\n `previous value (${this.dtype}) must match`);\n }\n if (!util.arraysEqual(newValue.shape, this.shape)) {\n throw new Error(\n `shape of the new value (${newValue.shape}) and ` +\n `previous value (${this.shape}) must match`);\n }\n trackerFn().disposeTensor(this);\n this.dataId = newValue.dataId;\n trackerFn().incRef(this, null /* backend */);\n }\n\n dispose(): void {\n trackerFn().disposeVariable(this);\n this.isDisposedInternal = true;\n }\n}\n\nObject.defineProperty(Variable, Symbol.hasInstance, {\n value: (instance: Variable) => {\n return instance instanceof Tensor && instance.assign != null &&\n instance.assign instanceof Function;\n }\n});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from './tensor';\nimport {TensorContainer, TensorContainerArray} from './tensor_types';\nimport {upcastType} from './types';\nimport {assert} from './util';\n\nexport function makeTypesMatch(a: T, b: T): [T, T] {\n if (a.dtype === b.dtype) {\n return [a, b];\n }\n const dtype = upcastType(a.dtype, b.dtype);\n return [a.cast(dtype), b.cast(dtype)];\n}\n\nexport function assertTypesMatch(a: Tensor, b: Tensor): void {\n assert(\n a.dtype === b.dtype,\n () => `The dtypes of the first(${a.dtype}) and` +\n ` second(${b.dtype}) input must match`);\n}\n\nexport function isTensorInList(tensor: Tensor, tensorList: Tensor[]): boolean {\n return tensorList.some(x => x.id === tensor.id);\n}\n\n/**\n * Extracts any `Tensor`s found within the provided object.\n *\n * @param container an object that may be a `Tensor` or may directly contain\n * `Tensor`s, such as a `Tensor[]` or `{key: Tensor, ...}`. In general it\n * is safe to pass any object here, except that `Promise`s are not\n * supported.\n * @returns An array of `Tensors` found within the passed object. If the\n * argument is simply a `Tensor', a list containing that `Tensor` is\n * returned. If the object is not a `Tensor` or does not\n * contain `Tensors`, an empty list is returned.\n */\nexport function getTensorsInContainer(result: TensorContainer): Tensor[] {\n const list: Tensor[] = [];\n const seen = new Set<{}|void>();\n walkTensorContainer(result, list, seen);\n return list;\n}\n\nfunction walkTensorContainer(\n container: TensorContainer, list: Tensor[], seen: Set<{}|void>): void {\n if (container == null) {\n return;\n }\n if (container instanceof Tensor) {\n list.push(container);\n return;\n }\n if (!isIterable(container)) {\n return;\n }\n // Iteration over keys works also for arrays.\n const iterable = container as TensorContainerArray;\n for (const k in iterable) {\n const val = iterable[k];\n if (!seen.has(val)) {\n seen.add(val);\n walkTensorContainer(val, list, seen);\n }\n }\n}\n\n// tslint:disable-next-line:no-any\nfunction isIterable(obj: any): boolean {\n return Array.isArray(obj) || typeof obj === 'object';\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/** @docalias number[] */\nexport interface ShapeMap {\n R0: number[];\n R1: [number];\n R2: [number, number];\n R3: [number, number, number];\n R4: [number, number, number, number];\n R5: [number, number, number, number, number];\n R6: [number, number, number, number, number, number];\n}\n\n/** @docalias number[] */\nexport interface ArrayMap {\n R0: number;\n R1: number[];\n R2: number[][];\n R3: number[][][];\n R4: number[][][][];\n R5: number[][][][][];\n R6: number[][][][][][];\n}\n\nexport interface DataTypeMap {\n float32: Float32Array;\n int32: Int32Array;\n bool: Uint8Array;\n complex64: Float32Array;\n string: string[];\n}\n\nexport interface SingleValueMap {\n bool: boolean;\n int32: number;\n float32: number;\n complex64: number;\n string: string;\n}\n\n/** @docalias 'float32'|'int32'|'bool'|'complex64'|'string' */\nexport type DataType = keyof DataTypeMap;\nexport type NumericDataType = 'float32'|'int32'|'bool'|'complex64';\nexport type TypedArray = Float32Array|Int32Array|Uint8Array;\n/** Tensor data used in tensor creation and user-facing API. */\nexport type DataValues = DataTypeMap[DataType];\n/** The underlying tensor data that gets stored in a backend. */\nexport type BackendValues = Float32Array|Int32Array|Uint8Array|Uint8Array[];\n\nexport enum Rank {\n R0 = 'R0',\n R1 = 'R1',\n R2 = 'R2',\n R3 = 'R3',\n R4 = 'R4',\n R5 = 'R5',\n R6 = 'R6'\n}\n\nexport type FlatVector = boolean[]|number[]|TypedArray;\nexport type RegularArray =\n T[]|T[][]|T[][][]|T[][][][]|T[][][][][]|T[][][][][][];\n\n// tslint:disable-next-line:no-any\nexport interface RecursiveArray {\n [index: number]: T|RecursiveArray;\n}\n\n// Looks for upcasting types. Used, for example, in operations with mixed dtype\n// inputs.\nenum UpcastInt32AndMap {\n 'float32' = 'float32',\n 'int32' = 'int32',\n 'bool' = 'int32',\n 'complex64' = 'complex64'\n}\n\nenum UpcastBoolAndMap {\n 'float32' = 'float32',\n 'int32' = 'int32',\n 'bool' = 'bool',\n 'complex64' = 'complex64'\n}\n\nenum UpcastFloat32AndMap {\n 'float32' = 'float32',\n 'int32' = 'float32',\n 'bool' = 'float32',\n 'complex64' = 'complex64'\n}\n\nenum UpcastComplex64AndMap {\n 'float32' = 'complex64',\n 'int32' = 'complex64',\n 'bool' = 'complex64',\n 'complex64' = 'complex64'\n}\n\nconst upcastTypeMap = {\n 'float32': UpcastFloat32AndMap,\n 'int32': UpcastInt32AndMap,\n 'bool': UpcastBoolAndMap,\n 'complex64': UpcastComplex64AndMap\n};\n\nexport function upcastType(typeA: DataType, typeB: DataType): DataType {\n if (typeA === 'string' || typeB === 'string') {\n if (typeA === 'string' && typeB === 'string') {\n return 'string';\n }\n throw new Error(`Can not upcast ${typeA} with ${typeB}`);\n }\n return upcastTypeMap[typeA][typeB];\n}\n\n/** Returns the output type after summation. */\nexport function sumOutType(type: DataType): DataType {\n return upcastType(type, 'int32');\n}\n\n/** @docalias TypedArray|Array */\nexport type TensorLike =\n TypedArray|number|boolean|string|RecursiveArray|\n RecursiveArray|RecursiveArray|Uint8Array[];\nexport type ScalarLike = number|boolean|string|Uint8Array;\n/** @docalias TypedArray|Array */\nexport type TensorLike1D = TypedArray|number[]|boolean[]|string[]|Uint8Array[];\n/** @docalias TypedArray|Array */\nexport type TensorLike2D = TypedArray|number[]|number[][]|boolean[]|boolean[][]|\n string[]|string[][]|Uint8Array[]|Uint8Array[][];\n/** @docalias TypedArray|Array */\nexport type TensorLike3D = TypedArray|number[]|number[][][]|boolean[]|\n boolean[][][]|string[]|string[][][]|Uint8Array[]|Uint8Array[][][];\n/** @docalias TypedArray|Array */\nexport type TensorLike4D = TypedArray|number[]|number[][][][]|boolean[]|\n boolean[][][][]|string[]|string[][][][]|Uint8Array[]|Uint8Array[][][][];\n/** @docalias TypedArray|Array */\nexport type TensorLike5D =\n TypedArray|number[]|number[][][][][]|boolean[]|boolean[][][][][]|string[]|\n string[][][][][]|Uint8Array[]|Uint8Array[][][][][];\n/** @docalias TypedArray|Array */\nexport type TensorLike6D =\n TypedArray|number[]|number[][][][][][]|boolean[]|boolean[][][][][][]|\n string[]|string[][][][][][]|Uint8Array[]|Uint8Array[][][][][];\n\n/** Type for representing image data in Uint8Array type. */\nexport interface PixelData {\n width: number;\n height: number;\n data: Uint8Array;\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {BackendTimingInfo, DataMover, KernelBackend} from './backends/backend';\nimport {Environment, setEnvironmentGlobal} from './environment';\nimport {getGlobalNamespace} from './global_util';\nimport {Add, Cast, Identity} from './kernel_names';\nimport {getGradient, getKernel, getKernelsForBackend, GradFunc, NamedAttrMap, TensorInfo} from './kernel_registry';\nimport {KernelProfile, Profiler} from './profiler';\nimport {backpropagateGradients, getFilteredNodesXToY, TapeNode} from './tape';\nimport {DataId, setTensorTracker, Tensor, TensorTracker, Variable} from './tensor';\nimport {GradSaveFunc, NamedTensorMap, NamedVariableMap, TensorContainer} from './tensor_types';\nimport {getTensorsInContainer} from './tensor_util';\nimport {BackendValues, DataType, DataValues} from './types';\nimport * as util from './util';\nimport {bytesFromStringArray, makeOnesTypedArray, now, sizeFromShape} from './util';\n\n/**\n * A function that computes an output. The save function is for saving tensors\n * computed in the forward pass, that we need in the backward pass.\n */\nexport type ForwardFunc = (backend: KernelBackend, save?: GradSaveFunc) => T;\n\n/**\n * @docalias (a: Tensor, b: Tensor,..., save?: Function) => {\n * value: Tensor,\n * gradFunc: (dy: Tensor, saved?: NamedTensorMap) => Tensor | Tensor[]\n * }\n */\nexport type CustomGradientFunc =\n (...inputs: Array) => {\n value: T;\n gradFunc: (dy: T, saved: Tensor[]) => Tensor | Tensor[];\n };\n\nexport type MemoryInfo = {\n numTensors: number; numDataBuffers: number; numBytes: number;\n unreliable?: boolean; reasons: string[];\n};\n\ntype KernelInfo = {\n name: string; bytesAdded: number; totalBytesSnapshot: number;\n tensorsAdded: number;\n totalTensorsSnapshot: number;\n inputShapes: number[][];\n outputShapes: number[][];\n kernelTimeMs: number | {error: string} | Promise;\n extraInfo: string | Promise;\n};\n\nexport type ProfileInfo = {\n newBytes: number; newTensors: number; peakBytes: number;\n kernels: KernelInfo[];\n result: TensorContainer;\n kernelNames: string[];\n};\n\nexport interface TimingInfo extends BackendTimingInfo {\n wallMs: number;\n}\n\n/** @docalias Function */\nexport type ScopeFn = () => T;\n\ninterface ScopeState {\n track: Tensor[];\n name: string;\n id: number;\n}\n\ninterface RegisteredKernelInvocation {\n kernelName: string;\n inputs: I;\n attrs?: NamedAttrMap;\n}\n\ninterface CustomGradKernelInvocation {\n forwardFunc: ForwardFunc;\n backwardsFunc: (dy: T, saved: Tensor[]) => {\n [P in keyof I]: () => I[P]\n };\n inputs: I;\n attrs?: NamedAttrMap;\n}\n\nfunction isRegisteredKernelInvocation(\n kernelInvocation: RegisteredKernelInvocation|\n CustomGradKernelInvocation):\n kernelInvocation is RegisteredKernelInvocation {\n return (kernelInvocation as RegisteredKernelInvocation).kernelName != null;\n}\n\nclass EngineState {\n // Public since optimizers will use it.\n registeredVariables: NamedVariableMap = {};\n\n nextTapeNodeId = 0;\n numBytes = 0;\n numTensors = 0;\n numStringTensors = 0;\n numDataBuffers = 0;\n\n activeTape: TapeNode[];\n // Number of nested tf.grad() statements when computing higher-order\n // gradients. E.g. `1` for first-order gradients and `2` for second-order\n // gradients. Used to track if the tape should be removed after a backprop.\n gradientDepth = 0;\n // Number of nested kernel calls. When kernel depth is greater than 1, we turn\n // off the tape.\n kernelDepth = 0;\n\n // Keep Tensors that parallel the tapes.\n activeScope: ScopeState;\n scopeStack: ScopeState[] = [];\n /**\n * Keeps track of the number of data moves during a kernel execution. We\n * maintain a stack since kernels can call other kernels, recursively.\n */\n numDataMovesStack: number[] = [];\n nextScopeId = 0;\n\n tensorInfo = new WeakMap();\n\n profiling = false;\n activeProfile: ProfileInfo = {\n newBytes: 0,\n newTensors: 0,\n peakBytes: 0,\n kernels: [],\n result: null,\n get kernelNames():\n string[] {\n return Array.from(new Set(this.kernels.map(k => k.name)));\n }\n };\n\n dispose() {\n for (const variableName in this.registeredVariables) {\n this.registeredVariables[variableName].dispose();\n }\n }\n}\n\nexport class Engine implements TensorTracker, DataMover {\n state: EngineState;\n backendName: string;\n registry: {[id: string]: KernelBackend} = {};\n registryFactory: {\n [id: string]: {\n factory: () => KernelBackend | Promise,\n priority: number\n }\n } = {};\n\n private profiler: Profiler;\n private backendInstance: KernelBackend;\n private pendingBackendInit: Promise;\n private pendingBackendInitId = 0;\n\n constructor(public ENV: Environment) {\n this.state = new EngineState();\n }\n\n async ready(): Promise {\n if (this.pendingBackendInit != null) {\n return this.pendingBackendInit.then(() => {});\n }\n if (this.backendInstance != null) {\n return;\n }\n const sortedBackends = this.getSortedBackends();\n\n for (let i = 0; i < sortedBackends.length; i++) {\n const backendName = sortedBackends[i];\n const success = await this.initializeBackend(backendName).success;\n if (success) {\n await this.setBackend(backendName);\n return;\n }\n }\n\n throw new Error(\n `Could not initialize any backends, all backend initializations ` +\n `failed.`);\n }\n\n get backend(): KernelBackend {\n if (this.pendingBackendInit != null) {\n throw new Error(\n `Backend '${this.backendName}' has not yet been initialized. Make ` +\n `sure to await tf.ready() or await tf.setBackend() before calling ` +\n `other methods`);\n }\n if (this.backendInstance == null) {\n const {name, asyncInit} = this.initializeBackendsAndReturnBest();\n if (asyncInit) {\n throw new Error(\n `The highest priority backend '${name}' has not yet been ` +\n `initialized. Make sure to await tf.ready() or ` +\n `await tf.setBackend() before calling other methods`);\n }\n this.setBackend(name);\n }\n return this.backendInstance;\n }\n\n backendNames(): string[] {\n return Object.keys(this.registryFactory);\n }\n\n findBackend(backendName: string): KernelBackend {\n if (!(backendName in this.registry)) {\n // If the backend hasn't been initialized but we have a registry entry for\n // it, initialize it and return it.\n if (backendName in this.registryFactory) {\n const {asyncInit} = this.initializeBackend(backendName);\n if (asyncInit) {\n // Backend is not ready yet.\n return null;\n }\n } else {\n return null;\n }\n }\n return this.registry[backendName];\n }\n\n findBackendFactory(backendName: string):\n () => KernelBackend | Promise {\n if (!(backendName in this.registryFactory)) {\n return null;\n }\n return this.registryFactory[backendName].factory;\n }\n\n registerBackend(\n backendName: string,\n factory: () => KernelBackend | Promise,\n priority = 1): boolean {\n if (backendName in this.registryFactory) {\n console.warn(\n `${backendName} backend was already registered. ` +\n `Reusing existing backend factory.`);\n return false;\n }\n this.registryFactory[backendName] = {factory, priority};\n return true;\n }\n\n async setBackend(backendName: string): Promise {\n if (this.registryFactory[backendName] == null) {\n throw new Error(`Backend name '${backendName}' not found in registry`);\n }\n this.backendName = backendName;\n if (this.registry[backendName] == null) {\n this.backendInstance = null;\n const {success, asyncInit} = this.initializeBackend(backendName);\n const result = asyncInit ? await success : success;\n if (!result) {\n return false;\n }\n }\n this.backendInstance = this.registry[backendName];\n this.setupRegisteredKernels();\n // Reset the profiler.\n this.profiler = new Profiler(this.backendInstance);\n\n return true;\n }\n\n private setupRegisteredKernels(): void {\n const kernels = getKernelsForBackend(this.backendName);\n kernels.forEach(kernel => {\n if (kernel.setupFunc != null) {\n kernel.setupFunc(this.backendInstance);\n }\n });\n }\n\n private disposeRegisteredKernels(backendName: string): void {\n const kernels = getKernelsForBackend(backendName);\n kernels.forEach(kernel => {\n if (kernel.disposeFunc != null) {\n kernel.disposeFunc(this.registry[backendName]);\n }\n });\n }\n\n /**\n * Initializes a backend by looking up the backend name in the factory\n * registry and calling the factory method. Returns a boolean representing\n * whether the initialization of the backend suceeded. Throws an error if\n * there is no backend in the factory registry.\n */\n private initializeBackend(backendName: string):\n {success: boolean|Promise, asyncInit: boolean} {\n const registryFactoryEntry = this.registryFactory[backendName];\n if (registryFactoryEntry == null) {\n throw new Error(\n `Cannot initialize backend ${backendName}, no registration found.`);\n }\n\n try {\n const backend = registryFactoryEntry.factory();\n /* Test if the factory returns a promise.\n Done in a more liberal way than\n previous 'Promise.resolve(backend)===backend'\n as we needed to account for custom Promise\n implementations (e.g. Angular) */\n if (backend && !(backend instanceof KernelBackend) &&\n typeof backend.then === 'function') {\n const promiseId = ++this.pendingBackendInitId;\n const success =\n backend\n .then(backendInstance => {\n // Outdated promise. Another backend was set in the meantime.\n if (promiseId < this.pendingBackendInitId) {\n return false;\n }\n this.registry[backendName] = backendInstance;\n this.pendingBackendInit = null;\n return true;\n })\n .catch(err => {\n // Outdated promise. Another backend was set in the meantime.\n if (promiseId < this.pendingBackendInitId) {\n return false;\n }\n this.pendingBackendInit = null;\n console.warn(\n `Initialization of backend ${backendName} failed`);\n console.warn(err.stack || err.message);\n return false;\n });\n this.pendingBackendInit = success;\n return {success, asyncInit: true};\n } else {\n this.registry[backendName] = backend as KernelBackend;\n return {success: true, asyncInit: false};\n }\n } catch (err) {\n console.warn(`Initialization of backend ${backendName} failed`);\n console.warn(err.stack || err.message);\n return {success: false, asyncInit: false};\n }\n }\n\n removeBackend(backendName: string): void {\n if (!(backendName in this.registryFactory)) {\n throw new Error(`${backendName} backend not found in registry`);\n }\n if (this.backendName === backendName && this.pendingBackendInit != null) {\n // There is a pending promise of the backend we want to remove. Make it\n // obsolete.\n this.pendingBackendInitId++;\n }\n\n if (backendName in this.registry) {\n this.disposeRegisteredKernels(backendName);\n this.registry[backendName].dispose();\n delete this.registry[backendName];\n }\n\n delete this.registryFactory[backendName];\n\n // Unset the backend if it is active.\n if (this.backendName === backendName) {\n this.pendingBackendInit = null;\n this.backendName = null;\n this.backendInstance = null;\n }\n }\n\n private getSortedBackends(): string[] {\n if (Object.keys(this.registryFactory).length === 0) {\n throw new Error('No backend found in registry.');\n }\n return Object.keys(this.registryFactory).sort((a: string, b: string) => {\n // Highest priority comes first.\n return this.registryFactory[b].priority -\n this.registryFactory[a].priority;\n });\n }\n\n private initializeBackendsAndReturnBest():\n {name: string, asyncInit: boolean} {\n const sortedBackends = this.getSortedBackends();\n\n for (let i = 0; i < sortedBackends.length; i++) {\n const backendName = sortedBackends[i];\n const {success, asyncInit} = this.initializeBackend(backendName);\n if (asyncInit || success) {\n return {name: backendName, asyncInit};\n }\n }\n throw new Error(\n `Could not initialize any backends, all backend initializations ` +\n `failed.`);\n }\n\n moveData(backend: KernelBackend, dataId: DataId) {\n const info = this.state.tensorInfo.get(dataId);\n const srcBackend = info.backend;\n const values = this.readSync(dataId);\n const refCount = srcBackend.refCount(dataId);\n // Delete the tensor from the old backend and move it to the new\n // backend.\n srcBackend.disposeData(dataId, true);\n info.backend = backend;\n backend.move(dataId, values, info.shape, info.dtype, refCount);\n if (this.shouldCheckForMemLeaks()) {\n // Track the number of moves during a kernel execution to correctly\n // detect memory leaks.\n this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1]++;\n }\n }\n\n tidy(nameOrFn: string|ScopeFn, fn?: ScopeFn):\n T {\n let name: string = null;\n if (fn == null) {\n // Called with only 1 argument.\n if (typeof nameOrFn !== 'function') {\n throw new Error('Please provide a function to tidy()');\n }\n fn = nameOrFn;\n } else {\n // Called with 2 arguments.\n if (typeof nameOrFn !== 'string' && !(nameOrFn instanceof String)) {\n throw new Error(\n 'When calling with two arguments, the first argument ' +\n 'to tidy() must be a string');\n }\n if (typeof fn !== 'function') {\n throw new Error(\n 'When calling with two arguments, the 2nd argument ' +\n 'to tidy() must be a function');\n }\n name = nameOrFn as string;\n // TODO(nsthorat,smilkov): Do operation logging and performance\n // profiling.\n }\n let result: T;\n return this.scopedRun(\n () => this.startScope(name), () => this.endScope(result), () => {\n result = fn();\n if (result instanceof Promise) {\n console.error('Cannot return a Promise inside of tidy.');\n }\n return result;\n });\n }\n\n private scopedRun(start: () => void, end: () => void, f: () => T): T {\n start();\n try {\n const res = f();\n end();\n return res;\n } catch (ex) {\n end();\n throw ex;\n }\n }\n\n private static nextTensorId = 0;\n private nextTensorId(): number {\n return Engine.nextTensorId++;\n }\n\n private static nextVariableId = 0;\n private nextVariableId(): number {\n return Engine.nextVariableId++;\n }\n\n /**\n * This method is called instead of the public-facing tensor.clone() when\n * saving a tensor for backwards pass. It makes sure to add the clone\n * operation to the tape regardless of being called inside a kernel\n * execution.\n */\n private clone(x: Tensor): Tensor {\n const y: Tensor = ENGINE.runKernel(Identity, {x} as {} as NamedTensorMap);\n const inputs = {x};\n const grad = (dy: Tensor) => ({\n x: () => {\n const dtype = 'float32';\n const gradInputs = {x: dy};\n const attrs = {dtype};\n\n return ENGINE.runKernel(\n Cast, gradInputs as {} as NamedTensorMap,\n // tslint:disable-next-line: no-unnecessary-type-assertion\n attrs as {} as NamedAttrMap) as Tensor;\n }\n });\n const saved: Tensor[] = [];\n this.addTapeNode(this.state.activeScope.name, inputs, [y], grad, saved, {});\n return y;\n }\n\n /**\n * Execute a kernel with the given name and return the output tensor.\n *\n * @param kernelName The name of the kernel to execute.\n * @param inputs A map of input names to tensors.\n * @param attrs A map of attribute names to their values. An attribute is a\n * primitive (non-tensor) input to the kernel.\n * @param inputsToSave A list of tensors, inputs to save for the backprop\n * computation.\n * @param outputsToSave A list of booleans, specifying which output to save\n * for the backprop computation. These are booleans since the output\n * tensors are not visible to the user.\n */\n runKernel(\n kernelName: string, inputs: NamedTensorMap, attrs?: NamedAttrMap): T {\n const hasKernel = getKernel(kernelName, this.backendName) != null;\n if (!hasKernel) {\n throw new Error(`Kernel '${kernelName}' not registered for backend '${\n this.backendName}'`);\n }\n return this.runKernelFunc({kernelName, inputs, attrs});\n }\n\n private shouldCheckForMemLeaks(): boolean {\n return this.ENV.getBool('IS_TEST');\n }\n\n private checkKernelForMemLeak(\n kernelName: string, numDataIdsBefore: number,\n outInfos: TensorInfo[]): void {\n const numDataIdsAfter = this.backend.numDataIds();\n\n // Count the number of data ids associated with the result of the kernel.\n let numOutputDataIds = 0;\n outInfos.forEach(info => {\n // Complex numbers allocate 3 data ids, one for 'real', one for\n // 'imaginary', and one for the container that holds the former two.\n numOutputDataIds += (info.dtype === 'complex64' ? 3 : 1);\n });\n\n // Account for the number of moves during kernel execution. A \"data move\"\n // can happen in the middle of a kernel execution, placing a new (key,value)\n // pair in the data storage. Since data moves have net zero effect (we\n // always remove the data from the old backend), we have to cancel them out\n // when detecting memory leaks.\n const numMoves =\n this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1];\n const dataIdsLeaked =\n numDataIdsAfter - numDataIdsBefore - numOutputDataIds - numMoves;\n if (dataIdsLeaked > 0) {\n throw new Error(\n `Backend '${this.backendName}' has an internal memory leak ` +\n `(${dataIdsLeaked} data ids) after running '${kernelName}'`);\n }\n }\n\n /**\n * Internal helper method to execute a kernel Func\n *\n * Use `runKernel` to execute kernels from outside of engine.\n */\n private runKernelFunc(\n kernelParams: RegisteredKernelInvocation|\n CustomGradKernelInvocation): T {\n let outputs: Tensor[];\n let saved: Tensor[] = [];\n const isTapeOn = this.isTapeOn();\n\n const startingBytecount = this.state.numBytes;\n const startingNumTensors = this.state.numTensors;\n\n if (this.shouldCheckForMemLeaks()) {\n this.state.numDataMovesStack.push(0);\n }\n\n let kernelFunc: () => Tensor[];\n if (this.backendName == null) {\n // backend has not been initialized yet (backend initialization is lazy\n // can be deferred until an op/ kernel is run).\n // The below getter has side effects that will try to initialize the\n // backend and set properties like this.backendName\n // tslint:disable-next-line: no-unused-expression\n this.backend;\n }\n\n let out: TensorInfo|TensorInfo[];\n\n const kernelOrScopeName = isRegisteredKernelInvocation(kernelParams) ?\n kernelParams.kernelName :\n this.state.activeScope != null ? this.state.activeScope.name : '';\n\n // Create the kernelFunc from either a registered kernel OR passed in\n // forward/backward functions (used by custom grad). In this context a\n // kernelFunc wraps a kernel implementation with some bookkeeping.\n\n if (isRegisteredKernelInvocation(kernelParams)) {\n const {kernelName, inputs, attrs} = kernelParams;\n if (this.backendName == null) {\n // backend has not been initialized yet (backend initialization is lazy\n // can be deferred until an op/ kernel is run).\n // The below getter has side effects that will try to initialize the\n // backend and set properties like this.backendName\n // tslint:disable-next-line: no-unused-expression\n this.backend;\n }\n const kernel = getKernel(kernelName, this.backendName);\n util.assert(\n kernel != null,\n () => `Cannot find registered kernel '${kernelName}' for backend '${\n this.backendName}'`);\n\n kernelFunc = () => {\n const numDataIdsBefore = this.backend.numDataIds();\n out = kernel.kernelFunc({inputs, attrs, backend: this.backend});\n const outInfos = Array.isArray(out) ? out : [out];\n if (this.shouldCheckForMemLeaks()) {\n this.checkKernelForMemLeak(kernelName, numDataIdsBefore, outInfos);\n }\n\n const outTensors = outInfos.map((outInfo: TensorInfo|Tensor) => {\n // todo (yassogba) remove this option (Tensor) when node backend\n // methods have been modularized and they all return tensorInfo.\n // TensorInfos do not have a rank attribute.\n if ((outInfo as Tensor).rank != null) {\n return outInfo as Tensor;\n }\n const {dataId, shape, dtype} = outInfo as TensorInfo;\n return this.makeTensorFromDataId(dataId, shape, dtype);\n });\n\n // Save any required inputs and outputs.\n\n // Do not save unless we are recording to the tape. Otherwise it would\n // cause a mem leak since there would be no backprop for these tensors\n // (which would otherwise dispose them).\n if (isTapeOn) {\n const tensorsToSave =\n this.getTensorsForGradient(kernelName, inputs, outTensors);\n saved = this.saveTensorsForBackwardMode(tensorsToSave);\n }\n return outTensors;\n };\n } else {\n const {forwardFunc} = kernelParams;\n // Running a customGrad op.\n const saveFunc: GradSaveFunc = (tensors) => {\n // Do not save unless we are recording to the tape. Otherwise it would\n // cause a mem leak since we would never run backprop, which disposes\n // the kept tensors.\n if (!isTapeOn) {\n return;\n }\n saved = tensors.map(tensor => this.keep(this.clone(tensor)));\n };\n\n kernelFunc = () => {\n const numDataIdsBefore = this.backend.numDataIds();\n out = this.tidy(() => forwardFunc(this.backend, saveFunc));\n const outs = (Array.isArray(out) ? out : [out]) as Tensor[];\n if (this.shouldCheckForMemLeaks()) {\n // Scope name is used to print a more helpful error message if needed.\n this.checkKernelForMemLeak(kernelOrScopeName, numDataIdsBefore, outs);\n }\n return outs;\n };\n }\n\n //\n // Run the kernelFunc. Optionally profiling it.\n //\n const {inputs, attrs} = kernelParams;\n const backwardsFunc = isRegisteredKernelInvocation(kernelParams) ?\n null :\n kernelParams.backwardsFunc;\n\n let kernelProfile: KernelProfile;\n this.scopedRun(\n // Stop recording to a tape when running a kernel.\n () => this.state.kernelDepth++, () => this.state.kernelDepth--, () => {\n if (!this.ENV.getBool('DEBUG') && !this.state.profiling) {\n outputs = kernelFunc();\n } else {\n kernelProfile = this.profiler.profileKernel(\n kernelOrScopeName, inputs, () => kernelFunc());\n if (this.ENV.getBool('DEBUG')) {\n this.profiler.logKernelProfile(kernelProfile);\n }\n outputs = kernelProfile.outputs;\n }\n });\n\n if (isTapeOn) {\n this.addTapeNode(\n kernelOrScopeName, inputs, outputs, backwardsFunc, saved, attrs);\n }\n\n if (this.state.profiling) {\n this.state.activeProfile.kernels.push({\n name: kernelOrScopeName,\n bytesAdded: this.state.numBytes - startingBytecount,\n totalBytesSnapshot: this.state.numBytes,\n tensorsAdded: this.state.numTensors - startingNumTensors,\n totalTensorsSnapshot: this.state.numTensors,\n inputShapes: Object.keys(inputs).map(\n key => inputs[key] != null ? inputs[key].shape : null),\n outputShapes: outputs.map(item => item.shape),\n kernelTimeMs: kernelProfile.timeMs,\n extraInfo: kernelProfile.extraInfo\n });\n }\n return (Array.isArray(out) ? outputs : outputs[0]) as T;\n }\n\n /**\n * Saves tensors used in forward mode for use in backward mode.\n *\n * @param tensors the list of tensors to save.\n */\n private saveTensorsForBackwardMode(tensors: Tensor[]): Tensor[] {\n const saved = tensors.map(tensor => this.keep(this.clone(tensor)));\n return saved;\n }\n\n /**\n * Returns a list of tensors to save for a given gradient calculation.\n *\n * @param kernelName name of kernel to look up gradient for.\n * @param inputs a map of input tensors.\n * @param outputs an array of output tensors from forward mode of kernel.\n */\n private getTensorsForGradient(\n kernelName: string, inputs: NamedTensorMap,\n outputs: Tensor[]): Tensor[]|null {\n const gradConfig = getGradient(kernelName);\n if (gradConfig != null) {\n const inputsToSave: string[] = gradConfig.inputsToSave || [];\n const outputsToSave: boolean[] = gradConfig.outputsToSave || [];\n\n // If saveAllInputs is true, all inputs will be saved. Otherwise, inputs\n // specified in inputsToSave will be saved.\n let inputTensorsToSave: Tensor[];\n if (gradConfig.saveAllInputs) {\n util.assert(\n Array.isArray(inputs),\n () => 'saveAllInputs is true, expected inputs to be an array.');\n\n inputTensorsToSave = Object.keys(inputs).map((key) => inputs[key]);\n } else {\n inputTensorsToSave = inputsToSave.map((inputName) => inputs[inputName]);\n }\n\n const outputTensorsToSave: Tensor[] =\n outputs.filter((_, i) => outputsToSave[i]);\n\n return inputTensorsToSave.concat(outputTensorsToSave);\n }\n // We return an empty list rather than throw an error because the kernel we\n // are looking up may not actually be relevant to backproping through the\n // overall function\n //\n // See 'does not error if irrelevant (pruned) ops are missing grads' test\n // in gradients_test.ts for an example.\n return [];\n }\n\n /**\n * Internal method used by public APIs for tensor creation. Makes a new\n * tensor with the provided shape, dtype and values. It always\n * creates a new data id and writes the values to the underlying backend.\n */\n makeTensor(\n values: DataValues, shape: number[], dtype: DataType,\n backend?: KernelBackend): Tensor {\n if (values == null) {\n throw new Error('Values passed to engine.makeTensor() are null');\n }\n dtype = dtype || 'float32';\n backend = backend || this.backend;\n let backendVals = values as BackendValues;\n if (dtype === 'string' && util.isString(values[0])) {\n backendVals = (values as string[]).map(d => util.encodeString(d));\n }\n const dataId = backend.write(backendVals, shape, dtype);\n const t = new Tensor(shape, dtype, dataId, this.nextTensorId());\n this.trackTensor(t, backend);\n\n // Count bytes for string tensors.\n if (dtype === 'string') {\n const info = this.state.tensorInfo.get(dataId);\n const newBytes = bytesFromStringArray(backendVals as Uint8Array[]);\n this.state.numBytes += newBytes - info.bytes;\n info.bytes = newBytes;\n }\n return t;\n }\n\n /**\n * Internal method used by backends. Makes a new tensor\n * that is a wrapper around an existing data id. It doesn't create\n * a new data id, only increments the ref count used in memory tracking.\n */\n makeTensorFromDataId(\n dataId: DataId, shape: number[], dtype: DataType,\n backend?: KernelBackend): Tensor {\n dtype = dtype || 'float32';\n const t = new Tensor(shape, dtype, dataId, this.nextTensorId());\n this.trackTensor(t, backend);\n return t;\n }\n\n makeVariable(\n initialValue: Tensor, trainable = true, name?: string,\n dtype?: DataType): Variable {\n name = name || this.nextVariableId().toString();\n if (dtype != null && dtype !== initialValue.dtype) {\n initialValue = initialValue.cast(dtype);\n }\n const v = new Variable(initialValue, trainable, name, this.nextTensorId());\n if (this.state.registeredVariables[v.name] != null) {\n throw new Error(`Variable with name ${v.name} was already registered`);\n }\n this.state.registeredVariables[v.name] = v;\n this.incRef(v, this.backend);\n return v;\n }\n\n trackTensor(a: Tensor, backend: KernelBackend): void {\n this.state.numTensors++;\n if (a.dtype === 'string') {\n this.state.numStringTensors++;\n }\n // Bytes for complex numbers are counted by their components. Bytes for\n // string tensors are counted when writing values.\n let bytes = 0;\n if (a.dtype !== 'complex64' && a.dtype !== 'string') {\n bytes = a.size * util.bytesPerElement(a.dtype);\n }\n this.state.numBytes += bytes;\n\n if (!this.state.tensorInfo.has(a.dataId)) {\n this.state.numDataBuffers++;\n this.state.tensorInfo.set(a.dataId, {\n backend: backend || this.backend,\n dtype: a.dtype,\n shape: a.shape,\n bytes\n });\n }\n\n if (!(a instanceof Variable)) {\n this.track(a);\n }\n }\n\n // Track the tensor by dataId and increase the refCount for the dataId in the\n // backend.\n // TODO(pyu10055): This is currently used by makeVariable method, to increase\n // refCount on the backend for the dataId. It can potentially be replaced with\n // Identity op indead of calling backend directly.\n incRef(a: Tensor, backend: KernelBackend): void {\n this.trackTensor(a, backend);\n this.backend.incRef(a.dataId);\n }\n\n removeDataId(dataId: DataId, backend: KernelBackend) {\n if (this.state.tensorInfo.has(dataId) &&\n this.state.tensorInfo.get(dataId).backend === backend) {\n this.state.tensorInfo.delete(dataId);\n this.state.numDataBuffers--;\n }\n }\n disposeTensor(a: Tensor): void {\n if (!this.state.tensorInfo.has(a.dataId)) {\n return;\n }\n const info = this.state.tensorInfo.get(a.dataId);\n\n this.state.numTensors--;\n if (a.dtype === 'string') {\n this.state.numStringTensors--;\n this.state.numBytes -= info.bytes;\n }\n // Don't count bytes for complex numbers as they are counted by their\n // components.\n if (a.dtype !== 'complex64' && a.dtype !== 'string') {\n const bytes = a.size * util.bytesPerElement(a.dtype);\n this.state.numBytes -= bytes;\n }\n\n // Remove the reference to dataId if backend dispose the data successfully\n if (info.backend.disposeData(a.dataId)) {\n this.removeDataId(a.dataId, info.backend);\n }\n\n // TODO(nsthorat): Construct an error and save the stack trace for\n // debugging when in debug mode. Creating a stack trace is too expensive\n // to do unconditionally.\n }\n\n disposeVariables(): void {\n for (const varName in this.state.registeredVariables) {\n const v = this.state.registeredVariables[varName];\n this.disposeVariable(v);\n }\n }\n\n disposeVariable(v: Variable): void {\n this.disposeTensor(v);\n if (this.state.registeredVariables[v.name] != null) {\n delete this.state.registeredVariables[v.name];\n }\n }\n\n memory(): MemoryInfo {\n const info = this.backend.memory() as MemoryInfo;\n info.numTensors = this.state.numTensors;\n info.numDataBuffers = this.state.numDataBuffers;\n info.numBytes = this.state.numBytes;\n if (this.state.numStringTensors > 0) {\n info.unreliable = true;\n if (info.reasons == null) {\n info.reasons = [];\n }\n info.reasons.push(\n 'Memory usage by string tensors is approximate ' +\n '(2 bytes per character)');\n }\n return info;\n }\n\n async profile(query: () => (TensorContainer | Promise)):\n Promise {\n this.state.profiling = true;\n\n const startBytes = this.state.numBytes;\n const startNumTensors = this.state.numTensors;\n\n this.state.activeProfile.kernels = [];\n this.state.activeProfile.result = await query();\n\n this.state.profiling = false;\n\n this.state.activeProfile.peakBytes = Math.max(\n ...this.state.activeProfile.kernels.map(d => d.totalBytesSnapshot));\n this.state.activeProfile.newBytes = this.state.numBytes - startBytes;\n this.state.activeProfile.newTensors =\n this.state.numTensors - startNumTensors;\n for (const kernel of this.state.activeProfile.kernels) {\n kernel.kernelTimeMs = await kernel.kernelTimeMs;\n kernel.extraInfo = await kernel.extraInfo;\n }\n return this.state.activeProfile;\n }\n\n isTapeOn(): boolean {\n return this.state.gradientDepth > 0 && this.state.kernelDepth === 0;\n }\n\n private addTapeNode(\n kernelName: string, inputs: NamedTensorMap, outputs: Tensor[],\n gradientsFunc: GradFunc, saved: Tensor[], attrs: NamedAttrMap): void {\n const tapeNode: TapeNode =\n {id: this.state.nextTapeNodeId++, kernelName, inputs, outputs, saved};\n\n const gradConfig = getGradient(kernelName);\n if (gradConfig != null) {\n gradientsFunc = gradConfig.gradFunc;\n }\n if (gradientsFunc != null) {\n tapeNode.gradient = (dys: Tensor[]) => {\n // TODO(smilkov): To optimize back-prop, pass dys that are not used in\n // the backprop graph to the user as null instead of zeros\n dys = dys.map((dy, i) => {\n if (dy == null) {\n const output = outputs[i];\n const vals = util.makeZerosTypedArray(output.size, output.dtype);\n return this.makeTensor(vals, output.shape, output.dtype);\n }\n return dy;\n });\n // Grad functions of ops with single outputs expect a dy, while ops\n // with multiple outputs expect dys (array of dy).\n return gradientsFunc(dys.length > 1 ? dys : dys[0], saved, attrs);\n };\n }\n this.state.activeTape.push(tapeNode);\n }\n\n keep(result: T): T {\n result.kept = true;\n return result;\n }\n\n private startTape() {\n if (this.state.gradientDepth === 0) {\n this.state.activeTape = [];\n }\n this.state.gradientDepth++;\n }\n\n private endTape() {\n this.state.gradientDepth--;\n }\n\n /**\n * Start a scope. Use this with endScope() to achieve the same functionality\n * as scope() without the need for a function closure.\n */\n startScope(name?: string) {\n const scopeInfo: ScopeState = {\n track: [],\n name: 'unnamed scope',\n id: this.state.nextScopeId++\n };\n if (name) {\n scopeInfo.name = name;\n }\n this.state.scopeStack.push(scopeInfo);\n this.state.activeScope = scopeInfo;\n }\n\n /**\n * End a scope. Use this with startScope() to achieve the same functionality\n * as scope() without the need for a function closure.\n */\n endScope(result?: TensorContainer) {\n const tensorsToTrackInParent = getTensorsInContainer(result);\n const tensorsToTrackInParentSet =\n new Set(tensorsToTrackInParent.map(t => t.id));\n\n // Dispose the arrays tracked in this scope.\n for (let i = 0; i < this.state.activeScope.track.length; i++) {\n const tensor = this.state.activeScope.track[i];\n if (!tensor.kept && !tensorsToTrackInParentSet.has(tensor.id)) {\n tensor.dispose();\n }\n }\n\n const oldScope = this.state.scopeStack.pop();\n this.state.activeScope = this.state.scopeStack.length === 0 ?\n null :\n this.state.scopeStack[this.state.scopeStack.length - 1];\n\n // Track the current result in the parent scope.\n tensorsToTrackInParent.forEach(tensor => {\n // Only track the tensor if was allocated in the inner scope and is not\n // globally kept.\n if (!tensor.kept && tensor.scopeId === oldScope.id) {\n this.track(tensor);\n }\n });\n }\n\n /**\n * Returns gradients of `f` with respect to each of the `xs`. The gradients\n * returned are of the same length as `xs`, but some might be null if `f`\n * was not a function of that `x`. It also takes optional dy to multiply the\n * gradient, which defaults to `1`.\n */\n gradients(\n f: () => T, xs: Tensor[], dy?: T,\n allowNoGradients = false): {value: T, grads: Tensor[]} {\n util.assert(\n xs.length > 0, () => 'gradients() received an empty list of xs.');\n if (dy != null && dy.dtype !== 'float32') {\n throw new Error(`dy must have 'float32' dtype, but has '${dy.dtype}'`);\n }\n\n const y = this.scopedRun(\n () => this.startTape(), () => this.endTape(),\n () => this.tidy('forward', f));\n\n util.assert(\n y instanceof Tensor,\n () => 'The result y returned by f() must be a tensor.');\n // Filter out the nodes that don't connect x => y.\n const filteredTape = getFilteredNodesXToY(this.state.activeTape, xs, y);\n if (!allowNoGradients && filteredTape.length === 0 && xs.length > 0) {\n throw new Error(\n 'Cannot compute gradient of y=f(x) with respect to x. Make sure ' +\n 'that the f you passed encloses all operations that lead from x ' +\n 'to y.');\n }\n\n return this.tidy('backward', () => {\n const accumulatedGradientMap: {[tensorId: number]: Tensor} = {};\n accumulatedGradientMap[y.id] = (dy == null) ? ones(y.shape) : dy;\n\n // Backprop gradients through the filtered nodes.\n backpropagateGradients(\n accumulatedGradientMap, filteredTape,\n // Pass the tidy function to avoid circular dep with `tape.ts`.\n f => this.tidy(f as ScopeFn),\n // Pass an add function to avoide a circular dep with `tape.ts`.\n add);\n const grads = xs.map(x => accumulatedGradientMap[x.id]);\n\n if (this.state.gradientDepth === 0) {\n // This means that we are not computing higher-order gradients\n // and can clean up the tape.\n this.state.activeTape.forEach(node => {\n for (const tensor of node.saved) {\n tensor.dispose();\n }\n });\n this.state.activeTape = null;\n }\n return {value: y, grads};\n });\n }\n\n customGrad(f: CustomGradientFunc):\n (...args: Array) => T {\n util.assert(\n util.isFunction(f),\n () => 'The f passed in customGrad(f) must be a function.');\n return (...inputs: Tensor[]): T => {\n util.assert(\n inputs.every(t => t instanceof Tensor),\n () => 'The args passed in customGrad(f)(x1, x2,...) must all be ' +\n 'tensors');\n\n let res: {\n value: T,\n gradFunc: (dy: T, saved: Tensor[]) => Tensor | Tensor[],\n };\n const inputMap: NamedTensorMap = {};\n inputs.forEach((input, i) => {\n inputMap[i] = input;\n });\n\n const forwardFunc: ForwardFunc = (_, save) => {\n res = f(...[...inputs, save]);\n util.assert(\n res.value instanceof Tensor,\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.value` is a tensor');\n util.assert(\n util.isFunction(res.gradFunc),\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.gradFunc` is a function.');\n return res.value;\n };\n\n const backwardsFunc = (dy: T, saved: Tensor[]) => {\n const gradRes = res.gradFunc(dy, saved);\n const grads: Tensor[] = Array.isArray(gradRes) ? gradRes : [gradRes];\n util.assert(\n grads.length === inputs.length,\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.gradFunc` is a function that returns ' +\n 'the same number of tensors as inputs passed to f(...).');\n util.assert(\n grads.every(t => t instanceof Tensor),\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.gradFunc` is a function that returns ' +\n 'a list of only tensors.');\n const gradMap: {[key: string]: () => Tensor} = {};\n grads.forEach((grad, i) => {\n gradMap[i] = () => grad;\n });\n return gradMap;\n };\n\n return this.runKernelFunc({\n forwardFunc,\n backwardsFunc,\n inputs: inputMap,\n });\n };\n }\n\n readSync(dataId: DataId): BackendValues {\n // Route the read to the correct backend.\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.readSync(dataId);\n }\n read(dataId: DataId): Promise {\n // Route the read to the correct backend.\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.read(dataId);\n }\n\n async time(query: () => void): Promise {\n const start = now();\n const timingInfo = await this.backend.time(query) as TimingInfo;\n timingInfo.wallMs = now() - start;\n return timingInfo;\n }\n\n /**\n * Tracks a Tensor in the current scope to be automatically cleaned up\n * when the current scope ends, and returns the value.\n *\n * @param result The Tensor to track in the current scope.\n */\n private track(result: T): T {\n if (this.state.activeScope != null) {\n result.scopeId = this.state.activeScope.id;\n this.state.activeScope.track.push(result);\n }\n\n return result;\n }\n\n get registeredVariables(): NamedVariableMap {\n return this.state.registeredVariables;\n }\n\n /**\n * Resets the engine state. Removes all backends but does not remove\n * registered backend factories.\n */\n reset(): void {\n // Make any pending promise obsolete.\n this.pendingBackendInitId++;\n\n this.state.dispose();\n this.ENV.reset();\n this.state = new EngineState();\n\n for (const backendName in this.registry) {\n this.disposeRegisteredKernels(backendName);\n this.registry[backendName].dispose();\n delete this.registry[backendName];\n }\n this.backendName = null;\n this.backendInstance = null;\n this.pendingBackendInit = null;\n }\n}\n\nfunction ones(shape: number[]): Tensor {\n const values = makeOnesTypedArray(sizeFromShape(shape), 'float32');\n return ENGINE.makeTensor(values, shape, 'float32');\n}\n\nexport function getOrMakeEngine(): Engine {\n const ns = getGlobalNamespace() as {} as {_tfengine: Engine};\n if (ns._tfengine == null) {\n const environment = new Environment(ns);\n ns._tfengine = new Engine(environment);\n }\n setEnvironmentGlobal(ns._tfengine.ENV);\n\n // Tell the current tensor interface that the global engine is responsible\n // for tracking.\n setTensorTracker(() => ns._tfengine);\n return ns._tfengine;\n}\n\nexport const ENGINE = getOrMakeEngine();\n\n/**\n * A implementation of the add op for use within engine and tape.\n *\n * This allows us to avoid a circular dependency between add.ts and engine.\n * It is exported to be available in tape tests.\n */\nexport function add(a: Tensor, b: Tensor): Tensor {\n // We duplicate Add here to avoid a circular dependency with add.ts.\n const inputs = {a, b};\n return ENGINE.runKernel(Add, inputs as {} as NamedTensorMap);\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// tslint:disable-next-line:no-any\nfunction _isNavigatorDefined(): boolean {\n return typeof navigator !== 'undefined' && navigator != null;\n}\n\nexport function isMobile(nav?: Navigator): boolean {\n if (nav || _isNavigatorDefined()) {\n if (!nav) {\n nav = navigator;\n }\n if (nav.product === 'ReactNative') {\n return true;\n }\n\n // tslint:disable-next-line:no-any\n const a = nav.userAgent || nav.vendor || (window as any).opera;\n // tslint:disable-next-line:max-line-length\n return /(android|bb\\d+|meego).+mobile|avantgo|bada\\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i\n .test(a) ||\n // tslint:disable-next-line:max-line-length\n /1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\\-(n|u)|c55\\/|capi|ccwa|cdm\\-|cell|chtm|cldc|cmd\\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\\-s|devi|dica|dmob|do(c|p)o|ds(12|\\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\\-|_)|g1 u|g560|gene|gf\\-5|g\\-mo|go(\\.w|od)|gr(ad|un)|haie|hcit|hd\\-(m|p|t)|hei\\-|hi(pt|ta)|hp( i|ip)|hs\\-c|ht(c(\\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\\-(20|go|ma)|i230|iac( |\\-|\\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\\/)|klon|kpt |kwc\\-|kyo(c|k)|le(no|xi)|lg( g|\\/(k|l|u)|50|54|\\-[a-w])|libw|lynx|m1\\-w|m3ga|m50\\/|ma(te|ui|xo)|mc(01|21|ca)|m\\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\\-2|po(ck|rt|se)|prox|psio|pt\\-g|qa\\-a|qc(07|12|21|32|60|\\-[2-7]|i\\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\\-|oo|p\\-)|sdk\\/|se(c(\\-|0|1)|47|mc|nd|ri)|sgh\\-|shar|sie(\\-|m)|sk\\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\\-|v\\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\\-|tdg\\-|tel(i|m)|tim\\-|t\\-mo|to(pl|sh)|ts(70|m\\-|m3|m5)|tx\\-9|up(\\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\\-|your|zeto|zte\\-/i\n .test(a.substr(0, 4));\n }\n return false;\n}\n\nexport function isBrowser(): boolean {\n return (typeof window !== 'undefined' && window.document != null) ||\n //@ts-ignore\n (typeof WorkerGlobalScope !== 'undefined');\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport './engine';\n\nimport * as device_util from './device_util';\nimport {env} from './environment';\n\nconst ENV = env();\n\n/**\n * This file contains environment-related flag registrations.\n */\n\n/** Whether to enable debug mode. */\nENV.registerFlag('DEBUG', () => false, debugValue => {\n if (debugValue) {\n console.warn(\n 'Debugging mode is ON. The output of every math call will ' +\n 'be downloaded to CPU and checked for NaNs. ' +\n 'This significantly impacts performance.');\n }\n});\n\n/** Whether we are in a browser (as versus, say, node.js) environment. */\nENV.registerFlag('IS_BROWSER', () => device_util.isBrowser());\n\n/** Whether we are in a browser (as versus, say, node.js) environment. */\nENV.registerFlag(\n 'IS_NODE',\n () => (typeof process !== 'undefined') &&\n (typeof process.versions !== 'undefined') &&\n (typeof process.versions.node !== 'undefined'));\n\n/** Whether this browser is Chrome. */\nENV.registerFlag(\n 'IS_CHROME',\n () => typeof navigator !== 'undefined' && navigator != null &&\n navigator.userAgent != null && /Chrome/.test(navigator.userAgent) &&\n /Google Inc/.test(navigator.vendor));\n\n/**\n * True when the environment is \"production\" where we disable safety checks\n * to gain performance.\n */\nENV.registerFlag('PROD', () => false);\n\n/**\n * Whether to do sanity checks when inferring a shape from user-provided\n * values, used when creating a new tensor.\n */\nENV.registerFlag(\n 'TENSORLIKE_CHECK_SHAPE_CONSISTENCY', () => ENV.getBool('DEBUG'));\n\n/** Whether deprecation warnings are enabled. */\nENV.registerFlag('DEPRECATION_WARNINGS_ENABLED', () => true);\n\n/** True if running unit tests. */\nENV.registerFlag('IS_TEST', () => false);\n\n/** Whether to check computation result for errors. */\nENV.registerFlag('CHECK_COMPUTATION_FOR_ERRORS', () => true);\n\n/** Whether the backend needs to wrap input to imageBitmap. */\nENV.registerFlag('WRAP_TO_IMAGEBITMAP', () => false);\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from './engine';\nimport {env} from './environment';\nimport {Tensor} from './tensor';\nimport {DataType, TensorLike} from './types';\nimport {assert, flatten, inferDtype, isTypedArray, toTypedArray} from './util';\n\nexport function inferShape(val: TensorLike, dtype?: DataType): number[] {\n let firstElem: typeof val = val;\n\n if (isTypedArray(val)) {\n return dtype === 'string' ? [] : [val.length];\n }\n if (!Array.isArray(val)) {\n return []; // Scalar.\n }\n const shape: number[] = [];\n\n while (Array.isArray(firstElem) ||\n isTypedArray(firstElem) && dtype !== 'string') {\n shape.push(firstElem.length);\n firstElem = firstElem[0];\n }\n if (Array.isArray(val) &&\n env().getBool('TENSORLIKE_CHECK_SHAPE_CONSISTENCY')) {\n deepAssertShapeConsistency(val, shape, []);\n }\n\n return shape;\n}\n\nfunction deepAssertShapeConsistency(\n val: TensorLike, shape: number[], indices: number[]) {\n indices = indices || [];\n if (!(Array.isArray(val)) && !isTypedArray(val)) {\n assert(\n shape.length === 0,\n () => `Element arr[${indices.join('][')}] is a primitive, ` +\n `but should be an array/TypedArray of ${shape[0]} elements`);\n return;\n }\n assert(\n shape.length > 0,\n () => `Element arr[${indices.join('][')}] should be a primitive, ` +\n `but is an array of ${val.length} elements`);\n assert(\n val.length === shape[0],\n () => `Element arr[${indices.join('][')}] should have ${shape[0]} ` +\n `elements, but has ${val.length} elements`);\n const subShape = shape.slice(1);\n for (let i = 0; i < val.length; ++i) {\n deepAssertShapeConsistency(val[i], subShape, indices.concat(i));\n }\n}\n\nfunction assertDtype(\n expectedDtype: DataType|'numeric'|'string_or_numeric',\n actualDType: DataType, argName: string, functionName: string) {\n if (expectedDtype === 'string_or_numeric') {\n return;\n }\n if (expectedDtype == null) {\n throw new Error(`Expected dtype cannot be null.`);\n }\n if (expectedDtype !== 'numeric' && expectedDtype !== actualDType ||\n expectedDtype === 'numeric' && actualDType === 'string') {\n throw new Error(\n `Argument '${argName}' passed to '${functionName}' must ` +\n `be ${expectedDtype} tensor, but got ${actualDType} tensor`);\n }\n}\n\nexport function convertToTensor(\n x: T|TensorLike, argName: string, functionName: string,\n parseAsDtype: DataType|'numeric'|'string_or_numeric' = 'numeric'): T {\n if (x instanceof Tensor) {\n assertDtype(parseAsDtype, x.dtype, argName, functionName);\n return x;\n }\n let inferredDtype = inferDtype(x);\n // If the user expects a bool/int/float, use that info to update the\n // inferredDtype when it is not a string.\n if (inferredDtype !== 'string' &&\n ['bool', 'int32', 'float32'].indexOf(parseAsDtype) >= 0) {\n inferredDtype = parseAsDtype as DataType;\n }\n assertDtype(parseAsDtype, inferredDtype, argName, functionName);\n\n if ((x == null) ||\n (!isTypedArray(x) && !Array.isArray(x) && typeof x !== 'number' &&\n typeof x !== 'boolean' && typeof x !== 'string')) {\n const type = x == null ? 'null' : (x as {}).constructor.name;\n throw new Error(\n `Argument '${argName}' passed to '${functionName}' must be a ` +\n `Tensor or TensorLike, but got '${type}'`);\n }\n const inferredShape = inferShape(x, inferredDtype);\n if (!isTypedArray(x) && !Array.isArray(x)) {\n x = [x] as number[];\n }\n const skipTypedArray = true;\n const values = inferredDtype !== 'string' ?\n toTypedArray(x, inferredDtype as DataType) :\n flatten(x as string[], [], skipTypedArray) as string[];\n return ENGINE.makeTensor(values, inferredShape, inferredDtype) as T;\n}\n\nexport function convertToTensorArray(\n arg: Array, argName: string, functionName: string,\n parseAsDtype: DataType|'numeric'|'string_or_numeric' = 'numeric'): T[] {\n if (!Array.isArray(arg)) {\n throw new Error(\n `Argument ${argName} passed to ${functionName} must be a ` +\n '`Tensor[]` or `TensorLike[]`');\n }\n const tensors = arg as T[];\n return tensors.map(\n (t, i) =>\n convertToTensor(t, `${argName}[${i}]`, functionName, parseAsDtype));\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {isPromise} from '../util';\n\nexport const OP_SCOPE_SUFFIX = '__op';\n\n/**\n * Used for wrapping functions that perform math operations on\n * Tensors. The function will be wrapped in a named scope that cleans all\n * memory usage after the function is done.\n */\nexport function op(f: {[name: string]: T}): T {\n const keys = Object.keys(f);\n if (keys.length !== 1) {\n throw new Error(\n `Please provide an object with a single key ` +\n `(operation name) mapping to a function. Got an object with ` +\n `${keys.length} keys.`);\n }\n\n let opName = keys[0];\n const fn = f[opName];\n\n // Strip the underscore from the end of the function name.\n if (opName.endsWith('_')) {\n opName = opName.substring(0, opName.length - 1);\n }\n\n // add an __op suffix to distinguish ops from kernels in tf.profile\n opName = opName + OP_SCOPE_SUFFIX;\n\n // tslint:disable-next-line:no-any\n const f2 = (...args: any[]) => {\n ENGINE.startScope(opName);\n try {\n const result = fn(...args);\n if (isPromise(result)) {\n console.error('Cannot return a Promise inside of tidy.');\n }\n ENGINE.endScope(result);\n return result;\n } catch (ex) {\n ENGINE.endScope(null);\n throw ex;\n }\n };\n Object.defineProperty(f2, 'name', {value: opName, configurable: true});\n\n // tslint:disable-next-line:no-any\n return f2 as any as T;\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {Complex, ComplexInputs} from '../kernel_names';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {op} from './operation';\n\n/**\n * Converts two real numbers to a complex number.\n *\n * Given a tensor `real` representing the real part of a complex number, and a\n * tensor `imag` representing the imaginary part of a complex number, this\n * operation returns complex numbers elementwise of the form [r0, i0, r1, i1],\n * where r represents the real part and i represents the imag part.\n *\n * The input tensors real and imag must have the same shape.\n *\n * ```js\n * const real = tf.tensor1d([2.25, 3.25]);\n * const imag = tf.tensor1d([4.75, 5.75]);\n * const complex = tf.complex(real, imag);\n *\n * complex.print();\n * ```\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nfunction complex_(real: T|TensorLike, imag: T|TensorLike): T {\n const $real = convertToTensor(real, 'real', 'complex');\n const $imag = convertToTensor(imag, 'imag', 'complex');\n util.assertShapesMatch(\n $real.shape, $imag.shape,\n `real and imag shapes, ${$real.shape} and ${$imag.shape}, ` +\n `must match in call to tf.complex().`);\n\n const inputs: ComplexInputs = {real: $real, imag: $imag};\n return ENGINE.runKernel(Complex, inputs as {} as NamedTensorMap);\n}\n\nexport const complex = op({complex_});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {Tensor} from '../tensor';\nimport {TensorLike, TypedArray} from '../types';\nimport {DataType} from '../types';\nimport {assert, assertNonNegativeIntegerDimensions, flatten, inferDtype, isTypedArray, sizeFromShape, toTypedArray} from '../util';\n\n/** This is shared code across all tensor creation methods. */\nexport function makeTensor(\n values: TensorLike, shape: number[], inferredShape: number[],\n dtype?: DataType): Tensor {\n if (dtype == null) {\n dtype = inferDtype(values);\n }\n if (dtype === 'complex64') {\n throw new Error(\n `Cannot construct a complex64 tensor directly. ` +\n `Please use tf.complex(real, imag).`);\n }\n if (!isTypedArray(values) && !Array.isArray(values) &&\n typeof values !== 'number' && typeof values !== 'boolean' &&\n typeof values !== 'string') {\n throw new Error(\n 'values passed to tensor(values) must be a number/boolean/string or ' +\n 'an array of numbers/booleans/strings, or a TypedArray');\n }\n if (shape != null) {\n assertNonNegativeIntegerDimensions(shape);\n\n const providedSize = sizeFromShape(shape);\n const inferredSize = sizeFromShape(inferredShape);\n assert(\n providedSize === inferredSize,\n () =>\n `Based on the provided shape, [${shape}], the tensor should have ` +\n `${providedSize} values but has ${inferredSize}`);\n\n for (let i = 0; i < inferredShape.length; ++i) {\n const inferred = inferredShape[i];\n const flatDimsDontMatch = i === inferredShape.length - 1 ?\n inferred !== sizeFromShape(shape.slice(i)) :\n true;\n assert(\n inferredShape[i] === shape[i] || !flatDimsDontMatch,\n () => `Error creating a new Tensor. Inferred shape ` +\n `(${inferredShape}) does not match the provided ` +\n `shape (${shape}). `);\n }\n }\n\n if (!isTypedArray(values) && !Array.isArray(values)) {\n values = [values] as number[];\n }\n\n shape = shape || inferredShape;\n values = dtype !== 'string' ?\n toTypedArray(values, dtype) :\n flatten(values as string[], [], true) as string[];\n return ENGINE.makeTensor(values as TypedArray, shape, dtype);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from '../tensor';\nimport {inferShape} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport {DataType, Rank, ShapeMap} from '../types';\n\nimport {makeTensor} from './tensor_ops_util';\n\n/**\n * Creates a `tf.Tensor` with the provided values, shape and dtype.\n *\n * ```js\n * // Pass an array of values to create a vector.\n * tf.tensor([1, 2, 3, 4]).print();\n * ```\n *\n * ```js\n * // Pass a nested array of values to make a matrix or a higher\n * // dimensional tensor.\n * tf.tensor([[1, 2], [3, 4]]).print();\n * ```\n *\n * ```js\n * // Pass a flat array and specify a shape yourself.\n * tf.tensor([1, 2, 3, 4], [2, 2]).print();\n * ```\n *\n * @param values The values of the tensor. Can be nested array of numbers,\n * or a flat array, or a `TypedArray`. If the values are strings,\n * they will be encoded as utf-8 and kept as `Uint8Array[]`.\n * @param shape The shape of the tensor. Optional. If not provided,\n * it is inferred from `values`.\n * @param dtype The data type.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nexport function tensor(\n values: TensorLike, shape?: ShapeMap[R], dtype?: DataType): Tensor {\n const inferredShape = inferShape(values, dtype);\n return makeTensor(values, shape, inferredShape, dtype) as Tensor;\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/* Type definitions for exporting and importing of models. */\n\n/**\n * A map from Tensor dtype to number of bytes per element of the Tensor.\n */\nexport const DTYPE_VALUE_SIZE_MAP: {[dtype: string]: number} = {\n 'float32': 4,\n 'float16': 2,\n 'int32': 4,\n 'uint16': 2,\n 'uint8': 1,\n 'bool': 1,\n 'complex64': 8\n};\n\n/**\n * A weight manifest.\n *\n * The weight manifest consists of an ordered list of weight-manifest groups.\n * Each weight-manifest group (\"group\" for short hereafter) consists of a\n * number of weight values stored in a number of paths.\n * See the documentation of `WeightManifestGroupConfig` below for more details.\n */\nexport declare type WeightsManifestConfig = WeightsManifestGroupConfig[];\n\n/**\n * A weight-manifest group.\n *\n * Consists of an ordered list of weight values encoded in binary format,\n * stored in an ordered list of paths.\n */\nexport declare interface WeightsManifestGroupConfig {\n /**\n * An ordered list of paths.\n *\n * Paths are intentionally abstract in order to be general. For example, they\n * can be relative URL paths or relative paths on the file system.\n */\n paths: string[];\n\n /**\n * Specifications of the weights stored in the paths.\n */\n weights: WeightsManifestEntry[];\n}\n\n/**\n * Group to which the weight belongs.\n *\n * - 'optimizer': Weight from a stateful optimizer.\n */\nexport type WeightGroup = 'model'|'optimizer';\n\n/**\n * An entry in the weight manifest.\n *\n * The entry contains specification of a weight.\n */\nexport declare interface WeightsManifestEntry {\n /**\n * Name of the weight, e.g., 'Dense_1/bias'\n */\n name: string;\n\n /**\n * Shape of the weight.\n */\n shape: number[];\n\n /**\n * Data type of the weight.\n */\n dtype: 'float32'|'int32'|'bool'|'string'|'complex64';\n\n /**\n * Type of the weight.\n *\n * Optional.\n *\n * The value 'optimizer' indicates the weight belongs to an optimizer\n * (i.e., used only during model training and not during inference).\n */\n group?: WeightGroup;\n\n /**\n * Information for dequantization of the weight.\n */\n quantization?: {\n scale?: number, // The scaling constant to multiply by.\n min?: number, // The (possibly nudged) minimum weight to add.\n dtype: 'uint16'|'uint8'|'float16' // The dtype of the quantized weights.\n };\n}\n\n/**\n * Options for saving a model.\n * @innamespace io\n */\nexport interface SaveConfig {\n /**\n * Whether to save only the trainable weights of the model, ignoring the\n * non-trainable ones.\n */\n trainableOnly?: boolean;\n\n /**\n * Whether the optimizer will be saved (if exists).\n *\n * Default: `false`.\n */\n includeOptimizer?: boolean;\n}\n\n/**\n * Result of a saving operation.\n */\nexport interface SaveResult {\n /**\n * Information about the model artifacts saved.\n */\n modelArtifactsInfo: ModelArtifactsInfo;\n\n /**\n * HTTP responses from the server that handled the model-saving request (if\n * any). This is applicable only to server-based saving routes.\n */\n responses?: Response[];\n\n /**\n * Error messages and related data (if any).\n */\n errors?: Array<{}|string>;\n}\n\nexport declare interface ModelArtifactsInfo {\n /**\n * Timestamp for when the model is saved.\n */\n dateSaved: Date;\n\n /**\n * TODO (cais,yassogba) consider removing GraphDef as GraphDefs now\n * come in a JSON format and none of our IOHandlers support a non json\n * format. We could conder replacing this with 'Binary' if we want to\n * allow future handlers to save to non json formats (though they will\n * probably want more information than 'Binary').\n * Type of the model topology\n *\n * Type of the model topology\n *\n * Possible values:\n * - JSON: JSON config (human-readable, e.g., Keras JSON).\n * - GraphDef: TensorFlow\n * [GraphDef](https://www.tensorflow.org/extend/tool_developers/#graphdef)\n * protocol buffer (binary).\n */\n modelTopologyType: 'JSON'|'GraphDef';\n\n /**\n * Size of model topology (Keras JSON or GraphDef), in bytes.\n */\n modelTopologyBytes?: number;\n\n /**\n * Size of weight specification or manifest, in bytes.\n */\n weightSpecsBytes?: number;\n\n /**\n * Size of weight value data, in bytes.\n */\n weightDataBytes?: number;\n}\n\n/** Model training configuration. */\nexport declare interface TrainingConfig {\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n // See\n // tslint:disable-next-line:max-line-length\n // https://github.com/tensorflow/tfjs-layers/blob/master/src/keras_format/training_config.ts\n /** Optimizer used for the model training. */\n optimizer_config: {};\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n /** Loss function(s) for the model's output(s). */\n loss: string|string[]|{[key: string]: string};\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n /** Metric function(s) for the model's output(s). */\n metrics?: string[]|{[key: string]: string};\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n weighted_metrics?: string[];\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n sample_weight_mode?: string;\n\n loss_weights?: number[]|{[key: string]: number};\n}\n\n/**\n * The serialized artifacts of a model, including topology and weights.\n *\n * The `modelTopology`, `trainingConfig`, `weightSpecs` and `weightData` fields\n * of this interface are optional, in order to support topology- or weights-only\n * saving and loading.\n *\n * Note this interface is used internally in IOHandlers. For the file format\n * written to disk as `model.json`, see `ModelJSON`.\n */\nexport declare interface ModelArtifacts {\n /**\n * Model topology.\n *\n * For Keras-style `tf.Model`s, this is a JSON object.\n * For TensorFlow-style models (e.g., `SavedModel`), this is the JSON\n * encoding of the `GraphDef` protocol buffer.\n */\n modelTopology?: {}|ArrayBuffer;\n\n /**\n * Serialized configuration for the model's training.\n */\n trainingConfig?: TrainingConfig;\n\n /**\n * Weight specifications.\n *\n * This corresponds to the weightsData below.\n */\n weightSpecs?: WeightsManifestEntry[];\n\n /**\n * Binary buffer for all weight values concatenated in the order specified\n * by `weightSpecs`.\n */\n weightData?: ArrayBuffer;\n\n /**\n * Hard-coded format name for models saved from TensorFlow.js or converted\n * by TensorFlow.js Converter.\n */\n format?: string;\n\n /**\n * What library is responsible for originally generating this artifact.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js v1.0.0'.\n */\n generatedBy?: string;\n\n /**\n * What library or tool is responsible for converting the original model\n * to this format, applicable only if the model is output by a converter.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js Converter v1.0.0'.\n *\n * A value of `null` means the model artifacts are generated without any\n * conversion process (e.g., saved directly from a TensorFlow.js\n * `tf.LayersModel` instance.)\n */\n convertedBy?: string|null;\n\n /**\n * Inputs and outputs signature for saved model.\n */\n signature?: {};\n\n /**\n * User-defined metadata about the model.\n */\n userDefinedMetadata?: {[key: string]: {}};\n\n /**\n * Initializer for the model.\n */\n modelInitializer?: {};\n}\n\n/**\n * The on-disk format of the `model.json` file.\n *\n * TF.js 1.0 always populates the optional fields when writing model.json.\n * Prior versions did not provide those fields.\n */\nexport declare interface ModelJSON {\n /**\n * Model topology.\n *\n * For Keras-style `tf.Model`s, this is a JSON object.\n * For TensorFlow-style models (e.g., `SavedModel`), this is the JSON\n * encoding of the `GraphDef` protocol buffer.\n */\n modelTopology: {};\n\n /** Model training configuration. */\n trainingConfig?: TrainingConfig;\n\n /**\n * Weights manifest.\n *\n * The weights manifest consists of an ordered list of weight-manifest\n * groups. Each weight-manifest group consists of a number of weight values\n * stored in a number of paths. See the documentation of\n * `WeightsManifestConfig` for more details.\n */\n weightsManifest: WeightsManifestConfig;\n\n /**\n * Hard-coded format name for models saved from TensorFlow.js or converted\n * by TensorFlow.js Converter.\n */\n format?: string;\n\n /**\n * What library is responsible for originally generating this artifact.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js v1.0.0'.\n */\n generatedBy?: string;\n\n /**\n * What library or tool is responsible for converting the original model\n * to this format, applicable only if the model is output by a converter.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js Converter v1.0.0'.\n *\n * A value of `null` means the model artifacts are generated without any\n * conversion process (e.g., saved directly from a TensorFlow.js\n * `tf.LayersModel` instance.)\n */\n convertedBy?: string|null;\n\n /**\n * Inputs and outputs signature for saved model.\n */\n signature?: {};\n\n /**\n * User-defined metadata about the model.\n */\n userDefinedMetadata?: {[key: string]: {}};\n\n /**\n * Initializer for the model.\n */\n modelInitializer?: {};\n}\n\n/**\n * Type definition for handlers of loading operations.\n */\nexport type LoadHandler = () => Promise;\n\n/**\n * Type definition for handlers of saving operations.\n */\nexport type SaveHandler = (modelArtifact: ModelArtifacts) =>\n Promise;\n\n/**\n * Interface for a model import/export handler.\n *\n * The `save` and `load` handlers are both optional, in order to allow handlers\n * that support only saving or loading.\n */\n// tslint:disable-next-line:interface-name\nexport interface IOHandler {\n save?: SaveHandler;\n load?: LoadHandler;\n}\n\n/**\n * An interface for the manager of a model store.\n *\n * A model store is defined as a storage medium on which multiple models can\n * be stored. Each stored model has a unique `path` as its identifier.\n * A `ModelStoreManager` for the store allows actions including\n *\n * - Listing the models stored in the store.\n * - Deleting a model from the store.\n */\nexport interface ModelStoreManager {\n /**\n * List all models in the model store.\n *\n * @returns A dictionary mapping paths of existing models to their\n * model artifacts info. Model artifacts info include type of the model's\n * topology, byte sizes of the topology, weights, etc.\n */\n listModels(): Promise<{[path: string]: ModelArtifactsInfo}>;\n\n /**\n * Remove a model specified by `path`.\n *\n * @param path\n * @returns ModelArtifactsInfo of the deleted model (if and only if deletion\n * is successful).\n * @throws Error if deletion fails, e.g., if no model exists at `path`.\n */\n removeModel(path: string): Promise;\n}\n\n/**\n * Callback for the progress of a long-running action such as an HTTP\n * request for a large binary object.\n *\n * `fraction` should be a number in the [0, 1] interval, indicating how\n * much of the action has completed.\n */\nexport type OnProgressCallback = (fraction: number) => void;\n\n/** @innamespace io */\nexport interface LoadOptions {\n /**\n * RequestInit (options) for HTTP requests.\n *\n * For detailed information on the supported fields, see\n * [https://developer.mozilla.org/en-US/docs/Web/API/Request/Request](\n * https://developer.mozilla.org/en-US/docs/Web/API/Request/Request)\n */\n requestInit?: RequestInit;\n\n /**\n * Progress callback.\n */\n onProgress?: OnProgressCallback;\n\n /**\n * A function used to override the `window.fetch` function.\n */\n fetchFunc?: Function;\n\n /**\n * Strict loading model: whether extraneous weights or missing\n * weights should trigger an `Error`.\n *\n * If `true`, require that the provided weights exactly match those\n * required by the layers. `false` means that both extra weights\n * and missing weights will be silently ignored.\n *\n * Default: `true`.\n */\n strict?: boolean;\n\n /**\n * Path prefix for weight files, by default this is calculated from the\n * path of the model JSON file.\n *\n * For instance, if the path to the model JSON file is\n * `http://localhost/foo/model.json`, then the default path prefix will be\n * `http://localhost/foo/`. If a weight file has the path value\n * `group1-shard1of2` in the weight manifest, then the weight file will be\n * loaded from `http://localhost/foo/group1-shard1of2` by default. However,\n * if you provide a `weightPathPrefix` value of\n * `http://localhost/foo/alt-weights`, then the weight file will be loaded\n * from the path `http://localhost/foo/alt-weights/group1-shard1of2` instead.\n */\n weightPathPrefix?: string;\n\n /**\n * Whether the module or model is to be loaded from TF Hub.\n *\n * Setting this to `true` allows passing a TF-Hub module URL, omitting the\n * standard model file name and the query parameters.\n *\n * Default: `false`.\n */\n fromTFHub?: boolean;\n\n /**\n * An async function to convert weight file name to URL. The weight file\n * names are stored in model.json's weightsManifest.paths field. By default we\n * consider weight files are colocated with the model.json file. For example:\n * model.json URL: https://www.google.com/models/1/model.json\n * group1-shard1of1.bin url:\n * https://www.google.com/models/1/group1-shard1of1.bin\n *\n * With this func you can convert the weight file name to any URL.\n */\n weightUrlConverter?: (weightFileName: string) => Promise;\n}\n\n/**\n * Additional options for Platform.fetch\n */\nexport interface RequestDetails {\n /**\n * Is this request for a binary file (as opposed to a json file)\n */\n isBinary?: boolean;\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {complex} from '../ops/complex';\n\nimport {tensor} from '../ops/tensor';\nimport {NamedTensor, NamedTensorMap} from '../tensor_types';\nimport {TypedArray} from '../types';\nimport {sizeFromShape} from '../util';\n\nimport {DTYPE_VALUE_SIZE_MAP, ModelArtifacts, ModelArtifactsInfo, WeightGroup, WeightsManifestEntry} from './types';\n\n/** Number of bytes reserved for the length of the string. (32bit integer). */\nconst NUM_BYTES_STRING_LENGTH = 4;\n\n/**\n * Encode a map from names to weight values as an ArrayBuffer, along with an\n * `Array` of `WeightsManifestEntry` as specification of the encoded weights.\n *\n * This function does not perform sharding.\n *\n * This function is the reverse of `decodeWeights`.\n *\n * @param tensors A map (\"dict\") from names to tensors.\n * @param group Group to which the weights belong (optional).\n * @returns A `Promise` of\n * - A flat `ArrayBuffer` with all the binary values of the `Tensor`s\n * concatenated.\n * - An `Array` of `WeightManifestEntry`s, carrying information including\n * tensor names, `dtype`s and shapes.\n * @throws Error: on unsupported tensor `dtype`.\n */\nexport async function encodeWeights(\n tensors: NamedTensorMap|NamedTensor[], group?: WeightGroup):\n Promise<{data: ArrayBuffer, specs: WeightsManifestEntry[]}> {\n // TODO(adarob, cais): Support quantization.\n const specs: WeightsManifestEntry[] = [];\n const dataPromises: Array> = [];\n\n const names: string[] = Array.isArray(tensors) ?\n tensors.map(tensor => tensor.name) :\n Object.keys(tensors);\n\n for (let i = 0; i < names.length; ++i) {\n const name = names[i];\n const t = Array.isArray(tensors) ? tensors[i].tensor : tensors[name];\n if (t.dtype !== 'float32' && t.dtype !== 'int32' && t.dtype !== 'bool' &&\n t.dtype !== 'string' && t.dtype !== 'complex64') {\n throw new Error(`Unsupported dtype in weight '${name}': ${t.dtype}`);\n }\n const spec: WeightsManifestEntry = {name, shape: t.shape, dtype: t.dtype};\n if (t.dtype === 'string') {\n const utf8bytes = new Promise(async resolve => {\n const vals = await t.bytes() as Uint8Array[];\n const totalNumBytes = vals.reduce((p, c) => p + c.length, 0) +\n NUM_BYTES_STRING_LENGTH * vals.length;\n const bytes = new Uint8Array(totalNumBytes);\n let offset = 0;\n for (let i = 0; i < vals.length; i++) {\n const val = vals[i];\n const bytesOfLength =\n new Uint8Array(new Uint32Array([val.length]).buffer);\n bytes.set(bytesOfLength, offset);\n offset += NUM_BYTES_STRING_LENGTH;\n bytes.set(val, offset);\n offset += val.length;\n }\n resolve(bytes);\n });\n dataPromises.push(utf8bytes);\n } else {\n dataPromises.push(t.data());\n }\n if (group != null) {\n spec.group = group;\n }\n specs.push(spec);\n }\n\n const tensorValues = await Promise.all(dataPromises);\n return {data: concatenateTypedArrays(tensorValues), specs};\n}\n\n/**\n * Decode flat ArrayBuffer as weights.\n *\n * This function does not handle sharding.\n *\n * This function is the reverse of `encodeWeights`.\n *\n * @param buffer A flat ArrayBuffer carrying the binary values of the tensors\n * concatenated in the order specified in `specs`.\n * @param specs Specifications of the names, dtypes and shapes of the tensors\n * whose value are encoded by `buffer`.\n * @return A map from tensor name to tensor value, with the names corresponding\n * to names in `specs`.\n * @throws Error, if any of the tensors has unsupported dtype.\n */\nexport function decodeWeights(\n buffer: ArrayBuffer, specs: WeightsManifestEntry[]): NamedTensorMap {\n // TODO(adarob, cais): Support quantization.\n const out: NamedTensorMap = {};\n let float16Decode: (buffer: Uint16Array) => Float32Array | undefined;\n let offset = 0;\n for (const spec of specs) {\n const name = spec.name;\n const dtype = spec.dtype;\n const shape = spec.shape;\n const size = sizeFromShape(shape);\n let values: TypedArray|string[]|Uint8Array[];\n\n if ('quantization' in spec) {\n const quantization = spec.quantization;\n if (quantization.dtype === 'uint8' || quantization.dtype === 'uint16') {\n if (!('min' in quantization && 'scale' in quantization)) {\n throw new Error(\n `Weight ${spec.name} with quantization ${quantization.dtype} ` +\n `doesn't have corresponding metadata min and scale.`);\n }\n } else if (quantization.dtype === 'float16') {\n if (dtype !== 'float32') {\n throw new Error(\n `Weight ${spec.name} is quantized with ${quantization.dtype} ` +\n `which only supports weights of type float32 not ${dtype}.`);\n }\n } else {\n throw new Error(\n `Weight ${spec.name} has unknown ` +\n `quantization dtype ${quantization.dtype}. ` +\n `Supported quantization dtypes are: ` +\n `'uint8', 'uint16', and 'float16'.`);\n }\n const quantizationSizeFactor = DTYPE_VALUE_SIZE_MAP[quantization.dtype];\n const byteBuffer =\n buffer.slice(offset, offset + size * quantizationSizeFactor);\n const quantizedArray = (quantization.dtype === 'uint8') ?\n new Uint8Array(byteBuffer) :\n new Uint16Array(byteBuffer);\n if (dtype === 'float32') {\n if (quantization.dtype === 'uint8' || quantization.dtype === 'uint16') {\n values = new Float32Array(quantizedArray.length);\n for (let i = 0; i < quantizedArray.length; i++) {\n const v = quantizedArray[i];\n values[i] = v * quantization.scale + quantization.min;\n }\n } else if (quantization.dtype === 'float16') {\n if (float16Decode === undefined) {\n float16Decode = getFloat16Decoder();\n }\n values = float16Decode(quantizedArray as Uint16Array);\n } else {\n throw new Error(\n `Unsupported quantization type ${quantization.dtype} ` +\n `for weight type float32.`);\n }\n } else if (dtype === 'int32') {\n if (quantization.dtype !== 'uint8' && quantization.dtype !== 'uint16') {\n throw new Error(\n `Unsupported quantization type ${quantization.dtype} ` +\n `for weight type int32.`);\n }\n values = new Int32Array(quantizedArray.length);\n for (let i = 0; i < quantizedArray.length; i++) {\n const v = quantizedArray[i];\n values[i] = Math.round(v * quantization.scale + quantization.min);\n }\n } else {\n throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`);\n }\n offset += size * quantizationSizeFactor;\n } else if (dtype === 'string') {\n const size = sizeFromShape(spec.shape);\n values = [];\n for (let i = 0; i < size; i++) {\n const byteLength = new Uint32Array(\n buffer.slice(offset, offset + NUM_BYTES_STRING_LENGTH))[0];\n offset += NUM_BYTES_STRING_LENGTH;\n const bytes = new Uint8Array(buffer.slice(offset, offset + byteLength));\n (values as Uint8Array[]).push(bytes);\n offset += byteLength;\n }\n } else {\n const dtypeFactor = DTYPE_VALUE_SIZE_MAP[dtype];\n const byteBuffer = buffer.slice(offset, offset + size * dtypeFactor);\n\n if (dtype === 'float32') {\n values = new Float32Array(byteBuffer);\n } else if (dtype === 'int32') {\n values = new Int32Array(byteBuffer);\n } else if (dtype === 'bool') {\n values = new Uint8Array(byteBuffer);\n } else if (dtype === 'complex64') {\n values = new Float32Array(byteBuffer);\n const real = new Float32Array(values.length / 2);\n const image = new Float32Array(values.length / 2);\n for (let i = 0; i < real.length; i++) {\n real[i] = values[i * 2];\n image[i] = values[i * 2 + 1];\n }\n const realTensor = tensor(real, shape, 'float32');\n const imageTensor = tensor(image, shape, 'float32');\n out[name] = complex(realTensor, imageTensor);\n realTensor.dispose();\n imageTensor.dispose();\n } else {\n throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`);\n }\n offset += size * dtypeFactor;\n }\n if (dtype !== 'complex64') {\n out[name] = tensor(values, shape, dtype);\n }\n }\n return out;\n}\n\n/**\n * Concatenate TypedArrays into an ArrayBuffer.\n */\nexport function concatenateTypedArrays(xs: TypedArray[]): ArrayBuffer {\n // TODO(adarob, cais): Support quantization.\n if (xs === null) {\n throw new Error(`Invalid input value: ${JSON.stringify(xs)}`);\n }\n\n let totalByteLength = 0;\n\n // `normalizedXs` is here for this reason: a `TypedArray`'s `buffer'\n // can have a different byte length from that of the `TypedArray` itself,\n // for example, when the `TypedArray` is created from an offset in an\n // `ArrayBuffer`. `normliazedXs` holds `TypedArray`s whose `buffer`s match\n // the `TypedArray` in byte length. If an element of `xs` does not show\n // this property, a new `TypedArray` that satisfy this property will be\n // constructed and pushed into `normalizedXs`.\n const normalizedXs: TypedArray[] = [];\n xs.forEach((x: TypedArray) => {\n totalByteLength += x.byteLength;\n // tslint:disable:no-any\n normalizedXs.push(\n x.byteLength === x.buffer.byteLength ? x :\n new (x.constructor as any)(x));\n if (!(x as any instanceof Float32Array || x as any instanceof Int32Array ||\n x as any instanceof Uint8Array)) {\n throw new Error(`Unsupported TypedArray subtype: ${x.constructor.name}`);\n }\n // tslint:enable:no-any\n });\n\n const y = new Uint8Array(totalByteLength);\n let offset = 0;\n normalizedXs.forEach((x: TypedArray) => {\n y.set(new Uint8Array(x.buffer), offset);\n offset += x.byteLength;\n });\n\n return y.buffer;\n}\n\n// Use Buffer on Node.js instead of Blob/atob/btoa\nconst useNodeBuffer = typeof Buffer !== 'undefined' &&\n (typeof Blob === 'undefined' || typeof atob === 'undefined' ||\n typeof btoa === 'undefined');\n\n/**\n * Calculate the byte length of a JavaScript string.\n *\n * Note that a JavaScript string can contain wide characters, therefore the\n * length of the string is not necessarily equal to the byte length.\n *\n * @param str Input string.\n * @returns Byte length.\n */\nexport function stringByteLength(str: string): number {\n if (useNodeBuffer) {\n return Buffer.byteLength(str);\n }\n return new Blob([str]).size;\n}\n\n/**\n * Encode an ArrayBuffer as a base64 encoded string.\n *\n * @param buffer `ArrayBuffer` to be converted.\n * @returns A string that base64-encodes `buffer`.\n */\nexport function arrayBufferToBase64String(buffer: ArrayBuffer): string {\n if (useNodeBuffer) {\n return Buffer.from(buffer).toString('base64');\n }\n const buf = new Uint8Array(buffer);\n let s = '';\n for (let i = 0, l = buf.length; i < l; i++) {\n s += String.fromCharCode(buf[i]);\n }\n return btoa(s);\n}\n\n/**\n * Decode a base64 string as an ArrayBuffer.\n *\n * @param str Base64 string.\n * @returns Decoded `ArrayBuffer`.\n */\nexport function base64StringToArrayBuffer(str: string): ArrayBuffer {\n if (useNodeBuffer) {\n const buf = Buffer.from(str, 'base64');\n return buf.buffer.slice(buf.byteOffset, buf.byteOffset + buf.byteLength);\n }\n const s = atob(str);\n const buffer = new Uint8Array(s.length);\n for (let i = 0; i < s.length; ++i) {\n buffer.set([s.charCodeAt(i)], i);\n }\n return buffer.buffer;\n}\n\n/**\n * Concatenate a number of ArrayBuffers into one.\n *\n * @param buffers A number of array buffers to concatenate.\n * @returns Result of concatenating `buffers` in order.\n */\nexport function concatenateArrayBuffers(buffers: ArrayBuffer[]): ArrayBuffer {\n if (buffers.length === 1) {\n return buffers[0];\n }\n\n let totalByteLength = 0;\n buffers.forEach((buffer: ArrayBuffer) => {\n totalByteLength += buffer.byteLength;\n });\n\n const temp = new Uint8Array(totalByteLength);\n let offset = 0;\n buffers.forEach((buffer: ArrayBuffer) => {\n temp.set(new Uint8Array(buffer), offset);\n offset += buffer.byteLength;\n });\n return temp.buffer;\n}\n\n/**\n * Get the basename of a path.\n *\n * Behaves in a way analogous to Linux's basename command.\n *\n * @param path\n */\nexport function basename(path: string): string {\n const SEPARATOR = '/';\n path = path.trim();\n while (path.endsWith(SEPARATOR)) {\n path = path.slice(0, path.length - 1);\n }\n const items = path.split(SEPARATOR);\n return items[items.length - 1];\n}\n\n/**\n * Populate ModelArtifactsInfo fields for a model with JSON topology.\n * @param modelArtifacts\n * @returns A ModelArtifactsInfo object.\n */\nexport function getModelArtifactsInfoForJSON(modelArtifacts: ModelArtifacts):\n ModelArtifactsInfo {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error('Expected JSON model topology, received ArrayBuffer.');\n }\n\n return {\n dateSaved: new Date(),\n modelTopologyType: 'JSON',\n modelTopologyBytes: modelArtifacts.modelTopology == null ?\n 0 :\n stringByteLength(JSON.stringify(modelArtifacts.modelTopology)),\n weightSpecsBytes: modelArtifacts.weightSpecs == null ?\n 0 :\n stringByteLength(JSON.stringify(modelArtifacts.weightSpecs)),\n weightDataBytes: modelArtifacts.weightData == null ?\n 0 :\n modelArtifacts.weightData.byteLength,\n };\n}\n\n/**\n * Computes mantisa table for casting Float16 to Float32\n * See http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n *\n * @returns Uint32Array, 2048 mantissa lookup values.\n */\nfunction computeFloat16MantisaTable(): Uint32Array {\n const convertMantissa = (i: number): number => {\n let m = i << 13;\n let e = 0;\n\n while ((m & 0x00800000) === 0) {\n e -= 0x00800000;\n m <<= 1;\n }\n m &= ~0x00800000;\n e += 0x38800000;\n\n return m | e;\n };\n\n const mantisaTable = new Uint32Array(2048);\n\n mantisaTable[0] = 0;\n for (let i = 1; i < 1024; i++) {\n mantisaTable[i] = convertMantissa(i);\n }\n for (let i = 1024; i < 2048; i++) {\n mantisaTable[i] = 0x38000000 + ((i - 1024) << 13);\n }\n\n return mantisaTable;\n}\n\n/**\n * Computes exponent table for casting Float16 to Float32\n * See http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n *\n * @returns Uint32Array, 64 exponent lookup values.\n */\nfunction computeFloat16ExponentTable(): Uint32Array {\n const exponentTable = new Uint32Array(64);\n\n exponentTable[0] = 0;\n exponentTable[31] = 0x47800000;\n exponentTable[32] = 0x80000000;\n exponentTable[63] = 0xc7800000;\n for (let i = 1; i < 31; i++) {\n exponentTable[i] = i << 23;\n }\n for (let i = 33; i < 63; i++) {\n exponentTable[i] = 0x80000000 + ((i - 32) << 23);\n }\n\n return exponentTable;\n}\n\n/**\n * Computes offset table for casting Float16 to Float32\n * See http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n *\n * @returns Uint32Array, 6d offset values.\n */\nfunction computeFloat16OffsetTable(): Uint32Array {\n const offsetTable = new Uint32Array(64);\n\n for (let i = 0; i < 64; i++) {\n offsetTable[i] = 1024;\n }\n offsetTable[0] = offsetTable[32] = 0;\n\n return offsetTable;\n}\n\n/**\n * Retrieve a Float16 decoder which will decode a ByteArray of Float16 values\n * to a Float32Array.\n *\n * @returns Function (buffer: Uint16Array) => Float32Array which decodes\n * the Uint16Array of Float16 bytes to a Float32Array.\n */\nexport function getFloat16Decoder(): (buffer: Uint16Array) => Float32Array {\n // Algorithm is based off of\n // http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n\n // Cache lookup tables\n const mantisaTable = computeFloat16MantisaTable();\n const exponentTable = computeFloat16ExponentTable();\n const offsetTable = computeFloat16OffsetTable();\n\n return (quantizedArray: Uint16Array) => {\n const buffer = new ArrayBuffer(4 * quantizedArray.length);\n const bufferUint32View = new Uint32Array(buffer);\n for (let index = 0; index < quantizedArray.length; index++) {\n const float16Bits = quantizedArray[index];\n const float32Bits =\n mantisaTable[offsetTable[float16Bits >> 10] + (float16Bits & 0x3ff)] +\n exponentTable[float16Bits >> 10];\n bufferUint32View[index] = float32Bits;\n }\n return new Float32Array(buffer);\n };\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {IOHandler, LoadOptions} from './types';\n\nexport type IORouter = (url: string|string[], loadOptions?: LoadOptions) =>\n IOHandler;\n\nexport class IORouterRegistry {\n // Singleton instance.\n private static instance: IORouterRegistry;\n\n private saveRouters: IORouter[];\n private loadRouters: IORouter[];\n\n private constructor() {\n this.saveRouters = [];\n this.loadRouters = [];\n }\n\n private static getInstance(): IORouterRegistry {\n if (IORouterRegistry.instance == null) {\n IORouterRegistry.instance = new IORouterRegistry();\n }\n return IORouterRegistry.instance;\n }\n\n /**\n * Register a save-handler router.\n *\n * @param saveRouter A function that maps a URL-like string onto an instance\n * of `IOHandler` with the `save` method defined or `null`.\n */\n static registerSaveRouter(saveRouter: IORouter) {\n IORouterRegistry.getInstance().saveRouters.push(saveRouter);\n }\n\n /**\n * Register a load-handler router.\n *\n * @param loadRouter A function that maps a URL-like string onto an instance\n * of `IOHandler` with the `load` method defined or `null`.\n */\n static registerLoadRouter(loadRouter: IORouter) {\n IORouterRegistry.getInstance().loadRouters.push(loadRouter);\n }\n\n /**\n * Look up IOHandler for saving, given a URL-like string.\n *\n * @param url\n * @returns If only one match is found, an instance of IOHandler with the\n * `save` method defined. If no match is found, `null`.\n * @throws Error, if more than one match is found.\n */\n static getSaveHandlers(url: string|string[]): IOHandler[] {\n return IORouterRegistry.getHandlers(url, 'save');\n }\n\n /**\n * Look up IOHandler for loading, given a URL-like string.\n *\n * @param url\n * @param loadOptions Optional, custom load options.\n * @returns All valid handlers for `url`, given the currently registered\n * handler routers.\n */\n static getLoadHandlers(url: string|string[], loadOptions?: LoadOptions):\n IOHandler[] {\n return IORouterRegistry.getHandlers(url, 'load', loadOptions);\n }\n\n private static getHandlers(\n url: string|string[], handlerType: 'save'|'load',\n loadOptions?: LoadOptions): IOHandler[] {\n const validHandlers: IOHandler[] = [];\n const routers = handlerType === 'load' ?\n IORouterRegistry.getInstance().loadRouters :\n IORouterRegistry.getInstance().saveRouters;\n routers.forEach(router => {\n const handler = router(url, loadOptions);\n if (handler !== null) {\n validHandlers.push(handler);\n }\n });\n return validHandlers;\n }\n}\n\nexport const registerSaveRouter = (loudRouter: IORouter) =>\n IORouterRegistry.registerSaveRouter(loudRouter);\nexport const registerLoadRouter = (loudRouter: IORouter) =>\n IORouterRegistry.registerLoadRouter(loudRouter);\nexport const getSaveHandlers = (url: string|string[]) =>\n IORouterRegistry.getSaveHandlers(url);\nexport const getLoadHandlers =\n (url: string|string[], loadOptions?: LoadOptions) =>\n IORouterRegistry.getLoadHandlers(url, loadOptions);\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport '../flags';\n\nimport {env} from '../environment';\n\nimport {getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, ModelArtifacts, ModelArtifactsInfo, ModelStoreManager, SaveResult} from './types';\n\nconst DATABASE_NAME = 'tensorflowjs';\nconst DATABASE_VERSION = 1;\n\n// Model data and ModelArtifactsInfo (metadata) are stored in two separate\n// stores for efficient access of the list of stored models and their metadata.\n// 1. The object store for model data: topology, weights and weight manifests.\nconst MODEL_STORE_NAME = 'models_store';\n// 2. The object store for ModelArtifactsInfo, including meta-information such\n// as the type of topology (JSON vs binary), byte size of the topology, byte\n// size of the weights, etc.\nconst INFO_STORE_NAME = 'model_info_store';\n\n/**\n * Delete the entire database for tensorflow.js, including the models store.\n */\nexport async function deleteDatabase(): Promise {\n const idbFactory = getIndexedDBFactory();\n\n return new Promise((resolve, reject) => {\n const deleteRequest = idbFactory.deleteDatabase(DATABASE_NAME);\n deleteRequest.onsuccess = () => resolve();\n deleteRequest.onerror = error => reject(error);\n });\n}\n\nfunction getIndexedDBFactory(): IDBFactory {\n if (!env().getBool('IS_BROWSER')) {\n // TODO(cais): Add more info about what IOHandler subtypes are available.\n // Maybe point to a doc page on the web and/or automatically determine\n // the available IOHandlers and print them in the error message.\n throw new Error(\n 'Failed to obtain IndexedDB factory because the current environment' +\n 'is not a web browser.');\n }\n // tslint:disable-next-line:no-any\n const theWindow: any = typeof window === 'undefined' ? self : window;\n const factory = theWindow.indexedDB || theWindow.mozIndexedDB ||\n theWindow.webkitIndexedDB || theWindow.msIndexedDB ||\n theWindow.shimIndexedDB;\n if (factory == null) {\n throw new Error(\n 'The current browser does not appear to support IndexedDB.');\n }\n return factory;\n}\n\nfunction setUpDatabase(openRequest: IDBRequest) {\n const db = openRequest.result as IDBDatabase;\n db.createObjectStore(MODEL_STORE_NAME, {keyPath: 'modelPath'});\n db.createObjectStore(INFO_STORE_NAME, {keyPath: 'modelPath'});\n}\n\n/**\n * IOHandler subclass: Browser IndexedDB.\n *\n * See the doc string of `browserIndexedDB` for more details.\n */\nexport class BrowserIndexedDB implements IOHandler {\n protected readonly indexedDB: IDBFactory;\n protected readonly modelPath: string;\n\n static readonly URL_SCHEME = 'indexeddb://';\n\n constructor(modelPath: string) {\n this.indexedDB = getIndexedDBFactory();\n\n if (modelPath == null || !modelPath) {\n throw new Error(\n 'For IndexedDB, modelPath must not be null, undefined or empty.');\n }\n this.modelPath = modelPath;\n }\n\n async save(modelArtifacts: ModelArtifacts): Promise {\n // TODO(cais): Support saving GraphDef models.\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserLocalStorage.save() does not support saving model topology ' +\n 'in binary formats yet.');\n }\n\n return this.databaseAction(this.modelPath, modelArtifacts) as\n Promise;\n }\n\n async load(): Promise {\n return this.databaseAction(this.modelPath) as Promise;\n }\n\n /**\n * Perform database action to put model artifacts into or read model artifacts\n * from IndexedDB object store.\n *\n * Whether the action is put or get depends on whether `modelArtifacts` is\n * specified. If it is specified, the action will be put; otherwise the action\n * will be get.\n *\n * @param modelPath A unique string path for the model.\n * @param modelArtifacts If specified, it will be the model artifacts to be\n * stored in IndexedDB.\n * @returns A `Promise` of `SaveResult`, if the action is put, or a `Promise`\n * of `ModelArtifacts`, if the action is get.\n */\n private databaseAction(modelPath: string, modelArtifacts?: ModelArtifacts):\n Promise {\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n\n if (modelArtifacts == null) {\n // Read model out from object store.\n const modelTx = db.transaction(MODEL_STORE_NAME, 'readonly');\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const getRequest = modelStore.get(this.modelPath);\n getRequest.onsuccess = () => {\n if (getRequest.result == null) {\n db.close();\n return reject(new Error(\n `Cannot find model with path '${this.modelPath}' ` +\n `in IndexedDB.`));\n } else {\n resolve(getRequest.result.modelArtifacts);\n }\n };\n getRequest.onerror = error => {\n db.close();\n return reject(getRequest.error);\n };\n modelTx.oncomplete = () => db.close();\n } else {\n // Put model into object store.\n const modelArtifactsInfo: ModelArtifactsInfo =\n getModelArtifactsInfoForJSON(modelArtifacts);\n // First, put ModelArtifactsInfo into info store.\n const infoTx = db.transaction(INFO_STORE_NAME, 'readwrite');\n let infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const putInfoRequest =\n infoStore.put({modelPath: this.modelPath, modelArtifactsInfo});\n let modelTx: IDBTransaction;\n putInfoRequest.onsuccess = () => {\n // Second, put model data into model store.\n modelTx = db.transaction(MODEL_STORE_NAME, 'readwrite');\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const putModelRequest = modelStore.put({\n modelPath: this.modelPath,\n modelArtifacts,\n modelArtifactsInfo\n });\n putModelRequest.onsuccess = () => resolve({modelArtifactsInfo});\n putModelRequest.onerror = error => {\n // If the put-model request fails, roll back the info entry as\n // well.\n infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const deleteInfoRequest = infoStore.delete(this.modelPath);\n deleteInfoRequest.onsuccess = () => {\n db.close();\n return reject(putModelRequest.error);\n };\n deleteInfoRequest.onerror = error => {\n db.close();\n return reject(putModelRequest.error);\n };\n };\n };\n putInfoRequest.onerror = error => {\n db.close();\n return reject(putInfoRequest.error);\n };\n infoTx.oncomplete = () => {\n if (modelTx == null) {\n db.close();\n } else {\n modelTx.oncomplete = () => db.close();\n }\n };\n }\n };\n openRequest.onerror = error => reject(openRequest.error);\n });\n }\n}\n\nexport const indexedDBRouter: IORouter = (url: string|string[]) => {\n if (!env().getBool('IS_BROWSER')) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserIndexedDB.URL_SCHEME)) {\n return browserIndexedDB(url.slice(BrowserIndexedDB.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(indexedDBRouter);\nIORouterRegistry.registerLoadRouter(indexedDBRouter);\n\n/**\n * Creates a browser IndexedDB IOHandler for saving and loading models.\n *\n * ```js\n * const model = tf.sequential();\n * model.add(\n * tf.layers.dense({units: 1, inputShape: [100], activation: 'sigmoid'}));\n *\n * const saveResult = await model.save('indexeddb://MyModel'));\n * console.log(saveResult);\n * ```\n *\n * @param modelPath A unique identifier for the model to be saved. Must be a\n * non-empty string.\n * @returns An instance of `BrowserIndexedDB` (sublcass of `IOHandler`),\n * which can be used with, e.g., `tf.Model.save`.\n */\nexport function browserIndexedDB(modelPath: string): IOHandler {\n return new BrowserIndexedDB(modelPath);\n}\n\nfunction maybeStripScheme(key: string) {\n return key.startsWith(BrowserIndexedDB.URL_SCHEME) ?\n key.slice(BrowserIndexedDB.URL_SCHEME.length) :\n key;\n}\n\nexport class BrowserIndexedDBManager implements ModelStoreManager {\n private indexedDB: IDBFactory;\n\n constructor() {\n this.indexedDB = getIndexedDBFactory();\n }\n\n async listModels(): Promise<{[path: string]: ModelArtifactsInfo}> {\n return new Promise<{[path: string]: ModelArtifactsInfo}>(\n (resolve, reject) => {\n const openRequest =\n this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n const tx = db.transaction(INFO_STORE_NAME, 'readonly');\n const store = tx.objectStore(INFO_STORE_NAME);\n // tslint:disable:max-line-length\n // Need to cast `store` as `any` here because TypeScript's DOM\n // library does not have the `getAll()` method even though the\n // method is supported in the latest version of most mainstream\n // browsers:\n // https://developer.mozilla.org/en-US/docs/Web/API/IDBObjectStore/getAll\n // tslint:enable:max-line-length\n // tslint:disable-next-line:no-any\n const getAllInfoRequest = (store as any).getAll() as IDBRequest;\n getAllInfoRequest.onsuccess = () => {\n const out: {[path: string]: ModelArtifactsInfo} = {};\n for (const item of getAllInfoRequest.result) {\n out[item.modelPath] = item.modelArtifactsInfo;\n }\n resolve(out);\n };\n getAllInfoRequest.onerror = error => {\n db.close();\n return reject(getAllInfoRequest.error);\n };\n tx.oncomplete = () => db.close();\n };\n openRequest.onerror = error => reject(openRequest.error);\n });\n }\n\n async removeModel(path: string): Promise {\n path = maybeStripScheme(path);\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n const infoTx = db.transaction(INFO_STORE_NAME, 'readwrite');\n const infoStore = infoTx.objectStore(INFO_STORE_NAME);\n\n const getInfoRequest = infoStore.get(path);\n let modelTx: IDBTransaction;\n getInfoRequest.onsuccess = () => {\n if (getInfoRequest.result == null) {\n db.close();\n return reject(new Error(\n `Cannot find model with path '${path}' ` +\n `in IndexedDB.`));\n } else {\n // First, delete the entry in the info store.\n const deleteInfoRequest = infoStore.delete(path);\n const deleteModelData = () => {\n // Second, delete the entry in the model store.\n modelTx = db.transaction(MODEL_STORE_NAME, 'readwrite');\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const deleteModelRequest = modelStore.delete(path);\n deleteModelRequest.onsuccess = () =>\n resolve(getInfoRequest.result.modelArtifactsInfo);\n deleteModelRequest.onerror = error =>\n reject(getInfoRequest.error);\n };\n // Proceed with deleting model data regardless of whether deletion\n // of info data succeeds or not.\n deleteInfoRequest.onsuccess = deleteModelData;\n deleteInfoRequest.onerror = error => {\n deleteModelData();\n db.close();\n return reject(getInfoRequest.error);\n };\n }\n };\n getInfoRequest.onerror = error => {\n db.close();\n return reject(getInfoRequest.error);\n };\n\n infoTx.oncomplete = () => {\n if (modelTx == null) {\n db.close();\n } else {\n modelTx.oncomplete = () => db.close();\n }\n };\n };\n openRequest.onerror = error => reject(openRequest.error);\n });\n }\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport '../flags';\nimport {env} from '../environment';\n\nimport {assert} from '../util';\nimport {arrayBufferToBase64String, base64StringToArrayBuffer, getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, ModelArtifacts, ModelArtifactsInfo, ModelStoreManager, SaveResult} from './types';\n\nconst PATH_SEPARATOR = '/';\nconst PATH_PREFIX = 'tensorflowjs_models';\nconst INFO_SUFFIX = 'info';\nconst MODEL_TOPOLOGY_SUFFIX = 'model_topology';\nconst WEIGHT_SPECS_SUFFIX = 'weight_specs';\nconst WEIGHT_DATA_SUFFIX = 'weight_data';\nconst MODEL_METADATA_SUFFIX = 'model_metadata';\n\n/**\n * Purge all tensorflow.js-saved model artifacts from local storage.\n *\n * @returns Paths of the models purged.\n */\nexport function purgeLocalStorageArtifacts(): string[] {\n if (!env().getBool('IS_BROWSER') || typeof window === 'undefined' ||\n typeof window.localStorage === 'undefined') {\n throw new Error(\n 'purgeLocalStorageModels() cannot proceed because local storage is ' +\n 'unavailable in the current environment.');\n }\n const LS = window.localStorage;\n const purgedModelPaths: string[] = [];\n for (let i = 0; i < LS.length; ++i) {\n const key = LS.key(i);\n const prefix = PATH_PREFIX + PATH_SEPARATOR;\n if (key.startsWith(prefix) && key.length > prefix.length) {\n LS.removeItem(key);\n const modelName = getModelPathFromKey(key);\n if (purgedModelPaths.indexOf(modelName) === -1) {\n purgedModelPaths.push(modelName);\n }\n }\n }\n return purgedModelPaths;\n}\n\nfunction getModelKeys(path: string): {\n info: string,\n topology: string,\n weightSpecs: string,\n weightData: string,\n modelMetadata: string\n} {\n return {\n info: [PATH_PREFIX, path, INFO_SUFFIX].join(PATH_SEPARATOR),\n topology: [PATH_PREFIX, path, MODEL_TOPOLOGY_SUFFIX].join(PATH_SEPARATOR),\n weightSpecs: [PATH_PREFIX, path, WEIGHT_SPECS_SUFFIX].join(PATH_SEPARATOR),\n weightData: [PATH_PREFIX, path, WEIGHT_DATA_SUFFIX].join(PATH_SEPARATOR),\n modelMetadata:\n [PATH_PREFIX, path, MODEL_METADATA_SUFFIX].join(PATH_SEPARATOR)\n };\n}\n\n/**\n * Get model path from a local-storage key.\n *\n * E.g., 'tensorflowjs_models/my/model/1/info' --> 'my/model/1'\n *\n * @param key\n */\nfunction getModelPathFromKey(key: string) {\n const items = key.split(PATH_SEPARATOR);\n if (items.length < 3) {\n throw new Error(`Invalid key format: ${key}`);\n }\n return items.slice(1, items.length - 1).join(PATH_SEPARATOR);\n}\n\nfunction maybeStripScheme(key: string) {\n return key.startsWith(BrowserLocalStorage.URL_SCHEME) ?\n key.slice(BrowserLocalStorage.URL_SCHEME.length) :\n key;\n}\n\ndeclare type LocalStorageKeys = {\n info: string,\n topology: string,\n weightSpecs: string,\n weightData: string,\n modelMetadata: string\n};\n\n/**\n * IOHandler subclass: Browser Local Storage.\n *\n * See the doc string to `browserLocalStorage` for more details.\n */\nexport class BrowserLocalStorage implements IOHandler {\n protected readonly LS: Storage;\n protected readonly modelPath: string;\n protected readonly keys: LocalStorageKeys;\n\n static readonly URL_SCHEME = 'localstorage://';\n\n constructor(modelPath: string) {\n if (!env().getBool('IS_BROWSER') || typeof window === 'undefined' ||\n typeof window.localStorage === 'undefined') {\n // TODO(cais): Add more info about what IOHandler subtypes are\n // available.\n // Maybe point to a doc page on the web and/or automatically determine\n // the available IOHandlers and print them in the error message.\n throw new Error(\n 'The current environment does not support local storage.');\n }\n this.LS = window.localStorage;\n\n if (modelPath == null || !modelPath) {\n throw new Error(\n 'For local storage, modelPath must not be null, undefined or empty.');\n }\n this.modelPath = modelPath;\n this.keys = getModelKeys(this.modelPath);\n }\n\n /**\n * Save model artifacts to browser local storage.\n *\n * See the documentation to `browserLocalStorage` for details on the saved\n * artifacts.\n *\n * @param modelArtifacts The model artifacts to be stored.\n * @returns An instance of SaveResult.\n */\n async save(modelArtifacts: ModelArtifacts): Promise {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserLocalStorage.save() does not support saving model topology ' +\n 'in binary formats yet.');\n } else {\n const topology = JSON.stringify(modelArtifacts.modelTopology);\n const weightSpecs = JSON.stringify(modelArtifacts.weightSpecs);\n\n const modelArtifactsInfo: ModelArtifactsInfo =\n getModelArtifactsInfoForJSON(modelArtifacts);\n\n try {\n this.LS.setItem(this.keys.info, JSON.stringify(modelArtifactsInfo));\n this.LS.setItem(this.keys.topology, topology);\n this.LS.setItem(this.keys.weightSpecs, weightSpecs);\n this.LS.setItem(\n this.keys.weightData,\n arrayBufferToBase64String(modelArtifacts.weightData));\n const result: ModelArtifacts = {\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy\n };\n if (modelArtifacts.signature != null) {\n result.signature = modelArtifacts.signature;\n }\n if (modelArtifacts.userDefinedMetadata != null) {\n result.userDefinedMetadata = modelArtifacts.userDefinedMetadata;\n }\n if (modelArtifacts.modelInitializer != null) {\n result.modelInitializer = modelArtifacts.modelInitializer;\n }\n this.LS.setItem(this.keys.modelMetadata, JSON.stringify(result));\n\n return {modelArtifactsInfo};\n } catch (err) {\n // If saving failed, clean up all items saved so far.\n this.LS.removeItem(this.keys.info);\n this.LS.removeItem(this.keys.topology);\n this.LS.removeItem(this.keys.weightSpecs);\n this.LS.removeItem(this.keys.weightData);\n this.LS.removeItem(this.keys.modelMetadata);\n\n throw new Error(\n `Failed to save model '${this.modelPath}' to local storage: ` +\n `size quota being exceeded is a possible cause of this failure: ` +\n `modelTopologyBytes=${modelArtifactsInfo.modelTopologyBytes}, ` +\n `weightSpecsBytes=${modelArtifactsInfo.weightSpecsBytes}, ` +\n `weightDataBytes=${modelArtifactsInfo.weightDataBytes}.`);\n }\n }\n }\n\n /**\n * Load a model from local storage.\n *\n * See the documentation to `browserLocalStorage` for details on the saved\n * artifacts.\n *\n * @returns The loaded model (if loading succeeds).\n */\n async load(): Promise {\n const info =\n JSON.parse(this.LS.getItem(this.keys.info)) as ModelArtifactsInfo;\n if (info == null) {\n throw new Error(\n `In local storage, there is no model with name '${this.modelPath}'`);\n }\n\n if (info.modelTopologyType !== 'JSON') {\n throw new Error(\n 'BrowserLocalStorage does not support loading non-JSON model ' +\n 'topology yet.');\n }\n\n const out: ModelArtifacts = {};\n\n // Load topology.\n const topology = JSON.parse(this.LS.getItem(this.keys.topology));\n if (topology == null) {\n throw new Error(\n `In local storage, the topology of model '${this.modelPath}' ` +\n `is missing.`);\n }\n out.modelTopology = topology;\n\n // Load weight specs.\n const weightSpecs = JSON.parse(this.LS.getItem(this.keys.weightSpecs));\n if (weightSpecs == null) {\n throw new Error(\n `In local storage, the weight specs of model '${this.modelPath}' ` +\n `are missing.`);\n }\n out.weightSpecs = weightSpecs;\n\n // Load meta-data fields.\n const metadataString = this.LS.getItem(this.keys.modelMetadata);\n if (metadataString != null) {\n const metadata = JSON.parse(metadataString) as ModelArtifacts;\n out.format = metadata['format'];\n out.generatedBy = metadata['generatedBy'];\n out.convertedBy = metadata['convertedBy'];\n if (metadata['signature'] != null) {\n out.signature = metadata['signature'];\n }\n if (metadata['userDefinedMetadata'] != null) {\n out.userDefinedMetadata = metadata['userDefinedMetadata'];\n }\n if (metadata['modelInitializer'] != null) {\n out.modelInitializer = metadata['modelInitializer'];\n }\n }\n\n // Load weight data.\n const weightDataBase64 = this.LS.getItem(this.keys.weightData);\n if (weightDataBase64 == null) {\n throw new Error(\n `In local storage, the binary weight values of model ` +\n `'${this.modelPath}' are missing.`);\n }\n out.weightData = base64StringToArrayBuffer(weightDataBase64);\n\n return out;\n }\n}\n\nexport const localStorageRouter: IORouter = (url: string|string[]) => {\n if (!env().getBool('IS_BROWSER')) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserLocalStorage.URL_SCHEME)) {\n return browserLocalStorage(\n url.slice(BrowserLocalStorage.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(localStorageRouter);\nIORouterRegistry.registerLoadRouter(localStorageRouter);\n\n/**\n * Factory function for local storage IOHandler.\n *\n * This `IOHandler` supports both `save` and `load`.\n *\n * For each model's saved artifacts, four items are saved to local storage.\n * - `${PATH_SEPARATOR}/${modelPath}/info`: Contains meta-info about the\n * model, such as date saved, type of the topology, size in bytes, etc.\n * - `${PATH_SEPARATOR}/${modelPath}/topology`: Model topology. For Keras-\n * style models, this is a stringized JSON.\n * - `${PATH_SEPARATOR}/${modelPath}/weight_specs`: Weight specs of the\n * model, can be used to decode the saved binary weight values (see\n * item below).\n * - `${PATH_SEPARATOR}/${modelPath}/weight_data`: Concatenated binary\n * weight values, stored as a base64-encoded string.\n *\n * Saving may throw an `Error` if the total size of the artifacts exceed the\n * browser-specific quota.\n *\n * @param modelPath A unique identifier for the model to be saved. Must be a\n * non-empty string.\n * @returns An instance of `IOHandler`, which can be used with, e.g.,\n * `tf.Model.save`.\n */\nexport function browserLocalStorage(modelPath: string): IOHandler {\n return new BrowserLocalStorage(modelPath);\n}\n\nexport class BrowserLocalStorageManager implements ModelStoreManager {\n private readonly LS: Storage;\n\n constructor() {\n assert(\n env().getBool('IS_BROWSER'),\n () => 'Current environment is not a web browser');\n assert(\n typeof window === 'undefined' ||\n typeof window.localStorage !== 'undefined',\n () => 'Current browser does not appear to support localStorage');\n this.LS = window.localStorage;\n }\n\n async listModels(): Promise<{[path: string]: ModelArtifactsInfo}> {\n const out: {[path: string]: ModelArtifactsInfo} = {};\n const prefix = PATH_PREFIX + PATH_SEPARATOR;\n const suffix = PATH_SEPARATOR + INFO_SUFFIX;\n for (let i = 0; i < this.LS.length; ++i) {\n const key = this.LS.key(i);\n if (key.startsWith(prefix) && key.endsWith(suffix)) {\n const modelPath = getModelPathFromKey(key);\n out[modelPath] = JSON.parse(this.LS.getItem(key)) as ModelArtifactsInfo;\n }\n }\n return out;\n }\n\n async removeModel(path: string): Promise {\n path = maybeStripScheme(path);\n const keys = getModelKeys(path);\n if (this.LS.getItem(keys.info) == null) {\n throw new Error(`Cannot find model at path '${path}'`);\n }\n const info = JSON.parse(this.LS.getItem(keys.info)) as ModelArtifactsInfo;\n\n this.LS.removeItem(keys.info);\n this.LS.removeItem(keys.topology);\n this.LS.removeItem(keys.weightSpecs);\n this.LS.removeItem(keys.weightData);\n return info;\n }\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * Classes and functions for model management across multiple storage mediums.\n *\n * Supported client actions:\n * - Listing models on all registered storage mediums.\n * - Remove model by URL from any registered storage mediums, by using URL\n * string.\n * - Moving or copying model from one path to another in the same medium or from\n * one medium to another, by using URL strings.\n */\n\nimport {assert} from '../util';\n\nimport {IORouterRegistry} from './router_registry';\nimport {ModelArtifactsInfo, ModelStoreManager} from './types';\n\nconst URL_SCHEME_SUFFIX = '://';\n\nexport class ModelStoreManagerRegistry {\n // Singleton instance.\n private static instance: ModelStoreManagerRegistry;\n\n private managers: {[scheme: string]: ModelStoreManager};\n\n private constructor() {\n this.managers = {};\n }\n\n private static getInstance(): ModelStoreManagerRegistry {\n if (ModelStoreManagerRegistry.instance == null) {\n ModelStoreManagerRegistry.instance = new ModelStoreManagerRegistry();\n }\n return ModelStoreManagerRegistry.instance;\n }\n\n /**\n * Register a save-handler router.\n *\n * @param saveRouter A function that maps a URL-like string onto an instance\n * of `IOHandler` with the `save` method defined or `null`.\n */\n static registerManager(scheme: string, manager: ModelStoreManager) {\n assert(scheme != null, () => 'scheme must not be undefined or null.');\n if (scheme.endsWith(URL_SCHEME_SUFFIX)) {\n scheme = scheme.slice(0, scheme.indexOf(URL_SCHEME_SUFFIX));\n }\n assert(scheme.length > 0, () => 'scheme must not be an empty string.');\n const registry = ModelStoreManagerRegistry.getInstance();\n assert(\n registry.managers[scheme] == null,\n () => `A model store manager is already registered for scheme '${\n scheme}'.`);\n registry.managers[scheme] = manager;\n }\n\n static getManager(scheme: string): ModelStoreManager {\n const manager = this.getInstance().managers[scheme];\n if (manager == null) {\n throw new Error(`Cannot find model manager for scheme '${scheme}'`);\n }\n return manager;\n }\n\n static getSchemes(): string[] {\n return Object.keys(this.getInstance().managers);\n }\n}\n\n/**\n * Helper method for parsing a URL string into a scheme and a path.\n *\n * @param url E.g., 'localstorage://my-model'\n * @returns A dictionary with two fields: scheme and path.\n * Scheme: e.g., 'localstorage' in the example above.\n * Path: e.g., 'my-model' in the example above.\n */\nfunction parseURL(url: string): {scheme: string, path: string} {\n if (url.indexOf(URL_SCHEME_SUFFIX) === -1) {\n throw new Error(\n `The url string provided does not contain a scheme. ` +\n `Supported schemes are: ` +\n `${ModelStoreManagerRegistry.getSchemes().join(',')}`);\n }\n return {\n scheme: url.split(URL_SCHEME_SUFFIX)[0],\n path: url.split(URL_SCHEME_SUFFIX)[1],\n };\n}\n\nasync function cloneModelInternal(\n sourceURL: string, destURL: string,\n deleteSource = false): Promise {\n assert(\n sourceURL !== destURL,\n () => `Old path and new path are the same: '${sourceURL}'`);\n\n const loadHandlers = IORouterRegistry.getLoadHandlers(sourceURL);\n assert(\n loadHandlers.length > 0,\n () => `Copying failed because no load handler is found for source URL ${\n sourceURL}.`);\n assert(\n loadHandlers.length < 2,\n () => `Copying failed because more than one (${loadHandlers.length}) ` +\n `load handlers for source URL ${sourceURL}.`);\n const loadHandler = loadHandlers[0];\n\n const saveHandlers = IORouterRegistry.getSaveHandlers(destURL);\n assert(\n saveHandlers.length > 0,\n () => `Copying failed because no save handler is found for destination ` +\n `URL ${destURL}.`);\n assert(\n saveHandlers.length < 2,\n () => `Copying failed because more than one (${loadHandlers.length}) ` +\n `save handlers for destination URL ${destURL}.`);\n const saveHandler = saveHandlers[0];\n\n const sourceScheme = parseURL(sourceURL).scheme;\n const sourcePath = parseURL(sourceURL).path;\n const sameMedium = sourceScheme === parseURL(sourceURL).scheme;\n\n const modelArtifacts = await loadHandler.load();\n\n // If moving within the same storage medium, remove the old model as soon as\n // the loading is done. Without doing this, it is possible that the combined\n // size of the two models will cause the cloning to fail.\n if (deleteSource && sameMedium) {\n await ModelStoreManagerRegistry.getManager(sourceScheme)\n .removeModel(sourcePath);\n }\n\n const saveResult = await saveHandler.save(modelArtifacts);\n\n // If moving between mediums, the deletion is done after the save succeeds.\n // This guards against the case in which saving to the destination medium\n // fails.\n if (deleteSource && !sameMedium) {\n await ModelStoreManagerRegistry.getManager(sourceScheme)\n .removeModel(sourcePath);\n }\n\n return saveResult.modelArtifactsInfo;\n}\n\n/**\n * List all models stored in registered storage mediums.\n *\n * For a web browser environment, the registered mediums are Local Storage and\n * IndexedDB.\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Delete the model.\n * await tf.io.removeModel('localstorage://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n * ```\n *\n * @returns A `Promise` of a dictionary mapping URLs of existing models to\n * their model artifacts info. URLs include medium-specific schemes, e.g.,\n * 'indexeddb://my/model/1'. Model artifacts info include type of the\n * model's topology, byte sizes of the topology, weights, etc.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function listModels(): Promise<{[url: string]: ModelArtifactsInfo}> {\n const schemes = ModelStoreManagerRegistry.getSchemes();\n const out: {[url: string]: ModelArtifactsInfo} = {};\n for (const scheme of schemes) {\n const schemeOut =\n await ModelStoreManagerRegistry.getManager(scheme).listModels();\n for (const path in schemeOut) {\n const url = scheme + URL_SCHEME_SUFFIX + path;\n out[url] = schemeOut[path];\n }\n }\n return out;\n}\n\n/**\n * Remove a model specified by URL from a reigstered storage medium.\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Delete the model.\n * await tf.io.removeModel('localstorage://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n * ```\n *\n * @param url A URL to a stored model, with a scheme prefix, e.g.,\n * 'localstorage://my-model-1', 'indexeddb://my/model/2'.\n * @returns ModelArtifactsInfo of the deleted model (if and only if deletion\n * is successful).\n * @throws Error if deletion fails, e.g., if no model exists at `path`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function removeModel(url: string): Promise {\n const schemeAndPath = parseURL(url);\n const manager = ModelStoreManagerRegistry.getManager(schemeAndPath.scheme);\n return manager.removeModel(schemeAndPath.path);\n}\n\n/**\n * Copy a model from one URL to another.\n *\n * This function supports:\n *\n * 1. Copying within a storage medium, e.g.,\n * `tf.io.copyModel('localstorage://model-1', 'localstorage://model-2')`\n * 2. Copying between two storage mediums, e.g.,\n * `tf.io.copyModel('localstorage://model-1', 'indexeddb://model-1')`\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Copy the model, from Local Storage to IndexedDB.\n * await tf.io.copyModel(\n * 'localstorage://demo/management/model1',\n * 'indexeddb://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Remove both models.\n * await tf.io.removeModel('localstorage://demo/management/model1');\n * await tf.io.removeModel('indexeddb://demo/management/model1');\n * ```\n *\n * @param sourceURL Source URL of copying.\n * @param destURL Destination URL of copying.\n * @returns ModelArtifactsInfo of the copied model (if and only if copying\n * is successful).\n * @throws Error if copying fails, e.g., if no model exists at `sourceURL`, or\n * if `oldPath` and `newPath` are identical.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function copyModel(\n sourceURL: string, destURL: string): Promise {\n const deleteSource = false;\n return cloneModelInternal(sourceURL, destURL, deleteSource);\n}\n\n/**\n * Move a model from one URL to another.\n *\n * This function supports:\n *\n * 1. Moving within a storage medium, e.g.,\n * `tf.io.moveModel('localstorage://model-1', 'localstorage://model-2')`\n * 2. Moving between two storage mediums, e.g.,\n * `tf.io.moveModel('localstorage://model-1', 'indexeddb://model-1')`\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Move the model, from Local Storage to IndexedDB.\n * await tf.io.moveModel(\n * 'localstorage://demo/management/model1',\n * 'indexeddb://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Remove the moved model.\n * await tf.io.removeModel('indexeddb://demo/management/model1');\n * ```\n *\n * @param sourceURL Source URL of moving.\n * @param destURL Destination URL of moving.\n * @returns ModelArtifactsInfo of the copied model (if and only if copying\n * is successful).\n * @throws Error if moving fails, e.g., if no model exists at `sourceURL`, or\n * if `oldPath` and `newPath` are identical.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function moveModel(\n sourceURL: string, destURL: string): Promise {\n const deleteSource = true;\n return cloneModelInternal(sourceURL, destURL, deleteSource);\n}\n\nexport {moveModel, copyModel, removeModel, listModels};\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport '../flags';\n\nimport {env} from '../environment';\nimport {BrowserIndexedDB, BrowserIndexedDBManager} from '../io/indexed_db';\nimport {BrowserLocalStorage, BrowserLocalStorageManager} from '../io/local_storage';\nimport {ModelStoreManagerRegistry} from '../io/model_management';\n\nimport {Platform} from './platform';\n\nexport class PlatformBrowser implements Platform {\n // According to the spec, the built-in encoder can do only UTF-8 encoding.\n // https://developer.mozilla.org/en-US/docs/Web/API/TextEncoder/TextEncoder\n private textEncoder: TextEncoder;\n\n fetch(path: string, init?: RequestInit): Promise {\n return fetch(path, init);\n }\n\n now(): number {\n return performance.now();\n }\n\n encode(text: string, encoding: string): Uint8Array {\n if (encoding !== 'utf-8' && encoding !== 'utf8') {\n throw new Error(\n `Browser's encoder only supports utf-8, but got ${encoding}`);\n }\n if (this.textEncoder == null) {\n this.textEncoder = new TextEncoder();\n }\n return this.textEncoder.encode(text);\n }\n decode(bytes: Uint8Array, encoding: string): string {\n return new TextDecoder(encoding).decode(bytes);\n }\n}\n\nif (env().get('IS_BROWSER')) {\n env().setPlatform('browser', new PlatformBrowser());\n\n // Register LocalStorage IOHandler\n try {\n ModelStoreManagerRegistry.registerManager(\n BrowserLocalStorage.URL_SCHEME, new BrowserLocalStorageManager());\n } catch (err) {\n }\n\n // Register IndexedDB IOHandler\n try {\n ModelStoreManagerRegistry.registerManager(\n BrowserIndexedDB.URL_SCHEME, new BrowserIndexedDBManager());\n } catch (err) {\n }\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {env} from '../environment';\n\nimport {Platform} from './platform';\n\n// We are wrapping this within an object so it can be stubbed by Jasmine.\nexport const getNodeFetch = {\n // tslint:disable-next-line:no-require-imports\n importFetch: () => require('node-fetch')\n};\n\ntype FetchFn = (url: string, init?: RequestInit) => Promise;\nlet systemFetch: FetchFn;\n// These getters and setters are for testing so we don't export a mutable\n// variable.\nexport function resetSystemFetch() {\n systemFetch = null;\n}\nexport function setSystemFetch(fetchFn: FetchFn) {\n systemFetch = fetchFn;\n}\nexport function getSystemFetch(): FetchFn {\n return systemFetch;\n}\n\nexport class PlatformNode implements Platform {\n private textEncoder: TextEncoder;\n // tslint:disable-next-line:no-any\n util: any;\n\n constructor() {\n // tslint:disable-next-line:no-require-imports\n this.util = require('util');\n // According to the spec, the built-in encoder can do only UTF-8 encoding.\n // https://developer.mozilla.org/en-US/docs/Web/API/TextEncoder/TextEncoder\n this.textEncoder = new this.util.TextEncoder();\n }\n\n fetch(path: string, requestInits?: RequestInit): Promise {\n if (env().global.fetch != null) {\n return env().global.fetch(path, requestInits);\n }\n\n if (systemFetch == null) {\n systemFetch = getNodeFetch.importFetch();\n }\n return systemFetch(path, requestInits);\n }\n\n now(): number {\n const time = process.hrtime();\n return time[0] * 1000 + time[1] / 1000000;\n }\n\n encode(text: string, encoding: string): Uint8Array {\n if (encoding !== 'utf-8' && encoding !== 'utf8') {\n throw new Error(\n `Node built-in encoder only supports utf-8, but got ${encoding}`);\n }\n return this.textEncoder.encode(text);\n }\n decode(bytes: Uint8Array, encoding: string): string {\n if (bytes.length === 0) {\n return '';\n }\n return new this.util.TextDecoder(encoding).decode(bytes);\n }\n}\n\nif (env().get('IS_NODE')) {\n env().setPlatform('node', new PlatformNode());\n}\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {TensorBuffer} from '../tensor';\nimport {DataType, DataTypeMap, Rank, ShapeMap} from '../types';\nimport * as util from '../util';\n\n/**\n * Creates an empty `tf.TensorBuffer` with the specified `shape` and `dtype`.\n *\n * The values are stored in CPU as `TypedArray`. Fill the buffer using\n * `buffer.set()`, or by modifying directly `buffer.values`.\n *\n * When done, call `buffer.toTensor()` to get an immutable `tf.Tensor` with\n * those values.\n *\n * ```js\n * // Create a buffer and set values at particular indices.\n * const buffer = tf.buffer([2, 2]);\n * buffer.set(3, 0, 0);\n * buffer.set(5, 1, 0);\n *\n * // Convert the buffer back to a tensor.\n * buffer.toTensor().print();\n * ```\n *\n * @param shape An array of integers defining the output tensor shape.\n * @param dtype The dtype of the buffer. Defaults to 'float32'.\n * @param values The values of the buffer as `TypedArray`. Defaults to\n * zeros.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nexport function buffer(\n shape: ShapeMap[R], dtype: D = 'float32' as D,\n values?: DataTypeMap[D]): TensorBuffer {\n dtype = dtype || 'float32' as D;\n util.assertNonNegativeIntegerDimensions(shape);\n return new TensorBuffer(shape, dtype, values);\n}\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {Cast, CastAttrs, CastInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {DataType, TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {op} from './operation';\n\n/**\n * Casts a `tf.Tensor` to a new dtype.\n *\n * ```js\n * const x = tf.tensor1d([1.5, 2.5, 3]);\n * tf.cast(x, 'int32').print();\n * ```\n * @param x The input tensor to be casted.\n * @param dtype The dtype to cast the input tensor to.\n *\n * @doc {heading: 'Tensors', subheading: 'Transformations'}\n */\nfunction cast_(x: T|TensorLike, dtype: DataType): T {\n const $x = convertToTensor(x, 'x', 'cast');\n\n // Sanity checks.\n if (!util.isValidDtype(dtype)) {\n throw new Error(`Failed to cast to unknown dtype ${dtype}`);\n }\n if (dtype === 'string' && $x.dtype !== 'string' ||\n dtype !== 'string' && $x.dtype === 'string') {\n throw new Error('Only strings can be casted to strings');\n }\n\n const inputs: CastInputs = {x: $x};\n const attrs: CastAttrs = {dtype};\n\n return ENGINE.runKernel(\n Cast, inputs as {} as NamedTensorMap, attrs as {} as NamedAttrMap);\n}\n\nexport const cast = op({cast_});\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {Identity, IdentityInputs} from '../kernel_names';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\n\nimport {op} from './operation';\n\n/**\n * Creates a new tensor with the same values and shape as the specified\n * tensor.\n *\n * ```js\n * const x = tf.tensor([1, 2]);\n *\n * x.clone().print();\n * ```\n *\n * @param x The tensor to clone.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nfunction clone_(x: T|TensorLike): T {\n const $x = convertToTensor(x, 'x', 'clone', 'string_or_numeric');\n const inputs: IdentityInputs = {x: $x};\n\n // Note this op is called tf.identity in python. Hence the kernel name used\n // here.\n return ENGINE.runKernel(Identity, inputs as {} as NamedTensorMap);\n}\n\nexport const clone = op({clone_});\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from '../tensor';\n\n/**\n * Prints information about the `tf.Tensor` including its data.\n *\n * ```js\n * const verbose = true;\n * tf.tensor2d([1, 2, 3, 4], [2, 2]).print(verbose);\n * ```\n * @param x The tensor to be printed.\n * @param verbose Whether to print verbose information about the ` Tensor`,\n * including dtype and size.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nexport function print(x: T, verbose = false): void {\n console.log(x.toString(verbose));\n}\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// Required side effectful code for tfjs-core\n\n// Set up Engine and ENV\nimport {getOrMakeEngine} from './engine';\ngetOrMakeEngine();\n\n// Register backend-agnostic flags.\nimport './flags';\n// Register platforms\nimport './platforms/platform_browser';\nimport './platforms/platform_node';\n\n// Set up OpHandler\nimport {buffer} from './ops/buffer';\nimport {cast} from './ops/cast';\nimport {clone} from './ops/clone';\nimport {print} from './ops/print';\nimport {OpHandler, setOpHandler} from './tensor';\nconst opHandler: OpHandler = {\n buffer,\n cast,\n clone,\n print\n};\nsetOpHandler(opHandler);\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// Importing local_storage and indexed_db is necessary for the routers to be\n// registered.\nimport './indexed_db';\nimport './local_storage';\n\nimport {browserFiles} from './browser_files';\nimport {browserHTTPRequest, http, isHTTPScheme} from './http';\nimport {concatenateArrayBuffers, decodeWeights, encodeWeights, getModelArtifactsInfoForJSON} from './io_utils';\nimport {fromMemory, withSaveHandler} from './passthrough';\nimport {getLoadHandlers, getSaveHandlers, registerLoadRouter, registerSaveRouter} from './router_registry';\nimport {IOHandler, LoadHandler, LoadOptions, ModelArtifacts, ModelArtifactsInfo, ModelJSON, ModelStoreManager, OnProgressCallback, RequestDetails, SaveConfig, SaveHandler, SaveResult, WeightGroup, WeightsManifestConfig, WeightsManifestEntry} from './types';\nimport {loadWeights, weightsLoaderFactory} from './weights_loader';\n\nexport {copyModel, listModels, moveModel, removeModel} from './model_management';\nexport {\n browserFiles,\n browserHTTPRequest,\n concatenateArrayBuffers,\n decodeWeights,\n encodeWeights,\n fromMemory,\n getLoadHandlers,\n getModelArtifactsInfoForJSON,\n getSaveHandlers,\n http,\n IOHandler,\n isHTTPScheme,\n LoadHandler,\n LoadOptions,\n loadWeights,\n ModelArtifacts,\n ModelArtifactsInfo,\n ModelJSON,\n ModelStoreManager,\n OnProgressCallback,\n registerLoadRouter,\n registerSaveRouter,\n RequestDetails,\n SaveConfig,\n SaveHandler,\n SaveResult,\n WeightGroup,\n weightsLoaderFactory,\n WeightsManifestConfig,\n WeightsManifestEntry,\n withSaveHandler\n};\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * IOHandlers related to files, such as browser-triggered file downloads,\n * user-selected files in browser.\n */\n\nimport '../flags';\nimport {env} from '../environment';\n\nimport {basename, concatenateArrayBuffers, getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, ModelArtifacts, ModelJSON, SaveResult, WeightsManifestConfig, WeightsManifestEntry} from './types';\n\nconst DEFAULT_FILE_NAME_PREFIX = 'model';\nconst DEFAULT_JSON_EXTENSION_NAME = '.json';\nconst DEFAULT_WEIGHT_DATA_EXTENSION_NAME = '.weights.bin';\n\nfunction defer(f: () => T): Promise {\n return new Promise(resolve => setTimeout(resolve)).then(f);\n}\n\nexport class BrowserDownloads implements IOHandler {\n private readonly modelTopologyFileName: string;\n private readonly weightDataFileName: string;\n private readonly jsonAnchor: HTMLAnchorElement;\n private readonly weightDataAnchor: HTMLAnchorElement;\n\n static readonly URL_SCHEME = 'downloads://';\n\n constructor(fileNamePrefix?: string) {\n if (!env().getBool('IS_BROWSER')) {\n // TODO(cais): Provide info on what IOHandlers are available under the\n // current environment.\n throw new Error(\n 'browserDownloads() cannot proceed because the current environment ' +\n 'is not a browser.');\n }\n\n if (fileNamePrefix.startsWith(BrowserDownloads.URL_SCHEME)) {\n fileNamePrefix = fileNamePrefix.slice(BrowserDownloads.URL_SCHEME.length);\n }\n if (fileNamePrefix == null || fileNamePrefix.length === 0) {\n fileNamePrefix = DEFAULT_FILE_NAME_PREFIX;\n }\n\n this.modelTopologyFileName = fileNamePrefix + DEFAULT_JSON_EXTENSION_NAME;\n this.weightDataFileName =\n fileNamePrefix + DEFAULT_WEIGHT_DATA_EXTENSION_NAME;\n }\n\n async save(modelArtifacts: ModelArtifacts): Promise {\n if (typeof (document) === 'undefined') {\n throw new Error(\n 'Browser downloads are not supported in ' +\n 'this environment since `document` is not present');\n }\n const weightsURL = window.URL.createObjectURL(new Blob(\n [modelArtifacts.weightData], {type: 'application/octet-stream'}));\n\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserDownloads.save() does not support saving model topology ' +\n 'in binary formats yet.');\n } else {\n const weightsManifest: WeightsManifestConfig = [{\n paths: ['./' + this.weightDataFileName],\n weights: modelArtifacts.weightSpecs\n }];\n const modelTopologyAndWeightManifest: ModelJSON = {\n modelTopology: modelArtifacts.modelTopology,\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy,\n weightsManifest\n };\n if (modelArtifacts.signature != null) {\n modelTopologyAndWeightManifest.signature = modelArtifacts.signature;\n }\n if (modelArtifacts.userDefinedMetadata != null) {\n modelTopologyAndWeightManifest.userDefinedMetadata =\n modelArtifacts.userDefinedMetadata;\n }\n if (modelArtifacts.modelInitializer != null) {\n modelTopologyAndWeightManifest.modelInitializer =\n modelArtifacts.modelInitializer;\n }\n const modelTopologyAndWeightManifestURL =\n window.URL.createObjectURL(new Blob(\n [JSON.stringify(modelTopologyAndWeightManifest)],\n {type: 'application/json'}));\n\n // If anchor elements are not provided, create them without attaching them\n // to parents, so that the downloaded file names can be controlled.\n const jsonAnchor = this.jsonAnchor == null ? document.createElement('a') :\n this.jsonAnchor;\n jsonAnchor.download = this.modelTopologyFileName;\n jsonAnchor.href = modelTopologyAndWeightManifestURL;\n // Trigger downloads by evoking a click event on the download anchors.\n // When multiple downloads are started synchronously, Firefox will only\n // save the last one.\n await defer(() => jsonAnchor.dispatchEvent(new MouseEvent('click')));\n\n if (modelArtifacts.weightData != null) {\n const weightDataAnchor = this.weightDataAnchor == null ?\n document.createElement('a') :\n this.weightDataAnchor;\n weightDataAnchor.download = this.weightDataFileName;\n weightDataAnchor.href = weightsURL;\n await defer(\n () => weightDataAnchor.dispatchEvent(new MouseEvent('click')));\n }\n\n return {modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts)};\n }\n }\n}\n\nclass BrowserFiles implements IOHandler {\n private readonly files: File[];\n\n constructor(files: File[]) {\n if (files == null || files.length < 1) {\n throw new Error(\n `When calling browserFiles, at least 1 file is required, ` +\n `but received ${files}`);\n }\n this.files = files;\n }\n\n async load(): Promise {\n const jsonFile = this.files[0];\n const weightFiles = this.files.slice(1);\n\n return new Promise((resolve, reject) => {\n const jsonReader = new FileReader();\n jsonReader.onload = (event: Event) => {\n // tslint:disable-next-line:no-any\n const modelJSON = JSON.parse((event.target as any).result) as ModelJSON;\n const modelTopology = modelJSON.modelTopology;\n if (modelTopology == null) {\n reject(new Error(\n `modelTopology field is missing from file ${jsonFile.name}`));\n return;\n }\n\n if (weightFiles.length === 0) {\n resolve({modelTopology});\n }\n\n const weightsManifest = modelJSON.weightsManifest;\n if (weightsManifest == null) {\n reject(new Error(\n `weightManifest field is missing from file ${jsonFile.name}`));\n return;\n }\n\n let pathToFile: {[path: string]: File};\n try {\n pathToFile =\n this.checkManifestAndWeightFiles(weightsManifest, weightFiles);\n } catch (err) {\n reject(err);\n return;\n }\n\n const weightSpecs: WeightsManifestEntry[] = [];\n const paths: string[] = [];\n const perFileBuffers: ArrayBuffer[] = [];\n weightsManifest.forEach(weightsGroup => {\n weightsGroup.paths.forEach(path => {\n paths.push(path);\n perFileBuffers.push(null);\n });\n weightSpecs.push(...weightsGroup.weights);\n });\n\n weightsManifest.forEach(weightsGroup => {\n weightsGroup.paths.forEach(path => {\n const weightFileReader = new FileReader();\n weightFileReader.onload = (event: Event) => {\n // tslint:disable-next-line:no-any\n const weightData = (event.target as any).result as ArrayBuffer;\n const index = paths.indexOf(path);\n perFileBuffers[index] = weightData;\n if (perFileBuffers.indexOf(null) === -1) {\n const result: ModelArtifacts = {\n modelTopology,\n weightSpecs,\n weightData: concatenateArrayBuffers(perFileBuffers),\n format: modelJSON.format,\n generatedBy: modelJSON.generatedBy,\n convertedBy: modelJSON.convertedBy\n };\n if (modelJSON.signature != null) {\n result.signature = modelJSON.signature;\n }\n if (modelJSON.userDefinedMetadata != null) {\n result.userDefinedMetadata = modelJSON.userDefinedMetadata;\n }\n if (modelJSON.modelInitializer != null) {\n result.modelInitializer = modelJSON.modelInitializer;\n }\n resolve(result);\n }\n };\n weightFileReader.onerror = error =>\n reject(`Failed to weights data from file of path '${path}'.`);\n weightFileReader.readAsArrayBuffer(pathToFile[path]);\n });\n });\n };\n jsonReader.onerror = error => reject(\n `Failed to read model topology and weights manifest JSON ` +\n `from file '${jsonFile.name}'. BrowserFiles supports loading ` +\n `Keras-style tf.Model artifacts only.`);\n jsonReader.readAsText(jsonFile);\n });\n }\n\n /**\n * Check the compatibility between weights manifest and weight files.\n */\n private checkManifestAndWeightFiles(\n manifest: WeightsManifestConfig, files: File[]): {[path: string]: File} {\n const basenames: string[] = [];\n const fileNames = files.map(file => basename(file.name));\n const pathToFile: {[path: string]: File} = {};\n for (const group of manifest) {\n group.paths.forEach(path => {\n const pathBasename = basename(path);\n if (basenames.indexOf(pathBasename) !== -1) {\n throw new Error(\n `Duplicate file basename found in weights manifest: ` +\n `'${pathBasename}'`);\n }\n basenames.push(pathBasename);\n if (fileNames.indexOf(pathBasename) === -1) {\n throw new Error(\n `Weight file with basename '${pathBasename}' is not provided.`);\n } else {\n pathToFile[path] = files[fileNames.indexOf(pathBasename)];\n }\n });\n }\n\n if (basenames.length !== files.length) {\n throw new Error(\n `Mismatch in the number of files in weights manifest ` +\n `(${basenames.length}) and the number of weight files provided ` +\n `(${files.length}).`);\n }\n return pathToFile;\n }\n}\n\nexport const browserDownloadsRouter: IORouter = (url: string|string[]) => {\n if (!env().getBool('IS_BROWSER')) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserDownloads.URL_SCHEME)) {\n return browserDownloads(url.slice(BrowserDownloads.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(browserDownloadsRouter);\n\n/**\n * Creates an IOHandler that triggers file downloads from the browser.\n *\n * The returned `IOHandler` instance can be used as model exporting methods such\n * as `tf.Model.save` and supports only saving.\n *\n * ```js\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * const saveResult = await model.save('downloads://mymodel');\n * // This will trigger downloading of two files:\n * // 'mymodel.json' and 'mymodel.weights.bin'.\n * console.log(saveResult);\n * ```\n *\n * @param fileNamePrefix Prefix name of the files to be downloaded. For use with\n * `tf.Model`, `fileNamePrefix` should follow either of the following two\n * formats:\n * 1. `null` or `undefined`, in which case the default file\n * names will be used:\n * - 'model.json' for the JSON file containing the model topology and\n * weights manifest.\n * - 'model.weights.bin' for the binary file containing the binary weight\n * values.\n * 2. A single string or an Array of a single string, as the file name prefix.\n * For example, if `'foo'` is provided, the downloaded JSON\n * file and binary weights file will be named 'foo.json' and\n * 'foo.weights.bin', respectively.\n * @param config Additional configuration for triggering downloads.\n * @returns An instance of `BrowserDownloads` `IOHandler`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Loading',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nexport function browserDownloads(fileNamePrefix = 'model'): IOHandler {\n return new BrowserDownloads(fileNamePrefix);\n}\n\n/**\n * Creates an IOHandler that loads model artifacts from user-selected files.\n *\n * This method can be used for loading from files such as user-selected files\n * in the browser.\n * When used in conjunction with `tf.loadLayersModel`, an instance of\n * `tf.LayersModel` (Keras-style) can be constructed from the loaded artifacts.\n *\n * ```js\n * // Note: This code snippet won't run properly without the actual file input\n * // elements in the HTML DOM.\n *\n * // Suppose there are two HTML file input (``)\n * // elements.\n * const uploadJSONInput = document.getElementById('upload-json');\n * const uploadWeightsInput = document.getElementById('upload-weights');\n * const model = await tf.loadLayersModel(tf.io.browserFiles(\n * [uploadJSONInput.files[0], uploadWeightsInput.files[0]]));\n * ```\n *\n * @param files `File`s to load from. Currently, this function supports only\n * loading from files that contain Keras-style models (i.e., `tf.Model`s), for\n * which an `Array` of `File`s is expected (in that order):\n * - A JSON file containing the model topology and weight manifest.\n * - Optionally, One or more binary files containing the binary weights.\n * These files must have names that match the paths in the `weightsManifest`\n * contained by the aforementioned JSON file, or errors will be thrown\n * during loading. These weights files have the same format as the ones\n * generated by `tensorflowjs_converter` that comes with the `tensorflowjs`\n * Python PIP package. If no weights files are provided, only the model\n * topology will be loaded from the JSON file above.\n * @returns An instance of `Files` `IOHandler`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Loading',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nexport function browserFiles(files: File[]): IOHandler {\n return new BrowserFiles(files);\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {assert} from '../util';\n\nimport {OnProgressCallback} from './types';\n\n/**\n * Monitor Promise.all progress, fire onProgress callback function.\n *\n * @param promises Promise list going to be monitored\n * @param onProgress Callback function. Fired when a promise resolved.\n * @param startFraction Optional fraction start. Default to 0.\n * @param endFraction Optional fraction end. Default to 1.\n */\nexport function monitorPromisesProgress(\n promises: Array>, onProgress: OnProgressCallback,\n startFraction?: number, endFraction?: number) {\n checkPromises(promises);\n startFraction = startFraction == null ? 0 : startFraction;\n endFraction = endFraction == null ? 1 : endFraction;\n checkFraction(startFraction, endFraction);\n let resolvedPromise = 0;\n\n const registerMonitor = (promise: Promise<{}>) => {\n promise.then(value => {\n const fraction = startFraction +\n ++resolvedPromise / promises.length * (endFraction - startFraction);\n // pass fraction as parameter to callback function.\n onProgress(fraction);\n return value;\n });\n return promise;\n };\n\n function checkPromises(promises: Array>): void {\n assert(\n promises != null && Array.isArray(promises) && promises.length > 0,\n () => 'promises must be a none empty array');\n }\n\n function checkFraction(startFraction: number, endFraction: number): void {\n assert(\n startFraction >= 0 && startFraction <= 1,\n () => `Progress fraction must be in range [0, 1], but ` +\n `got startFraction ${startFraction}`);\n assert(\n endFraction >= 0 && endFraction <= 1,\n () => `Progress fraction must be in range [0, 1], but ` +\n `got endFraction ${endFraction}`);\n assert(\n endFraction >= startFraction,\n () => `startFraction must be no more than endFraction, but ` +\n `got startFraction ${startFraction} and endFraction ` +\n `${endFraction}`);\n }\n\n return Promise.all(promises.map(registerMonitor));\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {env} from '../environment';\n\nimport {NamedTensorMap} from '../tensor_types';\nimport * as util from '../util';\nimport {decodeWeights} from './io_utils';\nimport {monitorPromisesProgress} from './progress';\nimport {DTYPE_VALUE_SIZE_MAP, LoadOptions, WeightsManifestConfig, WeightsManifestEntry} from './types';\n\n/**\n * Reads binary weights data from a number of URLs.\n *\n * @param fetchURLs URLs to send the HTTP requests at, using `fetch` calls.\n * @param requestOptions RequestInit (options) for the HTTP requests.\n * @param fetchFunc Optional overriding value for the `window.fetch` function.\n * @param onProgress Optional, progress callback function, fired periodically\n * before the load is completed.\n * @returns A `Promise` of an Array of `ArrayBuffer`. The Array has the same\n * length as `fetchURLs`.\n */\nexport async function loadWeightsAsArrayBuffer(\n fetchURLs: string[], loadOptions?: LoadOptions): Promise {\n if (loadOptions == null) {\n loadOptions = {};\n }\n\n const fetchFunc = loadOptions.fetchFunc == null ? env().platform.fetch :\n loadOptions.fetchFunc;\n\n // Create the requests for all of the weights in parallel.\n const requests = fetchURLs.map(\n fetchURL =>\n fetchFunc(fetchURL, loadOptions.requestInit, {isBinary: true}));\n\n const fetchStartFraction = 0;\n const fetchEndFraction = 0.5;\n\n const responses = loadOptions.onProgress == null ?\n await Promise.all(requests) :\n await monitorPromisesProgress(\n requests, loadOptions.onProgress, fetchStartFraction,\n fetchEndFraction);\n\n const bufferPromises = responses.map(response => response.arrayBuffer());\n\n const bufferStartFraction = 0.5;\n const bufferEndFraction = 1;\n\n const buffers = loadOptions.onProgress == null ?\n await Promise.all(bufferPromises) :\n await monitorPromisesProgress(\n bufferPromises, loadOptions.onProgress, bufferStartFraction,\n bufferEndFraction);\n return buffers;\n}\n\n/**\n * Reads a weights manifest JSON configuration, fetches the weights and\n * returns them as `Tensor`s.\n *\n * @param manifest The weights manifest JSON.\n * @param filePathPrefix The path prefix for filenames given in the manifest.\n * Defaults to the empty string.\n * @param weightNames The names of the weights to be fetched.\n */\nexport async function loadWeights(\n manifest: WeightsManifestConfig, filePathPrefix = '',\n weightNames?: string[],\n requestInit?: RequestInit): Promise {\n // TODO(nsthorat): Groups are currently fetched atomically. If you need a\n // single weight from a group, the whole group will be fetched. At a future\n // date, we should support fetching only the individual shards within a\n // group that are needed to reconstruct the requested weight.\n // TODO(cais): Use `decodeWeights` for implementation.\n\n const fetchWeights = (fetchUrls: string[]) =>\n loadWeightsAsArrayBuffer(fetchUrls, {requestInit});\n const loadWeights = weightsLoaderFactory(fetchWeights);\n\n return loadWeights(manifest, filePathPrefix, weightNames);\n}\n\n/**\n * Creates a function, which reads a weights manifest JSON configuration,\n * fetches the weight files using the specified function and returns them as\n * `Tensor`s.\n *\n * ```js\n * // example for creating a nodejs weight loader, which reads the weight files\n * // from disk using fs.readFileSync\n *\n * import * as fs from 'fs'\n *\n * const fetchWeightsFromDisk = (filePaths: string[]) =>\n * filePaths.map(filePath => fs.readFileSync(filePath).buffer)\n *\n * const loadWeights = tf.io.weightsLoaderFactory(fetchWeightsFromDisk)\n *\n * const manifest = JSON.parse(\n * fs.readFileSync('./my_model-weights_manifest').toString()\n * )\n * const weightMap = await loadWeights(manifest, './')\n * ```\n * @param fetchWeightsFunction The function used for fetching the weight files.\n * @returns Weight loading function.\n */\nexport function weightsLoaderFactory(\n fetchWeightsFunction: (fetchUrls: string[]) => Promise):\n (manifest: WeightsManifestConfig, filePathPrefix?: string,\n weightNames?: string[]) => Promise {\n return async(\n manifest: WeightsManifestConfig, filePathPrefix = '',\n weightNames?: string[]): Promise => {\n // Collect all the groups, weights, and their relative offsets to be\n // fetched.\n const groupIndicesToFetchMap = manifest.map(() => false);\n const groupWeightsToFetch: {\n [group: number]: Array<{\n manifestEntry: WeightsManifestEntry; groupOffset: number;\n sizeBytes: number;\n }>\n } = {};\n const weightsFound =\n weightNames != null ? weightNames.map(() => false) : [];\n const allManifestWeightNames: string[] = [];\n manifest.forEach((manifestGroupConfig, groupIndex) => {\n let groupOffset = 0;\n manifestGroupConfig.weights.forEach(weightsEntry => {\n const rawDtype = ('quantization' in weightsEntry) ?\n weightsEntry.quantization.dtype :\n weightsEntry.dtype;\n\n const weightsBytes = DTYPE_VALUE_SIZE_MAP[rawDtype] *\n util.sizeFromShape(weightsEntry.shape);\n\n const enqueueWeightsForFetchingFn = () => {\n groupIndicesToFetchMap[groupIndex] = true;\n if (groupWeightsToFetch[groupIndex] == null) {\n groupWeightsToFetch[groupIndex] = [];\n }\n\n groupWeightsToFetch[groupIndex].push({\n manifestEntry: weightsEntry,\n groupOffset,\n sizeBytes: weightsBytes\n });\n };\n\n if (weightNames != null) {\n weightNames.forEach((weightName, weightIndex) => {\n if (weightName === weightsEntry.name) {\n enqueueWeightsForFetchingFn();\n weightsFound[weightIndex] = true;\n }\n });\n } else {\n enqueueWeightsForFetchingFn();\n }\n\n allManifestWeightNames.push(weightsEntry.name);\n groupOffset += weightsBytes;\n });\n });\n\n if (!weightsFound.every(found => found)) {\n const weightsNotFound = weightNames.filter((_, i) => !weightsFound[i]);\n throw new Error(\n `Could not find weights in manifest with names: ` +\n `${weightsNotFound.join(', ')}. \\n` +\n `Manifest JSON has weights with names: ` +\n `${allManifestWeightNames.join(', ')}.`);\n }\n\n // Convert the one-hot boolean groupId => shouldFetch map to a list of group\n // IDs.\n const groupIndicesToFetch =\n groupIndicesToFetchMap.reduce((accumulator, shouldFetch, i) => {\n if (shouldFetch) {\n accumulator.push(i);\n }\n return accumulator;\n }, []);\n\n const fetchUrls: string[] = [];\n groupIndicesToFetch.forEach(i => {\n manifest[i].paths.forEach(filepath => {\n const fetchUrl = filePathPrefix +\n (!filePathPrefix.endsWith('/') ? '/' : '') + filepath;\n fetchUrls.push(fetchUrl);\n });\n });\n const buffers = await fetchWeightsFunction(fetchUrls);\n\n const weightsTensorMap: NamedTensorMap = {};\n let bufferIndexOffset = 0;\n groupIndicesToFetch.forEach(i => {\n const numBuffers = manifest[i].paths.length;\n\n let groupBytes = 0;\n for (let i = 0; i < numBuffers; i++) {\n groupBytes += buffers[bufferIndexOffset + i].byteLength;\n }\n\n // Create a buffer for the whole group.\n const groupBuffer = new ArrayBuffer(groupBytes);\n const groupByteBuffer = new Uint8Array(groupBuffer);\n let groupBufferOffset = 0;\n for (let i = 0; i < numBuffers; i++) {\n const buffer = new Uint8Array(buffers[bufferIndexOffset + i]);\n groupByteBuffer.set(buffer, groupBufferOffset);\n groupBufferOffset += buffer.byteLength;\n }\n\n const weightsEntries = groupWeightsToFetch[i];\n weightsEntries.forEach(weightsEntry => {\n const byteBuffer = groupBuffer.slice(\n weightsEntry.groupOffset,\n weightsEntry.groupOffset + weightsEntry.sizeBytes);\n const nameToTensorMap =\n decodeWeights(byteBuffer, [weightsEntry.manifestEntry]);\n for (const name in nameToTensorMap) {\n weightsTensorMap[name] = nameToTensorMap[name];\n }\n });\n\n bufferIndexOffset += numBuffers;\n });\n\n return weightsTensorMap;\n };\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * IOHandler implementations based on HTTP requests in the web browser.\n *\n * Uses [`fetch`](https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API).\n */\n\nimport {env} from '../environment';\n\nimport {assert} from '../util';\nimport {concatenateArrayBuffers, getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, LoadOptions, ModelArtifacts, ModelJSON, OnProgressCallback, SaveResult, WeightsManifestConfig, WeightsManifestEntry} from './types';\nimport {loadWeightsAsArrayBuffer} from './weights_loader';\n\nconst OCTET_STREAM_MIME_TYPE = 'application/octet-stream';\nconst JSON_TYPE = 'application/json';\nexport class HTTPRequest implements IOHandler {\n protected readonly path: string;\n protected readonly requestInit: RequestInit;\n\n private readonly fetch: Function;\n private readonly weightUrlConverter: (weightName: string) => Promise;\n\n readonly DEFAULT_METHOD = 'POST';\n\n static readonly URL_SCHEME_REGEX = /^https?:\\/\\//;\n\n private readonly weightPathPrefix: string;\n private readonly onProgress: OnProgressCallback;\n\n constructor(path: string, loadOptions?: LoadOptions) {\n if (loadOptions == null) {\n loadOptions = {};\n }\n this.weightPathPrefix = loadOptions.weightPathPrefix;\n this.onProgress = loadOptions.onProgress;\n this.weightUrlConverter = loadOptions.weightUrlConverter;\n\n if (loadOptions.fetchFunc != null) {\n assert(\n typeof loadOptions.fetchFunc === 'function',\n () => 'Must pass a function that matches the signature of ' +\n '`fetch` (see ' +\n 'https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)');\n this.fetch = loadOptions.fetchFunc;\n } else {\n this.fetch = env().platform.fetch;\n }\n\n assert(\n path != null && path.length > 0,\n () => 'URL path for http must not be null, undefined or ' +\n 'empty.');\n\n if (Array.isArray(path)) {\n assert(\n path.length === 2,\n () => 'URL paths for http must have a length of 2, ' +\n `(actual length is ${path.length}).`);\n }\n this.path = path;\n\n if (loadOptions.requestInit != null &&\n loadOptions.requestInit.body != null) {\n throw new Error(\n 'requestInit is expected to have no pre-existing body, but has one.');\n }\n this.requestInit = loadOptions.requestInit || {};\n }\n\n async save(modelArtifacts: ModelArtifacts): Promise {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserHTTPRequest.save() does not support saving model topology ' +\n 'in binary formats yet.');\n }\n\n const init = Object.assign({method: this.DEFAULT_METHOD}, this.requestInit);\n init.body = new FormData();\n\n const weightsManifest: WeightsManifestConfig = [{\n paths: ['./model.weights.bin'],\n weights: modelArtifacts.weightSpecs,\n }];\n const modelTopologyAndWeightManifest: ModelJSON = {\n modelTopology: modelArtifacts.modelTopology,\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy,\n weightsManifest\n };\n if (modelArtifacts.signature != null) {\n modelTopologyAndWeightManifest.signature = modelArtifacts.signature;\n }\n if (modelArtifacts.userDefinedMetadata != null) {\n modelTopologyAndWeightManifest.userDefinedMetadata =\n modelArtifacts.userDefinedMetadata;\n }\n if (modelArtifacts.modelInitializer != null) {\n modelTopologyAndWeightManifest.modelInitializer =\n modelArtifacts.modelInitializer;\n }\n\n init.body.append(\n 'model.json',\n new Blob(\n [JSON.stringify(modelTopologyAndWeightManifest)],\n {type: JSON_TYPE}),\n 'model.json');\n\n if (modelArtifacts.weightData != null) {\n init.body.append(\n 'model.weights.bin',\n new Blob([modelArtifacts.weightData], {type: OCTET_STREAM_MIME_TYPE}),\n 'model.weights.bin');\n }\n\n const response = await this.fetch(this.path, init);\n\n if (response.ok) {\n return {\n modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts),\n responses: [response],\n };\n } else {\n throw new Error(\n `BrowserHTTPRequest.save() failed due to HTTP response status ` +\n `${response.status}.`);\n }\n }\n\n /**\n * Load model artifacts via HTTP request(s).\n *\n * See the documentation to `tf.io.http` for details on the saved\n * artifacts.\n *\n * @returns The loaded model artifacts (if loading succeeds).\n */\n async load(): Promise {\n const modelConfigRequest = await this.fetch(this.path, this.requestInit);\n\n if (!modelConfigRequest.ok) {\n throw new Error(\n `Request to ${this.path} failed with status code ` +\n `${modelConfigRequest.status}. Please verify this URL points to ` +\n `the model JSON of the model to load.`);\n }\n let modelConfig: ModelJSON;\n try {\n modelConfig = await modelConfigRequest.json();\n } catch (e) {\n let message = `Failed to parse model JSON of response from ${this.path}.`;\n // TODO(nsthorat): Remove this after some time when we're comfortable that\n // .pb files are mostly gone.\n if (this.path.endsWith('.pb')) {\n message += ' Your path contains a .pb file extension. ' +\n 'Support for .pb models have been removed in TensorFlow.js 1.0 ' +\n 'in favor of .json models. You can re-convert your Python ' +\n 'TensorFlow model using the TensorFlow.js 1.0 conversion scripts ' +\n 'or you can convert your.pb models with the \\'pb2json\\'' +\n 'NPM script in the tensorflow/tfjs-converter repository.';\n } else {\n message += ' Please make sure the server is serving valid ' +\n 'JSON for this request.';\n }\n throw new Error(message);\n }\n const modelTopology = modelConfig.modelTopology;\n const weightsManifest = modelConfig.weightsManifest;\n const generatedBy = modelConfig.generatedBy;\n const convertedBy = modelConfig.convertedBy;\n const format = modelConfig.format;\n const signature = modelConfig.signature;\n const userDefinedMetadata = modelConfig.userDefinedMetadata;\n\n // We do not allow both modelTopology and weightsManifest to be missing.\n if (modelTopology == null && weightsManifest == null) {\n throw new Error(\n `The JSON from HTTP path ${this.path} contains neither model ` +\n `topology or manifest for weights.`);\n }\n\n let weightSpecs: WeightsManifestEntry[];\n let weightData: ArrayBuffer;\n if (weightsManifest != null) {\n const results = await this.loadWeights(weightsManifest);\n [weightSpecs, weightData] = results;\n }\n\n const artifacts: ModelArtifacts = {\n modelTopology,\n weightSpecs,\n weightData,\n generatedBy,\n convertedBy,\n format\n };\n\n if (signature != null) {\n artifacts.signature = signature;\n }\n if (userDefinedMetadata != null) {\n artifacts.userDefinedMetadata = userDefinedMetadata;\n }\n\n const initializer = modelConfig.modelInitializer;\n if (initializer) {\n artifacts.modelInitializer = initializer;\n }\n\n return artifacts;\n }\n\n private async loadWeights(weightsManifest: WeightsManifestConfig):\n Promise<[WeightsManifestEntry[], ArrayBuffer]> {\n const weightPath = Array.isArray(this.path) ? this.path[1] : this.path;\n const [prefix, suffix] = parseUrl(weightPath);\n const pathPrefix = this.weightPathPrefix || prefix;\n\n const weightSpecs = [];\n for (const entry of weightsManifest) {\n weightSpecs.push(...entry.weights);\n }\n\n const fetchURLs: string[] = [];\n const urlPromises: Array> = [];\n for (const weightsGroup of weightsManifest) {\n for (const path of weightsGroup.paths) {\n if (this.weightUrlConverter != null) {\n urlPromises.push(this.weightUrlConverter(path));\n } else {\n fetchURLs.push(pathPrefix + path + suffix);\n }\n }\n }\n\n if (this.weightUrlConverter) {\n fetchURLs.push(...await Promise.all(urlPromises));\n }\n\n const buffers = await loadWeightsAsArrayBuffer(fetchURLs, {\n requestInit: this.requestInit,\n fetchFunc: this.fetch,\n onProgress: this.onProgress\n });\n return [weightSpecs, concatenateArrayBuffers(buffers)];\n }\n}\n\n/**\n * Extract the prefix and suffix of the url, where the prefix is the path before\n * the last file, and suffix is the search params after the last file.\n * ```\n * const url = 'http://tfhub.dev/model/1/tensorflowjs_model.pb?tfjs-format=file'\n * [prefix, suffix] = parseUrl(url)\n * // prefix = 'http://tfhub.dev/model/1/'\n * // suffix = '?tfjs-format=file'\n * ```\n * @param url the model url to be parsed.\n */\nexport function parseUrl(url: string): [string, string] {\n const lastSlash = url.lastIndexOf('/');\n const lastSearchParam = url.lastIndexOf('?');\n const prefix = url.substring(0, lastSlash);\n const suffix =\n lastSearchParam > lastSlash ? url.substring(lastSearchParam) : '';\n return [prefix + '/', suffix];\n}\n\nexport function isHTTPScheme(url: string): boolean {\n return url.match(HTTPRequest.URL_SCHEME_REGEX) != null;\n}\n\nexport const httpRouter: IORouter =\n (url: string, loadOptions?: LoadOptions) => {\n if (typeof fetch === 'undefined' &&\n (loadOptions == null || loadOptions.fetchFunc == null)) {\n // `http` uses `fetch` or `node-fetch`, if one wants to use it in\n // an environment that is not the browser or node they have to setup a\n // global fetch polyfill.\n return null;\n } else {\n let isHTTP = true;\n if (Array.isArray(url)) {\n isHTTP = url.every(urlItem => isHTTPScheme(urlItem));\n } else {\n isHTTP = isHTTPScheme(url);\n }\n if (isHTTP) {\n return http(url, loadOptions);\n }\n }\n return null;\n };\nIORouterRegistry.registerSaveRouter(httpRouter);\nIORouterRegistry.registerLoadRouter(httpRouter);\n\n/**\n * Creates an IOHandler subtype that sends model artifacts to HTTP server.\n *\n * An HTTP request of the `multipart/form-data` mime type will be sent to the\n * `path` URL. The form data includes artifacts that represent the topology\n * and/or weights of the model. In the case of Keras-style `tf.Model`, two\n * blobs (files) exist in form-data:\n * - A JSON file consisting of `modelTopology` and `weightsManifest`.\n * - A binary weights file consisting of the concatenated weight values.\n * These files are in the same format as the one generated by\n * [tfjs_converter](https://js.tensorflow.org/tutorials/import-keras.html).\n *\n * The following code snippet exemplifies the client-side code that uses this\n * function:\n *\n * ```js\n * const model = tf.sequential();\n * model.add(\n * tf.layers.dense({units: 1, inputShape: [100], activation: 'sigmoid'}));\n *\n * const saveResult = await model.save(tf.io.http(\n * 'http://model-server:5000/upload', {requestInit: {method: 'PUT'}}));\n * console.log(saveResult);\n * ```\n *\n * If the default `POST` method is to be used, without any custom parameters\n * such as headers, you can simply pass an HTTP or HTTPS URL to `model.save`:\n *\n * ```js\n * const saveResult = await model.save('http://model-server:5000/upload');\n * ```\n *\n * The following GitHub Gist\n * https://gist.github.com/dsmilkov/1b6046fd6132d7408d5257b0976f7864\n * implements a server based on [flask](https://github.com/pallets/flask) that\n * can receive the request. Upon receiving the model artifacts via the requst,\n * this particular server reconsistutes instances of [Keras\n * Models](https://keras.io/models/model/) in memory.\n *\n *\n * @param path A URL path to the model.\n * Can be an absolute HTTP path (e.g.,\n * 'http://localhost:8000/model-upload)') or a relative path (e.g.,\n * './model-upload').\n * @param requestInit Request configurations to be used when sending\n * HTTP request to server using `fetch`. It can contain fields such as\n * `method`, `credentials`, `headers`, `mode`, etc. See\n * https://developer.mozilla.org/en-US/docs/Web/API/Request/Request\n * for more information. `requestInit` must not have a body, because the\n * body will be set by TensorFlow.js. File blobs representing the model\n * topology (filename: 'model.json') and the weights of the model (filename:\n * 'model.weights.bin') will be appended to the body. If `requestInit` has a\n * `body`, an Error will be thrown.\n * @param loadOptions Optional configuration for the loading. It includes the\n * following fields:\n * - weightPathPrefix Optional, this specifies the path prefix for weight\n * files, by default this is calculated from the path param.\n * - fetchFunc Optional, custom `fetch` function. E.g., in Node.js,\n * the `fetch` from node-fetch can be used here.\n * - onProgress Optional, progress callback function, fired periodically\n * before the load is completed.\n * @returns An instance of `IOHandler`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Loading',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nexport function http(path: string, loadOptions?: LoadOptions): IOHandler {\n return new HTTPRequest(path, loadOptions);\n}\n\n/**\n * Deprecated. Use `tf.io.http`.\n * @param path\n * @param loadOptions\n */\nexport function browserHTTPRequest(\n path: string, loadOptions?: LoadOptions): IOHandler {\n return http(path, loadOptions);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * IOHandlers that pass through the in-memory ModelArtifacts format.\n */\n\nimport {IOHandler, ModelArtifacts, SaveResult, TrainingConfig, WeightsManifestEntry} from './types';\n\nclass PassthroughLoader implements IOHandler {\n constructor(private readonly modelArtifacts?: ModelArtifacts) {}\n\n async load(): Promise {\n return this.modelArtifacts;\n }\n}\n\nclass PassthroughSaver implements IOHandler {\n constructor(\n private readonly saveHandler:\n (artifacts: ModelArtifacts) => Promise) {}\n\n async save(modelArtifacts: ModelArtifacts) {\n return this.saveHandler(modelArtifacts);\n }\n}\n\n/**\n * Creates an IOHandler that loads model artifacts from memory.\n *\n * When used in conjunction with `tf.loadLayersModel`, an instance of\n * `tf.LayersModel` (Keras-style) can be constructed from the loaded artifacts.\n *\n * ```js\n * const model = await tf.loadLayersModel(tf.io.fromMemory(\n * modelTopology, weightSpecs, weightData));\n * ```\n *\n * @param modelArtifacts a object containing model topology (i.e., parsed from\n * the JSON format).\n * @param weightSpecs An array of `WeightsManifestEntry` objects describing the\n * names, shapes, types, and quantization of the weight data.\n * @param weightData A single `ArrayBuffer` containing the weight data,\n * concatenated in the order described by the weightSpecs.\n * @param trainingConfig Model training configuration. Optional.\n *\n * @returns A passthrough `IOHandler` that simply loads the provided data.\n */\nexport function fromMemory(\n modelArtifacts: {}|ModelArtifacts, weightSpecs?: WeightsManifestEntry[],\n weightData?: ArrayBuffer, trainingConfig?: TrainingConfig): IOHandler {\n if (arguments.length === 1) {\n const isModelArtifacts =\n (modelArtifacts as ModelArtifacts).modelTopology != null ||\n (modelArtifacts as ModelArtifacts).weightSpecs != null;\n if (isModelArtifacts) {\n return new PassthroughLoader(modelArtifacts as ModelArtifacts);\n } else {\n // Legacy support: with only modelTopology.\n // TODO(cais): Remove this deprecated API.\n console.warn(\n 'Please call tf.io.fromMemory() with only one argument. ' +\n 'The argument should be of type ModelArtifacts. ' +\n 'The multi-argument signature of tf.io.fromMemory() has been ' +\n 'deprecated and will be removed in a future release.');\n return new PassthroughLoader({modelTopology: modelArtifacts as {}});\n }\n } else {\n // Legacy support.\n // TODO(cais): Remove this deprecated API.\n console.warn(\n 'Please call tf.io.fromMemory() with only one argument. ' +\n 'The argument should be of type ModelArtifacts. ' +\n 'The multi-argument signature of tf.io.fromMemory() has been ' +\n 'deprecated and will be removed in a future release.');\n return new PassthroughLoader({\n modelTopology: modelArtifacts as {},\n weightSpecs,\n weightData,\n trainingConfig\n });\n }\n}\n\n/**\n * Creates an IOHandler that passes saved model artifacts to a callback.\n *\n * ```js\n * function handleSave(artifacts) {\n * // ... do something with the artifacts ...\n * return {modelArtifactsInfo: {...}, ...};\n * }\n *\n * const saveResult = model.save(tf.io.withSaveHandler(handleSave));\n * ```\n *\n * @param saveHandler A function that accepts a `ModelArtifacts` and returns a\n * `SaveResult`.\n */\nexport function withSaveHandler(\n saveHandler: (artifacts: ModelArtifacts) =>\n Promise): IOHandler {\n return new PassthroughSaver(saveHandler);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * Exports under the tf.math.* namespace.\n */\n\nimport {confusionMatrix} from './ops/confusion_matrix';\n\nexport {confusionMatrix};\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {BatchMatMul, BatchMatMulAttrs, BatchMatMulInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {makeTypesMatch} from '../tensor_util';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\n\nimport {op} from './operation';\n\n/**\n * Computes the dot product of two matrices, A * B. These must be matrices.\n *\n * ```js\n * const a = tf.tensor2d([1, 2], [1, 2]);\n * const b = tf.tensor2d([1, 2, 3, 4], [2, 2]);\n *\n * a.matMul(b).print(); // or tf.matMul(a, b)\n * ```\n * @param a First matrix in dot product operation.\n * @param b Second matrix in dot product operation.\n * @param transposeA If true, `a` is transposed before multiplication.\n * @param transposeB If true, `b` is transposed before multiplication.\n *\n * @doc {heading: 'Operations', subheading: 'Matrices'}\n */\nfunction matMul_(\n a: Tensor|TensorLike, b: Tensor|TensorLike, transposeA = false,\n transposeB = false): T {\n let $a = convertToTensor(a, 'a', 'matMul');\n let $b = convertToTensor(b, 'b', 'matMul');\n [$a, $b] = makeTypesMatch($a, $b);\n\n const inputs: BatchMatMulInputs = {a: $a, b: $b};\n const attrs: BatchMatMulAttrs = {transposeA, transposeB};\n\n return ENGINE.runKernel(\n BatchMatMul, inputs as {} as NamedTensorMap, attrs as {} as NamedAttrMap);\n}\n\nexport const matMul = op({matMul_});\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {OneHot, OneHotAttrs, OneHotInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\n\nimport {op} from './operation';\n\n/**\n * Creates a one-hot `tf.Tensor`. The locations represented by `indices` take\n * value `onValue` (defaults to 1), while all other locations take value\n * `offValue` (defaults to 0). If `indices` is rank `R`, the output has rank\n * `R+1` with the last axis of size `depth`.\n *\n * ```js\n * tf.oneHot(tf.tensor1d([0, 1], 'int32'), 3).print();\n * ```\n *\n * @param indices `tf.Tensor` of indices with dtype `int32`.\n * @param depth The depth of the one hot dimension.\n * @param onValue A number used to fill in the output when the index matches\n * the location.\n * @param offValue A number used to fill in the output when the index does\n * not match the location.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nfunction oneHot_(\n indices: Tensor|TensorLike, depth: number, onValue = 1,\n offValue = 0): Tensor {\n if (depth < 2) {\n throw new Error(`Error in oneHot: depth must be >=2, but it is ${depth}`);\n }\n const $indices = convertToTensor(indices, 'indices', 'oneHot', 'int32');\n\n const inputs: OneHotInputs = {indices: $indices};\n const attrs: OneHotAttrs = {depth, onValue, offValue};\n\n return ENGINE.runKernel(\n OneHot, inputs as unknown as NamedTensorMap,\n attrs as unknown as NamedAttrMap);\n}\n\nexport const oneHot = op({oneHot_});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {Transpose, TransposeAttrs, TransposeInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {op} from './operation';\n\n/**\n * Transposes the `tf.Tensor`. Permutes the dimensions according to `perm`.\n *\n * The returned `tf.Tensor`'s dimension `i` will correspond to the input\n * dimension `perm[i]`. If `perm` is not given, it is set to `[n-1...0]`,\n * where `n` is the rank of the input `tf.Tensor`. Hence by default, this\n * operation performs a regular matrix transpose on 2-D input `tf.Tensor`s.\n *\n * ```js\n * const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]);\n *\n * a.transpose().print(); // or tf.transpose(a)\n * ```\n *\n * @param x The tensor to transpose.\n * @param perm The permutation of the dimensions of a.\n *\n * @doc {heading: 'Operations', subheading: 'Matrices'}\n */\nfunction transpose_(x: T|TensorLike, perm?: number[]): T {\n const $x = convertToTensor(x, 'x', 'transpose');\n\n if (perm == null) {\n perm = $x.shape.map((s, i) => i).reverse();\n }\n util.assert(\n $x.rank === perm.length,\n () => `Error in transpose: rank of input ${$x.rank} ` +\n `must match length of perm ${perm}.`);\n perm.forEach(axis => {\n util.assert(\n axis >= 0 && axis < $x.rank,\n () => `All entries in 'perm' must be between 0 and ${$x.rank - 1}` +\n ` but got ${perm}`);\n });\n\n if ($x.rank <= 1) {\n return $x.clone();\n }\n\n const inputs: TransposeInputs = {x: $x};\n const attrs: TransposeAttrs = {perm};\n\n return ENGINE.runKernel(\n Transpose, inputs as {} as NamedTensorMap, attrs as {} as NamedAttrMap);\n}\n\nexport const transpose = op({transpose_});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor1D, Tensor2D} from '../tensor';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {cast} from './cast';\nimport {matMul} from './mat_mul';\nimport {oneHot} from './one_hot';\nimport {op} from './operation';\nimport {transpose} from './transpose';\n\n/**\n * Computes the confusion matrix from true labels and predicted labels.\n *\n * ```js\n * const labels = tf.tensor1d([0, 1, 2, 1, 0], 'int32');\n * const predictions = tf.tensor1d([0, 2, 2, 1, 0], 'int32');\n * const numClasses = 3;\n * const out = tf.math.confusionMatrix(labels, predictions, numClasses);\n * out.print();\n * // Expected output matrix:\n * // [[2, 0, 0],\n * // [0, 1, 1],\n * // [0, 0, 1]]\n * ```\n *\n * @param labels The target labels, assumed to be 0-based integers\n * for the classes. The shape is `[numExamples]`, where\n * `numExamples` is the number of examples included.\n * @param predictions The predicted classes, assumed to be\n * 0-based integers for the classes. Must have the same shape as `labels`.\n * @param numClasses Number of all classes, as an integer.\n * Its value must be larger than the largest element in `labels` and\n * `predictions`.\n * @returns The confusion matrix as a int32-type 2D tensor. The value at\n * row `r` and column `c` is the number of times examples of actual class\n * `r` were predicted as class `c`.\n *\n * @doc {heading: 'Operations', subheading: 'Evaluation'}\n */\nexport function confusionMatrix_(\n labels: Tensor1D|TensorLike, predictions: Tensor1D|TensorLike,\n numClasses: number): Tensor2D {\n const $labels = convertToTensor(labels, 'labels', 'confusionMatrix');\n const $predictions =\n convertToTensor(predictions, 'predictions', 'confusionMatrix');\n\n util.assert(\n numClasses == null || numClasses > 0 && Number.isInteger(numClasses),\n () => `If provided, numClasses must be a positive integer, ` +\n `but got ${numClasses}`);\n util.assert(\n $labels.rank === 1,\n () => `Expected the rank of labels to be 1, but got ${$labels.rank}`);\n util.assert(\n $predictions.rank === 1,\n () => `Expected the rank of predictions to be 1, ` +\n `but got ${$predictions.rank}`);\n util.assert(\n $labels.shape[0] === $predictions.shape[0],\n () => `Mismatch in the number of examples: ` +\n `${$labels.shape[0]} vs. ${$predictions.shape[0]}. ` +\n `Labels and predictions should have the same number of elements.`);\n util.assert(\n numClasses > 0 && Number.isInteger(numClasses),\n () => `numClasses is required to be a positive integer, but got ` +\n `${numClasses}`);\n // TODO(cais): In the future, if oneHot supports tensors inputs for\n // `numClasses`, `confusionMatrix` can make `numClasses` optional.\n\n const oneHotLabels = oneHot(cast($labels, 'int32'), numClasses) as Tensor2D;\n const oneHotPredictions =\n oneHot(cast($predictions, 'int32'), numClasses) as Tensor2D;\n const oneHotLabelsT: Tensor2D = transpose(oneHotLabels);\n const product: Tensor2D = matMul(oneHotLabelsT, oneHotPredictions);\n return cast(product, 'int32');\n}\n\nexport const confusionMatrix = op({confusionMatrix_});\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {env} from '../environment';\nimport {FromPixels, FromPixelsAttrs, FromPixelsInputs} from '../kernel_names';\nimport {getKernel, NamedAttrMap} from '../kernel_registry';\nimport {Tensor, Tensor2D, Tensor3D} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {PixelData, TensorLike} from '../types';\n\nimport {cast} from './cast';\nimport {op} from './operation';\nimport {tensor3d} from './tensor3d';\n\nlet fromPixels2DContext: CanvasRenderingContext2D;\n\n/**\n * Creates a `tf.Tensor` from an image.\n *\n * ```js\n * const image = new ImageData(1, 1);\n * image.data[0] = 100;\n * image.data[1] = 150;\n * image.data[2] = 200;\n * image.data[3] = 255;\n *\n * tf.browser.fromPixels(image).print();\n * ```\n *\n * @param pixels The input image to construct the tensor from. The\n * supported image types are all 4-channel. You can also pass in an image\n * object with following attributes:\n * `{data: Uint8Array; width: number; height: number}`\n * @param numChannels The number of channels of the output tensor. A\n * numChannels value less than 4 allows you to ignore channels. Defaults to\n * 3 (ignores alpha channel of input image).\n *\n * @returns A Tensor3D with the shape `[height, width, numChannels]`.\n *\n * @doc {heading: 'Browser', namespace: 'browser', ignoreCI: true}\n */\nfunction fromPixels_(\n pixels: PixelData|ImageData|HTMLImageElement|HTMLCanvasElement|\n HTMLVideoElement|ImageBitmap,\n numChannels = 3): Tensor3D {\n // Sanity checks.\n if (numChannels > 4) {\n throw new Error(\n 'Cannot construct Tensor with more than 4 channels from pixels.');\n }\n if (pixels == null) {\n throw new Error('pixels passed to tf.browser.fromPixels() can not be null');\n }\n let isPixelData = false;\n let isImageData = false;\n let isVideo = false;\n let isImage = false;\n let isCanvasLike = false;\n let isImageBitmap = false;\n if ((pixels as PixelData).data instanceof Uint8Array) {\n isPixelData = true;\n } else if (\n typeof (ImageData) !== 'undefined' && pixels instanceof ImageData) {\n isImageData = true;\n } else if (\n typeof (HTMLVideoElement) !== 'undefined' &&\n pixels instanceof HTMLVideoElement) {\n isVideo = true;\n } else if (\n typeof (HTMLImageElement) !== 'undefined' &&\n pixels instanceof HTMLImageElement) {\n isImage = true;\n // tslint:disable-next-line: no-any\n } else if ((pixels as any).getContext != null) {\n isCanvasLike = true;\n } else if (\n typeof (ImageBitmap) !== 'undefined' && pixels instanceof ImageBitmap) {\n isImageBitmap = true;\n } else {\n throw new Error(\n 'pixels passed to tf.browser.fromPixels() must be either an ' +\n `HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData ` +\n `in browser, or OffscreenCanvas, ImageData in webworker` +\n ` or {data: Uint32Array, width: number, height: number}, ` +\n `but was ${(pixels as {}).constructor.name}`);\n }\n if (isVideo) {\n const HAVE_CURRENT_DATA_READY_STATE = 2;\n if (isVideo &&\n (pixels as HTMLVideoElement).readyState <\n HAVE_CURRENT_DATA_READY_STATE) {\n throw new Error(\n 'The video element has not loaded data yet. Please wait for ' +\n '`loadeddata` event on the sw){let A=Vu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-Vu)*i,o*i));return n==="complex64"&&(y=Uu(y),g=Uu(g)),["["+y.map((x,v)=>ju(x,a[v],n)).join(", ")+", ..., "+g.map((x,v)=>ju(x,a[o-Vu+v],n)).join(", ")+"]"]}let m=n==="complex64"?Uu(e):Array.from(e);return["["+m.map((A,y)=>ju(A,a[y],n)).join(", ")+"]"]}let c=t.slice(1),u=r.slice(1),h=r[0]*i,d=[];if(o>sw){for(let m=0;m`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Gx(t,this.size),this.strides=io(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;rmd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Pr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>md(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Pr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Pr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return hl.print(this,e)}clone(){return this.throwIfDisposed(),hl.clone(this)}toString(e=!1){let t=this.dataSync();return II(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),hl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Pr().makeVariable(this,e,t,n)}};Object.defineProperty(Pe,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return Ff("Tensor",()=>Pe)}Z();var Hu=class extends Pe{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!oa(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Pr().disposeTensor(this),this.dataId=e.dataId,Pr().incRef(this,null)}dispose(){Pr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Hu,Symbol.hasInstance,{value:e=>e instanceof Pe&&e.assign!=null&&e.assign instanceof Function});var vr={};Me(vr,{assertTypesMatch:()=>ow,getTensorsInContainer:()=>zf,isTensorInList:()=>CI,makeTypesMatch:()=>vt});var Pf;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Pf||(Pf={}));var Lf;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Lf||(Lf={}));var Wf;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Wf||(Wf={}));var Bf;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Bf||(Bf={}));var Vf;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Vf||(Vf={}));var RI={float32:Bf,int32:Lf,bool:Wf,complex64:Vf};function dr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return RI[e][t]}function yd(e){return dr(e,"int32")}function vt(e,t){if(e.dtype===t.dtype)return[e,t];let n=dr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function ow(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function CI(e,t){return t.some(n=>n.id===e.id)}function zf(e){let t=[],n=new Set;return lw(e,t,n),t}function lw(e,t,n){if(e==null)return;if(e instanceof Pe){t.push(e);return}if(!MI(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),lw(s,t,n))}}function MI(e){return Array.isArray(e)||typeof e=="object"}function jf(e){return e.kernelName!=null}var uw=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Gu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new uw}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){cl(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof wu)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Gu.nextTensorId++}nextVariableId(){return Gu.nextVariableId++}clone(e){let t=$.runKernel(Es,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernel(As,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(pd(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=jf(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(jf(e)){let{kernelName:p,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let A=pd(p,this.backendName);M(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:f,attrs:m,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let x=g.map(v=>{if(v.rank!=null)return v;let{dataId:w,shape:b,dtype:k}=v;return this.makeTensorFromDataId(w,b,k)});if(r){let v=this.getTensorsForGradient(p,f,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:p}=e,f=m=>{!r||(n=m.map(A=>this.keep(this.clone(A))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,f));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,A),A}}let{inputs:c,attrs:u}=e,h=jf(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,c,t,h,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(p=>c[p]!=null?c[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=Df(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&Ta(e[0])&&(a=e.map(o=>Bu(o)));let s=r.write(a,t,n),i=new Pe(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=Kx(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new Pe(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new Hu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Tf(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Hu||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Tf(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=Df(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let h=n[u],d=$h(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return c}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=zf(e),n=new Set(t.map(a=>a.id));for(let a=0;a{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(a instanceof Pe,()=>"The result y returned by f() must be a tensor.");let s=_I(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?FI(a.shape):n,vI(i,s,l=>this.tidy(l),$I);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return M(Ea(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(i=>i instanceof Pe),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),M(n.value instanceof Pe,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Ea(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];M(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(c.every(h=>h instanceof Pe),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((h,d)=>{u[d]=()=>h}),u};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Wu(),n=await this.backend.time(e);return n.wallMs=Wu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new uw;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Gu.nextTensorId=0;Gu.nextVariableId=0;function FI(e){let t=Ef(Et(e),"float32");return $.makeTensor(t,e,"float32")}function cw(){let e=tw();if(e._tfengine==null){let t=new ew(e);e._tfengine=new Gu(t)}return cI(e._tfengine.ENV),NI(()=>e._tfengine),e._tfengine}var $=cw();function $I(e,t){let n={a:e,b:t};return $.runKernel(Ca,n)}var qu={};Me(qu,{isBrowser:()=>hw,isMobile:()=>DI});function OI(){return typeof navigator!="undefined"&&navigator!=null}function DI(e){if(e||OI()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function hw(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var kr=J();kr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});kr.registerFlag("IS_BROWSER",()=>hw());kr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");kr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));kr.registerFlag("PROD",()=>!1);kr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>kr.getBool("DEBUG"));kr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);kr.registerFlag("IS_TEST",()=>!1);kr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);kr.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Lr(e,t){let n=e;if(rn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||rn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&dw(e,r,[]),r}function dw(e,t,n){if(n=n||[],!Array.isArray(e)&&!rn(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a=0&&(a=r),pw(r,a,t,n),e==null||!rn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Lr(e,a);!rn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?fd(e,a):hs(e,[],!0);return $.makeTensor(i,s,a)}function Xu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var fw="__op";function D(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+fw;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return Rf(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function zI(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");ln(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel(Ph,a)}var $a=D({complex_:zI});function Da(e,t,n,r){if(r==null&&(r=Mh(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!rn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Cf(t);let a=Et(t),s=Et(n);M(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!rn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?fd(e,r):hs(e,[],!0),$.makeTensor(e,t,r)}function Ir(e,t,n){let r=Lr(e,n);return Da(e,t,r,n)}var Uf={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},gd=4;async function LI(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+gd*d.length,f=new Uint8Array(p),m=0;for(let A=0;A{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var Hf=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Aw(e){return Hf?Buffer.byteLength(e):new Blob([e]).size}function BI(e){if(Hf)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function yw(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Ku(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Aw(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Aw(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function jI(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function UI(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function HI(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function WI(){let e=jI(),t=UI(),n=HI();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Tt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Tt.instance==null&&(Tt.instance=new Tt),Tt.instance}static registerSaveRouter(e){Tt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Tt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Tt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Tt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Tt.getInstance().loadRouters:Tt.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},GI=e=>Tt.registerSaveRouter(e),qI=e=>Tt.registerLoadRouter(e),XI=e=>Tt.getSaveHandlers(e),KI=(e,t)=>Tt.getLoadHandlers(e,t),qf="tensorflowjs",Xf=1,ci="models_store",Oa="model_info_store";function gw(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Kf(e){let t=e.result;t.createObjectStore(ci,{keyPath:"modelPath"}),t.createObjectStore(Oa,{keyPath:"modelPath"})}var hi=class{constructor(e){if(this.indexedDB=gw(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(qf,Xf);a.onupgradeneeded=()=>Kf(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(ci,"readonly"),o=i.objectStore(ci).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=Ku(t),o=s.transaction(Oa,"readwrite"),l=o.objectStore(Oa),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(ci,"readwrite");let h=u.objectStore(ci).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(Oa);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=f=>(s.close(),r(h.error))}},c.onerror=h=>(s.close(),r(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};hi.URL_SCHEME="indexeddb://";var xw=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(hi.URL_SCHEME)?ZI(e.slice(hi.URL_SCHEME.length)):null;Tt.registerSaveRouter(xw);Tt.registerLoadRouter(xw);function ZI(e){return new hi(e)}function YI(e){return e.startsWith(hi.URL_SCHEME)?e.slice(hi.URL_SCHEME.length):e}var JI=class{constructor(){this.indexedDB=gw()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(qf,Xf);n.onupgradeneeded=()=>Kf(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(Oa,"readonly"),s=a.objectStore(Oa).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=YI(e),new Promise((t,n)=>{let r=this.indexedDB.open(qf,Xf);r.onupgradeneeded=()=>Kf(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(Oa,"readwrite"),i=s.objectStore(Oa),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=a.transaction(ci,"readwrite");let h=l.objectStore(ci).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=h=>(u(),a.close(),n(o.error))}},o.onerror=c=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},la="/",dl="tensorflowjs_models",ww="info",QI="model_topology",eS="weight_specs",tS="weight_data",nS="model_metadata";function bw(e){return{info:[dl,e,ww].join(la),topology:[dl,e,QI].join(la),weightSpecs:[dl,e,eS].join(la),weightData:[dl,e,tS].join(la),modelMetadata:[dl,e,nS].join(la)}}function rS(e){let t=e.split(la);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(la)}function aS(e){return e.startsWith(di.URL_SCHEME)?e.slice(di.URL_SCHEME.length):e}var di=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=bw(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=Ku(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,BI(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=VI(s),t}};di.URL_SCHEME="localstorage://";var _w=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(di.URL_SCHEME)?sS(e.slice(di.URL_SCHEME.length)):null;Tt.registerSaveRouter(_w);Tt.registerLoadRouter(_w);function sS(e){return new di(e)}var iS=class{constructor(){M(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=dl+la,n=la+ww;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(pl)&&(e=e.slice(0,e.indexOf(pl))),M(e.length>0,()=>"scheme must not be an empty string.");let n=Qn.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function xd(e){if(e.indexOf(pl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Qn.getSchemes().join(",")}`);return{scheme:e.split(pl)[0],path:e.split(pl)[1]}}async function vw(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Tt.getLoadHandlers(e);M(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=Tt.getSaveHandlers(t);M(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=xd(e).scheme,l=xd(e).path,c=o===xd(e).scheme,u=await a.load();n&&c&&await Qn.getManager(o).removeModel(l);let h=await i.save(u);return n&&!c&&await Qn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function oS(){let e=Qn.getSchemes(),t={};for(let n of e){let r=await Qn.getManager(n).listModels();for(let a in r){let s=n+pl+a;t[s]=r[a]}}return t}async function lS(e){let t=xd(e);return Qn.getManager(t.scheme).removeModel(t.path)}async function uS(e,t){return vw(e,t,!1)}async function cS(e,t){return vw(e,t,!0)}var hS=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new hS);try{Qn.registerManager(di.URL_SCHEME,new iS)}catch(e){}try{Qn.registerManager(hi.URL_SCHEME,new JI)}catch(e){}}var dS={importFetch:()=>x9()},Zf,pS=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(Zf==null&&(Zf=dS.importFetch()),Zf(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new pS);function Be(e,t="float32",n){return t=t||"float32",Cf(e),new Ot(e,t,n)}function fS(e,t){let n=R(e,"x","cast");if(!Xx(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(As,r,a)}var ge=D({cast_:fS});function mS(e){let t={x:R(e,"x","clone","string_or_numeric")};return $.runKernel(Es,t)}var Wr=D({clone_:mS});function kw(e,t=!1){console.log(e.toString(t))}cw();var AS={buffer:Be,cast:ge,clone:Wr,print:kw};TI(AS);var Nn={};Me(Nn,{browserFiles:()=>yS,browserHTTPRequest:()=>xS,concatenateArrayBuffers:()=>Gf,copyModel:()=>uS,decodeWeights:()=>mw,encodeWeights:()=>LI,fromMemory:()=>wS,getLoadHandlers:()=>KI,getModelArtifactsInfoForJSON:()=>Ku,getSaveHandlers:()=>XI,http:()=>Jf,isHTTPScheme:()=>Yf,listModels:()=>oS,loadWeights:()=>gS,moveModel:()=>cS,registerLoadRouter:()=>qI,registerSaveRouter:()=>GI,removeModel:()=>lS,weightsLoaderFactory:()=>Iw,withSaveHandler:()=>bS});var _S="model",vS=".json",kS=".weights.bin";function Sw(e){return new Promise(t=>setTimeout(t)).then(e)}var fl=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(fl.URL_SCHEME)&&(e=e.slice(fl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=_S),this.modelTopologyFileName=e+vS,this.weightDataFileName=e+kS}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await Sw(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Sw(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Ku(e)}}}};fl.URL_SCHEME="downloads://";var IS=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let u=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(f=>{h.push(f),d.push(null)}),u.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(f=>{let m=new FileReader;m.onload=A=>{let y=A.target.result,g=h.indexOf(f);if(d[g]=y,d.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:u,weightData:Gf(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},m.onerror=A=>r(`Failed to weights data from file of path '${f}'.`),m.readAsArrayBuffer(c[f])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>yw(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=yw(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},NS=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(fl.URL_SCHEME)?SS(e.slice(fl.URL_SCHEME.length)):null;Tt.registerSaveRouter(NS);function SS(e="model"){return new fl(e)}function yS(e){return new IS(e)}function Nw(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(c=>{let u=n+ ++a/e.length*(r-n);return t(u),c}),l);function i(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),M(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function Tw(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,r=e.map(c=>n(c,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await Nw(r,t.onProgress,a,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await Nw(i,t.onProgress,o,l)}async function gS(e,t="",n,r){return Iw(a=>Tw(a,{requestInit:r}))(e,t,n)}function Iw(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=Uf[y]*Et(A.shape),x=()=>{a[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:A,groupOffset:m,sizeBytes:g})};r!=null?r.forEach((v,w)=>{v===A.name&&(x(),i[w]=!0)}):x(),o.push(A.name),m+=g})}),!i.every(p=>p)){let p=r.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. -Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,f,m)=>(f&&p.push(m),p),[]),c=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),h={},d=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let x=0;x{let v=A.slice(x.groupOffset,x.groupOffset+x.sizeBytes),w=mw(v,[x.manifestEntry]);for(let b in w)h[b]=w[b]}),d+=f}),h}}var TS="application/octet-stream",ES="application/json",Qf=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:ES}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:TS}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:Ku(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let f=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?f+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":f+=" Please make sure the server is serving valid JSON for this request.",new Error(f)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;r!=null&&([c,u]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=CS(t),a=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(a+u+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await Tw(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Gf(l)]}};Qf.URL_SCHEME_REGEX=/^https?:\/\//;function CS(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Yf(e){return e.match(Qf.URL_SCHEME_REGEX)!=null}var Ew=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Yf(r)):n=Yf(e),n)return Jf(e,t)}return null};Tt.registerSaveRouter(Ew);Tt.registerLoadRouter(Ew);function Jf(e,t){return new Qf(e,t)}function xS(e,t){return Jf(e,t)}var em=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},RS=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function wS(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new em(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new em({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new em({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function bS(e){return new RS(e)}var Cw={};Me(Cw,{confusionMatrix:()=>MS});function FS(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=vt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(ms,i,o)}var Ve=D({matMul_:FS});function $S(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(Ws,a,s)}var ml=D({oneHot_:$S});function DS(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{M(s>=0&&s`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(si,r,a)}var Je=D({transpose_:DS});function OS(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),M(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),M(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=ml(ge(r,"int32"),n),i=ml(ge(a,"int32"),n),o=Je(s),l=Ve(o,i);return ge(l,"int32")}var MS=D({confusionMatrix_:OS}),pi={};Me(pi,{fromPixels:()=>LS,fromPixelsAsync:()=>zS,toPixels:()=>PS});function wd(e,t,n){if(cs(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Lr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Da(e,t,r,n)}var Al;function Rw(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState element.")}if(pd(dd,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(dd,d,p)}let[l,c]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:r||n?u=e.data:(s||a||o)&&(Al==null&&(Al=document.createElement("canvas").getContext("2d")),Al.canvas.width=l,Al.canvas.height=c,Al.drawImage(e,0,0,l,c),u=Al.getImageData(0,0,l,c).data);let h;if(t===4)h=new Int32Array(u);else{let d=l*c;h=new Int32Array(d*t);for(let p=0;p4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let c=0;c1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(u[0]=p*o,u[1]=p*o,u[2]=p*o):u[d]=p*o}let h=c*4;l[h+0]=Math.round(u[0]),l[h+1]=Math.round(u[1]),l[h+2]=Math.round(u[2]),l[h+3]=Math.round(u[3])}if(t!=null){t.width=a,t.height=r;let c=t.getContext("2d"),u=new ImageData(l,a,r);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var LS=D({fromPixels_:Rw}),tm={};Me(tm,{prepareAndValidate:()=>Mw});function Mw(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Et(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;hh/c),1].slice(0,s);return[l,i,c,u]}var nm={};Me(nm,{calculateShapes:()=>Fw,validateInput:()=>am,validateUpdateShape:()=>rm});function rm(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;hUS,computeFlatOffset:()=>GS,computeOutShape:()=>$w,getNormalizedAxes:()=>Ow,isSliceContinous:()=>HS,maskToAxes:()=>bd,parseSliceParams:()=>Vw,sliceInfo:()=>qS,startForAxis:()=>Ww,startIndicesWithElidedDims:()=>zw,stopForAxis:()=>Bw,stopIndicesWithElidedDims:()=>Pw,stridesForAxis:()=>Lw,stridesWithElidedDims:()=>Dw});function US(e,t,n){let r=e.shape.length;M(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),M(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function bd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function $w(e,t,n){let r=[];for(let a=0;a0){let p=t[0],f=n+1;u=zw(i,p,f,r,e),h=Pw(o,p,f,a,e),d=Dw(s,p,f,e)}else for(let p=0;p-1)s[o]=0;else{let l=jw(t,n,o),c=r[l];e&1<-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=jw(t,n,o),c=r[l];e&1<0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=bu(0,i,l-1),i}function Bw(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=bu(0,i,l):i=bu(-1,i,l-1),i}function HS(e,t,n){let r=n.length;for(let a=0;a1){r=a;break}for(let a=r+1;a0||n[a]!==e[a])return!1;return!0}function GS(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{M(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.lengthi>=0?i:(M(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function qS(e,t,n,r,a,s,i,o,l){let c=t.slice(),u=n.slice(),h=r;r==null&&(h=new Array(c.length));let d=bd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-c.length,f=bd(o),m=e.slice();f.forEach(b=>{c[b]=0,u[b]=1,m.splice(b,0,1)});let{begin:A,end:y,strides:g}=Ow(m,d,p,c,u,h,a,s,i);c=A,u=y,h=g;let x=bd(l);x.forEach(b=>{u[b]=c[b]+1,h[b]=1});let v=$w(c,u,h),w=v.filter((b,k)=>x.indexOf(k)===-1);return{nonStrided:h.every(b=>b===1),$begin:c,$end:u,$strides:h,size:v,newShape:m,outShape:w}}var re={};Me(re,{Serializable:()=>Hw,SerializationMap:()=>fi,registerClass:()=>za});var Hw=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},fi=class{constructor(){this.classNameMap={}}static getMap(){return fi.instance==null&&(fi.instance=new fi),fi.instance}static register(e){fi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function za(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),fi.register(e)}var Gw={};Me(Gw,{TEST_EPSILON_FLOAT16:()=>qw,encodeStrings:()=>Xw,expectArrayBuffersEqual:()=>QS,expectArraysClose:()=>XS,expectArraysEqual:()=>ZS,expectNumbersClose:()=>YS,expectPromiseToFail:()=>KS,expectValuesInRange:()=>JS,testEpsilon:()=>sm});var eN=.001,qw=.1;function XS(e,t,n){return n==null&&(n=sm()),im(e,t,(r,a)=>om(r,a,n))}function sm(){return $.backend.floatPrecision()===32?eN:qw}function im(e,t,n){let r=!0;if((rn(e)||rn(t))&&(r=!1),rn(e)&&rn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Lr(e),o=Lr(t);if(!oa(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=rn(e)?e:hs(e),s=rn(t)?t:hs(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}. +`)}function mI(e,t,n,r){let a=Et(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Vu(e):e;if(o>1)for(let c=0;ceb){let A=Wu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-Wu)*i,o*i));return n==="complex64"&&(y=Vu(y),g=Vu(g)),["["+y.map((x,v)=>Bu(x,a[v],n)).join(", ")+", ..., "+g.map((x,v)=>Bu(x,a[o-Wu+v],n)).join(", ")+"]"]}let f=n==="complex64"?Vu(e):Array.from(e);return["["+f.map((A,y)=>Bu(A,a[y],n)).join(", ")+"]"]}let c=t.slice(1),u=r.slice(1),h=r[0]*i,d=[];if(o>eb){for(let f=0;f`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Bx(t,this.size),this.strides=io(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;rfd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Lr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>fd(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Lr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Lr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return hl.print(this,e)}clone(){return this.throwIfDisposed(),hl.clone(this)}toString(e=!1){let t=this.dataSync();return AI(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),hl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Lr().makeVariable(this,e,t,n)}};Object.defineProperty(Pe,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return Rf("Tensor",()=>Pe)}Z();var ju=class extends Pe{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!la(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Lr().disposeTensor(this),this.dataId=e.dataId,Lr().incRef(this,null)}dispose(){Lr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ju,Symbol.hasInstance,{value:e=>e instanceof Pe&&e.assign!=null&&e.assign instanceof Function});var kr={};Me(kr,{assertTypesMatch:()=>nb,getTensorsInContainer:()=>Df,isTensorInList:()=>wI,makeTypesMatch:()=>vt});var Of;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Of||(Of={}));var zf;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(zf||(zf={}));var Pf;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Pf||(Pf={}));var Lf;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Lf||(Lf={}));var Wf;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Wf||(Wf={}));var _I={float32:Lf,int32:zf,bool:Pf,complex64:Wf};function dr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return _I[e][t]}function Ad(e){return dr(e,"int32")}function vt(e,t){if(e.dtype===t.dtype)return[e,t];let n=dr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function nb(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function wI(e,t){return t.some(n=>n.id===e.id)}function Df(e){let t=[],n=new Set;return rb(e,t,n),t}function rb(e,t,n){if(e==null)return;if(e instanceof Pe){t.push(e);return}if(!vI(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),rb(s,t,n))}}function vI(e){return Array.isArray(e)||typeof e=="object"}function Bf(e){return e.kernelName!=null}var ab=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Uu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new ab}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){cl(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof gu)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Uu.nextTensorId++}nextVariableId(){return Uu.nextVariableId++}clone(e){let t=$.runKernel(Cs,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernel(ys,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(dd(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Bf(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Bf(e)){let{kernelName:p,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let A=dd(p,this.backendName);M(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:m,attrs:f,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let x=g.map(v=>{if(v.rank!=null)return v;let{dataId:b,shape:w,dtype:k}=v;return this.makeTensorFromDataId(b,w,k)});if(r){let v=this.getTensorsForGradient(p,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:p}=e,m=f=>{!r||(n=f.map(A=>this.keep(this.clone(A))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,m));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,A),A}}let{inputs:c,attrs:u}=e,h=Bf(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,c,t,h,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(p=>c[p]!=null?c[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=Ff(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&Ea(e[0])&&(a=e.map(o=>Lu(o)));let s=r.write(a,t,n),i=new Pe(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=Ux(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new Pe(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new ju(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Sf(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof ju||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Sf(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=Ff(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let h=n[u],d=Fh(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return c}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Df(e),n=new Set(t.map(a=>a.id));for(let a=0;a{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(a instanceof Pe,()=>"The result y returned by f() must be a tensor.");let s=pI(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?kI(a.shape):n,fI(i,s,l=>this.tidy(l),II);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return M(Ca(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(i=>i instanceof Pe),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),M(n.value instanceof Pe,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Ca(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];M(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(c.every(h=>h instanceof Pe),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((h,d)=>{u[d]=()=>h}),u};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Pu(),n=await this.backend.time(e);return n.wallMs=Pu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new ab;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Uu.nextTensorId=0;Uu.nextVariableId=0;function kI(e){let t=Nf(Et(e),"float32");return $.makeTensor(t,e,"float32")}function sb(){let e=Zx();if(e._tfengine==null){let t=new Kx(e);e._tfengine=new Uu(t)}return tI(e._tfengine.ENV),gI(()=>e._tfengine),e._tfengine}var $=sb();function II(e,t){let n={a:e,b:t};return $.runKernel(Ra,n)}var Hu={};Me(Hu,{isBrowser:()=>ib,isMobile:()=>SI});function NI(){return typeof navigator!="undefined"&&navigator!=null}function SI(e){if(e||NI()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function ib(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ir=J();Ir.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ir.registerFlag("IS_BROWSER",()=>ib());Ir.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ir.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ir.registerFlag("PROD",()=>!1);Ir.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ir.getBool("DEBUG"));Ir.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ir.registerFlag("IS_TEST",()=>!1);Ir.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ir.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Wr(e,t){let n=e;if(rn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||rn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&ob(e,r,[]),r}function ob(e,t,n){if(n=n||[],!Array.isArray(e)&&!rn(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a=0&&(a=r),lb(r,a,t,n),e==null||!rn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Wr(e,a);!rn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?pd(e,a):ds(e,[],!0);return $.makeTensor(i,s,a)}function Gu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var ub="__op";function D(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+ub;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return Ef(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function TI(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");ln(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel(zh,a)}var Da=D({complex_:TI});function Oa(e,t,n,r){if(r==null&&(r=Rh(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!rn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Tf(t);let a=Et(t),s=Et(n);M(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!rn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?pd(e,r):ds(e,[],!0),$.makeTensor(e,t,r)}function Sr(e,t,n){let r=Wr(e,n);return Oa(e,t,r,n)}var Vf={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},yd=4;async function CI(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+yd*d.length,m=new Uint8Array(p),f=0;for(let A=0;A{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var jf=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function hb(e){return jf?Buffer.byteLength(e):new Blob([e]).size}function MI(e){if(jf)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function db(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function qu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:hb(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:hb(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function $I(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function DI(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function OI(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function RI(){let e=$I(),t=DI(),n=OI();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Tt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Tt.instance==null&&(Tt.instance=new Tt),Tt.instance}static registerSaveRouter(e){Tt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Tt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Tt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Tt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Tt.getInstance().loadRouters:Tt.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},zI=e=>Tt.registerSaveRouter(e),PI=e=>Tt.registerLoadRouter(e),LI=e=>Tt.getSaveHandlers(e),WI=(e,t)=>Tt.getLoadHandlers(e,t),Hf="tensorflowjs",Gf=1,hi="models_store",za="model_info_store";function pb(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function qf(e){let t=e.result;t.createObjectStore(hi,{keyPath:"modelPath"}),t.createObjectStore(za,{keyPath:"modelPath"})}var di=class{constructor(e){if(this.indexedDB=pb(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(Hf,Gf);a.onupgradeneeded=()=>qf(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(hi,"readonly"),o=i.objectStore(hi).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=qu(t),o=s.transaction(za,"readwrite"),l=o.objectStore(za),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(hi,"readwrite");let h=u.objectStore(hi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(za);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=m=>(s.close(),r(h.error))}},c.onerror=h=>(s.close(),r(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};di.URL_SCHEME="indexeddb://";var fb=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(di.URL_SCHEME)?BI(e.slice(di.URL_SCHEME.length)):null;Tt.registerSaveRouter(fb);Tt.registerLoadRouter(fb);function BI(e){return new di(e)}function VI(e){return e.startsWith(di.URL_SCHEME)?e.slice(di.URL_SCHEME.length):e}var jI=class{constructor(){this.indexedDB=pb()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Hf,Gf);n.onupgradeneeded=()=>qf(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(za,"readonly"),s=a.objectStore(za).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=VI(e),new Promise((t,n)=>{let r=this.indexedDB.open(Hf,Gf);r.onupgradeneeded=()=>qf(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(za,"readwrite"),i=s.objectStore(za),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=a.transaction(hi,"readwrite");let h=l.objectStore(hi).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=h=>(u(),a.close(),n(o.error))}},o.onerror=c=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},ua="/",dl="tensorflowjs_models",mb="info",UI="model_topology",HI="weight_specs",GI="weight_data",qI="model_metadata";function Ab(e){return{info:[dl,e,mb].join(ua),topology:[dl,e,UI].join(ua),weightSpecs:[dl,e,HI].join(ua),weightData:[dl,e,GI].join(ua),modelMetadata:[dl,e,qI].join(ua)}}function XI(e){let t=e.split(ua);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ua)}function KI(e){return e.startsWith(pi.URL_SCHEME)?e.slice(pi.URL_SCHEME.length):e}var pi=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Ab(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=qu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,MI(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=FI(s),t}};pi.URL_SCHEME="localstorage://";var yb=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(pi.URL_SCHEME)?ZI(e.slice(pi.URL_SCHEME.length)):null;Tt.registerSaveRouter(yb);Tt.registerLoadRouter(yb);function ZI(e){return new pi(e)}var YI=class{constructor(){M(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=dl+ua,n=ua+mb;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(pl)&&(e=e.slice(0,e.indexOf(pl))),M(e.length>0,()=>"scheme must not be an empty string.");let n=Qn.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function gd(e){if(e.indexOf(pl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Qn.getSchemes().join(",")}`);return{scheme:e.split(pl)[0],path:e.split(pl)[1]}}async function gb(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Tt.getLoadHandlers(e);M(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=Tt.getSaveHandlers(t);M(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=gd(e).scheme,l=gd(e).path,c=o===gd(e).scheme,u=await a.load();n&&c&&await Qn.getManager(o).removeModel(l);let h=await i.save(u);return n&&!c&&await Qn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function JI(){let e=Qn.getSchemes(),t={};for(let n of e){let r=await Qn.getManager(n).listModels();for(let a in r){let s=n+pl+a;t[s]=r[a]}}return t}async function QI(e){let t=gd(e);return Qn.getManager(t.scheme).removeModel(t.path)}async function eS(e,t){return gb(e,t,!1)}async function tS(e,t){return gb(e,t,!0)}var nS=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new nS);try{Qn.registerManager(pi.URL_SCHEME,new YI)}catch(e){}try{Qn.registerManager(di.URL_SCHEME,new jI)}catch(e){}}var rS={importFetch:()=>c9()},Xf,aS=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(Xf==null&&(Xf=rS.importFetch()),Xf(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new aS);function Be(e,t="float32",n){return t=t||"float32",Tf(e),new Ot(e,t,n)}function sS(e,t){let n=R(e,"x","cast");if(!jx(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(ys,r,a)}var ge=D({cast_:sS});function iS(e){let t={x:R(e,"x","clone","string_or_numeric")};return $.runKernel(Cs,t)}var Br=D({clone_:iS});function xb(e,t=!1){console.log(e.toString(t))}sb();var oS={buffer:Be,cast:ge,clone:Br,print:xb};xI(oS);var Nn={};Me(Nn,{browserFiles:()=>lS,browserHTTPRequest:()=>cS,concatenateArrayBuffers:()=>Uf,copyModel:()=>eS,decodeWeights:()=>cb,encodeWeights:()=>CI,fromMemory:()=>hS,getLoadHandlers:()=>WI,getModelArtifactsInfoForJSON:()=>qu,getSaveHandlers:()=>LI,http:()=>Zf,isHTTPScheme:()=>Kf,listModels:()=>JI,loadWeights:()=>uS,moveModel:()=>tS,registerLoadRouter:()=>PI,registerSaveRouter:()=>zI,removeModel:()=>QI,weightsLoaderFactory:()=>bb,withSaveHandler:()=>dS});var pS="model",fS=".json",mS=".weights.bin";function wb(e){return new Promise(t=>setTimeout(t)).then(e)}var fl=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(fl.URL_SCHEME)&&(e=e.slice(fl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=pS),this.modelTopologyFileName=e+fS,this.weightDataFileName=e+mS}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await wb(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await wb(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:qu(e)}}}};fl.URL_SCHEME="downloads://";var AS=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let u=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(m=>{h.push(m),d.push(null)}),u.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(m=>{let f=new FileReader;f.onload=A=>{let y=A.target.result,g=h.indexOf(m);if(d[g]=y,d.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:u,weightData:Uf(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=A=>r(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(c[m])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>db(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=db(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},gS=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(fl.URL_SCHEME)?yS(e.slice(fl.URL_SCHEME.length)):null;Tt.registerSaveRouter(gS);function yS(e="model"){return new fl(e)}function lS(e){return new AS(e)}function _b(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(c=>{let u=n+ ++a/e.length*(r-n);return t(u),c}),l);function i(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),M(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function vb(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,r=e.map(c=>n(c,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await _b(r,t.onProgress,a,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await _b(i,t.onProgress,o,l)}async function uS(e,t="",n,r){return bb(a=>vb(a,{requestInit:r}))(e,t,n)}function bb(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,m)=>{let f=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=Vf[y]*Et(A.shape),x=()=>{a[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:A,groupOffset:f,sizeBytes:g})};r!=null?r.forEach((v,b)=>{v===A.name&&(x(),i[b]=!0)}):x(),o.push(A.name),f+=g})}),!i.every(p=>p)){let p=r.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. +Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,m,f)=>(m&&p.push(f),p),[]),c=[];l.forEach(p=>{t[p].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;c.push(f)})});let u=await e(c),h={},d=0;return l.forEach(p=>{let m=t[p].paths.length,f=0;for(let x=0;x{let v=A.slice(x.groupOffset,x.groupOffset+x.sizeBytes),b=cb(v,[x.manifestEntry]);for(let w in b)h[w]=b[w]}),d+=m}),h}}var xS="application/octet-stream",bS="application/json",Yf=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:bS}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:xS}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:qu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;r!=null&&([c,u]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=wS(t),a=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(a+u+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await vb(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Uf(l)]}};Yf.URL_SCHEME_REGEX=/^https?:\/\//;function wS(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Kf(e){return e.match(Yf.URL_SCHEME_REGEX)!=null}var kb=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Kf(r)):n=Kf(e),n)return Zf(e,t)}return null};Tt.registerSaveRouter(kb);Tt.registerLoadRouter(kb);function Zf(e,t){return new Yf(e,t)}function cS(e,t){return Zf(e,t)}var Jf=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},_S=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function hS(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Jf(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Jf({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Jf({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function dS(e){return new _S(e)}var Ib={};Me(Ib,{confusionMatrix:()=>vS});function kS(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=vt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(As,i,o)}var Ve=D({matMul_:kS});function IS(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(Bs,a,s)}var ml=D({oneHot_:IS});function SS(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{M(s>=0&&s`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(ii,r,a)}var Je=D({transpose_:SS});function NS(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),M(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),M(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=ml(ge(r,"int32"),n),i=ml(ge(a,"int32"),n),o=Je(s),l=Ve(o,i);return ge(l,"int32")}var vS=D({confusionMatrix_:NS}),fi={};Me(fi,{fromPixels:()=>CS,fromPixelsAsync:()=>TS,toPixels:()=>ES});function xd(e,t,n){if(hs(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Wr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Oa(e,t,r,n)}var Al;function Sb(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState element.")}if(dd(hd,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(hd,d,p)}let[l,c]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:r||n?u=e.data:(s||a||o)&&(Al==null&&(Al=document.createElement("canvas").getContext("2d")),Al.canvas.width=l,Al.canvas.height=c,Al.drawImage(e,0,0,l,c),u=Al.getImageData(0,0,l,c).data);let h;if(t===4)h=new Int32Array(u);else{let d=l*c;h=new Int32Array(d*t);for(let p=0;p4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let c=0;c1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(u[0]=p*o,u[1]=p*o,u[2]=p*o):u[d]=p*o}let h=c*4;l[h+0]=Math.round(u[0]),l[h+1]=Math.round(u[1]),l[h+2]=Math.round(u[2]),l[h+3]=Math.round(u[3])}if(t!=null){t.width=a,t.height=r;let c=t.getContext("2d"),u=new ImageData(l,a,r);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var CS=D({fromPixels_:Sb}),Qf={};Me(Qf,{prepareAndValidate:()=>Nb});function Nb(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Et(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;hh/c),1].slice(0,s);return[l,i,c,u]}var em={};Me(em,{calculateShapes:()=>Tb,validateInput:()=>nm,validateUpdateShape:()=>tm});function tm(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;hDS,computeFlatOffset:()=>zS,computeOutShape:()=>Eb,getNormalizedAxes:()=>Rb,isSliceContinous:()=>OS,maskToAxes:()=>bd,parseSliceParams:()=>zb,sliceInfo:()=>PS,startForAxis:()=>Db,startIndicesWithElidedDims:()=>Mb,stopForAxis:()=>Ob,stopIndicesWithElidedDims:()=>Fb,stridesForAxis:()=>$b,stridesWithElidedDims:()=>Cb});function DS(e,t,n){let r=e.shape.length;M(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),M(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function bd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function Eb(e,t,n){let r=[];for(let a=0;a0){let p=t[0],m=n+1;u=Mb(i,p,m,r,e),h=Fb(o,p,m,a,e),d=Cb(s,p,m,e)}else for(let p=0;p-1)s[o]=0;else{let l=Pb(t,n,o),c=r[l];e&1<-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=Pb(t,n,o),c=r[l];e&1<0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=xu(0,i,l-1),i}function Ob(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=xu(0,i,l):i=xu(-1,i,l-1),i}function OS(e,t,n){let r=n.length;for(let a=0;a1){r=a;break}for(let a=r+1;a0||n[a]!==e[a])return!1;return!0}function zS(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{M(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.lengthi>=0?i:(M(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function PS(e,t,n,r,a,s,i,o,l){let c=t.slice(),u=n.slice(),h=r;r==null&&(h=new Array(c.length));let d=bd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-c.length,m=bd(o),f=e.slice();m.forEach(w=>{c[w]=0,u[w]=1,f.splice(w,0,1)});let{begin:A,end:y,strides:g}=Rb(f,d,p,c,u,h,a,s,i);c=A,u=y,h=g;let x=bd(l);x.forEach(w=>{u[w]=c[w]+1,h[w]=1});let v=Eb(c,u,h),b=v.filter((w,k)=>x.indexOf(k)===-1);return{nonStrided:h.every(w=>w===1),$begin:c,$end:u,$strides:h,size:v,newShape:f,outShape:b}}var re={};Me(re,{Serializable:()=>Wb,SerializationMap:()=>mi,registerClass:()=>Pa});var Wb=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},mi=class{constructor(){this.classNameMap={}}static getMap(){return mi.instance==null&&(mi.instance=new mi),mi.instance}static register(e){mi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Pa(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),mi.register(e)}var Bb={};Me(Bb,{TEST_EPSILON_FLOAT16:()=>Vb,encodeStrings:()=>jb,expectArrayBuffersEqual:()=>US,expectArraysClose:()=>LS,expectArraysEqual:()=>BS,expectNumbersClose:()=>VS,expectPromiseToFail:()=>WS,expectValuesInRange:()=>jS,testEpsilon:()=>rm});var HS=.001,Vb=.1;function LS(e,t,n){return n==null&&(n=rm()),am(e,t,(r,a)=>sm(r,a,n))}function rm(){return $.backend.floatPrecision()===32?HS:Vb}function am(e,t,n){let r=!0;if((rn(e)||rn(t))&&(r=!1),rn(e)&&rn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Wr(e),o=Wr(t);if(!la(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=rn(e)?e:ds(e),s=rn(t)?t:ds(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}. Actual: ${a}. Expected: ${s}.`);for(let i=0;it.fail(),()=>t())}function ZS(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ta(e)||Ta(e[0])||Ta(t)||Ta(t[0])?im(e,n,(r,a)=>r==a):im(e,t,(r,a)=>om(r,a,0))}function YS(e,t,n){if(n==null&&(n=sm()),!om(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function om(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function JS(e,t,n){for(let r=0;rn)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function QS(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function Xw(e){for(let t=0;tt.dispose())}function Ht(e){return $.keep(e)}function iN(e){return $.time(e)}function oN(e){return $.setBackend(e)}function lN(){return $.ready()}function uN(){return $.backendName}function cN(e){$.removeBackend(e)}function um(e){return $.findBackend(e)}function hN(e){return $.findBackendFactory(e)}function yl(e,t,n=1){return $.registerBackend(e,t,n)}function Kw(){return $.backend}function dN(e,t){J().setPlatform(e,t)}function pN(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ca,a)}var se=D({add_:pN});function fN(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ss,a)}var vd=D({floorDiv_:fN});function mN(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=vt(n,r),n.dtype==="int32"&&r.dtype==="int32")return vd(n,r);let a={a:n,b:r},s={};return $.runKernel(vs,a,s)}var Ae=D({div_:mN});function AN(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ls,a)}var P=D({mul_:AN});function yN(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(Su,n)}else{let n={x:t};return $.runKernel(lo,n)}}var zt=D({abs_:yN});function gN(e){let t={x:R(e,"x","acos")};return $.runKernel(uo,t)}var cm=D({acos_:gN});function xN(e){let t={x:R(e,"x","acosh")};return $.runKernel(co,t)}var hm=D({acosh_:xN});function wN(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!oa(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(ds,r)}var Pa=D({addN_:wN});function bN(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(ho,r,a)}var kd=D({all_:bN});function _N(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(po,r,a)}var Zu=D({any_:_N});function vN(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return $.runKernel(ps,n,r)}var mi=D({argMax_:vN});function kN(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return $.runKernel(vu,n,r)}var dm=D({argMin_:kN});function IN(e){let t={x:R(e,"x","asin")};return $.runKernel(fo,t)}var pm=D({asin_:IN});function SN(e){let t={x:R(e,"x","asinh")};return $.runKernel(mo,t)}var fm=D({asinh_:SN});function NN(e){let t={x:R(e,"x","atan")};return $.runKernel(Ao,t)}var mm=D({atan_:NN});function TN(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(go,a)}var Am=D({atan2_:TN});function EN(e){let t={x:R(e,"x","atanh")};return $.runKernel(yo,t)}var ym=D({atanh_:EN});function CN(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=Zw(a);return Yu(e,o,n,s,r,null,null,l)}function Yw(e,t,n,r,a,s,i="channelsLast"){let[o,l]=Id(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Yu(e,c,n,r,a,s,!1,i)}function RN(e,t,n,r,a,s,i="NDHWC"){let[o,l,c]=gm(t),u,h;if(i==="NDHWC")h="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Jw(e,u,n,r,a,!1,h,s)}function Yu(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,c,u,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,h]=e;else if(o==="channelsFirst")[l,h,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,f]=t,[m,A]=Id(n),[y,g]=Id(r),x=gl(d,y),v=gl(p,g),{padInfo:w,outHeight:b,outWidth:k}=MN(a,c,u,m,A,x,v,s,o),N=i?f*h:f,C;return o==="channelsFirst"?C=[l,N,b,k]:o==="channelsLast"&&(C=[l,b,k,N]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:h,outHeight:b,outWidth:k,outChannels:N,padInfo:w,strideHeight:m,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:g,inShape:e,outShape:C,filterShape:t}}function Jw(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,c,u,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,h,d]=e;else if(i==="channelsFirst")[l,d,c,u,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,f,m,,A]=t,[y,g,x]=gm(n),[v,w,b]=gm(r),k=gl(p,v),N=gl(f,w),C=gl(m,b),{padInfo:F,outDepth:O,outHeight:L,outWidth:V}=FN(a,c,u,h,y,g,x,k,N,C,o),j=s?A*d:A,U;return i==="channelsFirst"?U=[l,j,O,L,V]:i==="channelsLast"&&(U=[l,O,L,V,j]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:h,inChannels:d,outDepth:O,outHeight:L,outWidth:V,outChannels:j,padInfo:F,strideDepth:y,strideHeight:g,strideWidth:x,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:k,effectiveFilterHeight:N,effectiveFilterWidth:C,dilationDepth:v,dilationHeight:w,dilationWidth:b,inShape:e,outShape:U,filterShape:t}}function $N(e,t,n,r,a){r==null&&(r=xm(e,t,n));let s=e[0],i=e[1],o=Ai((s-t+2*r)/n+1,a),l=Ai((i-t+2*r)/n+1,a);return[o,l]}function DN(e,t,n,r,a,s){a==null&&(a=xm(e,t,r));let i=e[0],o=e[1],l=e[2],c=Ai((i-t+2*a)/r+1,s),u=Ai((o-t+2*a)/r+1,s),h=Ai((l-t+2*a)/r+1,s);return[c,u,h,n]}function xm(e,t,n,r=1){let a=gl(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function Id(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function gm(e){return typeof e=="number"?[e,e,e]:e}function gl(e,t){return t<=1?e:e+(e-1)*(t-1)}function MN(e,t,n,r,a,s,i,o,l){let c,u,h;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=$N([t,n],s,r,e,o);u=d[0],h=d[1]}else if(e==="same"){u=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(u-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),f=Math.floor(d/2),m=d-f,A=Math.floor(p/2),y=p-A;c={top:f,bottom:m,left:A,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:p,left:f,right:m,type:d===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=Ai((t-s+d+p)/r+1,o),h=Ai((n-i+f+m)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:h}}function FN(e,t,n,r,a,s,i,o,l,c,u){let h,d,p,f;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=DN([t,n,r,1],o,1,a,e,u);d=m[0],p=m[1],f=m[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),f=Math.ceil(r/i);let m=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(f-1)*i+c-r,g=Math.floor(m/2),x=m-g,v=Math.floor(A/2),w=A-v,b=Math.floor(y/2),k=y-b;h={top:v,bottom:w,left:b,right:k,front:g,back:x,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),f=Math.ceil((r-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:f}}function Ai(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function La(e){let[t,n,r]=Id(e);return t===1&&n===1&&r===1}function Br(e,t){return La(e)||La(t)}function Zw(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function ON(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(Ko,n,r)}var H=D({reshape_:ON});function zN(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;M(Br(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&M(Ut(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(fs,c,u);return h=ge(h,s.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Ju=D({avgPool_:zN});function PN(e,t,n,r,a,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Ut(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(ku,c,u);return h=ge(h,o.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var wm=D({avgPool3d_:PN});function LN(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=Xu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor - with dtype ${s.dtype}. `)}),n.length===1)return Wr(n[0]);let r=n,a={axis:t};return $.runKernel(xo,r,a)}var rt=D({concat_:LN});function WN(e){let t={x:R(e,"x","sigmoid")};return $.runKernel(Ys,t)}var Tn=D({sigmoid_:WN});function BN(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(Qo,a,s)}var Re=D({slice_:BN});function VN(e){let t={x:R(e,"x","tanh")};return $.runKernel(ai,t)}var yi=D({tanh_:VN});function jN(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),c=R(r,"data","basicLSTMCell"),u=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),d=rt([c,h],1),p=Ve(d,o),f=se(p,l),m=f.shape[0],A=f.shape[1]/4,y=[m,A],g=Re(f,[0,0],y),x=Re(f,[0,A],y),v=Re(f,[0,A*2],y),w=Re(f,[0,A*3],y),b=se(P(Tn(g),yi(x)),P(u,Tn(se(i,v)))),k=P(yi(b),Tn(w));return[b,k]}var UN=D({basicLSTMCell_:jN});function HN(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);M(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(Iu,s,i)}var Qu=D({batchToSpaceND_:HN});function GN(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function qN(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;r!=null&&(u=R(r,"offset","batchNorm")),M(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:GN(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(Ns,h,d);return H(p,i.shape)}var gi=D({batchNorm_:qN});function XN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),M(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),gi(i,o,l,u,c,s)}var Qw=D({batchNorm2d_:XN});function KN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),M(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),gi(i,o,l,u,c,s)}var eb=D({batchNorm3d_:KN});function ZN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),M(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),gi(i,o,l,u,c,s)}var tb=D({batchNorm4d_:ZN});function YN(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");M(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel(zh,s,i)}var nb=D({bincount_:YN});function JN(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let l=n.shape.slice();for(;l.length=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Wr(n);let i={x:n},o={reps:s};return $.runKernel(Ma,i,o)}var xl=D({broadcastTo_:JN});function QN(e){let t={x:R(e,"x","ceil")};return $.runKernel(ys,t)}var bm=D({ceil_:QN});function eT(e,t,n){let r=R(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(Ra,a,s)}var En=D({clipByValue_:eT});function tT(e){return rt(e,0)}var rb=D({concat1d_:tT});function nT(e,t){return rt(e,t)}var wl=D({concat2d_:nT});function rT(e,t){return rt(e,t)}var ab=D({concat3d_:rT});function aT(e,t){return rt(e,t)}var sb=D({concat4d_:aT});function sT(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&M(Ut(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?c.shape[3]:c.shape[1];M(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),M(Br(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},f=$.runKernel(gs,d,p);return u?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var ca=D({conv2d_:sT});function iT(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1]])),M(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&M(Ut(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(Br(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),M(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=H(c,[c.shape[0],1,c.shape[1],c.shape[2]]),p=ca(d,h,[1,n],r,"NHWC",[1,s],i);return u?H(p,[p.shape[2],p.shape[3]]):H(p,[p.shape[0],p.shape[2],p.shape[3]])}var Sd=D({conv1d_:iT});function oT(e,t,n,r,a,s="NHWC",i){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),M(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];M(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),M(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&M(Ut(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},f=$.runKernel(xs,d,p);return c?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var _m=D({conv2DBackpropInput_:oT});function lT(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return _m(n,i,o,r,a,"NHWC",s)}var Nd=D({conv2dTranspose_:lT});function uT(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),M(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),M(Br(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let u={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(Nu,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var vm=D({conv3d_:uT});function cT(e,t,n,r,a){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];M(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),M(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel(Bh,u,h);return o?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var ib=D({conv3DBackpropInput_:cT});function hT(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return ib(n,s,i,r,a)}var ob=D({conv3dTranspose_:hT});function dT(e){let t={x:R(e,"x","cos")};return $.runKernel(ws,t)}var ec=D({cos_:dT});function pT(e){let t={x:R(e,"x","cosh")};return $.runKernel(wo,t)}var Td=D({cosh_:pT});function fT(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(bs,a,s)}var Ed=D({cumsum_:fT});function mT(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");M(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),M(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(Vh,i,o)}var lb=D({denseBincount_:mT});function AT(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying +Expected: ${s}.`)}}function WS(e,t){e().then(()=>t.fail(),()=>t())}function BS(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ea(e)||Ea(e[0])||Ea(t)||Ea(t[0])?am(e,n,(r,a)=>r==a):am(e,t,(r,a)=>sm(r,a,0))}function VS(e,t,n){if(n==null&&(n=rm()),!sm(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function sm(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function jS(e,t,n){for(let r=0;rn)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function US(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function jb(e){for(let t=0;tt.dispose())}function Ht(e){return $.keep(e)}function YS(e){return $.time(e)}function JS(e){return $.setBackend(e)}function QS(){return $.ready()}function eN(){return $.backendName}function tN(e){$.removeBackend(e)}function om(e){return $.findBackend(e)}function nN(e){return $.findBackendFactory(e)}function yl(e,t,n=1){return $.registerBackend(e,t,n)}function Ub(){return $.backend}function rN(e,t){J().setPlatform(e,t)}function aN(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ra,a)}var se=D({add_:aN});function sN(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ns,a)}var _d=D({floorDiv_:sN});function iN(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=vt(n,r),n.dtype==="int32"&&r.dtype==="int32")return _d(n,r);let a={a:n,b:r},s={};return $.runKernel(ks,a,s)}var Ae=D({div_:iN});function oN(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ws,a)}var z=D({mul_:oN});function lN(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(ku,n)}else{let n={x:t};return $.runKernel(lo,n)}}var zt=D({abs_:lN});function uN(e){let t={x:R(e,"x","acos")};return $.runKernel(uo,t)}var lm=D({acos_:uN});function cN(e){let t={x:R(e,"x","acosh")};return $.runKernel(co,t)}var um=D({acosh_:cN});function hN(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!la(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(ps,r)}var La=D({addN_:hN});function dN(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(ho,r,a)}var vd=D({all_:dN});function pN(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(po,r,a)}var Xu=D({any_:pN});function fN(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return $.runKernel(fs,n,r)}var Ai=D({argMax_:fN});function mN(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return $.runKernel(wu,n,r)}var cm=D({argMin_:mN});function AN(e){let t={x:R(e,"x","asin")};return $.runKernel(fo,t)}var hm=D({asin_:AN});function yN(e){let t={x:R(e,"x","asinh")};return $.runKernel(mo,t)}var dm=D({asinh_:yN});function gN(e){let t={x:R(e,"x","atan")};return $.runKernel(Ao,t)}var pm=D({atan_:gN});function xN(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(go,a)}var fm=D({atan2_:xN});function bN(e){let t={x:R(e,"x","atanh")};return $.runKernel(yo,t)}var mm=D({atanh_:bN});function wN(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=Hb(a);return Ku(e,o,n,s,r,null,null,l)}function Gb(e,t,n,r,a,s,i="channelsLast"){let[o,l]=kd(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Ku(e,c,n,r,a,s,!1,i)}function _N(e,t,n,r,a,s,i="NDHWC"){let[o,l,c]=Am(t),u,h;if(i==="NDHWC")h="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return qb(e,u,n,r,a,!1,h,s)}function Ku(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,c,u,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,h]=e;else if(o==="channelsFirst")[l,h,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,m]=t,[f,A]=kd(n),[y,g]=kd(r),x=gl(d,y),v=gl(p,g),{padInfo:b,outHeight:w,outWidth:k}=vN(a,c,u,f,A,x,v,s,o),N=i?m*h:m,C;return o==="channelsFirst"?C=[l,N,w,k]:o==="channelsLast"&&(C=[l,w,k,N]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:h,outHeight:w,outWidth:k,outChannels:N,padInfo:b,strideHeight:f,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:g,inShape:e,outShape:C,filterShape:t}}function qb(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,c,u,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,h,d]=e;else if(i==="channelsFirst")[l,d,c,u,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,m,f,,A]=t,[y,g,x]=Am(n),[v,b,w]=Am(r),k=gl(p,v),N=gl(m,b),C=gl(f,w),{padInfo:F,outDepth:O,outHeight:L,outWidth:V}=kN(a,c,u,h,y,g,x,k,N,C,o),j=s?A*d:A,U;return i==="channelsFirst"?U=[l,j,O,L,V]:i==="channelsLast"&&(U=[l,O,L,V,j]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:h,inChannels:d,outDepth:O,outHeight:L,outWidth:V,outChannels:j,padInfo:F,strideDepth:y,strideHeight:g,strideWidth:x,filterDepth:p,filterHeight:m,filterWidth:f,effectiveFilterDepth:k,effectiveFilterHeight:N,effectiveFilterWidth:C,dilationDepth:v,dilationHeight:b,dilationWidth:w,inShape:e,outShape:U,filterShape:t}}function IN(e,t,n,r,a){r==null&&(r=ym(e,t,n));let s=e[0],i=e[1],o=yi((s-t+2*r)/n+1,a),l=yi((i-t+2*r)/n+1,a);return[o,l]}function SN(e,t,n,r,a,s){a==null&&(a=ym(e,t,r));let i=e[0],o=e[1],l=e[2],c=yi((i-t+2*a)/r+1,s),u=yi((o-t+2*a)/r+1,s),h=yi((l-t+2*a)/r+1,s);return[c,u,h,n]}function ym(e,t,n,r=1){let a=gl(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function kd(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Am(e){return typeof e=="number"?[e,e,e]:e}function gl(e,t){return t<=1?e:e+(e-1)*(t-1)}function vN(e,t,n,r,a,s,i,o,l){let c,u,h;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=IN([t,n],s,r,e,o);u=d[0],h=d[1]}else if(e==="same"){u=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(u-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),m=Math.floor(d/2),f=d-m,A=Math.floor(p/2),y=p-A;c={top:m,bottom:f,left:A,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:p,left:m,right:f,type:d===0&&p===0&&m===0&&f===0?"VALID":"EXPLICIT"},u=yi((t-s+d+p)/r+1,o),h=yi((n-i+m+f)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:h}}function kN(e,t,n,r,a,s,i,o,l,c,u){let h,d,p,m;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=SN([t,n,r,1],o,1,a,e,u);d=f[0],p=f[1],m=f[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),m=Math.ceil(r/i);let f=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(m-1)*i+c-r,g=Math.floor(f/2),x=f-g,v=Math.floor(A/2),b=A-v,w=Math.floor(y/2),k=y-w;h={top:v,bottom:b,left:w,right:k,front:g,back:x,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),m=Math.ceil((r-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:m}}function yi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Wa(e){let[t,n,r]=kd(e);return t===1&&n===1&&r===1}function Vr(e,t){return Wa(e)||Wa(t)}function Hb(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function NN(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(Ko,n,r)}var H=D({reshape_:NN});function TN(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;M(Vr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&M(Ut(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(ms,c,u);return h=ge(h,s.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Zu=D({avgPool_:TN});function EN(e,t,n,r,a,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Ut(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(_u,c,u);return h=ge(h,o.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var gm=D({avgPool3d_:EN});function CN(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=Gu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor + with dtype ${s.dtype}. `)}),n.length===1)return Br(n[0]);let r=n,a={axis:t};return $.runKernel(xo,r,a)}var ot=D({concat_:CN});function RN(e){let t={x:R(e,"x","sigmoid")};return $.runKernel(Js,t)}var Tn=D({sigmoid_:RN});function MN(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(Qo,a,s)}var Re=D({slice_:MN});function FN(e){let t={x:R(e,"x","tanh")};return $.runKernel(si,t)}var gi=D({tanh_:FN});function $N(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),c=R(r,"data","basicLSTMCell"),u=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),d=ot([c,h],1),p=Ve(d,o),m=se(p,l),f=m.shape[0],A=m.shape[1]/4,y=[f,A],g=Re(m,[0,0],y),x=Re(m,[0,A],y),v=Re(m,[0,A*2],y),b=Re(m,[0,A*3],y),w=se(z(Tn(g),gi(x)),z(u,Tn(se(i,v)))),k=z(gi(w),Tn(b));return[w,k]}var DN=D({basicLSTMCell_:$N});function ON(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);M(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(vu,s,i)}var Yu=D({batchToSpaceND_:ON});function zN(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function PN(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;r!=null&&(u=R(r,"offset","batchNorm")),M(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:zN(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(Ts,h,d);return H(p,i.shape)}var xi=D({batchNorm_:PN});function LN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),M(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),xi(i,o,l,u,c,s)}var Xb=D({batchNorm2d_:LN});function WN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),M(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),xi(i,o,l,u,c,s)}var Kb=D({batchNorm3d_:WN});function BN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),M(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),xi(i,o,l,u,c,s)}var Zb=D({batchNorm4d_:BN});function VN(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");M(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel(Oh,s,i)}var Yb=D({bincount_:VN});function jN(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let l=n.shape.slice();for(;l.length=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Br(n);let i={x:n},o={reps:s};return $.runKernel(Fa,i,o)}var xl=D({broadcastTo_:jN});function UN(e){let t={x:R(e,"x","ceil")};return $.runKernel(gs,t)}var xm=D({ceil_:UN});function HN(e,t,n){let r=R(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(Ma,a,s)}var En=D({clipByValue_:HN});function GN(e){return ot(e,0)}var Jb=D({concat1d_:GN});function qN(e,t){return ot(e,t)}var bl=D({concat2d_:qN});function XN(e,t){return ot(e,t)}var Qb=D({concat3d_:XN});function KN(e,t){return ot(e,t)}var ew=D({concat4d_:KN});function ZN(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&M(Ut(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?c.shape[3]:c.shape[1];M(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),M(Vr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},m=$.runKernel(xs,d,p);return u?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var ha=D({conv2d_:ZN});function YN(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1]])),M(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&M(Ut(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(Vr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),M(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=H(c,[c.shape[0],1,c.shape[1],c.shape[2]]),p=ha(d,h,[1,n],r,"NHWC",[1,s],i);return u?H(p,[p.shape[2],p.shape[3]]):H(p,[p.shape[0],p.shape[2],p.shape[3]])}var Id=D({conv1d_:YN});function JN(e,t,n,r,a,s="NHWC",i){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),M(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];M(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),M(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&M(Ut(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},m=$.runKernel(bs,d,p);return c?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var bm=D({conv2DBackpropInput_:JN});function QN(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return bm(n,i,o,r,a,"NHWC",s)}var Sd=D({conv2dTranspose_:QN});function eT(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),M(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),M(Vr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let u={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(Iu,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var wm=D({conv3d_:eT});function tT(e,t,n,r,a){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];M(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),M(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel(Wh,u,h);return o?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var tw=D({conv3DBackpropInput_:tT});function nT(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return tw(n,s,i,r,a)}var nw=D({conv3dTranspose_:nT});function rT(e){let t={x:R(e,"x","cos")};return $.runKernel(ws,t)}var Ju=D({cos_:rT});function aT(e){let t={x:R(e,"x","cosh")};return $.runKernel(bo,t)}var Nd=D({cosh_:aT});function sT(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(_s,a,s)}var Td=D({cumsum_:sT});function iT(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");M(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),M(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(Bh,i,o)}var rw=D({denseBincount_:iT});function oT(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${a} and ${t} for depthToSpace with input shape ${r.shape}`),M(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${s} and ${t} for depthToSpace with input shape - ${r.shape}`),M(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(_o,o,l)}var km=D({depthToSpace_:AT});function yT(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&M(Ut(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:c,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(_s,h,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var bl=D({depthwiseConv2d_:yT});function gT(e){let t={x:R(e,"x","diag")};return $.runKernel(Hh,t)}var xT=D({diag_:gT});function wT(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");M(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),M(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),M(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(Tu,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Im=D({dilation2d_:wT});function bT(e,t){let n=e.length,r=[];for(let a=0;a1&&i===1&&r.unshift(s)}return r}function Pt(e,t){let n=[];for(let r=0;r1)&&n.unshift(s)}return n}function ft(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(M(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=H(n,[1,-1]),o=H(r,[-1,1]),l=Ve(i,o);return H(l,[])}else if(n.rank===1&&r.rank===2){let i=H(n,[1,-1]),o=H(r,[r.shape[0],r.shape[1]]),l=Ve(i,o);return H(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=H(r,[-1,1]),o=Ve(n,i);return H(o,[o.size])}else{let i=H(r,[r.shape[0],r.shape[1]]);return Ve(n,i)}}var ub=D({dot_:ST});function NT(e,...t){let n=t.map((a,s)=>R(a,`tensors${s}`,"einsum")),r={equation:e};return $.runKernel(Xh,n,r)}var cb=D({einsum_:NT});function TT(e){let t={x:R(e,"x","elu")};return $.runKernel(vo,t)}var _l=D({elu_:TT});function ET(e){let t=R(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ge(t,"float32"));let n={x:t};return $.runKernel(ko,n)}var Nm=D({erf_:ET});function CT(e){let t={x:R(e,"x","exp")};return $.runKernel(ks,t)}var er=D({exp_:CT});function RT(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(So,r,a)}var Qt=D({expandDims_:RT});function MT(e){let t={x:R(e,"x","expm1")};return $.runKernel(No,t)}var Tm=D({expm1_:MT});function FT(e,t){let n=R(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel(Ma,r,a)}var Ba=D({tile_:FT});function $T(e,t,n,r="float32"){t==null&&(t=e);let a=Be([e,t],r),s=e<=t?e:t;for(let o=0;o`Error in localResponseNormalization: x must be rank 3 or 4 but got - rank ${s.rank}.`),M(Ut(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:r,beta:a},u=$.runKernel(Mu,l,c);return o?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Rm=D({localResponseNormalization_:GT});function qT(e){let t={x:R(e,"x","log")};return $.runKernel(Rs,t)}var zn=D({log_:qT});function XT(e){let t={x:R(e,"x","log1p")};return $.runKernel(zo,t)}var Md=D({log1p_:XT});function KT(e){return M(Ea(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&ln(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Fd(i),i[0]})}}function ZT(e){return M(Ea(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Xu(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&ln(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Fd(i),i})}}function YT(e){return M(Ea(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof Pe,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof Pe,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return Fd(r),{grad:r[0],value:a}}}function JT(e){return M(Ea(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(a=>a instanceof Pe),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof Pe,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&ln(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Fd(r.grads),r}}function fb(e,t){M(Ea(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(c=>c instanceof Hu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in $.registeredVariables)t.push($.registeredVariables[c])}let r=n?t.filter(c=>!c.trainable):null,a=t.length;t=t.filter(c=>c.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);M(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),r!=null&&r.forEach(c=>l[c.name]=null),{value:i,grads:l}}function Vr(e){return $.customGrad(e)}function Fd(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that - the f you passed encloses all operations that lead from x to y.`)}function QT(e){let t={x:R(e,"x","neg")};return $.runKernel(Wo,t)}var kt=D({neg_:QT});function eE(e){let t={x:R(e,"x","softplus")};return $.runKernel(nl,t)}var bi=D({softplus_:eE});function tE(e){let t=R(e,"x","logSigmoid");return Vr(n=>({value:kt(bi(kt(n))),gradFunc:r=>P(r,Tn(kt(n)))}))(t)}var mb=D({logSigmoid_:tE});function nE(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel(Ms,r,a)}var Rn=D({max_:nE});function rE(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(ni,a)}var ye=D({sub_:rE});function aE(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=ge(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(Qs,a,s)}var Te=D({sum_:aE});function sE(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Vr((r,a)=>{let s=!0,i=Rn(r,t,!0),o=ye(r,i),l=ye(ge(o,"float32"),zn(Te(er(o),t,s)));return a([l]),{value:l,gradFunc:(c,u)=>{let[h]=u,d=!0,p=er(h);return ye(c,P(Te(c,t,d),p))}}})(n)}var $d=D({logSoftmax_:sE});function Mm(e,t){for(let n=0;ne[s]);return[n,a]}function _i(e,t){let n=t.map(r=>1);return Ab(e,n,t)}function iE(e,t,n){M(Mm(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function gb(e,t){if(Mm(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function Fm(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function oE(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),M(Br(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&M(Ut(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel($s,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var ac=D({maxPool_:pE});function fE(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Ut(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(Fu,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Dm=D({maxPool3d_:fE});function mE(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(rd,s,i);return{result:o[0],indexes:o[1]}}var wb=D({maxPoolWithArgmax_:mE});function AE(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=vt(n,r),n.dtype==="bool"&&(n=ge(n,"int32"),r=ge(r,"int32")),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Fs,a)}var jr=D({maximum_:AE});function yE(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(Ds,r,a)}var It=D({mean_:yE});function Rt(e,t="float32"){if(t==="complex64"){let r=Rt(e,"float32"),a=Rt(e,"float32");return $a(r,a)}let n=$h(Et(e),t);return $.makeTensor(n,e,t)}function Pn(e,t="float32"){if(t==="complex64"){let r=Pn(e,"float32"),a=Rt(e,"float32");return $a(r,a)}let n=Ef(Et(e),t);return $.makeTensor(n,e,t)}function gE(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let r=R(e,"x","meshgrid",e instanceof Pe?e.dtype:"float32");if(t===void 0)return[r];let a=R(t,"y","meshgrid",t instanceof Pe?t.dtype:"float32"),s=Et(r.shape),i=Et(a.shape);return n==="xy"?(r=H(r,[1,-1]),a=H(a,[-1,1]),[Ve(Pn([i,1],r.dtype),r),Ve(a,Pn([1,s],a.dtype))]):(r=H(r,[-1,1]),a=H(a,[1,-1]),[Ve(r,Pn([1,i],r.dtype)),Ve(Pn([s,1],a.dtype),a)])}function xE(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(Os,r,a)}var kl=D({min_:xE});function wE(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=vt(n,r),n.dtype==="bool"&&(n=ge(n,"int32"),r=ge(r,"int32")),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(zs,a)}var Il=D({minimum_:wE});function bE(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o"Invalid number of paddings. Must be length of 2 each."),M(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel(Ps,i,s)}var Om=D({mirrorPad_:bE});function _E(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Lo,a)}var zm=D({mod_:_E});function vE(e){let t=R(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var ot=D({square_:vE});function kE(e,t=null,n=!1){e=R(e,"x","moments");let r=hr(t,e.shape),a=It(e,r,n),s=a.shape;n||(s=_i(a.shape,r));let i=ot(ye(ge(e,"float32"),H(a,s))),o=It(i,r,n);return{mean:a,variance:o}}var Od=D({moments_:kE});function IE(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=Xu(n,"c","multiRNNCell"),i=Xu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},c=$.runKernel(ad,o,l);return i===1?H(c,[c.size]):c}var bb=D({multinomial_:NE});function TE(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Bo,a)}var vi=D({notEqual_:TE});function EE(e){let t={x:R(e,"x","onesLike")};return $.runKernel(Ho,t)}var Ln=D({onesLike_:EE});function CE(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");M(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=H(n,[-1,1]),s=H(r,[1,-1]);return Ve(a,s)}var RE=D({outerProduct_:CE});function ME(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(Bs,s,a)}var ha=D({pad_:ME});function FE(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ha(e,[t],n)}var $E=D({pad1d_:FE});function DE(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ha(e,t,n)}var OE=D({pad2d_:DE});function zE(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ha(e,t,n)}var PE=D({pad3d_:zE});function LE(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ha(e,t,n)}var WE=D({pad4d_:LE});function BE(e,t,n){let r=R(e,"x","spaceToBatchND");M(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel(Ou,a,s)}var sc=D({spaceToBatchND_:BE});function UE(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(Br(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let c=Yw(o.shape,t,s,a,r),u=[c.dilationHeight,c.dilationWidth],h;r==="same"?h=jE([c.filterHeight,c.filterWidth],u):h=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[p,f]=VE([c.inHeight,c.inWidth],u,h),m=d?r:"valid",A=d?o:sc(o,u,p),y=(n==="avg"?()=>Ju(A,t,s,m):()=>ac(A,t,s,m))(),g=d?y:Qu(y,u,f);return l?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function VE(e,t,n){let r=n.map(u=>u[0]),a=n.map(u=>u[1]),s=e.concat(r,a),i=t.map((u,h)=>(u-s[h]%u)%u),o=a.map((u,h)=>u+i[h]),l=t.map((u,h)=>[r[h],o[h]]),c=t.map((u,h)=>[0,i[h]]);return[l,c]}function jE(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var _b=D({pool_:UE});function HE(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Vs,a)}var da=D({pow_:HE});function GE(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel(js,a)}var ic=D({prelu_:GE});function qE(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=ge(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(qo,a,s)}var zd=D({prod_:qE});function XE(e,t,n){let r=Et(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},ZE=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Pm.alea(a.toString()),this.randn=new Lm(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),athis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Pm.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function JE(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new ZE(t,n,r,a),i=Be(e,r);for(let o=0;o`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Wn(t,0)}var lC=D({reverse1d_:oC});function uC(e,t){let n=R(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Wn(n,t)}var cC=D({reverse2d_:uC});function hC(e,t){let n=R(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Wn(n,t)}var dC=D({reverse3d_:hC});function pC(e,t){let n=R(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Wn(n,t)}var fC=D({reverse4d_:pC});function mC(e){let t={x:R(e,"x","round")};return $.runKernel(Xs,t)}var Bm=D({round_:mC});function AC(e){let t={x:R(e,"x","rsqrt")};return $.runKernel(Ks,t)}var Wd=D({rsqrt_:AC});function xe(e,t){if((rn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&rn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Da(e,[],[],t)}function yC(e){let t={x:R(e,"x","selu")};return $.runKernel(Jo,t)}var Bd=D({selu_:yC});function gC(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),c=R(n,"pointwiseFilter","separableConv2d"),u=o,h=!1;if(o.rank===3&&(h=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),M(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],p=l.shape[3];M(c.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${c.shape[2]}.`);let f=bl(u,l,r,a,i,s),m=ca(f,c,1,"valid",i);return h?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Vm=D({separableConv2d_:gC});async function xC(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");M(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let u=0;u`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Re(r,[t],[n])}var Ud=D({slice1d_:vC});function kC(e,t,n){let r=R(e,"x","slice2d");return M(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var Um=D({slice2d_:kC});function IC(e,t,n){let r=R(e,"x","slice3d");return M(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var Hd=D({slice3d_:IC});function SC(e,t,n){let r=R(e,"x","slice4d");return M(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var lc=D({slice4d_:SC});function NC(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(ei,r,a)}var uc=D({softmax_:NC});function TC(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Zh,t)}var cc=D({fft_:TC});function EC(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Yh,t)}var Nl=D({ifft_:EC});function CC(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=H(e,[n,t]);r=Nl(a)}else{let a=[n,2*(t-1)],s=H(oc(e),[n,t]),i=H(Cd(e),[n,t]),o=Wn(Re(s,[0,1],[n,t-2]),1),l=P(Wn(Re(i,[0,1],[n,t-2]),1),xe(-1)),c=rt([s,o],1),u=rt([i,l],1),h=H($a(c,u),[a[0],a[1]]);r=Nl(h)}if(r=oc(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=H(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var Gd=D({irfft_:CC});function RC(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel(rl,r,a)}var Lt=D({split_:RC});function MC(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t0),m=e.shape.map(A=>A);m[e.shape.length-1]=t,a=Re(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,a=rt([e,Rt(f)],e.shape.length-1),n=t}else a=e;let s=He(a),i=H($a(a,s),[r,n]),o=cc(i),l=Math.floor(n/2)+1,c=oc(o),u=Cd(o),h=Lt(c,[l,n-l],c.shape.length-1),d=Lt(u,[l,n-l],u.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,H($a(h[0],d[0]),p)}var hc=D({rfft_:MC});function FC(e){let t={x:R(e,"x","sqrt")};return $.runKernel(Js,t)}var en=D({sqrt_:FC});function $C(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(ti,a,s)}var qd=D({squaredDifference_:$C});function DC(e,t){let n=R(e,"x","squeeze");return H(n,Ux(n.shape,t).newShape)}var ja=D({squeeze_:DC});function OC(e,t=0){let n=Xu(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel(Go,r,a)}var cn=D({stack_:OC});function zC(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return $.runKernel(Fa,n,r)}var Tl=D({step_:zC});function PC(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let c={x:R(e,"x","stridedSlice")},u={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel(al,c,u)}var Hm=D({stridedSlice_:PC});function LC(e){let t={x:R(e,"x","tan")};return $.runKernel(ri,t)}var Gm=D({tan_:LC});function sn(e,t){cs(e);let n=Lr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Da(e,null,n,t)}function tr(e,t,n){if(cs(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Lr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Da(e,t,r,n)}function WC(e,t,n){if(cs(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Lr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Da(e,t,r,n)}function BC(e,t,n){if(cs(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Lr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Da(e,t,r,n)}function VC(e,t,n){if(cs(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Lr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,Da(e,t,r,n)}function jC(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(sl,s,i);return{values:o,indices:l}}var qm=D({topk_:jC});function UC(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Lm(t,n,r,!0,a),i=Be(e,r);for(let o=0;o0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(hd,r,a);return{values:s,indices:i}}var Kd=D({unique_:HC});function GC(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");M(Ut(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel(Pu,s,i)}var Xm=D({unsortedSegmentSum_:GC});function qC(e,t=0){let n=R(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(il,r,a)}var mr=D({unstack_:qC});function Ib(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function Sb(e,t){let n=[];for(let s=0;s0,()=>"mask cannot be scalar"),ln(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m"Shape mismatch in v and x");let l=xe(1),c=ye(l,o),u=P(ye(i,s),c);if(a){M(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");u=Ae(u,ye(l,da(o,h)))}return se(s,u)}var QC=D({movingAverage_:JC});function eR(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");am(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(Zo,s,i)}var Tb=D({scatterND_:eR});function tR(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function nR(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);tR(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(ud,o,l)}var Zm=D({sparseToDense_:nR});function rR(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return $.runKernel(Co,r)}var Eb=D({gatherND_:rR});function aR(e,t){if(t==null)return e.shape.slice();if(oa(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Pe?a.clone():a;let s=aR(a,n),i=1-t,o=Ae(vl(se(Sl(s,0,1,"float32",r),i)),i);return P(a,o)}var Cb=D({dropout_:sR});function Rb(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Ym(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),M(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),ln(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];M(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,c]=[i.length/s,s],u=Hx("bool",l);for(let h=0;hA.value-m.value),u[h]=0;for(let m=0;mlR,depthwiseConv2d:()=>uR,matMul:()=>cR});function hR(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];M(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),M(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&M(Ut(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(Lh,h,d)}var Jm=D({conv2DBackpropFilter_:hR});function Yd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return P(e,Tl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Jd(e,t){let n=t,r=Pt(e.shape,t.shape);return r.length>0&&(n=Te(n,r)),H(n,e.shape)}function Qd(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Ur(e);if(t==="elu")return _l(e);if(t==="relu6")return Ld(e);if(t==="prelu")return ic(e,n);if(t==="leakyrelu")return nc(e,r);if(t==="sigmoid")return Tn(e);throw new Error(`Unknown fused activation ${t}.`)}var ep=(e,t)=>!(e>0)||t==="linear";function dR({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",ep($.state.gradientDepth,l)===!1){let w=ca(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),Qd(w,l,c,u)}let h=R(e,"x","conv2d"),d=R(t,"filter","conv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&M(Ut(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),M(Br(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let m=Yu(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=vt(A,h),ft(m.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused conv2d"));let g=(w,b)=>{let[k,N,C,F]=b,O=Yd(w,C,l);M(La(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let L=_m(N.shape,O,k,n,r),V=Jm(N,O,k.shape,n,r),j=[L,V];if(F!=null){let U=Jd(F,O);j.push(U)}return j},x={x:p,filter:d,bias:A,preluActivationWeights:y},v={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Vr((w,b,k)=>{let N=$.runKernel(oi,x,v);return k([b,w,N]),f&&(N=H(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d):Vr((w,b,k,N)=>{let C=$.runKernel(oi,x,v);return N([b,w,C,k]),f&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(p,d,A)}var lR=D({fusedConv2d_:dR});function pR(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(jh,c,u)}var Mb=D({depthwiseConv2dNativeBackpropFilter_:pR});function fR(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(Uh,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Fb=D({depthwiseConv2dNativeBackpropInput_:fR});function mR({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(ep($.state.gradientDepth,l)===!1){let w=bl(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),Qd(w,l,c,u)}let h=R(e,"x","depthwiseConv2d"),d=R(t,"filter","depthwiseConv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),M(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),M(Br(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&M(Ut(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let m=Yu(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=vt(A,h),ft(m.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused depthwiseConv2d"));let g=(w,b)=>{M(La(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[k,N,C,F]=b,O=Yd(w,C,l),L=Fb(N.shape,O,k,n,r,s,i),V=Mb(N,O,k.shape,n,r,s,i);if(F!=null){let j=Jd(A,O);return[L,V,j]}return[L,V]},x={x:p,filter:d,bias:A,preluActivationWeights:y},v={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Vr((w,b,k)=>{let N=$.runKernel(li,x,v);return k([b,w,N]),f&&(N=H(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d):Vr((w,b,k,N)=>{let C=$.runKernel(li,x,v);return N([b,w,C,k]),f&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(p,d,A)}var uR=D({fusedDepthwiseConv2d_:mR});function AR({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(ep($.state.gradientDepth,s)===!1){let F=Ve(e,t,n,r);return a!=null&&(F=se(F,a)),Qd(F,s,i,o)}let l=R(e,"a","fused matMul"),c=R(t,"b","fused matMul");[l,c]=vt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),A=Et(f),y=Et(m);M(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),M(oa(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),M(u===h,()=>`Error in fused matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),x=n?H(l,[A,u,d]):H(l,[A,d,u]),v=r?H(c,[y,p,h]):H(c,[y,h,p]),w;a!=null&&(w=R(a,"bias","fused matMul"),[w]=vt(w,l),ft(g,w.shape));let b;i!=null&&(b=R(i,"prelu weights","fused matMul"));let k=(F,O)=>{let[L,V,j,U]=O,X=Yd(H(F,j.shape),j,s),G,ee;if(!n&&!r?(G=Ve(X,V,!1,!0),ee=Ve(L,X,!0,!1)):!n&&r?(G=Ve(X,V,!1,!1),ee=Ve(X,L,!0,!1)):n&&!r?(G=Ve(V,X,!1,!0),ee=Ve(L,X,!1,!1)):(G=Ve(V,X,!0,!0),ee=Ve(X,L,!0,!0)),a!=null){let Y=Jd(U,X);return[G,ee,Y]}else return[G,ee]},N={a:x,b:v,bias:w,preluActivationWeights:b},C={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Vr((F,O,L)=>{let V=$.runKernel(ii,N,C);return L([F,O,V]),{value:H(V,g),gradFunc:k}})(x,v):Vr((F,O,L,V)=>{let j=$.runKernel(ii,N,C);return V([F,O,j,L]),{value:H(j,g),gradFunc:k}})(x,v,w)}var cR=D({fusedMatMul_:AR});function yR(e){return Ym(e,.54,.46)}var gR=D({hammingWindow_:yR});function xR(e){return Ym(e,.5,.5)}var $b=D({hannWindow_:xR});function wR(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Re(e,s,t)),s+=n;if(r)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),M(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),M(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),M(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),M(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let u={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(bo,u,h)}var kR=D({cropAndResize_:vR});function IR(e){let t=R(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(To,n,{})}var SR=D({flipLeftRight_:IR});function NR(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");M(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(ll,s,i)}var TR=D({rotateWithOffset_:NR});function El(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),M(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),M(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function ER(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=El(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(Vo,{boxes:s,scores:i},l)}var CR=D({nonMaxSuppression_:ER});function MR(e,t,n){let r=RR(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function RR(e,t,n){return $R(e,t,n||FR)}function FR(e,t){return e>t?1:e>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function Ob(e,t,n,r,a){return Qm(e,t,n,r,a,0)}function zb(e,t,n,r,a,s){return Qm(e,t,n,r,a,0,!1,s,!0)}function Pb(e,t,n,r,a,s){return Qm(e,t,n,r,a,s,!0)}function Qm(e,t,n,r,a,s,i=!1,o=!1,l=!1){let c=[];for(let A=0;Aa&&c.push({score:t[A],boxIndex:A,suppressBeginIndex:0});c.sort(Lb);let u=s>0?-.5/s:0,h=[],d=[];for(;h.length0;){let A=c.pop(),{score:y,boxIndex:g,suppressBeginIndex:x}=A;if(y=x;--w){let b=DR(e,g,h[w]);if(b>=r){v=!0;break}if(A.score=A.score*OR(r,u,b),A.score<=a)break}A.suppressBeginIndex=h.length,v||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&MR(c,A,Lb))}let p=h.length,f=n-p;o&&f>0&&(h.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:h};return i&&(m.selectedScores=d),l&&(m.validOutputs=p),m}function DR(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),c=Math.min(a[0],a[2]),u=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),f=(h-c)*(d-u);if(p<=0||f<=0)return 0;let m=Math.max(s,c),A=Math.max(i,u),y=Math.min(o,h),g=Math.min(l,d),x=Math.max(y-m,0)*Math.max(g-A,0);return x/(p+f-x)}function OR(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function Lb(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function zR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=El(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:h}=Ob(c,u,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),sn(h,"int32")}var PR=zR;function LR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=El(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(Uo,c,u);return{selectedIndices:h[0],selectedScores:h[1]}}var WR=D({nonMaxSuppressionWithScore_:LR});async function BR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=El(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],h=c[1],{selectedIndices:d,selectedScores:p}=Pb(u,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:sn(d,"int32"),selectedScores:sn(p)}}var VR=BR;function jR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=El(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:c,iouThreshold:u,scoreThreshold:h,padToMaxOutputSize:s},f=$.runKernel(jo,d,p);return{selectedIndices:f[0],validOutputs:f[1]}}var UR=D({nonMaxSuppressionPadded_:jR});async function HR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=El(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=zb(d,p,c,u,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:sn(f,"int32"),validOutputs:xe(m,"int32")}}var GR=HR;function qR(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");M(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=$.runKernel(Hs,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Wb=D({resizeBilinear_:qR});function XR(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");M(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=$.runKernel(Du,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Bb=D({resizeNearestNeighbor_:XR});function KR(e,t,n="nearest",r="constant",a=0,s){let i=R(e,"image","transform","float32"),o=R(t,"transforms","transform","float32");M(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},c={interpolation:n,fillMode:r,fillValue:a,outputShape:s};return $.runKernel(cd,l,c)}var ZR=D({transform_:KR});function YR(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");M(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(Pd(0,s,1,"int32"),[-1,1]),l=Pd(0,i,1,"int32"),c=ye(o,l),u=fr(wi(c,xe(+t,"int32")),Va(c,xe(-n,"int32"))),h=Rt([s,i],r.dtype);return H(cn(mr(H(r,[-1,s,i])).map(d=>Cn(u,d,h))),a)}var JR=D({bandPart_:YR});function QR(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Lt(e,e.shape[0],0).map(a=>ja(a,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a{let s=r[a];if(a>0)for(let i=0;i=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Vb(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),r=mr(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[c,u]=Vb(l,t);a.push(c),s.push(u)});let i=H(cn(a,0),e.shape),o=H(cn(s,0),e.shape);return[i,o]}}function Vb(e,t=!1){return $.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Em(n),s=Wr(e),i=tr([[1]],[1,1]),o=Wr(i),l=n>=r?r:n;for(let c=0;c{let p=Re(s,[c,c],[n-c,1]),f=Zd(p),m=Re(s,[c,c],[1,1]),A=Cn(pr(m,0),tr([[-1]]),tr([[1]])),y=ye(m,P(A,f)),g=Ae(p,y);g.shape[0]===1?o=Wr(i):o=rt([i,Re(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let x=kt(Ae(Ve(A,y),f)),v=Re(s,[c,0],[n-c,r]),w=P(x,o),b=Je(o);if(c===0)s=ye(v,Ve(w,Ve(b,v)));else{let C=ye(v,Ve(w,Ve(b,v)));s=rt([Re(s,[0,0],[c,r]),C],0)}let k=Je(w),N=Re(a,[0,c],[n,a.shape[1]-c]);if(c===0)a=ye(N,Ve(Ve(N,o),k));else{let C=ye(N,Ve(Ve(N,o),k));a=rt([Re(a,[0,0],[n,c]),C],1)}return[o,s,a]}),_e([u,h,d])}return!t&&n>r&&(a=Re(a,[0,0],[n,r]),s=Re(s,[0,0],[r,r])),[a,s]})}var nM=D({qr_:tM}),hn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(hn||(hn={}));function rM(e,t,n=hn.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:P(r,a);if(n===hn.NONE)return s;if(n===hn.SUM)return Te(s);if(n===hn.MEAN){if(a==null)return It(s);{let i=r.size/a.size,o=Ae(Te(s),Te(a));return i>1?Ae(o,xe(i)):o}}if(n===hn.SUM_BY_NONZERO_WEIGHTS){if(a==null)return Ae(Te(s),xe(r.size));{let i=P(a,Pn(r.shape)),o=ge(Te(vi(i,xe(0))),"float32");return Ae(Te(s),o)}}throw Error(`Unknown reduction: ${n}`)}var pa=D({computeWeightedLoss_:rM});function aM(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),ln(a.shape,s.shape,"Error in absoluteDifference: ");let o=zt(ye(a,s));return pa(o,i,r)}var sM=D({absoluteDifference_:aM});function iM(e,t,n,r,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),ln(s.shape,i.shape,"Error in cosineDistance: ");let l=xe(1),c=ye(l,Te(P(s,i),n,!0));return pa(c,o,a)}var oM=D({cosineDistance_:iM});function lM(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),ln(a.shape,s.shape,"Error in hingeLoss: ");let o=xe(1);a=ye(P(xe(2),a),o);let l=Ur(ye(o,P(a,s)));return pa(l,i,r)}var uM=D({hingeLoss_:lM});function cM(e,t,n,r=1,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),ln(s.shape,i.shape,"Error in huberLoss: ");let l=xe(r),c=zt(ye(i,s)),u=Il(c,l),h=ye(c,u),d=se(P(xe(.5),ot(u)),P(l,h));return pa(d,o,a)}var hM=D({huberLoss_:cM});function dM(e,t,n,r=1e-7,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),ln(s.shape,i.shape,"Error in logLoss: ");let l=xe(1),c=xe(r),u=kt(P(s,zn(se(i,c)))),h=P(ye(l,s),zn(se(ye(l,i),c))),d=ye(u,h);return pa(d,o,a)}var pM=D({logLoss_:dM});function fM(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),ln(a.shape,s.shape,"Error in meanSquaredError: ");let o=qd(a,s);return pa(o,i,r)}var mM=D({meanSquaredError_:fM});function AM(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");ln(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Ur(r),s=P(r,n),i=Md(er(kt(zt(r))));return se(ye(a,s),i)}function yM(e,t,n,r=0,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),ln(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let c=xe(r),u=xe(1),h=xe(.5);s=se(P(s,ye(u,c)),P(h,c))}let l=AM(s,i);return pa(l,o,a)}var gM=D({sigmoidCrossEntropy_:yM});function xM(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Vr((r,a,s)=>{let i=$m(a,[n],!0),o=ye(ge(a,"float32"),i);s([r,o]);let l=kt(P(o,r));return{value:Te(l,[n]),gradFunc:(c,u)=>{let[h,d]=u,p=_i(c.shape,[n]);return[P(H(c,p),ye(ge(h,"float32"),er(d))),P(H(c,p),ye(er(d),ge(h,"float32")))]}}})(e,t)}function wM(e,t,n,r=0,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),ln(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let c=xe(r),u=xe(1),h=xe(s.shape[1]);s=se(P(s,ye(u,c)),Ae(c,h))}let l=xM(s,i);return pa(l,o,a)}var bM=D({softmaxCrossEntropy_:wM});function _M(e,t,n){let r=R(e,"inputIndices","sparseReshape"),a=R(t,"inputShape","sparseReshape"),s=R(n,"newShape","sparseReshape");if(r.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape - ${r.shape}`);if(a.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${a.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:r,inputShape:a,newShape:s},o=$.runKernel(ld,i);return{outputIndices:o[0],outputShape:o[1]}}var vM=D({sparseReshape_:_M}),kM={fft:cc,ifft:Nl,rfft:hc,irfft:Gd},IM={hammingWindow:gR,hannWindow:$b,frame:Db,stft:_R},Le={flipLeftRight:SR,resizeNearestNeighbor:Bb,resizeBilinear:Wb,rotateWithOffset:TR,cropAndResize:kR,nonMaxSuppression:CR,nonMaxSuppressionAsync:PR,nonMaxSuppressionWithScore:WR,nonMaxSuppressionWithScoreAsync:VR,nonMaxSuppressionPadded:UR,nonMaxSuppressionPaddedAsync:GR,transform:ZR},jb={bandPart:JR,gramSchmidt:eM,qr:nM},SM={absoluteDifference:sM,computeWeightedLoss:pa,cosineDistance:oM,hingeLoss:uM,huberLoss:hM,logLoss:pM,meanSquaredError:mM,sigmoidCrossEntropy:gM,softmaxCrossEntropy:bM},Ub={sparseReshape:vM},fa=class extends Hw{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return _e(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return fb(e,t)}dispose(){this.iterations_!=null&&_e(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:xe(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(fa,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var tp=class extends fa{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:z(()=>He(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:z(()=>He(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;z(()=>{let l=se(P(i,this.rho),P(ot(s),1-this.rho)),c=P(Ae(en(se(o,this.epsilon)),en(se(i,this.epsilon))),s),u=se(P(o,this.rho),P(ot(c),1-this.rho));i.assign(l),o.assign(u);let h=se(P(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(_e(this.accumulatedGrads.map(e=>e.variable)),_e(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};tp.className="Adadelta";za(tp);var np=class extends fa{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:z(()=>tc(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;z(()=>{let i=se(s,ot(a));s.assign(i);let o=se(P(Ae(a,en(se(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&_e(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};np.className="Adagrad";za(np);var rp=class extends fa{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],z(()=>{this.accBeta1=xe(t).variable(),this.accBeta2=xe(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);z(()=>{let n=ye(1,this.accBeta1),r=ye(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:z(()=>He(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:z(()=>He(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,h=se(P(c,this.beta1),P(l,1-this.beta1)),d=se(P(u,this.beta2),P(ot(l),1-this.beta2)),p=Ae(h,n),f=Ae(d,r);c.assign(h),u.assign(d);let m=se(P(Ae(p,se(en(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(P(this.accBeta1,this.beta1)),this.accBeta2.assign(P(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&_e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&_e(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),z(()=>{this.accBeta1.assign(da(this.beta1,this.iterations_+1)),this.accBeta2.assign(da(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};rp.className="Adam";za(rp);var ap=class extends fa{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],z(()=>{this.iteration=xe(0).variable(),this.accBeta1=xe(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);z(()=>{let n=ye(1,this.accBeta1),r=Ae(-this.learningRate,se(P(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:He(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:He(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,h=se(P(c,this.beta1),P(l,1-this.beta1)),d=P(u,this.beta2),p=zt(l),f=jr(d,p);c.assign(h),u.assign(f);let m=se(P(Ae(r,n),Ae(h,se(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(P(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&_e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&_e(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};ap.className="Adamax";za(ap);var dc=class extends fa{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];z(()=>{let s=se(P(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Ht(xe(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};dc.className="SGD";za(dc);var sp=class extends dc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=xe(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:z(()=>He(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&z(()=>{let i,o=se(P(this.m,a),s);this.useNesterov?i=se(P(this.c,se(s,P(o,this.m))),r):i=se(P(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&_e(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};sp.className="Momentum";za(sp);var ip=class extends fa{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:z(()=>He(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:z(()=>He(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:z(()=>He(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;z(()=>{let l=se(P(i,this.decay),P(ot(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=se(P(c,this.decay),P(s,1-this.decay)),h=Ae(P(s,this.learningRate),en(ye(l,se(ot(u),this.epsilon)))),d=se(P(o,this.momentum),h);i.assign(l),c.assign(u),o.assign(d);let p=ye(r,d);r.assign(p)}else{let c=se(P(i,this.decay),P(ot(s),1-this.decay)),u=se(P(o,this.momentum),Ae(P(s,this.learningRate),en(se(c,this.epsilon))));i.assign(c),o.assign(u);let h=ye(r,u);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&_e(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&_e(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&_e(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};ip.className="RMSProp";za(ip);var ki=class{static sgd(e){return new dc(e)}static momentum(e,t,n=!1){return new sp(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new ip(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new rp(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new tp(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new ap(e,t,n,r,a)}static adagrad(e,t=.1){return new np(e,t)}},Ii={sgd:ki.sgd,momentum:ki.momentum,adadelta:ki.adadelta,adagrad:ki.adagrad,rmsprop:ki.rmsprop,adamax:ki.adamax,adam:ki.adam},NM=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function op(){return new Promise(e=>NM(()=>e()))}var E={};Me(E,{ERF_A1:()=>PM,ERF_A2:()=>LM,ERF_A3:()=>WM,ERF_A4:()=>BM,ERF_A5:()=>VM,ERF_P:()=>zM,PARALLELIZE_THRESHOLD:()=>eA,SELU_SCALE:()=>Gb,SELU_SCALEALPHA:()=>Hb,applyActivation:()=>Qd,assertAndGetBroadcastShape:()=>ft,assertAxesAreInnerMostDims:()=>iE,assertParamsConsistent:()=>TM,assignToTypedArray:()=>ZM,axesAreInnerMostDims:()=>Mm,calculateShapes:()=>Fw,checkEinsumDimSizes:()=>tF,combineLocations:()=>Ab,complexWithEvenIndex:()=>qM,complexWithOddIndex:()=>XM,computeConv2DInfo:()=>Yu,computeConv3DInfo:()=>Jw,computeDefaultPad:()=>xm,computeDilation2DInfo:()=>CN,computeOptimalWindowSize:()=>CM,computeOutAndReduceShapes:()=>yb,computeOutShape:()=>EM,computePool2DInfo:()=>Yw,computePool3DInfo:()=>RN,convertConv2DDataFormat:()=>Zw,decodeEinsumEquation:()=>QM,eitherStridesOrDilationsAreOne:()=>Br,expandShapeToKeepDim:()=>_i,exponent:()=>JM,exponents:()=>YM,fromStringArrayToUint8:()=>iF,fromUint8ToStringArray:()=>sF,getAxesPermutation:()=>gb,getBroadcastDims:()=>bT,getComplexWithIndex:()=>KM,getEinsumComputePath:()=>nF,getEinsumPermutation:()=>eF,getFusedBiasGradient:()=>Jd,getFusedDyActivation:()=>Yd,getImageCenter:()=>RM,getInnerMostAxes:()=>oE,getPermuted:()=>FM,getReductionAxes:()=>Pt,getReshaped:()=>MM,getReshapedPermuted:()=>$M,getSliceBeginCoords:()=>DM,getSliceSize:()=>OM,getUndoAxesPermutation:()=>Fm,isIdentityPermutation:()=>rF,log:()=>UM,mergeRealAndImagArrays:()=>HM,prepareAndValidate:()=>Mw,prepareSplitSize:()=>aF,segment_util:()=>qb,shouldFuse:()=>ep,slice_util:()=>un,splitRealAndImagArrays:()=>GM,tupleValuesAreOne:()=>La,upcastType:()=>dr,validateInput:()=>am,validateUpdateShape:()=>rm,warn:()=>jM});function TM(e,t){let n=e[0].length;e.forEach((a,s)=>{M(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function EM(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function $M(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s/g,Xb=",",Kb="...";function QM(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(oF,"").length)/tA.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${tA}").`);let[r,a]=e.split(tA);M(r.indexOf(Kb)===-1,()=>`The ellipsis notation ("${Kb}") is not supported yet.`);let s=r.split(Xb),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let d=0;df.indexOf(p)!==-1))throw new Error(`Output subscripts contain the label ${p} not present in the input subscripts.`);o.indexOf(p)===-1&&o.push(p)}for(let d=0;da!==-1),{permutationIndices:n,expandDims:r}}function tF(e,t,n){let r=new Array(e);for(let a=0;a`Expected dimension ${r[t[a][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function nF(e,t){let n=e,r=[],a=0;e.length===0&&n.push(-1),a=e.length+1;for(let i=0;it===n)}function lF(e,t){let n=[];for(let r=0;r"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);M(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}M(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var qb={};Me(qb,{collectGatherOpShapeInfo:()=>hF,computeOutShape:()=>cF,segOpComputeOptimalWindowSize:()=>uF});function uF(e,t){let n=!1,r;for(e<=eA?(r=e,n=!0):r=Fh(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Fh(e,r+1);return r}function cF(e,t,n){let r=[],a=e.length;for(let s=0;sa))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) ( - ${s}).`);if(nmd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function iF(e){return e.map(t=>Bu(t))}var Hr={};Me(Hr,{nonMaxSuppressionV3Impl:()=>Ob,nonMaxSuppressionV4Impl:()=>zb,nonMaxSuppressionV5Impl:()=>Pb,whereImpl:()=>Sb});function ve(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&_.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var dF=Hr.whereImpl,lp=class extends wu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Rh(this,ua())}nextDataId(){return lp.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&E.warn(` + ${r.shape}`),M(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(_o,o,l)}var _m=D({depthToSpace_:oT});function lT(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&M(Ut(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:c,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(vs,h,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var wl=D({depthwiseConv2d_:lT});function uT(e){let t={x:R(e,"x","diag")};return $.runKernel(Uh,t)}var cT=D({diag_:uT});function hT(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");M(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),M(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),M(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(Su,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var vm=D({dilation2d_:hT});function dT(e,t){let n=e.length,r=[];for(let a=0;a1&&i===1&&r.unshift(s)}return r}function Pt(e,t){let n=[];for(let r=0;r1)&&n.unshift(s)}return n}function ft(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(M(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=H(n,[1,-1]),o=H(r,[-1,1]),l=Ve(i,o);return H(l,[])}else if(n.rank===1&&r.rank===2){let i=H(n,[1,-1]),o=H(r,[r.shape[0],r.shape[1]]),l=Ve(i,o);return H(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=H(r,[-1,1]),o=Ve(n,i);return H(o,[o.size])}else{let i=H(r,[r.shape[0],r.shape[1]]);return Ve(n,i)}}var aw=D({dot_:yT});function gT(e,...t){let n=t.map((a,s)=>R(a,`tensors${s}`,"einsum")),r={equation:e};return $.runKernel(qh,n,r)}var sw=D({einsum_:gT});function xT(e){let t={x:R(e,"x","elu")};return $.runKernel(vo,t)}var _l=D({elu_:xT});function bT(e){let t=R(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ge(t,"float32"));let n={x:t};return $.runKernel(ko,n)}var Im=D({erf_:bT});function wT(e){let t={x:R(e,"x","exp")};return $.runKernel(Is,t)}var er=D({exp_:wT});function _T(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(So,r,a)}var Qt=D({expandDims_:_T});function vT(e){let t={x:R(e,"x","expm1")};return $.runKernel(No,t)}var Sm=D({expm1_:vT});function kT(e,t){let n=R(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel(Fa,r,a)}var Va=D({tile_:kT});function IT(e,t,n,r="float32"){t==null&&(t=e);let a=Be([e,t],r),s=e<=t?e:t;for(let o=0;o`Error in localResponseNormalization: x must be rank 3 or 4 but got + rank ${s.rank}.`),M(Ut(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:r,beta:a},u=$.runKernel(Cu,l,c);return o?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Em=D({localResponseNormalization_:zT});function PT(e){let t={x:R(e,"x","log")};return $.runKernel(Ms,t)}var zn=D({log_:PT});function LT(e){let t={x:R(e,"x","log1p")};return $.runKernel(zo,t)}var Rd=D({log1p_:LT});function WT(e){return M(Ca(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&ln(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Md(i),i[0]})}}function BT(e){return M(Ca(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Gu(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&ln(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Md(i),i})}}function VT(e){return M(Ca(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof Pe,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof Pe,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return Md(r),{grad:r[0],value:a}}}function jT(e){return M(Ca(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(a=>a instanceof Pe),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof Pe,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&ln(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Md(r.grads),r}}function uw(e,t){M(Ca(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(c=>c instanceof ju),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in $.registeredVariables)t.push($.registeredVariables[c])}let r=n?t.filter(c=>!c.trainable):null,a=t.length;t=t.filter(c=>c.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);M(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),r!=null&&r.forEach(c=>l[c.name]=null),{value:i,grads:l}}function jr(e){return $.customGrad(e)}function Md(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that + the f you passed encloses all operations that lead from x to y.`)}function UT(e){let t={x:R(e,"x","neg")};return $.runKernel(Wo,t)}var kt=D({neg_:UT});function HT(e){let t={x:R(e,"x","softplus")};return $.runKernel(nl,t)}var _i=D({softplus_:HT});function GT(e){let t=R(e,"x","logSigmoid");return jr(n=>({value:kt(_i(kt(n))),gradFunc:r=>z(r,Tn(kt(n)))}))(t)}var cw=D({logSigmoid_:GT});function qT(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel(Fs,r,a)}var Rn=D({max_:qT});function XT(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(ri,a)}var ye=D({sub_:XT});function KT(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=ge(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(ei,a,s)}var Te=D({sum_:KT});function ZT(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return jr((r,a)=>{let s=!0,i=Rn(r,t,!0),o=ye(r,i),l=ye(ge(o,"float32"),zn(Te(er(o),t,s)));return a([l]),{value:l,gradFunc:(c,u)=>{let[h]=u,d=!0,p=er(h);return ye(c,z(Te(c,t,d),p))}}})(n)}var Fd=D({logSoftmax_:ZT});function Cm(e,t){for(let n=0;ne[s]);return[n,a]}function vi(e,t){let n=t.map(r=>1);return hw(e,n,t)}function YT(e,t,n){M(Cm(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function pw(e,t){if(Cm(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function Rm(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function JT(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),M(Vr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&M(Ut(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(Ds,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var nc=D({maxPool_:aE});function sE(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Ut(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(Ru,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Fm=D({maxPool3d_:sE});function iE(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(nd,s,i);return{result:o[0],indexes:o[1]}}var mw=D({maxPoolWithArgmax_:iE});function oE(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=vt(n,r),n.dtype==="bool"&&(n=ge(n,"int32"),r=ge(r,"int32")),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel($s,a)}var Ur=D({maximum_:oE});function lE(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(Os,r,a)}var It=D({mean_:lE});function Rt(e,t="float32"){if(t==="complex64"){let r=Rt(e,"float32"),a=Rt(e,"float32");return Da(r,a)}let n=Fh(Et(e),t);return $.makeTensor(n,e,t)}function Pn(e,t="float32"){if(t==="complex64"){let r=Pn(e,"float32"),a=Rt(e,"float32");return Da(r,a)}let n=Nf(Et(e),t);return $.makeTensor(n,e,t)}function uE(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let r=R(e,"x","meshgrid",e instanceof Pe?e.dtype:"float32");if(t===void 0)return[r];let a=R(t,"y","meshgrid",t instanceof Pe?t.dtype:"float32"),s=Et(r.shape),i=Et(a.shape);return n==="xy"?(r=H(r,[1,-1]),a=H(a,[-1,1]),[Ve(Pn([i,1],r.dtype),r),Ve(a,Pn([1,s],a.dtype))]):(r=H(r,[-1,1]),a=H(a,[1,-1]),[Ve(r,Pn([1,i],r.dtype)),Ve(Pn([s,1],a.dtype),a)])}function cE(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(zs,r,a)}var kl=D({min_:cE});function hE(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=vt(n,r),n.dtype==="bool"&&(n=ge(n,"int32"),r=ge(r,"int32")),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Ps,a)}var Il=D({minimum_:hE});function dE(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o"Invalid number of paddings. Must be length of 2 each."),M(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel(Ls,i,s)}var $m=D({mirrorPad_:dE});function pE(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Lo,a)}var Dm=D({mod_:pE});function fE(e){let t=R(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var it=D({square_:fE});function mE(e,t=null,n=!1){e=R(e,"x","moments");let r=hr(t,e.shape),a=It(e,r,n),s=a.shape;n||(s=vi(a.shape,r));let i=it(ye(ge(e,"float32"),H(a,s))),o=It(i,r,n);return{mean:a,variance:o}}var Dd=D({moments_:mE});function AE(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=Gu(n,"c","multiRNNCell"),i=Gu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},c=$.runKernel(rd,o,l);return i===1?H(c,[c.size]):c}var Aw=D({multinomial_:gE});function xE(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Bo,a)}var ki=D({notEqual_:xE});function bE(e){let t={x:R(e,"x","onesLike")};return $.runKernel(Ho,t)}var Ln=D({onesLike_:bE});function wE(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");M(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=H(n,[-1,1]),s=H(r,[1,-1]);return Ve(a,s)}var _E=D({outerProduct_:wE});function vE(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(Vs,s,a)}var da=D({pad_:vE});function kE(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),da(e,[t],n)}var IE=D({pad1d_:kE});function SE(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),da(e,t,n)}var NE=D({pad2d_:SE});function TE(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),da(e,t,n)}var EE=D({pad3d_:TE});function CE(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),da(e,t,n)}var RE=D({pad4d_:CE});function ME(e,t,n){let r=R(e,"x","spaceToBatchND");M(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel($u,a,s)}var rc=D({spaceToBatchND_:ME});function DE(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(Vr(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let c=Gb(o.shape,t,s,a,r),u=[c.dilationHeight,c.dilationWidth],h;r==="same"?h=$E([c.filterHeight,c.filterWidth],u):h=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[p,m]=FE([c.inHeight,c.inWidth],u,h),f=d?r:"valid",A=d?o:rc(o,u,p),y=(n==="avg"?()=>Zu(A,t,s,f):()=>nc(A,t,s,f))(),g=d?y:Yu(y,u,m);return l?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function FE(e,t,n){let r=n.map(u=>u[0]),a=n.map(u=>u[1]),s=e.concat(r,a),i=t.map((u,h)=>(u-s[h]%u)%u),o=a.map((u,h)=>u+i[h]),l=t.map((u,h)=>[r[h],o[h]]),c=t.map((u,h)=>[0,i[h]]);return[l,c]}function $E(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var yw=D({pool_:DE});function OE(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(js,a)}var pa=D({pow_:OE});function zE(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel(Us,a)}var ac=D({prelu_:zE});function PE(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=ge(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(qo,a,s)}var Od=D({prod_:PE});function LE(e,t,n){let r=Et(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},BE=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Om.alea(a.toString()),this.randn=new zm(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),athis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Om.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function jE(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new BE(t,n,r,a),i=Be(e,r);for(let o=0;o`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Wn(t,0)}var QE=D({reverse1d_:JE});function eC(e,t){let n=R(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Wn(n,t)}var tC=D({reverse2d_:eC});function nC(e,t){let n=R(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Wn(n,t)}var rC=D({reverse3d_:nC});function aC(e,t){let n=R(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Wn(n,t)}var sC=D({reverse4d_:aC});function iC(e){let t={x:R(e,"x","round")};return $.runKernel(Ks,t)}var Lm=D({round_:iC});function oC(e){let t={x:R(e,"x","rsqrt")};return $.runKernel(Zs,t)}var Ld=D({rsqrt_:oC});function ve(e,t){if((rn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&rn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Oa(e,[],[],t)}function lC(e){let t={x:R(e,"x","selu")};return $.runKernel(Jo,t)}var Wd=D({selu_:lC});function uC(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),c=R(n,"pointwiseFilter","separableConv2d"),u=o,h=!1;if(o.rank===3&&(h=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),M(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],p=l.shape[3];M(c.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${c.shape[2]}.`);let m=wl(u,l,r,a,i,s),f=ha(m,c,1,"valid",i);return h?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Wm=D({separableConv2d_:uC});async function cC(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");M(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let u=0;u`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Re(r,[t],[n])}var jd=D({slice1d_:fC});function mC(e,t,n){let r=R(e,"x","slice2d");return M(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var Vm=D({slice2d_:mC});function AC(e,t,n){let r=R(e,"x","slice3d");return M(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var Ud=D({slice3d_:AC});function yC(e,t,n){let r=R(e,"x","slice4d");return M(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var ic=D({slice4d_:yC});function gC(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(ti,r,a)}var oc=D({softmax_:gC});function xC(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Kh,t)}var lc=D({fft_:xC});function bC(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Zh,t)}var Nl=D({ifft_:bC});function wC(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=H(e,[n,t]);r=Nl(a)}else{let a=[n,2*(t-1)],s=H(sc(e),[n,t]),i=H(Ed(e),[n,t]),o=Wn(Re(s,[0,1],[n,t-2]),1),l=z(Wn(Re(i,[0,1],[n,t-2]),1),ve(-1)),c=ot([s,o],1),u=ot([i,l],1),h=H(Da(c,u),[a[0],a[1]]);r=Nl(h)}if(r=sc(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=H(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var Hd=D({irfft_:wC});function _C(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel(rl,r,a)}var Lt=D({split_:_C});function vC(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t0),f=e.shape.map(A=>A);f[e.shape.length-1]=t,a=Re(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,a=ot([e,Rt(m)],e.shape.length-1),n=t}else a=e;let s=He(a),i=H(Da(a,s),[r,n]),o=lc(i),l=Math.floor(n/2)+1,c=sc(o),u=Ed(o),h=Lt(c,[l,n-l],c.shape.length-1),d=Lt(u,[l,n-l],u.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,H(Da(h[0],d[0]),p)}var uc=D({rfft_:vC});function kC(e){let t={x:R(e,"x","sqrt")};return $.runKernel(Qs,t)}var en=D({sqrt_:kC});function IC(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(ni,a,s)}var Gd=D({squaredDifference_:IC});function SC(e,t){let n=R(e,"x","squeeze");return H(n,Lx(n.shape,t).newShape)}var Ua=D({squeeze_:SC});function NC(e,t=0){let n=Gu(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel(Go,r,a)}var cn=D({stack_:NC});function TC(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return $.runKernel($a,n,r)}var Tl=D({step_:TC});function EC(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let c={x:R(e,"x","stridedSlice")},u={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel(al,c,u)}var jm=D({stridedSlice_:EC});function CC(e){let t={x:R(e,"x","tan")};return $.runKernel(ai,t)}var Um=D({tan_:CC});function sn(e,t){hs(e);let n=Wr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Oa(e,null,n,t)}function tr(e,t,n){if(hs(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Wr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Oa(e,t,r,n)}function RC(e,t,n){if(hs(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Wr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Oa(e,t,r,n)}function MC(e,t,n){if(hs(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Wr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Oa(e,t,r,n)}function FC(e,t,n){if(hs(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Wr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,Oa(e,t,r,n)}function $C(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(sl,s,i);return{values:o,indices:l}}var Hm=D({topk_:$C});function DC(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new zm(t,n,r,!0,a),i=Be(e,r);for(let o=0;o0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(cd,r,a);return{values:s,indices:i}}var Xd=D({unique_:OC});function zC(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");M(Ut(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel(Ou,s,i)}var Gm=D({unsortedSegmentSum_:zC});function PC(e,t=0){let n=R(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(il,r,a)}var mr=D({unstack_:PC});function bw(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function ww(e,t){let n=[];for(let s=0;s0,()=>"mask cannot be scalar"),ln(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f"Shape mismatch in v and x");let l=ve(1),c=ye(l,o),u=z(ye(i,s),c);if(a){M(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");u=Ae(u,ye(l,pa(o,h)))}return se(s,u)}var UC=D({movingAverage_:jC});function HC(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");nm(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(Zo,s,i)}var vw=D({scatterND_:HC});function GC(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function qC(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);GC(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(ld,o,l)}var Xm=D({sparseToDense_:qC});function XC(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return $.runKernel(Co,r)}var kw=D({gatherND_:XC});function KC(e,t){if(t==null)return e.shape.slice();if(la(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Pe?a.clone():a;let s=KC(a,n),i=1-t,o=Ae(vl(se(Sl(s,0,1,"float32",r),i)),i);return z(a,o)}var Iw=D({dropout_:ZC});function Sw(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Km(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),M(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),ln(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];M(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,c]=[i.length/s,s],u=Wx("bool",l);for(let h=0;hA.value-f.value),u[h]=0;for(let f=0;fQC,depthwiseConv2d:()=>eR,matMul:()=>tR});function nR(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];M(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),M(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&M(Ut(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(Ph,h,d)}var Zm=D({conv2DBackpropFilter_:nR});function Zd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,Tl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Yd(e,t){let n=t,r=Pt(e.shape,t.shape);return r.length>0&&(n=Te(n,r)),H(n,e.shape)}function Jd(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Hr(e);if(t==="elu")return _l(e);if(t==="relu6")return Pd(e);if(t==="prelu")return ac(e,n);if(t==="leakyrelu")return ec(e,r);if(t==="sigmoid")return Tn(e);throw new Error(`Unknown fused activation ${t}.`)}var Qd=(e,t)=>!(e>0)||t==="linear";function rR({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",Qd($.state.gradientDepth,l)===!1){let b=ha(e,t,n,r,a,s,i);return o!=null&&(b=se(b,o)),Jd(b,l,c,u)}let h=R(e,"x","conv2d"),d=R(t,"filter","conv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&M(Ut(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),M(Vr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let f=Ku(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=vt(A,h),ft(f.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused conv2d"));let g=(b,w)=>{let[k,N,C,F]=w,O=Zd(b,C,l);M(Wa(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let L=bm(N.shape,O,k,n,r),V=Zm(N,O,k.shape,n,r),j=[L,V];if(F!=null){let U=Yd(F,O);j.push(U)}return j},x={x:p,filter:d,bias:A,preluActivationWeights:y},v={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?jr((b,w,k)=>{let N=$.runKernel(li,x,v);return k([w,b,N]),m&&(N=H(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d):jr((b,w,k,N)=>{let C=$.runKernel(li,x,v);return N([w,b,C,k]),m&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(p,d,A)}var QC=D({fusedConv2d_:rR});function aR(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(Vh,c,u)}var Nw=D({depthwiseConv2dNativeBackpropFilter_:aR});function sR(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(jh,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Tw=D({depthwiseConv2dNativeBackpropInput_:sR});function iR({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(Qd($.state.gradientDepth,l)===!1){let b=wl(e,t,n,r,a,s,i);return o!=null&&(b=se(b,o)),Jd(b,l,c,u)}let h=R(e,"x","depthwiseConv2d"),d=R(t,"filter","depthwiseConv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),M(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),M(Vr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&M(Ut(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let f=Ku(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=vt(A,h),ft(f.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused depthwiseConv2d"));let g=(b,w)=>{M(Wa(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[k,N,C,F]=w,O=Zd(b,C,l),L=Tw(N.shape,O,k,n,r,s,i),V=Nw(N,O,k.shape,n,r,s,i);if(F!=null){let j=Yd(A,O);return[L,V,j]}return[L,V]},x={x:p,filter:d,bias:A,preluActivationWeights:y},v={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?jr((b,w,k)=>{let N=$.runKernel(ui,x,v);return k([w,b,N]),m&&(N=H(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d):jr((b,w,k,N)=>{let C=$.runKernel(ui,x,v);return N([w,b,C,k]),m&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(p,d,A)}var eR=D({fusedDepthwiseConv2d_:iR});function oR({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Qd($.state.gradientDepth,s)===!1){let F=Ve(e,t,n,r);return a!=null&&(F=se(F,a)),Jd(F,s,i,o)}let l=R(e,"a","fused matMul"),c=R(t,"b","fused matMul");[l,c]=vt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?c.shape[c.rank-2]:c.shape[c.rank-1],m=l.shape.slice(0,-2),f=c.shape.slice(0,-2),A=Et(m),y=Et(f);M(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),M(la(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),M(u===h,()=>`Error in fused matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),x=n?H(l,[A,u,d]):H(l,[A,d,u]),v=r?H(c,[y,p,h]):H(c,[y,h,p]),b;a!=null&&(b=R(a,"bias","fused matMul"),[b]=vt(b,l),ft(g,b.shape));let w;i!=null&&(w=R(i,"prelu weights","fused matMul"));let k=(F,O)=>{let[L,V,j,U]=O,X=Zd(H(F,j.shape),j,s),G,ee;if(!n&&!r?(G=Ve(X,V,!1,!0),ee=Ve(L,X,!0,!1)):!n&&r?(G=Ve(X,V,!1,!1),ee=Ve(X,L,!0,!1)):n&&!r?(G=Ve(V,X,!1,!0),ee=Ve(L,X,!1,!1)):(G=Ve(V,X,!0,!0),ee=Ve(X,L,!0,!0)),a!=null){let Y=Yd(U,X);return[G,ee,Y]}else return[G,ee]},N={a:x,b:v,bias:b,preluActivationWeights:w},C={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?jr((F,O,L)=>{let V=$.runKernel(oi,N,C);return L([F,O,V]),{value:H(V,g),gradFunc:k}})(x,v):jr((F,O,L,V)=>{let j=$.runKernel(oi,N,C);return V([F,O,j,L]),{value:H(j,g),gradFunc:k}})(x,v,b)}var tR=D({fusedMatMul_:oR});function lR(e){return Km(e,.54,.46)}var uR=D({hammingWindow_:lR});function cR(e){return Km(e,.5,.5)}var Ew=D({hannWindow_:cR});function hR(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Re(e,s,t)),s+=n;if(r)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),M(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),M(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),M(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),M(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let u={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(wo,u,h)}var mR=D({cropAndResize_:fR});function AR(e){let t=R(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(To,n,{})}var yR=D({flipLeftRight_:AR});function gR(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");M(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(ll,s,i)}var xR=D({rotateWithOffset_:gR});function El(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),M(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),M(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function bR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=El(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(Vo,{boxes:s,scores:i},l)}var wR=D({nonMaxSuppression_:bR});function vR(e,t,n){let r=_R(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function _R(e,t,n){return IR(e,t,n||kR)}function kR(e,t){return e>t?1:e>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function Rw(e,t,n,r,a){return Ym(e,t,n,r,a,0)}function Mw(e,t,n,r,a,s){return Ym(e,t,n,r,a,0,!1,s,!0)}function Fw(e,t,n,r,a,s){return Ym(e,t,n,r,a,s,!0)}function Ym(e,t,n,r,a,s,i=!1,o=!1,l=!1){let c=[];for(let A=0;Aa&&c.push({score:t[A],boxIndex:A,suppressBeginIndex:0});c.sort($w);let u=s>0?-.5/s:0,h=[],d=[];for(;h.length0;){let A=c.pop(),{score:y,boxIndex:g,suppressBeginIndex:x}=A;if(y=x;--b){let w=SR(e,g,h[b]);if(w>=r){v=!0;break}if(A.score=A.score*NR(r,u,w),A.score<=a)break}A.suppressBeginIndex=h.length,v||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&vR(c,A,$w))}let p=h.length,m=n-p;o&&m>0&&(h.push(...new Array(m).fill(0)),d.push(...new Array(m).fill(0)));let f={selectedIndices:h};return i&&(f.selectedScores=d),l&&(f.validOutputs=p),f}function SR(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),c=Math.min(a[0],a[2]),u=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),m=(h-c)*(d-u);if(p<=0||m<=0)return 0;let f=Math.max(s,c),A=Math.max(i,u),y=Math.min(o,h),g=Math.min(l,d),x=Math.max(y-f,0)*Math.max(g-A,0);return x/(p+m-x)}function NR(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function $w(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function TR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=El(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:h}=Rw(c,u,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),sn(h,"int32")}var ER=TR;function CR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=El(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(Uo,c,u);return{selectedIndices:h[0],selectedScores:h[1]}}var RR=D({nonMaxSuppressionWithScore_:CR});async function MR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=El(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],h=c[1],{selectedIndices:d,selectedScores:p}=Fw(u,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:sn(d,"int32"),selectedScores:sn(p)}}var FR=MR;function $R(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=El(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:c,iouThreshold:u,scoreThreshold:h,padToMaxOutputSize:s},m=$.runKernel(jo,d,p);return{selectedIndices:m[0],validOutputs:m[1]}}var DR=D({nonMaxSuppressionPadded_:$R});async function OR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=El(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=Mw(d,p,c,u,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:sn(m,"int32"),validOutputs:ve(f,"int32")}}var zR=OR;function PR(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");M(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=$.runKernel(Gs,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Dw=D({resizeBilinear_:PR});function LR(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");M(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=$.runKernel(Fu,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Ow=D({resizeNearestNeighbor_:LR});function WR(e,t,n="nearest",r="constant",a=0,s){let i=R(e,"image","transform","float32"),o=R(t,"transforms","transform","float32");M(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},c={interpolation:n,fillMode:r,fillValue:a,outputShape:s};return $.runKernel(ud,l,c)}var BR=D({transform_:WR});function VR(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");M(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(zd(0,s,1,"int32"),[-1,1]),l=zd(0,i,1,"int32"),c=ye(o,l),u=fr(wi(c,ve(+t,"int32")),ja(c,ve(-n,"int32"))),h=Rt([s,i],r.dtype);return H(cn(mr(H(r,[-1,s,i])).map(d=>Cn(u,d,h))),a)}var jR=D({bandPart_:VR});function UR(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Lt(e,e.shape[0],0).map(a=>Ua(a,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a{let s=r[a];if(a>0)for(let i=0;i=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return zw(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),r=mr(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[c,u]=zw(l,t);a.push(c),s.push(u)});let i=H(cn(a,0),e.shape),o=H(cn(s,0),e.shape);return[i,o]}}function zw(e,t=!1){return $.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Nm(n),s=Br(e),i=tr([[1]],[1,1]),o=Br(i),l=n>=r?r:n;for(let c=0;c{let p=Re(s,[c,c],[n-c,1]),m=Kd(p),f=Re(s,[c,c],[1,1]),A=Cn(pr(f,0),tr([[-1]]),tr([[1]])),y=ye(f,z(A,m)),g=Ae(p,y);g.shape[0]===1?o=Br(i):o=ot([i,Re(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let x=kt(Ae(Ve(A,y),m)),v=Re(s,[c,0],[n-c,r]),b=z(x,o),w=Je(o);if(c===0)s=ye(v,Ve(b,Ve(w,v)));else{let C=ye(v,Ve(b,Ve(w,v)));s=ot([Re(s,[0,0],[c,r]),C],0)}let k=Je(b),N=Re(a,[0,c],[n,a.shape[1]-c]);if(c===0)a=ye(N,Ve(Ve(N,o),k));else{let C=ye(N,Ve(Ve(N,o),k));a=ot([Re(a,[0,0],[n,c]),C],1)}return[o,s,a]}),we([u,h,d])}return!t&&n>r&&(a=Re(a,[0,0],[n,r]),s=Re(s,[0,0],[r,r])),[a,s]})}var qR=D({qr_:GR}),hn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(hn||(hn={}));function XR(e,t,n=hn.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:z(r,a);if(n===hn.NONE)return s;if(n===hn.SUM)return Te(s);if(n===hn.MEAN){if(a==null)return It(s);{let i=r.size/a.size,o=Ae(Te(s),Te(a));return i>1?Ae(o,ve(i)):o}}if(n===hn.SUM_BY_NONZERO_WEIGHTS){if(a==null)return Ae(Te(s),ve(r.size));{let i=z(a,Pn(r.shape)),o=ge(Te(ki(i,ve(0))),"float32");return Ae(Te(s),o)}}throw Error(`Unknown reduction: ${n}`)}var fa=D({computeWeightedLoss_:XR});function KR(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),ln(a.shape,s.shape,"Error in absoluteDifference: ");let o=zt(ye(a,s));return fa(o,i,r)}var ZR=D({absoluteDifference_:KR});function YR(e,t,n,r,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),ln(s.shape,i.shape,"Error in cosineDistance: ");let l=ve(1),c=ye(l,Te(z(s,i),n,!0));return fa(c,o,a)}var JR=D({cosineDistance_:YR});function QR(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),ln(a.shape,s.shape,"Error in hingeLoss: ");let o=ve(1);a=ye(z(ve(2),a),o);let l=Hr(ye(o,z(a,s)));return fa(l,i,r)}var eM=D({hingeLoss_:QR});function tM(e,t,n,r=1,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),ln(s.shape,i.shape,"Error in huberLoss: ");let l=ve(r),c=zt(ye(i,s)),u=Il(c,l),h=ye(c,u),d=se(z(ve(.5),it(u)),z(l,h));return fa(d,o,a)}var nM=D({huberLoss_:tM});function rM(e,t,n,r=1e-7,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),ln(s.shape,i.shape,"Error in logLoss: ");let l=ve(1),c=ve(r),u=kt(z(s,zn(se(i,c)))),h=z(ye(l,s),zn(se(ye(l,i),c))),d=ye(u,h);return fa(d,o,a)}var aM=D({logLoss_:rM});function sM(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),ln(a.shape,s.shape,"Error in meanSquaredError: ");let o=Gd(a,s);return fa(o,i,r)}var iM=D({meanSquaredError_:sM});function oM(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");ln(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Hr(r),s=z(r,n),i=Rd(er(kt(zt(r))));return se(ye(a,s),i)}function lM(e,t,n,r=0,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),ln(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let c=ve(r),u=ve(1),h=ve(.5);s=se(z(s,ye(u,c)),z(h,c))}let l=oM(s,i);return fa(l,o,a)}var uM=D({sigmoidCrossEntropy_:lM});function cM(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return jr((r,a,s)=>{let i=Mm(a,[n],!0),o=ye(ge(a,"float32"),i);s([r,o]);let l=kt(z(o,r));return{value:Te(l,[n]),gradFunc:(c,u)=>{let[h,d]=u,p=vi(c.shape,[n]);return[z(H(c,p),ye(ge(h,"float32"),er(d))),z(H(c,p),ye(er(d),ge(h,"float32")))]}}})(e,t)}function hM(e,t,n,r=0,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),ln(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let c=ve(r),u=ve(1),h=ve(s.shape[1]);s=se(z(s,ye(u,c)),Ae(c,h))}let l=cM(s,i);return fa(l,o,a)}var dM=D({softmaxCrossEntropy_:hM});function pM(e,t,n){let r=R(e,"inputIndices","sparseReshape"),a=R(t,"inputShape","sparseReshape"),s=R(n,"newShape","sparseReshape");if(r.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape + ${r.shape}`);if(a.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${a.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:r,inputShape:a,newShape:s},o=$.runKernel(od,i);return{outputIndices:o[0],outputShape:o[1]}}var fM=D({sparseReshape_:pM}),mM={fft:lc,ifft:Nl,rfft:uc,irfft:Hd},AM={hammingWindow:uR,hannWindow:Ew,frame:Cw,stft:pR},Le={flipLeftRight:yR,resizeNearestNeighbor:Ow,resizeBilinear:Dw,rotateWithOffset:xR,cropAndResize:mR,nonMaxSuppression:wR,nonMaxSuppressionAsync:ER,nonMaxSuppressionWithScore:RR,nonMaxSuppressionWithScoreAsync:FR,nonMaxSuppressionPadded:DR,nonMaxSuppressionPaddedAsync:zR,transform:BR},Pw={bandPart:jR,gramSchmidt:HR,qr:qR},yM={absoluteDifference:ZR,computeWeightedLoss:fa,cosineDistance:JR,hingeLoss:eM,huberLoss:nM,logLoss:aM,meanSquaredError:iM,sigmoidCrossEntropy:uM,softmaxCrossEntropy:dM},Lw={sparseReshape:fM},ma=class extends Wb{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return we(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return uw(e,t)}dispose(){this.iterations_!=null&&we(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ve(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(ma,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var ep=class extends ma{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:P(()=>He(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:P(()=>He(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;P(()=>{let l=se(z(i,this.rho),z(it(s),1-this.rho)),c=z(Ae(en(se(o,this.epsilon)),en(se(i,this.epsilon))),s),u=se(z(o,this.rho),z(it(c),1-this.rho));i.assign(l),o.assign(u);let h=se(z(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(we(this.accumulatedGrads.map(e=>e.variable)),we(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};ep.className="Adadelta";Pa(ep);var tp=class extends ma{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:P(()=>Qu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;P(()=>{let i=se(s,it(a));s.assign(i);let o=se(z(Ae(a,en(se(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&we(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};tp.className="Adagrad";Pa(tp);var np=class extends ma{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],P(()=>{this.accBeta1=ve(t).variable(),this.accBeta2=ve(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=ye(1,this.accBeta1),r=ye(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:P(()=>He(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:P(()=>He(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,h=se(z(c,this.beta1),z(l,1-this.beta1)),d=se(z(u,this.beta2),z(it(l),1-this.beta2)),p=Ae(h,n),m=Ae(d,r);c.assign(h),u.assign(d);let f=se(z(Ae(p,se(en(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&we(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&we(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),P(()=>{this.accBeta1.assign(pa(this.beta1,this.iterations_+1)),this.accBeta2.assign(pa(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};np.className="Adam";Pa(np);var rp=class extends ma{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],P(()=>{this.iteration=ve(0).variable(),this.accBeta1=ve(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=ye(1,this.accBeta1),r=Ae(-this.learningRate,se(z(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:He(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:He(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,h=se(z(c,this.beta1),z(l,1-this.beta1)),d=z(u,this.beta2),p=zt(l),m=Ur(d,p);c.assign(h),u.assign(m);let f=se(z(Ae(r,n),Ae(h,se(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&we(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&we(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};rp.className="Adamax";Pa(rp);var cc=class extends ma{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];P(()=>{let s=se(z(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Ht(ve(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};cc.className="SGD";Pa(cc);var ap=class extends cc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ve(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:P(()=>He(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&P(()=>{let i,o=se(z(this.m,a),s);this.useNesterov?i=se(z(this.c,se(s,z(o,this.m))),r):i=se(z(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&we(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};ap.className="Momentum";Pa(ap);var sp=class extends ma{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:P(()=>He(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:P(()=>He(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:P(()=>He(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;P(()=>{let l=se(z(i,this.decay),z(it(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=se(z(c,this.decay),z(s,1-this.decay)),h=Ae(z(s,this.learningRate),en(ye(l,se(it(u),this.epsilon)))),d=se(z(o,this.momentum),h);i.assign(l),c.assign(u),o.assign(d);let p=ye(r,d);r.assign(p)}else{let c=se(z(i,this.decay),z(it(s),1-this.decay)),u=se(z(o,this.momentum),Ae(z(s,this.learningRate),en(se(c,this.epsilon))));i.assign(c),o.assign(u);let h=ye(r,u);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&we(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&we(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&we(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};sp.className="RMSProp";Pa(sp);var Ii=class{static sgd(e){return new cc(e)}static momentum(e,t,n=!1){return new ap(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new sp(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new np(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new ep(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new rp(e,t,n,r,a)}static adagrad(e,t=.1){return new tp(e,t)}},Si={sgd:Ii.sgd,momentum:Ii.momentum,adadelta:Ii.adadelta,adagrad:Ii.adagrad,rmsprop:Ii.rmsprop,adamax:Ii.adamax,adam:Ii.adam},gM=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function ip(){return new Promise(e=>gM(()=>e()))}var E={};Me(E,{ERF_A1:()=>EM,ERF_A2:()=>CM,ERF_A3:()=>RM,ERF_A4:()=>MM,ERF_A5:()=>FM,ERF_P:()=>TM,PARALLELIZE_THRESHOLD:()=>Jm,SELU_SCALE:()=>Bw,SELU_SCALEALPHA:()=>Ww,applyActivation:()=>Jd,assertAndGetBroadcastShape:()=>ft,assertAxesAreInnerMostDims:()=>YT,assertParamsConsistent:()=>xM,assignToTypedArray:()=>BM,axesAreInnerMostDims:()=>Cm,calculateShapes:()=>Tb,checkEinsumDimSizes:()=>GM,combineLocations:()=>hw,complexWithEvenIndex:()=>PM,complexWithOddIndex:()=>LM,computeConv2DInfo:()=>Ku,computeConv3DInfo:()=>qb,computeDefaultPad:()=>ym,computeDilation2DInfo:()=>wN,computeOptimalWindowSize:()=>wM,computeOutAndReduceShapes:()=>dw,computeOutShape:()=>bM,computePool2DInfo:()=>Gb,computePool3DInfo:()=>_N,convertConv2DDataFormat:()=>Hb,decodeEinsumEquation:()=>UM,eitherStridesOrDilationsAreOne:()=>Vr,expandShapeToKeepDim:()=>vi,exponent:()=>jM,exponents:()=>VM,fromStringArrayToUint8:()=>YM,fromUint8ToStringArray:()=>ZM,getAxesPermutation:()=>pw,getBroadcastDims:()=>dT,getComplexWithIndex:()=>WM,getEinsumComputePath:()=>qM,getEinsumPermutation:()=>HM,getFusedBiasGradient:()=>Yd,getFusedDyActivation:()=>Zd,getImageCenter:()=>_M,getInnerMostAxes:()=>JT,getPermuted:()=>kM,getReductionAxes:()=>Pt,getReshaped:()=>vM,getReshapedPermuted:()=>IM,getSliceBeginCoords:()=>SM,getSliceSize:()=>NM,getUndoAxesPermutation:()=>Rm,isIdentityPermutation:()=>XM,log:()=>DM,mergeRealAndImagArrays:()=>OM,prepareAndValidate:()=>Nb,prepareSplitSize:()=>KM,segment_util:()=>Vw,shouldFuse:()=>Qd,slice_util:()=>un,splitRealAndImagArrays:()=>zM,tupleValuesAreOne:()=>Wa,upcastType:()=>dr,validateInput:()=>nm,validateUpdateShape:()=>tm,warn:()=>$M});function xM(e,t){let n=e[0].length;e.forEach((a,s)=>{M(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function bM(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function IM(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s/g,jw=",",Uw="...";function UM(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(JM,"").length)/Qm.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${Qm}").`);let[r,a]=e.split(Qm);M(r.indexOf(Uw)===-1,()=>`The ellipsis notation ("${Uw}") is not supported yet.`);let s=r.split(jw),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let d=0;dm.indexOf(p)!==-1))throw new Error(`Output subscripts contain the label ${p} not present in the input subscripts.`);o.indexOf(p)===-1&&o.push(p)}for(let d=0;da!==-1),{permutationIndices:n,expandDims:r}}function GM(e,t,n){let r=new Array(e);for(let a=0;a`Expected dimension ${r[t[a][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function qM(e,t){let n=e,r=[],a=0;e.length===0&&n.push(-1),a=e.length+1;for(let i=0;it===n)}function QM(e,t){let n=[];for(let r=0;r"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);M(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}M(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var Vw={};Me(Vw,{collectGatherOpShapeInfo:()=>nF,computeOutShape:()=>tF,segOpComputeOptimalWindowSize:()=>eF});function eF(e,t){let n=!1,r;for(e<=Jm?(r=e,n=!0):r=Mh(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Mh(e,r+1);return r}function tF(e,t,n){let r=[],a=e.length;for(let s=0;sa))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) ( + ${s}).`);if(nfd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function YM(e){return e.map(t=>Lu(t))}var Gr={};Me(Gr,{nonMaxSuppressionV3Impl:()=>Rw,nonMaxSuppressionV4Impl:()=>Mw,nonMaxSuppressionV5Impl:()=>Fw,whereImpl:()=>ww});function _e(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&_.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var rF=Gr.whereImpl,op=class extends gu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Ch(this,ca())}nextDataId(){return op.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&E.warn(` ============================ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details. -============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&_.isString(n[0])){let a=n.map(s=>_.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return E.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>_.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return ua().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=_.now();return e(),{kernelMs:_.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ve([e],"where");let t=this.readSync(e.dataId);return dF(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};lp.nextDataId=0;var nA={};Me(nA,{addImpl:()=>Yb,bincountImpl:()=>rA,bincountReduceImpl:()=>Jb,ceilImpl:()=>Qb,concatImpl:()=>aA,expImpl:()=>e_,expm1Impl:()=>t_,floorImpl:()=>n_,gatherV2Impl:()=>r_,greaterImpl:()=>a_,lessImpl:()=>s_,linSpaceImpl:()=>i_,logImpl:()=>o_,maxImpl:()=>l_,maximumImpl:()=>u_,minimumImpl:()=>c_,multiplyImpl:()=>sA,negImpl:()=>h_,notEqualImpl:()=>d_,prodImpl:()=>p_,rangeImpl:()=>oA,rsqrtImpl:()=>f_,simpleAbsImpl:()=>Zb,sliceImpl:()=>up,sparseReshapeImpl:()=>m_,squaredDifferenceImpl:()=>A_,stridedSliceImpl:()=>y_,subImpl:()=>g_,tileImpl:()=>x_,topKImpl:()=>w_,transposeImpl:()=>iA,uniqueImpl:()=>b_});function Zb(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;ve(t,"abs");let r=new Float32Array(_.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=Zb(a),n.makeOutput(r,t.shape,"float32")},fF={kernelName:lo,backendName:"cpu",kernelFunc:pF};function Mt(e){return(t,n,r,a,s)=>{let i=E.assertAndGetBroadcastShape(t,n),o=i.length,l=_.computeStrides(i),c=_.sizeFromShape(i),u=_.getTypedArrayFromDType(s,c),h=t.length,d=n.length,p=_.computeStrides(t),f=_.computeStrides(n),m=E.getBroadcastDims(t,i),A=E.getBroadcastDims(n,i);if(m.length+A.length===0)for(let y=0;yx[k]=0);let v=_.locToIndex(x,h,p),w=g.slice(-d);A.forEach(k=>w[k]=0);let b=_.locToIndex(w,d,f);u[y]=e(r[v],a[b])}return[u,i]}}function Bn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var mF={kernelName:Ph,backendName:"cpu",kernelFunc:Bn};function cp(e,t,n="float32"){if(n==="complex64"){let a=cp(e,t,"float32"),s=cp(e,t,"float32");return Bn({inputs:{real:a,imag:s},backend:e})}let r=_.makeZerosTypedArray(_.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Gr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var AF={kernelName:Es,backendName:"cpu",kernelFunc:Gr};function Si(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var yF={kernelName:sd,backendName:"cpu",kernelFunc:Si};function Ha(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Gr({inputs:{x:a},backend:n});let i=cp(n,a.shape,a.dtype),o=Ha({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Bn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Si({inputs:{input:a},backend:n}),o=Ha({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!_.hasEncodingLoss(a.dtype,s)){let i=Gr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=_.toTypedArray([0],a.dtype),[l,c]=Mt((u,h)=>u!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var gF={kernelName:As,backendName:"cpu",kernelFunc:Ha};function Gt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;ve([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=Ha({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),h=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,p=l.data.get(h.dataId).values,f=l.data.get(d.dataId).values,m=Ha({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(m.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(g.dataId).values,[w,b,k]=n(i.shape,o.shape,p,f,x,v),N=l.makeTensorInfo(k,"float32",w),C=l.makeTensorInfo(k,"float32",b),F=Bn({inputs:{real:N,imag:C},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(N),l.disposeIntermediateTensorInfo(C),F}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}}}function lA(e){return(t,n,r,a,s,i)=>{let o=E.assertAndGetBroadcastShape(t,n),l=_.sizeFromShape(o),c=o.length,u=_.computeStrides(o),h=_.getTypedArrayFromDType("float32",l),d=_.getTypedArrayFromDType("float32",l),p=E.getBroadcastDims(t,o),f=E.getBroadcastDims(n,o),m=E.mergeRealAndImagArrays(r,a),A=E.mergeRealAndImagArrays(s,i),y=t.length,g=_.computeStrides(t),x=n.length,v=_.computeStrides(n);if(p.length+f.length===0)for(let w=0;wk[L]=0);let N=_.locToIndex(k,y,g),C=b.slice(-x);f.forEach(L=>C[L]=0);let F=_.locToIndex(C,x,v),O=e(m[N*2],m[N*2+1],A[F*2],A[F*2+1]);h[w]=O.real,d[w]=O.imag}return[h,d,o]}}var Yb=Mt((e,t)=>e+t),xF=lA((e,t,n,r)=>({real:e+n,imag:t+r})),pc=Gt(Ca,Yb,xF),wF={kernelName:Ca,backendName:"cpu",kernelFunc:pc};function rA(e,t,n,r,a){let s=_.sizeFromShape(r),i=_.makeZerosTypedArray(a,n);for(let o=0;o=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function Jb(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Be([a,n],t.dtype);for(let o=0;o=n||(r?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function Cl(e){return(t,n,r)=>{let a=_.getTypedArrayFromDType(n,t.length);for(let s=0;s{let{x:i}=r;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=_.sizeFromShape(i.shape),u=n||i.dtype,h=_.getArrayFromDType(u,c);for(let d=0;d{let{x:i}=r;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,a);return o.makeTensorInfo(i.shape,c,u)}}var Qb=Cl(e=>Math.ceil(e)),bF=Rl(ys,Qb),_F={kernelName:ys,backendName:"cpu",kernelFunc:bF};function aA(e,t,n,r){let a=_.getArrayFromDType(n,_.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=_.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?E.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;cMath.exp(e)),__=Rl(ks,e_),vF={kernelName:ks,backendName:"cpu",kernelFunc:__},t_=Cl(e=>Math.expm1(e)),kF=Rl(No,t_),IF={kernelName:No,backendName:"cpu",kernelFunc:kF},n_=Cl(e=>Math.floor(e)),SF=Rl(Is,n_),NF={kernelName:Is,backendName:"cpu",kernelFunc:SF};function r_(e,t,n){let r=Be(n,e.dtype);for(let a=0;ae>t?1:0),TF=Gt(Ro,a_,null,"bool"),EF={kernelName:Ro,backendName:"cpu",kernelFunc:TF},s_=Mt((e,t)=>eMath.log(e)),MF=Rl(Rs,o_),FF={kernelName:Rs,backendName:"cpu",kernelFunc:MF};function l_(e,t,n,r){let a=_.getTypedArrayFromDType(r,_.sizeFromShape(n));for(let s=0;so&&(o=c)}a[s]=o}return a}var u_=Mt((e,t)=>Math.max(e,t)),$F=Gt(Fs,u_),DF={kernelName:Fs,backendName:"cpu",kernelFunc:$F},c_=Mt((e,t)=>Math.min(e,t)),OF=Gt(zs,c_),zF={kernelName:zs,backendName:"cpu",kernelFunc:OF},sA=Mt((e,t)=>e*t),PF=lA((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),hp=Gt(Ls,sA,PF),LF={kernelName:Ls,backendName:"cpu",kernelFunc:hp};function h_(e,t,n){let r=_.createScalarValue(-1,n);return sA([],t,r,e,n)}function WF(e){let{inputs:t,backend:n}=e,{x:r}=t;ve(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=h_(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var BF={kernelName:Wo,backendName:"cpu",kernelFunc:WF},d_=Mt((e,t)=>e!==t?1:0),VF=Gt(Bo,d_,null,"bool"),jF={kernelName:Bo,backendName:"cpu",kernelFunc:VF};function iA(e,t,n,r,a){let s=t.length,i=_.sizeFromShape(t),o=_.computeStrides(t),l=_.computeStrides(a),c=_.getTypedArrayFromDType(n,_.sizeFromShape(a));for(let u=0;un.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,f)}var GF={kernelName:qo,backendName:"cpu",kernelFunc:HF};function oA(e,t,n,r){let a=e===t,s=e1;if(a||s||i)return _.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=_.makeZerosTypedArray(o,r);t1/Math.sqrt(e)),qF=Rl(Ks,f_),XF={kernelName:Ks,backendName:"cpu",kernelFunc:qF};function up(e,t,n,r,a){let s=un.isSliceContinous(r,t,n),i=_.sizeFromShape(n),o=_.computeStrides(r);if(s){let h=un.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?E.fromUint8ToStringArray(e):e,c=Be(r,a,l),u=Be(n,a);for(let h=0;hf+t[m]);u.set(c.get(...p),...d)}return a==="string"?E.fromStringArrayToUint8(u.values):u.values}function Ni(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;ve(a,"slice");let[o,l]=un.parseSliceParams(a,s,i);un.assertParamsValid(a,o,l);let c=n.data.get(a.dataId).values,u=up(c,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,u)}var KF={kernelName:Qo,backendName:"cpu",kernelFunc:Ni};function m_(e,t,n,r,a){let s=_.sizeFromShape(r),i=t[0],o=a.length,l=[],c=1,u=-1;for(let A=0;A0){p[d-1]=1;for(let A=d-2;A>=0;--A)p[A]=p[A+1]*r[A+1]}let f=[];if(o>0){f[o-1]=1;for(let A=o-2;A>=0;--A)f[A]=f[A+1]*l[A+1]}let m=_.getArrayFromDType(n,i*o);for(let A=0;A{let n=e-t;return n*n}),ZF=Gt(ti,A_),YF={kernelName:ti,backendName:"cpu",kernelFunc:ZF};function y_(e,t,n,r){let a=Be(e,t.dtype);for(let s=0;se-t),JF=lA((e,t,n,r)=>({real:e-n,imag:t-r})),uA=Gt(ni,g_,JF),QF={kernelName:ni,backendName:"cpu",kernelFunc:uA};function x_(e,t){let n=new Array(e.rank);for(let a=0;ax.value-g.value);let m=h*r,A=l.subarray(m,m+r),y=c.subarray(m,m+r);for(let g=0;g{for(let A=0;Anew lp,1);var k_=at(vo,e=>e>=0?e:Math.exp(e)-1),e$={kernelName:vo,backendName:"cpu",kernelFunc:k_};function I_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;ve([a],"leakyRelu");let i=_.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=_.getTypedArrayFromDType("float32",i);for(let c=0;ce<0?t*e:e);function S_(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;ve([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=n$(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var r$={kernelName:js,backendName:"cpu",kernelFunc:S_},N_=at(Us,e=>Math.max(0,e)),a$={kernelName:Us,backendName:"cpu",kernelFunc:N_},T_=at(Gs,e=>Math.min(Math.max(0,e),6)),s$={kernelName:Gs,backendName:"cpu",kernelFunc:T_},E_=at(Ys,e=>1/(1+Math.exp(-e))),i$={kernelName:Ys,backendName:"cpu",kernelFunc:E_};function cA(e,t,n,r,a){if(n==="linear")return Gr({inputs:{x:t},backend:e});if(n==="relu")return N_({inputs:{x:t},backend:e});if(n==="elu")return k_({inputs:{x:t},backend:e});if(n==="relu6")return T_({inputs:{x:t},backend:e});if(n==="prelu")return S_({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return I_({inputs:{x:t},backend:e,attrs:{alpha:a}});if(n==="sigmoid")return E_({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function mt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=_.sizeFromShape(a.shape),o=_.inferFromImplicitShape(s,i),l=_.sizeFromShape(o);_.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let c=n.data.get(a.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,h=c.complexTensorInfos.imag;u.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var o$={kernelName:Ko,backendName:"cpu",kernelFunc:mt};function C_(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;ve([a,s],"matMul");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=_.sizeFromShape(f),y=_.sizeFromShape(m),g=A===y||A===1||y===1;_.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let x=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);_.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[A,u,d]:[A,d,u],w=o?[y,p,h]:[y,h,p],b=mt({inputs:{x:a},backend:n,attrs:{shape:v}}),k=mt({inputs:{x:s},backend:n,attrs:{shape:w}}),N=i?b.shape[1]:b.shape[2],C=i?b.shape[2]:b.shape[1],F=o?k.shape[1]:k.shape[2],O=Math.max(A,y),L=n.data.get(b.dataId).values,V=n.data.get(k.dataId).values,j=_.computeStrides(b.shape),U=_.computeStrides(k.shape),[X,G,ee]=i?[j[0],1,j[1]]:[j[0],j[1],1],[Y,ae,te]=o?[1,U[1],U[0]]:[U[1],1,U[0]],ie=C*F,Q=Be([O,C,F],b.dtype),he=Q.values,oe=n.blockSize;for(let me=0;meMath.acos(e)),d$={kernelName:uo,backendName:"cpu",kernelFunc:h$},p$=at(co,e=>Math.acosh(e)),f$={kernelName:co,backendName:"cpu",kernelFunc:p$};function m$(e){let{inputs:t,backend:n}=e,r=t;ve(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Be(r[0].shape,r[0].dtype),i=s.values;for(let o=0;og&&(g=w,x=v)}p[A]=x}return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var _$={kernelName:ps,backendName:"cpu",kernelFunc:b$};function v$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;ve(a,"argMin");let i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=nr({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],E.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,h]=E.computeOutAndReduceShapes(l.shape,i),d=_.sizeFromShape(u),p=_.makeZerosTypedArray(d,"int32"),f=_.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;An.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var k$={kernelName:vu,backendName:"cpu",kernelFunc:v$},I$=at(fo,e=>Math.asin(e)),S$={kernelName:fo,backendName:"cpu",kernelFunc:I$},N$=at(mo,e=>Math.asinh(e)),T$={kernelName:mo,backendName:"cpu",kernelFunc:N$},E$=at(Ao,e=>Math.atan(e)),C$={kernelName:Ao,backendName:"cpu",kernelFunc:E$},R$=Mt((e,t)=>Math.atan2(e,t)),M$=Gt(go,R$),F$={kernelName:go,backendName:"cpu",kernelFunc:M$},$$=at(yo,e=>Math.atanh(e)),D$={kernelName:yo,backendName:"cpu",kernelFunc:$$};function hA(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,c=a.dilationWidth,u=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Be(a.outShape,n),A=m.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],x=a.outShape[3];for(let v=0;vG?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let ae=L+V*x+k;A[ae]=s==="avg"?ee/Y:G}}}return m}function R_(e,t,n,r,a=!1,s=!1){let i=Be(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,c=r.dilationHeight,u=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,f=r.padInfo.left,m=Be(t,n,e);for(let A=0;AF&&(F=X,a?O=s?((A*r.inHeight+L)*r.inWidth+j)*r.inChannels+y:(L*r.inWidth+j)*r.inChannels+y:O=V*d+U)}}i.set(O,A,g,b,y)}}return i}function M_(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,c=a.dilationDepth,u=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,f=a.effectiveFilterWidth,m=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Be(a.outShape,n),v=x.values,w=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],b=a.outShape[2]*a.outShape[3]*a.outShape[4],k=a.outShape[3]*a.outShape[4],N=a.outShape[4];for(let C=0;CIe?Ie=je:s==="avg"&&(Se+=je,Fe++),isNaN(Ie))break}if(isNaN(Ie))break}if(isNaN(Ie))break}let Oe=pe+L;v[Oe]=s==="avg"?Se/Fe:Ie}}}}return x}function O$(e,t){let n=Be(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m=V&&(V=te,j=X*u*h+ee*u+ae)}}}n.set(j,m,y,w,C,A)}}}return n}function z$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ve(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))h=Gr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=_.computeStrides(a.shape),f=hA(d,a.shape,a.dtype,p,u,"avg");h=n.makeTensorInfo(u.outShape,a.dtype,f.values)}return h}var P$={kernelName:fs,backendName:"cpu",kernelFunc:z$};function L$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;ve(a,"avgPool3d");let u=E.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=M_(h,a.shape,a.dtype,_.computeStrides(a.shape),u,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var W$={kernelName:ku,backendName:"cpu",kernelFunc:L$};function B$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;ve([a,s],"avgPool3DGrad");let u=E.computePool3DInfo(s.shape,i,o,1,l,c),h=u.strideDepth,d=u.strideHeight,p=u.strideWidth,f=u.filterDepth,m=u.filterHeight,A=u.filterWidth,y=u.dilationDepth,g=u.dilationHeight,x=u.dilationWidth,v=u.effectiveFilterDepth,w=u.effectiveFilterHeight,b=u.effectiveFilterWidth,k=v-1-u.padInfo.front,N=b-1-u.padInfo.left,C=w-1-u.padInfo.top,F=Be(s.shape,"float32"),O=1/(f*m*A),L=n.bufferSync(a);for(let V=0;V=u.outDepth||Math.floor(Q)!==Q))for(let he=0;he=u.outHeight||Math.floor(oe)!==oe))for(let me=0;me=u.outWidth||Math.floor(pe)!==pe||(te+=L.get(V,Q,oe,pe,j))}}}F.set(te*O,V,U,X,G,j)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var V$={kernelName:Oh,backendName:"cpu",kernelFunc:B$};function j$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;ve([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=E.computePool2DInfo(i.shape,o,l,1,c),h=u.strideHeight,d=u.strideWidth,p=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,A=u.dilationWidth,y=u.effectiveFilterHeight,g=u.effectiveFilterWidth,x=g-1-u.padInfo.left,v=y-1-u.padInfo.top,w=Be(i.shape,"float32"),b=1/(p*f),k=n.data.get(a.dataId).values,N=Be(a.shape,"float32",k);for(let C=0;C=u.outHeight||Math.floor(G)!==G))for(let ee=0;ee=u.outWidth||Math.floor(Y)!==Y||(U+=N.get(C,G,Y,F))}}w.set(U*b,C,O,L,F)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var U$={kernelName:Dh,backendName:"cpu",kernelFunc:j$};function H$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;_.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ve([a,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=r;c==null&&(c=.001);let u=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),f=i?n.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),A=f.length,y=p.length,g=d.length,x=h.length,v=0,w=0,b=0,k=0;for(let N=0;N=A&&(v=0),w>=x&&(w=0),b>=y&&(b=0),k>=g&&(k=0);return n.makeTensorInfo(a.shape,a.dtype,m)}var G$={kernelName:Ns,backendName:"cpu",kernelFunc:H$};function q$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;ve([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=E.getReshaped(a.shape,s,o),c=E.getPermuted(l.length,s.length),u=E.getReshapedPermuted(a.shape,s,o),h=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(u,i,s.length),p=mt({inputs:{x:a},backend:n,attrs:{shape:l}}),f=nr({inputs:{x:p},backend:n,attrs:{perm:c}}),m=mt({inputs:{x:f},backend:n,attrs:{shape:u}}),A=Ni({inputs:{x:m},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var X$={kernelName:Iu,backendName:"cpu",kernelFunc:q$};function K$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,c=rA(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var Z$={kernelName:zh,backendName:"cpu",kernelFunc:K$},Y$=at(Ra,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(_.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;cm.shape),s);if(_.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>_.sizeFromShape(m.shape)>0);if(o.length===1)return Gr({inputs:{x:o[0]},backend:n});let l=o.map(m=>m.shape);if(E.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let m=o.map(v=>Si({inputs:{input:v},backend:n})),A=o.map(v=>Ml({inputs:{input:v},backend:n})),y=Fl({inputs:m,backend:n,attrs:{axis:s}}),g=Fl({inputs:A,backend:n,attrs:{axis:s}}),x=Bn({inputs:{real:y,imag:g},backend:n});return m.forEach(v=>n.disposeIntermediateTensorInfo(v)),A.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),x}let c=o.map(m=>{let A=_.sizeFromShape(m.shape.slice(s));return mt({inputs:{x:m},backend:n,attrs:{shape:[-1,A]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));i=E.computeOutShape(c.map(m=>m.shape),1);let h=c[0].shape[0]===1,d=aA(u,i,t[0].dtype,h),p=E.computeOutShape(o.map(m=>m.shape),s),f=n.makeTensorInfo(p,t[0].dtype,d);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var nD={kernelName:xo,backendName:"cpu",kernelFunc:Fl};function F_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r;ve([a,s],"conv2d");let h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,x=d.dataFormat==="channelsLast",v=new Ot(d.outShape,a.dtype),w=_.computeStrides(a.shape),b=_.computeStrides(s.shape),k=w[0],N=x?w[1]:w[2],C=x?w[2]:1,F=x?1:w[1],O=v.strides[0],L=x?v.strides[1]:v.strides[2],V=x?v.strides[2]:1,j=x?1:v.strides[1],U=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,G=v.values;for(let ee=0;ee=d.inHeight)continue;let me=he*b[0],pe=Y+oe*N;for(let Ie=0;Ie=d.inWidth)continue;let et=me+Oe*b[1],tt=pe+$e*C,it=et;for(let Ke=0;Ke=c.inDepth)continue;let ee=X*C[0],Y=O+G*N[1];for(let ae=0;ae=c.inHeight)continue;let oe=ee+Q*C[1],me=Y+he*N[2];for(let pe=0;pe=c.inWidth)continue;let $e=oe+Fe*C[2],et=me+Oe*c.inChannels,tt=$e;for(let it=0;itMath.cos(e)),mD={kernelName:ws,backendName:"cpu",kernelFunc:fD},AD=at(wo,e=>Math.cosh(e)),yD={kernelName:wo,backendName:"cpu",kernelFunc:AD};function gD(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,[u,h,d,p]=a.shape,f=s.shape[0],[m,A]=o,y=Be([f,m,A,p],"float32"),g=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(a.dataId).values,w=_.computeStrides(a.shape),b=_.computeStrides(y.shape);for(let k=0;k=u)continue;let j=m>1?(O-C)*(h-1)/(m-1):0,U=A>1?(L-F)*(d-1)/(A-1):0;for(let X=0;X1?C*(h-1)+X*j:.5*(C+O)*(h-1);if(G<0||G>h-1){for(let ee=0;ee1?F*(d-1)+te*U:.5*(F+L)*(d-1);if(ie<0||ie>d-1){for(let me=0;me1?F*(d-1)+ee*U:.5*(F+L)*(d-1);if(Y<0||Y>d-1){for(let ie=0;iey+f-g-1:(y,g)=>y+g;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],c=a.shape[2],u=a.shape[3],h=l*s,d=c*s,p=u/(s*s),f=n.data.get(a.dataId).values,m=new Float32Array(o*h*d*p),A=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=E.computeConv2DInfo(a.shape,s.shape,i,d,o,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:A,dilationWidth:y,padInfo:g}=p,x=g.left,v=g.top,w=p.outChannels/p.inChannels,b=new Ot(p.outShape,a.dtype),k=n.data.get(a.dataId).values,N=n.data.get(s.dataId).values,C=b.values;for(let F=0;F=p.inHeight)continue;let ee=X*h[0],Y=O+G*u[1];for(let ae=0;ae=p.inWidth)continue;let oe=ee+Q*h[1],me=Y+he*p.inChannels,pe=te,Ie=oe;for(let Se=0;Se{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(r.dataId).values,u=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:A,outHeight:y,outWidth:g,padInfo:x,strideHeight:v,strideWidth:w,filterHeight:b,filterWidth:k,dilationHeight:N,dilationWidth:C,outShape:F}=E.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),O=_.sizeFromShape(F),L=F.length,V=_.getArrayFromDType(r.dtype,O);for(let j=0;j=0&&Q=0&&oeae&&(ae=Ie)}}}let te=_.locToIndex([j,U,G,Y],L,_.computeStrides(F));V[te]=ae}}}return{dataId:l.write(_.toTypedArray(V,r.dtype),F,r.dtype),shape:F,dtype:r.dtype}}},$D={kernelName:qh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=_.toNestedArray(r.shape,c.data.get(r.dataId).values),h=_.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:v,filterHeight:w,filterWidth:b,dilationHeight:k,dilationWidth:N,outShape:C}=E.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);_.assert(s.rank===C.length,()=>`Error in ${qh}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let F=_.toNestedArray(C,c.data.get(s.dataId).values),O=_.makeZerosNestedTypedArray(a.shape,a.dtype);for(let L=0;L=0&&ie=0&&heee&&(ee=oe,Y=te,ae=Q)}}}O[Y][ae][G]+=F[L][V][U][G]}}}return{dataId:c.write(_.toTypedArray(O,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},DD={kernelName:Gh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=_.toNestedArray(r.shape,c.data.get(r.dataId).values),h=_.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:v,filterHeight:w,filterWidth:b,dilationHeight:k,dilationWidth:N,outShape:C}=E.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);_.assert(s.rank===C.length,()=>`Error in ${Gh}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let F=_.toNestedArray(C,c.data.get(s.dataId).values),O=_.makeZerosNestedTypedArray(r.shape,r.dtype);for(let L=0;L=0&&ie=0&&heee&&(ee=oe,Y=ie,ae=he)}}}O[L][Y][ae][G]+=F[L][V][U][G]}}}return{dataId:c.write(_.toTypedArray(O,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function fc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"sum");let o;a.dtype==="bool"?o=Ha({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Gr({inputs:{x:a},backend:n});let l=o.shape.length,c=_.parseAxisParam(s,o.shape),u=E.getAxesPermutation(c,l),h=c,d=o;u!=null&&(d=nr({inputs:{x:o},backend:n,attrs:{perm:u}}),h=E.getInnerMostAxes(h.length,l)),E.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,f]=E.computeOutAndReduceShapes(d.shape,h),m=E.upcastType(d.dtype,"int32"),A=cp(n,p,m),y=_.sizeFromShape(f),g=n.data.get(A.dataId).values,x=n.data.get(d.dataId).values;for(let v=0;v=0&&(d=fc({inputs:{x:d},backend:n,attrs:{axis:c[m]-(i.length-p),keepDims:!1}}),f.push(d)),p--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var PD={kernelName:Xh,backendName:"cpu",kernelFunc:zD};function LD(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;ve([r,a],"eluGrad");let s=new Float32Array(_.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(a.shape,"float32",s)}var WD={kernelName:Kh,backendName:"cpu",kernelFunc:LD},BD=Mt((e,t)=>e===t?1:0),D_=Gt(Io,BD,null,"bool"),VD={kernelName:Io,backendName:"cpu",kernelFunc:D_},jD=E.ERF_P,UD=E.ERF_A1,HD=E.ERF_A2,GD=E.ERF_A3,qD=E.ERF_A4,XD=E.ERF_A5,KD=at(ko,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+jD*n);return t*(1-((((XD*r+qD)*r+GD)*r+HD)*r+UD)*r*Math.exp(-n*n))}),ZD={kernelName:ko,backendName:"cpu",kernelFunc:KD};function dp(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(_.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),mt({inputs:{x:a},backend:n,attrs:{shape:o}})}var YD={kernelName:So,backendName:"cpu",kernelFunc:dp},JD=Mt((e,t)=>e/t),dA=Gt(vs,JD),pA={kernelName:vs,backendName:"cpu",kernelFunc:dA};function O_(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[a,s],u=_.sizeFromShape(c),h=_.getTypedArrayFromDType("float32",u),d=_.getTypedArrayFromDType("float32",u);for(let A=0;A{let{image:r}=e,a=n,s=_.getTypedArrayFromDType(r.dtype,_.sizeFromShape(r.shape)),[i,o,l,c]=r.shape,u=a.data.get(r.dataId).values;for(let h=0;h=0&&xMath.floor(e/t)),lO=Gt(Ss,oO,null,"int32"),uO={kernelName:Ss,backendName:"cpu",kernelFunc:lO};function cO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=F_({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=pc({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=cA(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var hO={kernelName:oi,backendName:"cpu",kernelFunc:cO};function dO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=$_({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=pc({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=cA(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var pO={kernelName:li,backendName:"cpu",kernelFunc:dO};function fO(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=_.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,c,u,h]=E.prepareAndValidate(r,a);if(c===0)return n.makeTensorInfo(l,r.dtype,[]);let d=Be([c,u],r.dtype),p=n.data.get(a.dataId).values,f=n.data.get(r.dataId).values;for(let m=0;m=s/u)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;ge>=t?1:0),xO=Gt(Ts,gO,null,"bool"),wO={kernelName:Ts,backendName:"cpu",kernelFunc:xO};function bO(e){let{inputs:t,backend:n}=e,{input:r}=t,a=_.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=mt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=O_(o,!0,n),c=mt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var _O={kernelName:Yh,backendName:"cpu",kernelFunc:bO},vO=at(Mo,e=>Number.isFinite(e)?1:0,"bool"),kO={kernelName:Mo,backendName:"cpu",kernelFunc:vO},IO=at(Fo,e=>Math.abs(e)===Infinity?1:0,"bool"),SO={kernelName:Fo,backendName:"cpu",kernelFunc:IO},NO=at($o,e=>Number.isNaN(e)?1:0,"bool"),TO={kernelName:$o,backendName:"cpu",kernelFunc:NO},EO=Mt((e,t)=>e<=t?1:0),CO=Gt(Oo,EO,null,"bool"),RO={kernelName:Oo,backendName:"cpu",kernelFunc:CO};function MO(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=i_(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var FO={kernelName:Qh,backendName:"cpu",kernelFunc:MO},$O=at(zo,e=>Math.log1p(e)),DO={kernelName:zo,backendName:"cpu",kernelFunc:$O},OO=Mt((e,t)=>e&&t),zO=Gt(Po,OO,null,"bool"),PO={kernelName:Po,backendName:"cpu",kernelFunc:zO},LO=at(Cu,e=>e?0:1,"bool"),WO={kernelName:Cu,backendName:"cpu",kernelFunc:LO},BO=Mt((e,t)=>e||t),VO=Gt(Ru,BO,null,"bool"),jO={kernelName:Ru,backendName:"cpu",kernelFunc:VO};function UO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;ve(a,"LRN");let c=a.shape[3],u=c-1,h=n.data.get(a.dataId).values,d=_.sizeFromShape(a.shape),p=new Float32Array(d);function f(m){let A=m%c,y=m-A+Math.max(0,A-s),g=m-A+Math.min(A+s,u),x=0;for(;y<=g;y++){let v=h[y];x+=v*v}return x}for(let m=0;m`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))h=Gr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=_.computeStrides(a.shape),f=hA(d,a.shape,a.dtype,p,u,"max");h=n.makeTensorInfo(u.outShape,a.dtype,f.values)}return h}var ZO={kernelName:$s,backendName:"cpu",kernelFunc:KO};function YO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;ve(a,"maxPool3d");let u=E.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=M_(h,a.shape,a.dtype,_.computeStrides(a.shape),u,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var JO={kernelName:Fu,backendName:"cpu",kernelFunc:YO};function QO(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;ve([a,s],"maxPool3DGrad");let u=E.computePool3DInfo(s.shape,i,o,1,l,c),h=n.bufferSync(s),d=O$(h,u),p=u.strideDepth,f=u.strideHeight,m=u.strideWidth,A=u.dilationDepth,y=u.dilationHeight,g=u.dilationWidth,x=u.effectiveFilterDepth,v=u.effectiveFilterHeight,w=u.effectiveFilterWidth,b=x-1-u.padInfo.front,k=w-1-u.padInfo.left,N=v-1-u.padInfo.top,C=Be(s.shape,"float32"),F=n.bufferSync(a);for(let O=0;O=u.outDepth||Math.floor(te)!==te))for(let ie=0;ie=u.outHeight||Math.floor(Q)!==Q))for(let he=0;he=u.outWidth||Math.floor(oe)!==oe)continue;let me=x*v*w-1-d.get(O,te,Q,oe,L),pe=ae*v*w+ie*w+he,Ie=me===pe?1:0;Ie!==0&&(Y+=F.get(O,te,Q,oe,L)*Ie)}}}C.set(Y,O,V,j,U,L)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var ez={kernelName:nd,backendName:"cpu",kernelFunc:QO};function tz(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;ve([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=E.computePool2DInfo(o.shape,l,c,1,u,h),p=n.data.get(o.dataId).values,f=Be(d.outShape,o.dtype,R_(p,o.shape,o.dtype,d).values),m=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,x=d.effectiveFilterHeight,v=d.effectiveFilterWidth,w=v-1-d.padInfo.left,b=x-1-d.padInfo.top,k=Be(o.shape,"float32"),N=n.data.get(a.dataId).values,C=Be(a.shape,"float32",N);for(let F=0;F=d.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y=d.outWidth||Math.floor(ae)!==ae)continue;let te=x*v-1-f.get(F,ee,ae,O),ie=G*v+Y,Q=te===ie?1:0;Q!==0&&(X+=C.get(F,ee,ae,O)*Q)}}k.set(X,F,L,V,O)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var nz={kernelName:td,backendName:"cpu",kernelFunc:tz};function rz(e,t,n,r,a){let s=_.computeStrides(t),i=hA(e,t,n,s,a,"max"),o=R_(e,t,n,a,!0,r);return[i.values,o.values]}var az={kernelName:rd,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ve(r,"MaxPoolWithArgmax");let c=l.data.get(r.dataId).values,u=E.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=rz(c,r.shape,r.dtype,o,u),p=l.write(h,u.outShape,r.dtype),f=l.write(d,u.outShape,r.dtype);return[{dataId:p,shape:u.outShape,dtype:r.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function sz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=_.parseAxisParam(s,a.shape),l=E.computeOutAndReduceShapes(a.shape,o)[1],c=_.sizeFromShape(l),u=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));u.push(h);let d=Ha({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});u.push(d);let p=dA({inputs:{a:d,b:h},backend:n});u.push(p);let f=fc({inputs:{x:p},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var iz={kernelName:Ds,backendName:"cpu",kernelFunc:sz};function oz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"min");let o=_.parseAxisParam(s,a.shape),l=o,c=E.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=nr({inputs:{x:a},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,a.shape.length)),E.assertAxesAreInnerMostDims("min",l,u.shape.length);let[h,d]=E.computeOutAndReduceShapes(u.shape,l),p=_.sizeFromShape(d),f=_.makeZerosTypedArray(_.sizeFromShape(h),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;yg[0]+a.shape[x]+g[1]),l=s.map(g=>g[0]),c=s.map((g,x)=>g[0]+a.shape[x]),u=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=_.computeStrides(a.shape),f=_.sizeFromShape(o),m=o.length,A=_.computeStrides(o),y=_.getTypedArrayFromDType(a.dtype,f);for(let g=0;g=c[w]&&(x[w]=(c[w]-1)*2-x[w]+u);x=x.map((w,b)=>w-l[b]);let v=_.locToIndex(x,d,p);y[g]=h[v]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var cz={kernelName:Ps,backendName:"cpu",kernelFunc:uz},hz=Mt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),dz=Gt(Lo,hz),pz={kernelName:Lo,backendName:"cpu",kernelFunc:dz},fz=so(d5());function P_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=_.parseAxisParam([o],a.shape),c=z_({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=E.expandShapeToKeepDim(c.shape,l),h=mt({inputs:{x:c},backend:n,attrs:{shape:u}}),d=uA({inputs:{a,b:h},backend:n}),p=__({inputs:{x:d},backend:n}),f=fc({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=mt({inputs:{x:f},backend:n,attrs:{shape:u}}),A=dA({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var mz={kernelName:ei,backendName:"cpu",kernelFunc:P_};function Az(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;ve(a,"multinomial");let l=o?a:P_({inputs:{logits:a},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],h=n.data.get(l.dataId).values,d=[c,s],p=_.makeZerosTypedArray(_.sizeFromShape(d),"int32");for(let f=0;f=0&&u[h]{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=dp({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=Fl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var Rz={kernelName:Go,backendName:"cpu",kernelFunc:W_};function Mz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;ve(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),c=n.data.get(a.dataId).values,u=_.sizeFromShape(a.shape),h=a.shape.length,d=_.computeStrides(a.shape),p=_.sizeFromShape(o),f=o.length,m=_.computeStrides(o),A=_.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;yv+l[w]),x=_.locToIndex(g,f,m);A[x]=c[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var B_={kernelName:Bs,backendName:"cpu",kernelFunc:Mz},Fz=Mt((e,t)=>Math.pow(e,t)),$z=Gt(Vs,Fz),Dz={kernelName:Vs,backendName:"cpu",kernelFunc:$z};function Oz(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=oA(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var zz={kernelName:$u,backendName:"cpu",kernelFunc:Oz},Pz=at(Xo,e=>1/e),Lz={kernelName:Xo,backendName:"cpu",kernelFunc:Pz};function Wz(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;ve(a,"resizeBilinear");let l=_.computeStrides(a.shape),[c,u]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(_.sizeFromShape([h,c,u,f])),y=[s&&c>1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=0,v=y[0]/g[0],w=y[1]/g[1];for(let b=0;b1?c-1:c,i&&p>1?u-1:u],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=m[0]/A[0],g=m[1]/A[1],x=n.data.get(s.dataId).values,v=0;for(let w=0;w1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=y[0]/g[0],v=y[1]/g[1],w=0;for(let b=0;b1?u-1:u,i&&f>1?h-1:h],g=[i&&p>1?p-1:p,i&&f>1?f-1:f],x=y[0]/g[0],v=y[1]/g[1],w=1/x,b=1/v,k=Math.ceil(w)*2+2,N=Math.ceil(b)*2+2;for(let C=0;C=p)continue;let Q=F+ie*l[1],he=ie*x,oe=Math.min(u-1,i?Math.round(he):Math.floor(he));if(O===oe)for(let me=0;me=f)continue;let Ie=Q+pe*l[2],Se=pe*v,Fe=Math.min(h-1,i?Math.round(Se):Math.floor(Se));U===Fe&&(ae+=A[Ie+Y])}}m[X+Y]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,m)}var qz={kernelName:id,backendName:"cpu",kernelFunc:Gz};function Xz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;ve(a,"reverse");let i=a.shape.length,o=_.parseAxisParam(s,a.shape);if(i===0)return Gr({inputs:{x:a},backend:n});let l=new Ot(a.shape,a.dtype),c=n.bufferSync(a);for(let u=0;ud[p]=a.shape[p]-1-d[p]),l.set(c.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var Kz={kernelName:qs,backendName:"cpu",kernelFunc:Xz},Zz={kernelName:ll,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=_.getTypedArrayFromDType(r.dtype,_.sizeFromShape(r.shape)),[c,u,h,d]=r.shape,[p,f]=E.getImageCenter(i,u,h),m=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let x=0;x=0&&V=0&&j{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),Jz={kernelName:Xs,backendName:"cpu",kernelFunc:Yz};function V_(e,t,n,r,a,s,i,o,l,c){let u=[r/a,a],h=e.values,d=t.values;if(r===0)return Be(n,t.dtype);let p=Be(u,t.dtype);p.values.fill(l);for(let f=0;f=r/a)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y1||a.shape.length===1?1:_.sizeFromShape(a.shape.slice(1));for(let f=0;fe>=0?aP*e:rP*(Math.exp(e)-1)),iP={kernelName:Jo,backendName:"cpu",kernelFunc:sP},oP=at(tl,e=>e<0?-1:e>0?1:0),lP={kernelName:tl,backendName:"cpu",kernelFunc:oP},uP=at(Zs,e=>Math.sin(e)),cP={kernelName:Zs,backendName:"cpu",kernelFunc:uP},hP=at(el,e=>Math.sinh(e)),dP={kernelName:el,backendName:"cpu",kernelFunc:hP},pP=11920928955078125e-23,j_=Math.log(pP)+2,fP=at(nl,e=>{let t=e>-j_,n=e0&&_.isString(n[0])){let a=n.map(s=>_.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return E.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>_.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return ca().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=_.now();return e(),{kernelMs:_.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){_e([e],"where");let t=this.readSync(e.dataId);return rF(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};op.nextDataId=0;var eA={};Me(eA,{addImpl:()=>Gw,bincountImpl:()=>tA,bincountReduceImpl:()=>qw,ceilImpl:()=>Xw,concatImpl:()=>nA,expImpl:()=>Kw,expm1Impl:()=>Zw,floorImpl:()=>Yw,gatherV2Impl:()=>Jw,greaterImpl:()=>Qw,lessImpl:()=>e_,linSpaceImpl:()=>t_,logImpl:()=>n_,maxImpl:()=>r_,maximumImpl:()=>a_,minimumImpl:()=>s_,multiplyImpl:()=>rA,negImpl:()=>i_,notEqualImpl:()=>o_,prodImpl:()=>l_,rangeImpl:()=>sA,rsqrtImpl:()=>u_,simpleAbsImpl:()=>Hw,sliceImpl:()=>lp,sparseReshapeImpl:()=>c_,squaredDifferenceImpl:()=>h_,stridedSliceImpl:()=>d_,subImpl:()=>p_,tileImpl:()=>f_,topKImpl:()=>m_,transposeImpl:()=>aA,uniqueImpl:()=>A_});function Hw(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;_e(t,"abs");let r=new Float32Array(_.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=Hw(a),n.makeOutput(r,t.shape,"float32")},sF={kernelName:lo,backendName:"cpu",kernelFunc:aF};function Mt(e){return(t,n,r,a,s)=>{let i=E.assertAndGetBroadcastShape(t,n),o=i.length,l=_.computeStrides(i),c=_.sizeFromShape(i),u=_.getTypedArrayFromDType(s,c),h=t.length,d=n.length,p=_.computeStrides(t),m=_.computeStrides(n),f=E.getBroadcastDims(t,i),A=E.getBroadcastDims(n,i);if(f.length+A.length===0)for(let y=0;yx[k]=0);let v=_.locToIndex(x,h,p),b=g.slice(-d);A.forEach(k=>b[k]=0);let w=_.locToIndex(b,d,m);u[y]=e(r[v],a[w])}return[u,i]}}function Bn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var iF={kernelName:zh,backendName:"cpu",kernelFunc:Bn};function up(e,t,n="float32"){if(n==="complex64"){let a=up(e,t,"float32"),s=up(e,t,"float32");return Bn({inputs:{real:a,imag:s},backend:e})}let r=_.makeZerosTypedArray(_.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function qr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var oF={kernelName:Cs,backendName:"cpu",kernelFunc:qr};function Ni(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var lF={kernelName:ad,backendName:"cpu",kernelFunc:Ni};function Ga(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return qr({inputs:{x:a},backend:n});let i=up(n,a.shape,a.dtype),o=Ga({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Bn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Ni({inputs:{input:a},backend:n}),o=Ga({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!_.hasEncodingLoss(a.dtype,s)){let i=qr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=_.toTypedArray([0],a.dtype),[l,c]=Mt((u,h)=>u!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var uF={kernelName:ys,backendName:"cpu",kernelFunc:Ga};function Gt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;_e([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=Ga({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),h=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,p=l.data.get(h.dataId).values,m=l.data.get(d.dataId).values,f=Ga({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(f.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(g.dataId).values,[b,w,k]=n(i.shape,o.shape,p,m,x,v),N=l.makeTensorInfo(k,"float32",b),C=l.makeTensorInfo(k,"float32",w),F=Bn({inputs:{real:N,imag:C},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(N),l.disposeIntermediateTensorInfo(C),F}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}}}function iA(e){return(t,n,r,a,s,i)=>{let o=E.assertAndGetBroadcastShape(t,n),l=_.sizeFromShape(o),c=o.length,u=_.computeStrides(o),h=_.getTypedArrayFromDType("float32",l),d=_.getTypedArrayFromDType("float32",l),p=E.getBroadcastDims(t,o),m=E.getBroadcastDims(n,o),f=E.mergeRealAndImagArrays(r,a),A=E.mergeRealAndImagArrays(s,i),y=t.length,g=_.computeStrides(t),x=n.length,v=_.computeStrides(n);if(p.length+m.length===0)for(let b=0;bk[L]=0);let N=_.locToIndex(k,y,g),C=w.slice(-x);m.forEach(L=>C[L]=0);let F=_.locToIndex(C,x,v),O=e(f[N*2],f[N*2+1],A[F*2],A[F*2+1]);h[b]=O.real,d[b]=O.imag}return[h,d,o]}}var Gw=Mt((e,t)=>e+t),cF=iA((e,t,n,r)=>({real:e+n,imag:t+r})),hc=Gt(Ra,Gw,cF),hF={kernelName:Ra,backendName:"cpu",kernelFunc:hc};function tA(e,t,n,r,a){let s=_.sizeFromShape(r),i=_.makeZerosTypedArray(a,n);for(let o=0;o=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function qw(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Be([a,n],t.dtype);for(let o=0;o=n||(r?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function Cl(e){return(t,n,r)=>{let a=_.getTypedArrayFromDType(n,t.length);for(let s=0;s{let{x:i}=r;if(_e(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=_.sizeFromShape(i.shape),u=n||i.dtype,h=_.getArrayFromDType(u,c);for(let d=0;d{let{x:i}=r;if(_e(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,a);return o.makeTensorInfo(i.shape,c,u)}}var Xw=Cl(e=>Math.ceil(e)),dF=Rl(gs,Xw),pF={kernelName:gs,backendName:"cpu",kernelFunc:dF};function nA(e,t,n,r){let a=_.getArrayFromDType(n,_.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=_.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?E.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;cMath.exp(e)),y_=Rl(Is,Kw),fF={kernelName:Is,backendName:"cpu",kernelFunc:y_},Zw=Cl(e=>Math.expm1(e)),mF=Rl(No,Zw),AF={kernelName:No,backendName:"cpu",kernelFunc:mF},Yw=Cl(e=>Math.floor(e)),yF=Rl(Ss,Yw),gF={kernelName:Ss,backendName:"cpu",kernelFunc:yF};function Jw(e,t,n){let r=Be(n,e.dtype);for(let a=0;ae>t?1:0),xF=Gt(Ro,Qw,null,"bool"),bF={kernelName:Ro,backendName:"cpu",kernelFunc:xF},e_=Mt((e,t)=>eMath.log(e)),vF=Rl(Ms,n_),kF={kernelName:Ms,backendName:"cpu",kernelFunc:vF};function r_(e,t,n,r){let a=_.getTypedArrayFromDType(r,_.sizeFromShape(n));for(let s=0;so&&(o=c)}a[s]=o}return a}var a_=Mt((e,t)=>Math.max(e,t)),IF=Gt($s,a_),SF={kernelName:$s,backendName:"cpu",kernelFunc:IF},s_=Mt((e,t)=>Math.min(e,t)),NF=Gt(Ps,s_),TF={kernelName:Ps,backendName:"cpu",kernelFunc:NF},rA=Mt((e,t)=>e*t),EF=iA((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),cp=Gt(Ws,rA,EF),CF={kernelName:Ws,backendName:"cpu",kernelFunc:cp};function i_(e,t,n){let r=_.createScalarValue(-1,n);return rA([],t,r,e,n)}function RF(e){let{inputs:t,backend:n}=e,{x:r}=t;_e(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=i_(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var MF={kernelName:Wo,backendName:"cpu",kernelFunc:RF},o_=Mt((e,t)=>e!==t?1:0),FF=Gt(Bo,o_,null,"bool"),$F={kernelName:Bo,backendName:"cpu",kernelFunc:FF};function aA(e,t,n,r,a){let s=t.length,i=_.sizeFromShape(t),o=_.computeStrides(t),l=_.computeStrides(a),c=_.getTypedArrayFromDType(n,_.sizeFromShape(a));for(let u=0;un.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,m)}var zF={kernelName:qo,backendName:"cpu",kernelFunc:OF};function sA(e,t,n,r){let a=e===t,s=e1;if(a||s||i)return _.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=_.makeZerosTypedArray(o,r);t1/Math.sqrt(e)),PF=Rl(Zs,u_),LF={kernelName:Zs,backendName:"cpu",kernelFunc:PF};function lp(e,t,n,r,a){let s=un.isSliceContinous(r,t,n),i=_.sizeFromShape(n),o=_.computeStrides(r);if(s){let h=un.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?E.fromUint8ToStringArray(e):e,c=Be(r,a,l),u=Be(n,a);for(let h=0;hm+t[f]);u.set(c.get(...p),...d)}return a==="string"?E.fromStringArrayToUint8(u.values):u.values}function Ti(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;_e(a,"slice");let[o,l]=un.parseSliceParams(a,s,i);un.assertParamsValid(a,o,l);let c=n.data.get(a.dataId).values,u=lp(c,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,u)}var WF={kernelName:Qo,backendName:"cpu",kernelFunc:Ti};function c_(e,t,n,r,a){let s=_.sizeFromShape(r),i=t[0],o=a.length,l=[],c=1,u=-1;for(let A=0;A0){p[d-1]=1;for(let A=d-2;A>=0;--A)p[A]=p[A+1]*r[A+1]}let m=[];if(o>0){m[o-1]=1;for(let A=o-2;A>=0;--A)m[A]=m[A+1]*l[A+1]}let f=_.getArrayFromDType(n,i*o);for(let A=0;A{let n=e-t;return n*n}),BF=Gt(ni,h_),VF={kernelName:ni,backendName:"cpu",kernelFunc:BF};function d_(e,t,n,r){let a=Be(e,t.dtype);for(let s=0;se-t),jF=iA((e,t,n,r)=>({real:e-n,imag:t-r})),oA=Gt(ri,p_,jF),UF={kernelName:ri,backendName:"cpu",kernelFunc:oA};function f_(e,t){let n=new Array(e.rank);for(let a=0;ax.value-g.value);let f=h*r,A=l.subarray(f,f+r),y=c.subarray(f,f+r);for(let g=0;g{for(let A=0;Anew op,1);var x_=rt(vo,e=>e>=0?e:Math.exp(e)-1),HF={kernelName:vo,backendName:"cpu",kernelFunc:x_};function b_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;_e([a],"leakyRelu");let i=_.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=_.getTypedArrayFromDType("float32",i);for(let c=0;ce<0?t*e:e);function w_(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;_e([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=qF(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var XF={kernelName:Us,backendName:"cpu",kernelFunc:w_},__=rt(Hs,e=>Math.max(0,e)),KF={kernelName:Hs,backendName:"cpu",kernelFunc:__},v_=rt(qs,e=>Math.min(Math.max(0,e),6)),ZF={kernelName:qs,backendName:"cpu",kernelFunc:v_},k_=rt(Js,e=>1/(1+Math.exp(-e))),YF={kernelName:Js,backendName:"cpu",kernelFunc:k_};function lA(e,t,n,r,a){if(n==="linear")return qr({inputs:{x:t},backend:e});if(n==="relu")return __({inputs:{x:t},backend:e});if(n==="elu")return x_({inputs:{x:t},backend:e});if(n==="relu6")return v_({inputs:{x:t},backend:e});if(n==="prelu")return w_({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return b_({inputs:{x:t},backend:e,attrs:{alpha:a}});if(n==="sigmoid")return k_({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function mt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=_.sizeFromShape(a.shape),o=_.inferFromImplicitShape(s,i),l=_.sizeFromShape(o);_.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let c=n.data.get(a.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,h=c.complexTensorInfos.imag;u.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var JF={kernelName:Ko,backendName:"cpu",kernelFunc:mt};function I_(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;_e([a,s],"matMul");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=_.sizeFromShape(m),y=_.sizeFromShape(f),g=A===y||A===1||y===1;_.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);_.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[A,u,d]:[A,d,u],b=o?[y,p,h]:[y,h,p],w=mt({inputs:{x:a},backend:n,attrs:{shape:v}}),k=mt({inputs:{x:s},backend:n,attrs:{shape:b}}),N=i?w.shape[1]:w.shape[2],C=i?w.shape[2]:w.shape[1],F=o?k.shape[1]:k.shape[2],O=Math.max(A,y),L=n.data.get(w.dataId).values,V=n.data.get(k.dataId).values,j=_.computeStrides(w.shape),U=_.computeStrides(k.shape),[X,G,ee]=i?[j[0],1,j[1]]:[j[0],j[1],1],[Y,ae,te]=o?[1,U[1],U[0]]:[U[1],1,U[0]],ie=C*F,Q=Be([O,C,F],w.dtype),he=Q.values,oe=n.blockSize;for(let me=0;meMath.acos(e)),r$={kernelName:uo,backendName:"cpu",kernelFunc:n$},a$=rt(co,e=>Math.acosh(e)),s$={kernelName:co,backendName:"cpu",kernelFunc:a$};function i$(e){let{inputs:t,backend:n}=e,r=t;_e(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Be(r[0].shape,r[0].dtype),i=s.values;for(let o=0;og&&(g=b,x=v)}p[A]=x}return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var p$={kernelName:fs,backendName:"cpu",kernelFunc:d$};function f$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;_e(a,"argMin");let i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=nr({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],E.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,h]=E.computeOutAndReduceShapes(l.shape,i),d=_.sizeFromShape(u),p=_.makeZerosTypedArray(d,"int32"),m=_.sizeFromShape(h),f=n.data.get(l.dataId).values;for(let A=0;An.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var m$={kernelName:wu,backendName:"cpu",kernelFunc:f$},A$=rt(fo,e=>Math.asin(e)),y$={kernelName:fo,backendName:"cpu",kernelFunc:A$},g$=rt(mo,e=>Math.asinh(e)),x$={kernelName:mo,backendName:"cpu",kernelFunc:g$},b$=rt(Ao,e=>Math.atan(e)),w$={kernelName:Ao,backendName:"cpu",kernelFunc:b$},_$=Mt((e,t)=>Math.atan2(e,t)),v$=Gt(go,_$),k$={kernelName:go,backendName:"cpu",kernelFunc:v$},I$=rt(yo,e=>Math.atanh(e)),S$={kernelName:yo,backendName:"cpu",kernelFunc:I$};function uA(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,c=a.dilationWidth,u=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Be(a.outShape,n),A=f.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],x=a.outShape[3];for(let v=0;vG?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let ae=L+V*x+k;A[ae]=s==="avg"?ee/Y:G}}}return f}function S_(e,t,n,r,a=!1,s=!1){let i=Be(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,c=r.dilationHeight,u=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,m=r.padInfo.left,f=Be(t,n,e);for(let A=0;AF&&(F=X,a?O=s?((A*r.inHeight+L)*r.inWidth+j)*r.inChannels+y:(L*r.inWidth+j)*r.inChannels+y:O=V*d+U)}}i.set(O,A,g,w,y)}}return i}function N_(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,c=a.dilationDepth,u=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,m=a.effectiveFilterWidth,f=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Be(a.outShape,n),v=x.values,b=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],w=a.outShape[2]*a.outShape[3]*a.outShape[4],k=a.outShape[3]*a.outShape[4],N=a.outShape[4];for(let C=0;CIe?Ie=je:s==="avg"&&(Se+=je,Fe++),isNaN(Ie))break}if(isNaN(Ie))break}if(isNaN(Ie))break}let Oe=pe+L;v[Oe]=s==="avg"?Se/Fe:Ie}}}}return x}function N$(e,t){let n=Be(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,m=t.padInfo.left;for(let f=0;f=V&&(V=te,j=X*u*h+ee*u+ae)}}}n.set(j,f,y,b,C,A)}}}return n}function T$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;_e(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))h=qr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=_.computeStrides(a.shape),m=uA(d,a.shape,a.dtype,p,u,"avg");h=n.makeTensorInfo(u.outShape,a.dtype,m.values)}return h}var E$={kernelName:ms,backendName:"cpu",kernelFunc:T$};function C$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;_e(a,"avgPool3d");let u=E.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=N_(h,a.shape,a.dtype,_.computeStrides(a.shape),u,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var R$={kernelName:_u,backendName:"cpu",kernelFunc:C$};function M$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;_e([a,s],"avgPool3DGrad");let u=E.computePool3DInfo(s.shape,i,o,1,l,c),h=u.strideDepth,d=u.strideHeight,p=u.strideWidth,m=u.filterDepth,f=u.filterHeight,A=u.filterWidth,y=u.dilationDepth,g=u.dilationHeight,x=u.dilationWidth,v=u.effectiveFilterDepth,b=u.effectiveFilterHeight,w=u.effectiveFilterWidth,k=v-1-u.padInfo.front,N=w-1-u.padInfo.left,C=b-1-u.padInfo.top,F=Be(s.shape,"float32"),O=1/(m*f*A),L=n.bufferSync(a);for(let V=0;V=u.outDepth||Math.floor(Q)!==Q))for(let he=0;he=u.outHeight||Math.floor(oe)!==oe))for(let me=0;me=u.outWidth||Math.floor(pe)!==pe||(te+=L.get(V,Q,oe,pe,j))}}}F.set(te*O,V,U,X,G,j)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var F$={kernelName:Dh,backendName:"cpu",kernelFunc:M$};function $$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;_e([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=E.computePool2DInfo(i.shape,o,l,1,c),h=u.strideHeight,d=u.strideWidth,p=u.filterHeight,m=u.filterWidth,f=u.dilationHeight,A=u.dilationWidth,y=u.effectiveFilterHeight,g=u.effectiveFilterWidth,x=g-1-u.padInfo.left,v=y-1-u.padInfo.top,b=Be(i.shape,"float32"),w=1/(p*m),k=n.data.get(a.dataId).values,N=Be(a.shape,"float32",k);for(let C=0;C=u.outHeight||Math.floor(G)!==G))for(let ee=0;ee=u.outWidth||Math.floor(Y)!==Y||(U+=N.get(C,G,Y,F))}}b.set(U*w,C,O,L,F)}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var D$={kernelName:$h,backendName:"cpu",kernelFunc:$$};function O$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;_.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),_e([a,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=r;c==null&&(c=.001);let u=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(u.length),A=m.length,y=p.length,g=d.length,x=h.length,v=0,b=0,w=0,k=0;for(let N=0;N=A&&(v=0),b>=x&&(b=0),w>=y&&(w=0),k>=g&&(k=0);return n.makeTensorInfo(a.shape,a.dtype,f)}var z$={kernelName:Ts,backendName:"cpu",kernelFunc:O$};function P$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;_e([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=E.getReshaped(a.shape,s,o),c=E.getPermuted(l.length,s.length),u=E.getReshapedPermuted(a.shape,s,o),h=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(u,i,s.length),p=mt({inputs:{x:a},backend:n,attrs:{shape:l}}),m=nr({inputs:{x:p},backend:n,attrs:{perm:c}}),f=mt({inputs:{x:m},backend:n,attrs:{shape:u}}),A=Ti({inputs:{x:f},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var L$={kernelName:vu,backendName:"cpu",kernelFunc:P$};function W$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,c=tA(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var B$={kernelName:Oh,backendName:"cpu",kernelFunc:W$},V$=rt(Ma,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(_.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;cf.shape),s);if(_.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>_.sizeFromShape(f.shape)>0);if(o.length===1)return qr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(E.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>Ni({inputs:{input:v},backend:n})),A=o.map(v=>Ml({inputs:{input:v},backend:n})),y=Fl({inputs:f,backend:n,attrs:{axis:s}}),g=Fl({inputs:A,backend:n,attrs:{axis:s}}),x=Bn({inputs:{real:y,imag:g},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),A.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),x}let c=o.map(f=>{let A=_.sizeFromShape(f.shape.slice(s));return mt({inputs:{x:f},backend:n,attrs:{shape:[-1,A]}})}),u=c.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=E.computeOutShape(c.map(f=>f.shape),1);let h=c[0].shape[0]===1,d=nA(u,i,t[0].dtype,h),p=E.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(p,t[0].dtype,d);return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var q$={kernelName:xo,backendName:"cpu",kernelFunc:Fl};function T_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r;_e([a,s],"conv2d");let h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,x=d.dataFormat==="channelsLast",v=new Ot(d.outShape,a.dtype),b=_.computeStrides(a.shape),w=_.computeStrides(s.shape),k=b[0],N=x?b[1]:b[2],C=x?b[2]:1,F=x?1:b[1],O=v.strides[0],L=x?v.strides[1]:v.strides[2],V=x?v.strides[2]:1,j=x?1:v.strides[1],U=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,G=v.values;for(let ee=0;ee=d.inHeight)continue;let me=he*w[0],pe=Y+oe*N;for(let Ie=0;Ie=d.inWidth)continue;let et=me+Oe*w[1],tt=pe+$e*C,st=et;for(let Ke=0;Ke=c.inDepth)continue;let ee=X*C[0],Y=O+G*N[1];for(let ae=0;ae=c.inHeight)continue;let oe=ee+Q*C[1],me=Y+he*N[2];for(let pe=0;pe=c.inWidth)continue;let $e=oe+Fe*C[2],et=me+Oe*c.inChannels,tt=$e;for(let st=0;stMath.cos(e)),iD={kernelName:ws,backendName:"cpu",kernelFunc:sD},oD=rt(bo,e=>Math.cosh(e)),lD={kernelName:bo,backendName:"cpu",kernelFunc:oD};function uD(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,[u,h,d,p]=a.shape,m=s.shape[0],[f,A]=o,y=Be([m,f,A,p],"float32"),g=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(a.dataId).values,b=_.computeStrides(a.shape),w=_.computeStrides(y.shape);for(let k=0;k=u)continue;let j=f>1?(O-C)*(h-1)/(f-1):0,U=A>1?(L-F)*(d-1)/(A-1):0;for(let X=0;X1?C*(h-1)+X*j:.5*(C+O)*(h-1);if(G<0||G>h-1){for(let ee=0;ee1?F*(d-1)+te*U:.5*(F+L)*(d-1);if(ie<0||ie>d-1){for(let me=0;me1?F*(d-1)+ee*U:.5*(F+L)*(d-1);if(Y<0||Y>d-1){for(let ie=0;iey+m-g-1:(y,g)=>y+g;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],c=a.shape[2],u=a.shape[3],h=l*s,d=c*s,p=u/(s*s),m=n.data.get(a.dataId).values,f=new Float32Array(o*h*d*p),A=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=E.computeConv2DInfo(a.shape,s.shape,i,d,o,c,!0),{filterHeight:m,filterWidth:f,dilationHeight:A,dilationWidth:y,padInfo:g}=p,x=g.left,v=g.top,b=p.outChannels/p.inChannels,w=new Ot(p.outShape,a.dtype),k=n.data.get(a.dataId).values,N=n.data.get(s.dataId).values,C=w.values;for(let F=0;F=p.inHeight)continue;let ee=X*h[0],Y=O+G*u[1];for(let ae=0;ae=p.inWidth)continue;let oe=ee+Q*h[1],me=Y+he*p.inChannels,pe=te,Ie=oe;for(let Se=0;Se{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(r.dataId).values,u=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:m,inWidth:f,inChannels:A,outHeight:y,outWidth:g,padInfo:x,strideHeight:v,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:N,dilationWidth:C,outShape:F}=E.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),O=_.sizeFromShape(F),L=F.length,V=_.getArrayFromDType(r.dtype,O);for(let j=0;j=0&&Q=0&&oeae&&(ae=Ie)}}}let te=_.locToIndex([j,U,G,Y],L,_.computeStrides(F));V[te]=ae}}}return{dataId:l.write(_.toTypedArray(V,r.dtype),F,r.dtype),shape:F,dtype:r.dtype}}},ID={kernelName:Gh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=_.toNestedArray(r.shape,c.data.get(r.dataId).values),h=_.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:v,filterHeight:b,filterWidth:w,dilationHeight:k,dilationWidth:N,outShape:C}=E.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);_.assert(s.rank===C.length,()=>`Error in ${Gh}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let F=_.toNestedArray(C,c.data.get(s.dataId).values),O=_.makeZerosNestedTypedArray(a.shape,a.dtype);for(let L=0;L=0&&ie=0&&heee&&(ee=oe,Y=te,ae=Q)}}}O[Y][ae][G]+=F[L][V][U][G]}}}return{dataId:c.write(_.toTypedArray(O,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},SD={kernelName:Hh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=_.toNestedArray(r.shape,c.data.get(r.dataId).values),h=_.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:v,filterHeight:b,filterWidth:w,dilationHeight:k,dilationWidth:N,outShape:C}=E.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);_.assert(s.rank===C.length,()=>`Error in ${Hh}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let F=_.toNestedArray(C,c.data.get(s.dataId).values),O=_.makeZerosNestedTypedArray(r.shape,r.dtype);for(let L=0;L=0&&ie=0&&heee&&(ee=oe,Y=ie,ae=he)}}}O[L][Y][ae][G]+=F[L][V][U][G]}}}return{dataId:c.write(_.toTypedArray(O,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function dc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"sum");let o;a.dtype==="bool"?o=Ga({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=qr({inputs:{x:a},backend:n});let l=o.shape.length,c=_.parseAxisParam(s,o.shape),u=E.getAxesPermutation(c,l),h=c,d=o;u!=null&&(d=nr({inputs:{x:o},backend:n,attrs:{perm:u}}),h=E.getInnerMostAxes(h.length,l)),E.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,m]=E.computeOutAndReduceShapes(d.shape,h),f=E.upcastType(d.dtype,"int32"),A=up(n,p,f),y=_.sizeFromShape(m),g=n.data.get(A.dataId).values,x=n.data.get(d.dataId).values;for(let v=0;v=0&&(d=dc({inputs:{x:d},backend:n,attrs:{axis:c[f]-(i.length-p),keepDims:!1}}),m.push(d)),p--)}for(let f of m)f!==d&&n.disposeIntermediateTensorInfo(f);return d}var ED={kernelName:qh,backendName:"cpu",kernelFunc:TD};function CD(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;_e([r,a],"eluGrad");let s=new Float32Array(_.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(a.shape,"float32",s)}var RD={kernelName:Xh,backendName:"cpu",kernelFunc:CD},MD=Mt((e,t)=>e===t?1:0),C_=Gt(Io,MD,null,"bool"),FD={kernelName:Io,backendName:"cpu",kernelFunc:C_},$D=E.ERF_P,DD=E.ERF_A1,OD=E.ERF_A2,zD=E.ERF_A3,PD=E.ERF_A4,LD=E.ERF_A5,WD=rt(ko,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+$D*n);return t*(1-((((LD*r+PD)*r+zD)*r+OD)*r+DD)*r*Math.exp(-n*n))}),BD={kernelName:ko,backendName:"cpu",kernelFunc:WD};function hp(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(_.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),mt({inputs:{x:a},backend:n,attrs:{shape:o}})}var VD={kernelName:So,backendName:"cpu",kernelFunc:hp},jD=Mt((e,t)=>e/t),cA=Gt(ks,jD),hA={kernelName:ks,backendName:"cpu",kernelFunc:cA};function R_(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[a,s],u=_.sizeFromShape(c),h=_.getTypedArrayFromDType("float32",u),d=_.getTypedArrayFromDType("float32",u);for(let A=0;A{let{image:r}=e,a=n,s=_.getTypedArrayFromDType(r.dtype,_.sizeFromShape(r.shape)),[i,o,l,c]=r.shape,u=a.data.get(r.dataId).values;for(let h=0;h=0&&xMath.floor(e/t)),QD=Gt(Ns,JD,null,"int32"),eO={kernelName:Ns,backendName:"cpu",kernelFunc:QD};function tO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=T_({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=hc({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=lA(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var nO={kernelName:li,backendName:"cpu",kernelFunc:tO};function rO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=E_({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=hc({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=lA(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var aO={kernelName:ui,backendName:"cpu",kernelFunc:rO};function sO(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=_.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,c,u,h]=E.prepareAndValidate(r,a);if(c===0)return n.makeTensorInfo(l,r.dtype,[]);let d=Be([c,u],r.dtype),p=n.data.get(a.dataId).values,m=n.data.get(r.dataId).values;for(let f=0;f=s/u)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;ge>=t?1:0),cO=Gt(Es,uO,null,"bool"),hO={kernelName:Es,backendName:"cpu",kernelFunc:cO};function dO(e){let{inputs:t,backend:n}=e,{input:r}=t,a=_.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=mt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=R_(o,!0,n),c=mt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var pO={kernelName:Zh,backendName:"cpu",kernelFunc:dO},fO=rt(Mo,e=>Number.isFinite(e)?1:0,"bool"),mO={kernelName:Mo,backendName:"cpu",kernelFunc:fO},AO=rt(Fo,e=>Math.abs(e)===Infinity?1:0,"bool"),yO={kernelName:Fo,backendName:"cpu",kernelFunc:AO},gO=rt($o,e=>Number.isNaN(e)?1:0,"bool"),xO={kernelName:$o,backendName:"cpu",kernelFunc:gO},bO=Mt((e,t)=>e<=t?1:0),wO=Gt(Oo,bO,null,"bool"),_O={kernelName:Oo,backendName:"cpu",kernelFunc:wO};function vO(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=t_(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var kO={kernelName:Jh,backendName:"cpu",kernelFunc:vO},IO=rt(zo,e=>Math.log1p(e)),SO={kernelName:zo,backendName:"cpu",kernelFunc:IO},NO=Mt((e,t)=>e&&t),TO=Gt(Po,NO,null,"bool"),EO={kernelName:Po,backendName:"cpu",kernelFunc:TO},CO=rt(Tu,e=>e?0:1,"bool"),RO={kernelName:Tu,backendName:"cpu",kernelFunc:CO},MO=Mt((e,t)=>e||t),FO=Gt(Eu,MO,null,"bool"),$O={kernelName:Eu,backendName:"cpu",kernelFunc:FO};function DO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;_e(a,"LRN");let c=a.shape[3],u=c-1,h=n.data.get(a.dataId).values,d=_.sizeFromShape(a.shape),p=new Float32Array(d);function m(f){let A=f%c,y=f-A+Math.max(0,A-s),g=f-A+Math.min(A+s,u),x=0;for(;y<=g;y++){let v=h[y];x+=v*v}return x}for(let f=0;f`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))h=qr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=_.computeStrides(a.shape),m=uA(d,a.shape,a.dtype,p,u,"max");h=n.makeTensorInfo(u.outShape,a.dtype,m.values)}return h}var BO={kernelName:Ds,backendName:"cpu",kernelFunc:WO};function VO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;_e(a,"maxPool3d");let u=E.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=N_(h,a.shape,a.dtype,_.computeStrides(a.shape),u,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var jO={kernelName:Ru,backendName:"cpu",kernelFunc:VO};function UO(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;_e([a,s],"maxPool3DGrad");let u=E.computePool3DInfo(s.shape,i,o,1,l,c),h=n.bufferSync(s),d=N$(h,u),p=u.strideDepth,m=u.strideHeight,f=u.strideWidth,A=u.dilationDepth,y=u.dilationHeight,g=u.dilationWidth,x=u.effectiveFilterDepth,v=u.effectiveFilterHeight,b=u.effectiveFilterWidth,w=x-1-u.padInfo.front,k=b-1-u.padInfo.left,N=v-1-u.padInfo.top,C=Be(s.shape,"float32"),F=n.bufferSync(a);for(let O=0;O=u.outDepth||Math.floor(te)!==te))for(let ie=0;ie=u.outHeight||Math.floor(Q)!==Q))for(let he=0;he=u.outWidth||Math.floor(oe)!==oe)continue;let me=x*v*b-1-d.get(O,te,Q,oe,L),pe=ae*v*b+ie*b+he,Ie=me===pe?1:0;Ie!==0&&(Y+=F.get(O,te,Q,oe,L)*Ie)}}}C.set(Y,O,V,j,U,L)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var HO={kernelName:td,backendName:"cpu",kernelFunc:UO};function GO(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;_e([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=E.computePool2DInfo(o.shape,l,c,1,u,h),p=n.data.get(o.dataId).values,m=Be(d.outShape,o.dtype,S_(p,o.shape,o.dtype,d).values),f=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,x=d.effectiveFilterHeight,v=d.effectiveFilterWidth,b=v-1-d.padInfo.left,w=x-1-d.padInfo.top,k=Be(o.shape,"float32"),N=n.data.get(a.dataId).values,C=Be(a.shape,"float32",N);for(let F=0;F=d.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y=d.outWidth||Math.floor(ae)!==ae)continue;let te=x*v-1-m.get(F,ee,ae,O),ie=G*v+Y,Q=te===ie?1:0;Q!==0&&(X+=C.get(F,ee,ae,O)*Q)}}k.set(X,F,L,V,O)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var qO={kernelName:ed,backendName:"cpu",kernelFunc:GO};function XO(e,t,n,r,a){let s=_.computeStrides(t),i=uA(e,t,n,s,a,"max"),o=S_(e,t,n,a,!0,r);return[i.values,o.values]}var KO={kernelName:nd,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;_e(r,"MaxPoolWithArgmax");let c=l.data.get(r.dataId).values,u=E.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=XO(c,r.shape,r.dtype,o,u),p=l.write(h,u.outShape,r.dtype),m=l.write(d,u.outShape,r.dtype);return[{dataId:p,shape:u.outShape,dtype:r.dtype},{dataId:m,shape:u.outShape,dtype:"int32"}]}};function ZO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=_.parseAxisParam(s,a.shape),l=E.computeOutAndReduceShapes(a.shape,o)[1],c=_.sizeFromShape(l),u=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));u.push(h);let d=Ga({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});u.push(d);let p=cA({inputs:{a:d,b:h},backend:n});u.push(p);let m=dc({inputs:{x:p},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var YO={kernelName:Os,backendName:"cpu",kernelFunc:ZO};function JO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"min");let o=_.parseAxisParam(s,a.shape),l=o,c=E.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=nr({inputs:{x:a},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,a.shape.length)),E.assertAxesAreInnerMostDims("min",l,u.shape.length);let[h,d]=E.computeOutAndReduceShapes(u.shape,l),p=_.sizeFromShape(d),m=_.makeZerosTypedArray(_.sizeFromShape(h),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;yg[0]+a.shape[x]+g[1]),l=s.map(g=>g[0]),c=s.map((g,x)=>g[0]+a.shape[x]),u=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=_.computeStrides(a.shape),m=_.sizeFromShape(o),f=o.length,A=_.computeStrides(o),y=_.getTypedArrayFromDType(a.dtype,m);for(let g=0;g=c[b]&&(x[b]=(c[b]-1)*2-x[b]+u);x=x.map((b,w)=>b-l[w]);let v=_.locToIndex(x,d,p);y[g]=h[v]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var tz={kernelName:Ls,backendName:"cpu",kernelFunc:ez},nz=Mt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),rz=Gt(Lo,nz),az={kernelName:Lo,backendName:"cpu",kernelFunc:rz},sz=so(o5());function F_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=_.parseAxisParam([o],a.shape),c=M_({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=E.expandShapeToKeepDim(c.shape,l),h=mt({inputs:{x:c},backend:n,attrs:{shape:u}}),d=oA({inputs:{a,b:h},backend:n}),p=y_({inputs:{x:d},backend:n}),m=dc({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),f=mt({inputs:{x:m},backend:n,attrs:{shape:u}}),A=cA({inputs:{a:p,b:f},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var iz={kernelName:ti,backendName:"cpu",kernelFunc:F_};function oz(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;_e(a,"multinomial");let l=o?a:F_({inputs:{logits:a},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],h=n.data.get(l.dataId).values,d=[c,s],p=_.makeZerosTypedArray(_.sizeFromShape(d),"int32");for(let m=0;m=0&&u[h]{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=hp({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=Fl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var _z={kernelName:Go,backendName:"cpu",kernelFunc:D_};function vz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;_e(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),c=n.data.get(a.dataId).values,u=_.sizeFromShape(a.shape),h=a.shape.length,d=_.computeStrides(a.shape),p=_.sizeFromShape(o),m=o.length,f=_.computeStrides(o),A=_.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;yv+l[b]),x=_.locToIndex(g,m,f);A[x]=c[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var O_={kernelName:Vs,backendName:"cpu",kernelFunc:vz},kz=Mt((e,t)=>Math.pow(e,t)),Iz=Gt(js,kz),Sz={kernelName:js,backendName:"cpu",kernelFunc:Iz};function Nz(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=sA(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var Tz={kernelName:Mu,backendName:"cpu",kernelFunc:Nz},Ez=rt(Xo,e=>1/e),Cz={kernelName:Xo,backendName:"cpu",kernelFunc:Ez};function Rz(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;_e(a,"resizeBilinear");let l=_.computeStrides(a.shape),[c,u]=o,[h,d,p,m]=a.shape,f=n.data.get(a.dataId).values,A=new Float32Array(_.sizeFromShape([h,c,u,m])),y=[s&&c>1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=0,v=y[0]/g[0],b=y[1]/g[1];for(let w=0;w1?c-1:c,i&&p>1?u-1:u],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=f[0]/A[0],g=f[1]/A[1],x=n.data.get(s.dataId).values,v=0;for(let b=0;b1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=y[0]/g[0],v=y[1]/g[1],b=0;for(let w=0;w1?u-1:u,i&&m>1?h-1:h],g=[i&&p>1?p-1:p,i&&m>1?m-1:m],x=y[0]/g[0],v=y[1]/g[1],b=1/x,w=1/v,k=Math.ceil(b)*2+2,N=Math.ceil(w)*2+2;for(let C=0;C=p)continue;let Q=F+ie*l[1],he=ie*x,oe=Math.min(u-1,i?Math.round(he):Math.floor(he));if(O===oe)for(let me=0;me=m)continue;let Ie=Q+pe*l[2],Se=pe*v,Fe=Math.min(h-1,i?Math.round(Se):Math.floor(Se));U===Fe&&(ae+=A[Ie+Y])}}f[X+Y]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,f)}var Pz={kernelName:sd,backendName:"cpu",kernelFunc:zz};function Lz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;_e(a,"reverse");let i=a.shape.length,o=_.parseAxisParam(s,a.shape);if(i===0)return qr({inputs:{x:a},backend:n});let l=new Ot(a.shape,a.dtype),c=n.bufferSync(a);for(let u=0;ud[p]=a.shape[p]-1-d[p]),l.set(c.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var Wz={kernelName:Xs,backendName:"cpu",kernelFunc:Lz},Bz={kernelName:ll,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=_.getTypedArrayFromDType(r.dtype,_.sizeFromShape(r.shape)),[c,u,h,d]=r.shape,[p,m]=E.getImageCenter(i,u,h),f=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let x=0;x=0&&V=0&&j{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),jz={kernelName:Ks,backendName:"cpu",kernelFunc:Vz};function z_(e,t,n,r,a,s,i,o,l,c){let u=[r/a,a],h=e.values,d=t.values;if(r===0)return Be(n,t.dtype);let p=Be(u,t.dtype);p.values.fill(l);for(let m=0;m=r/a)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y1||a.shape.length===1?1:_.sizeFromShape(a.shape.slice(1));for(let m=0;me>=0?Kz*e:Xz*(Math.exp(e)-1)),Yz={kernelName:Jo,backendName:"cpu",kernelFunc:Zz},Jz=rt(tl,e=>e<0?-1:e>0?1:0),Qz={kernelName:tl,backendName:"cpu",kernelFunc:Jz},eP=rt(Ys,e=>Math.sin(e)),tP={kernelName:Ys,backendName:"cpu",kernelFunc:eP},nP=rt(el,e=>Math.sinh(e)),rP={kernelName:el,backendName:"cpu",kernelFunc:nP},aP=11920928955078125e-23,P_=Math.log(aP)+2,sP=rt(nl,e=>{let t=e>-P_,n=e{let d=[...u];d[o]=h;let p=Ni({inputs:{x:a},backend:n,attrs:{begin:c,size:d}});return c[o]+=h,p})}var vP={kernelName:rl,backendName:"cpu",kernelFunc:_P},kP=at(Js,e=>Math.sqrt(e)),IP={kernelName:Js,backendName:"cpu",kernelFunc:kP},SP={kernelName:zu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;ve(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),TP={kernelName:Fa,backendName:"cpu",kernelFunc:NP};function EP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r;ve(a,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=un.sliceInfo(a.shape,s,i,o,l,c,u,h,d),x=mt({inputs:{x:a},backend:n,attrs:{shape:y}}),v;if(p){let b=Ni({inputs:{x},backend:n,attrs:{begin:f,size:A}});v=mt({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))v=n.makeTensorInfo(g,a.dtype,[]);else{let b=n.bufferSync(x),k=y_(g,b,m,f);v=n.makeTensorInfo(k.shape,k.dtype,k.values)}let w=mt({inputs:{x:v},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),w}var CP={kernelName:al,backendName:"cpu",kernelFunc:EP},RP=at(ri,e=>Math.tan(e)),MP={kernelName:ri,backendName:"cpu",kernelFunc:RP},FP=at(ai,e=>Math.tanh(e)),$P={kernelName:ai,backendName:"cpu",kernelFunc:FP};function DP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;ve(a,"tile");let i=x_(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var OP={kernelName:Ma,backendName:"cpu",kernelFunc:DP};function zP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;ve(a,"topk");let o=n.data.get(a.dataId).values,[l,c]=w_(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var PP={kernelName:sl,backendName:"cpu",kernelFunc:zP};function BP(e){let{inputs:t,attrs:n,backend:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=n,[u,h,d,p]=a.shape,[f,m]=c!=null?c:[h,d],A=[u,f,m,p],y=_.computeStrides(a.shape),g=y[0],x=y[1],v=y[2],w=_.getTypedArrayFromDType(a.dtype,_.sizeFromShape(A));w.fill(l);let b=r.data.get(a.dataId).values,k=r.data.get(s.dataId).values;for(let N=0;Nt-1)if(t<=1)n=0;else{let r=2*t;n-=r*Math.trunc(n/r),n>=t&&(n=r-n-1)}return _.clamp(0,n,t-1)}function UP(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=t-1;n+=t*(Math.trunc(-n/r)+1)}else if(n>t-1)if(t<=1)n=0;else{let r=t-1;n-=t*Math.trunc(n/r)}return _.clamp(0,n,t-1)}function HP(e,t){return e}function GP(e,t){return _.clamp(0,e,t-1)}function mc(e,t,n,r,a,s,i,o,l,c,u){let h=i*r+o*a+l*s+c;return 0<=o&&on.disposeIntermediateTensorInfo(f)),p}var JP={kernelName:Pu,backendName:"cpu",kernelFunc:YP},QP=[c$,fF,d$,f$,wF,A$,g$,w$,_$,k$,S$,T$,C$,F$,D$,P$,W$,V$,U$,l$,G$,X$,Z$,gF,_F,J$,mF,eD,nD,sD,oD,rD,hD,pD,uD,mD,yD,xD,bD,vD,ID,SD,TD,CD,MD,FD,DD,$D,pA,PD,e$,WD,VD,ZD,vF,YD,IF,rO,sO,iO,NF,uO,hO,pO,mO,yO,EF,wO,AF,_O,tD,kO,SO,TO,t$,RF,RO,FO,FF,DO,PO,WO,jO,HO,qO,DF,ZO,JO,ez,nz,az,XO,iz,lz,zF,cz,pz,yz,LF,BF,wz,vz,Sz,jF,Tz,Cz,Rz,B_,Dz,r$,GF,zz,yF,Lz,a$,s$,o$,Bz,jz,Hz,qz,Kz,Zz,Jz,XF,eP,nP,iP,i$,lP,cP,dP,KF,mz,mP,yP,xP,bP,vP,IP,SP,YF,TP,CP,QF,OD,MP,$P,OP,PP,UF,VP,XP,ZP,JP,Ez];for(let e of QP)ui(e);var H_={};Me(H_,{assertNotComplex:()=>$l,bindCanvasToFramebuffer:()=>nL,bindColorTextureToFramebuffer:()=>mp,bindTextureToProgramUniformSampler:()=>i3,bindTextureUnit:()=>r3,bindVertexBufferToProgramAttribute:()=>AA,callAndCheck:()=>we,canBeRepresented:()=>G_,createFragmentShader:()=>K_,createFramebuffer:()=>n3,createProgram:()=>Z_,createStaticIndexBuffer:()=>Q_,createStaticVertexBuffer:()=>J_,createTexture:()=>e3,createVertexShader:()=>X_,getBatchDim:()=>Ti,getExtensionOrThrow:()=>Ac,getFramebufferErrorMessage:()=>o3,getMaxTexturesInShader:()=>c3,getNumChannels:()=>eL,getProgramUniformLocation:()=>s3,getProgramUniformLocationOrThrow:()=>a3,getRowsCols:()=>Ei,getShapeAs3D:()=>Ap,getTextureShapeFromLogicalShape:()=>l3,getWebGLDisjointQueryTimerVersion:()=>h3,getWebGLErrorMessage:()=>q_,getWebGLMaxTextureSize:()=>u3,hasExtension:()=>rr,isCapableOfRenderingToFloatTexture:()=>d3,isDownloadFloatTextureEnabled:()=>p3,isReshapeFree:()=>gc,isWebGLFenceEnabled:()=>f3,isWebGLVersionEnabled:()=>gA,linkProgram:()=>Y_,resetMaxTextureSize:()=>rL,resetMaxTexturesInShader:()=>aL,unbindColorTextureFromFramebuffer:()=>yA,unbindTextureUnit:()=>tL,validateFramebuffer:()=>yc,validateProgram:()=>fp,validateTextureSize:()=>t3});var Ci={},xA={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function yp(e,t){Ci[e]=t}function qr(e){if(!(e in Ci)){let n=sL(e);if(n!==null)Ci[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Ci[e];return t.isContextLost()?(delete Ci[e],qr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Ci[e])}function iL(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function sL(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=iL(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ci[e]},!1),e===1?t.getContext("webgl",xA)||t.getContext("experimental-webgl",xA):t.getContext("webgl2",xA)}var xc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(xc||(xc={}));var ar;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(ar||(ar={}));var tn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(tn||(tn={}));function wc(e,t){return[t,e]}function oL(e,t){return e*t}function bc(e){let t=_.sizeFromShape(e),n=Math.ceil(t/4);return _.sizeToSquarishShape(n)}function Dl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function lL(e,t){let[n,r]=Dl(e,t);return n*r*4}function wA(e,t){let n=e,r,a,s,i,o,l,c,u,h,d;return J().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:h,textureTypeFloat:d}}function we(e,t){let n=t();return J().getBool("DEBUG")&&uL(e),n}function uL(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+q_(e,t))}var cL=596e-10,hL=65504;function G_(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||cLe.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function X_(e,t){let n=ma(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(we(e,()=>e.shaderSource(n,t)),we(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function K_(e,t){let n=ma(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(we(e,()=>e.shaderSource(n,t)),we(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw dL(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var pL=/ERROR: [0-9]+:([0-9]+):/g;function dL(e,t){let n=pL.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(` + ${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(a.dataId).values),o=n.data.get(r.dataId).values,l=Array.from(n.data.get(s.dataId).values),[c,u,h]=c_(o,r.shape,r.dtype,i,l);return[n.makeTensorInfo(u,r.dtype,c),n.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var cP={kernelName:od,backendName:"cpu",kernelFunc:uP};function hP(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=E.calculateShapes(s,a,o),p=!1,m=n.bufferSync(a),f=n.bufferSync(s),A=n.data.get(i.dataId).values[0],y=z_(m,f,o,d,u,c,l,h,A,p);return n.makeTensorInfo(o,y.dtype,y.values)}var dP={kernelName:ld,backendName:"cpu",kernelFunc:hP};function pP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=_.parseAxisParam(i,a.shape)[0],l=E.prepareSplitSize(a,s,o),c=new Array(a.shape.length).fill(0),u=a.shape.slice();return l.map(h=>{let d=[...u];d[o]=h;let p=Ti({inputs:{x:a},backend:n,attrs:{begin:c,size:d}});return c[o]+=h,p})}var fP={kernelName:rl,backendName:"cpu",kernelFunc:pP},mP=rt(Qs,e=>Math.sqrt(e)),AP={kernelName:Qs,backendName:"cpu",kernelFunc:mP},yP={kernelName:Du,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;_e(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),xP={kernelName:$a,backendName:"cpu",kernelFunc:gP};function bP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r;_e(a,"stridedSlice");let{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=un.sliceInfo(a.shape,s,i,o,l,c,u,h,d),x=mt({inputs:{x:a},backend:n,attrs:{shape:y}}),v;if(p){let w=Ti({inputs:{x},backend:n,attrs:{begin:m,size:A}});v=mt({inputs:{x:w},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(w)}else if(g.some(w=>w===0))v=n.makeTensorInfo(g,a.dtype,[]);else{let w=n.bufferSync(x),k=d_(g,w,f,m);v=n.makeTensorInfo(k.shape,k.dtype,k.values)}let b=mt({inputs:{x:v},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),b}var wP={kernelName:al,backendName:"cpu",kernelFunc:bP},_P=rt(ai,e=>Math.tan(e)),vP={kernelName:ai,backendName:"cpu",kernelFunc:_P},kP=rt(si,e=>Math.tanh(e)),IP={kernelName:si,backendName:"cpu",kernelFunc:kP};function SP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;_e(a,"tile");let i=f_(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var NP={kernelName:Fa,backendName:"cpu",kernelFunc:SP};function TP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;_e(a,"topk");let o=n.data.get(a.dataId).values,[l,c]=m_(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var EP={kernelName:sl,backendName:"cpu",kernelFunc:TP};function MP(e){let{inputs:t,attrs:n,backend:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=n,[u,h,d,p]=a.shape,[m,f]=c!=null?c:[h,d],A=[u,m,f,p],y=_.computeStrides(a.shape),g=y[0],x=y[1],v=y[2],b=_.getTypedArrayFromDType(a.dtype,_.sizeFromShape(A));b.fill(l);let w=r.data.get(a.dataId).values,k=r.data.get(s.dataId).values;for(let N=0;Nt-1)if(t<=1)n=0;else{let r=2*t;n-=r*Math.trunc(n/r),n>=t&&(n=r-n-1)}return _.clamp(0,n,t-1)}function DP(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=t-1;n+=t*(Math.trunc(-n/r)+1)}else if(n>t-1)if(t<=1)n=0;else{let r=t-1;n-=t*Math.trunc(n/r)}return _.clamp(0,n,t-1)}function OP(e,t){return e}function zP(e,t){return _.clamp(0,e,t-1)}function pc(e,t,n,r,a,s,i,o,l,c,u){let h=i*r+o*a+l*s+c;return 0<=o&&on.disposeIntermediateTensorInfo(m)),p}var jP={kernelName:Ou,backendName:"cpu",kernelFunc:VP},UP=[t$,sF,r$,s$,hF,o$,u$,h$,p$,m$,y$,x$,w$,k$,S$,E$,R$,F$,D$,QF,z$,L$,B$,uF,pF,j$,iF,H$,q$,Z$,J$,X$,nD,aD,eD,iD,lD,cD,dD,fD,AD,yD,xD,wD,vD,kD,SD,ID,hA,ED,HF,RD,FD,BD,fF,VD,AF,XD,ZD,YD,gF,eO,nO,aO,iO,lO,bF,hO,oF,pO,G$,mO,yO,xO,GF,_F,_O,kO,kF,SO,EO,RO,$O,OO,PO,SF,BO,jO,HO,qO,KO,LO,YO,QO,TF,tz,az,lz,CF,MF,hz,fz,yz,$F,xz,wz,_z,O_,Sz,XF,zF,Tz,lF,Cz,KF,ZF,JF,Mz,$z,Oz,Pz,Wz,Bz,jz,LF,Hz,qz,Yz,YF,Qz,tP,rP,WF,iz,iP,lP,cP,dP,fP,AP,yP,VF,xP,wP,UF,ND,vP,IP,NP,EP,DF,FP,LP,BP,jP,bz];for(let e of UP)ci(e);var W_={};Me(W_,{assertNotComplex:()=>$l,bindCanvasToFramebuffer:()=>qP,bindColorTextureToFramebuffer:()=>fp,bindTextureToProgramUniformSampler:()=>t3,bindTextureUnit:()=>J_,bindVertexBufferToProgramAttribute:()=>fA,callAndCheck:()=>xe,canBeRepresented:()=>B_,createFragmentShader:()=>U_,createFramebuffer:()=>Y_,createProgram:()=>H_,createStaticIndexBuffer:()=>X_,createStaticVertexBuffer:()=>q_,createTexture:()=>K_,createVertexShader:()=>j_,getBatchDim:()=>Ei,getExtensionOrThrow:()=>fc,getFramebufferErrorMessage:()=>n3,getMaxTexturesInShader:()=>s3,getNumChannels:()=>HP,getProgramUniformLocation:()=>e3,getProgramUniformLocationOrThrow:()=>Q_,getRowsCols:()=>Ci,getShapeAs3D:()=>mp,getTextureShapeFromLogicalShape:()=>r3,getWebGLDisjointQueryTimerVersion:()=>i3,getWebGLErrorMessage:()=>V_,getWebGLMaxTextureSize:()=>a3,hasExtension:()=>rr,isCapableOfRenderingToFloatTexture:()=>o3,isDownloadFloatTextureEnabled:()=>l3,isReshapeFree:()=>Ac,isWebGLFenceEnabled:()=>u3,isWebGLVersionEnabled:()=>AA,linkProgram:()=>G_,resetMaxTextureSize:()=>XP,resetMaxTexturesInShader:()=>KP,unbindColorTextureFromFramebuffer:()=>mA,unbindTextureUnit:()=>GP,validateFramebuffer:()=>mc,validateProgram:()=>pp,validateTextureSize:()=>Z_});var Ri={},yA={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Ap(e,t){Ri[e]=t}function Xr(e){if(!(e in Ri)){let n=ZP(e);if(n!==null)Ri[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Ri[e];return t.isContextLost()?(delete Ri[e],Xr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Ri[e])}function YP(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function ZP(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=YP(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ri[e]},!1),e===1?t.getContext("webgl",yA)||t.getContext("experimental-webgl",yA):t.getContext("webgl2",yA)}var yc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(yc||(yc={}));var ar;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(ar||(ar={}));var tn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(tn||(tn={}));function gc(e,t){return[t,e]}function JP(e,t){return e*t}function xc(e){let t=_.sizeFromShape(e),n=Math.ceil(t/4);return _.sizeToSquarishShape(n)}function Dl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function QP(e,t){let[n,r]=Dl(e,t);return n*r*4}function gA(e,t){let n=e,r,a,s,i,o,l,c,u,h,d;return J().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:h,textureTypeFloat:d}}function xe(e,t){let n=t();return J().getBool("DEBUG")&&eL(e),n}function eL(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+V_(e,t))}var tL=596e-10,nL=65504;function B_(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||tLe.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function j_(e,t){let n=Aa(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function U_(e,t){let n=Aa(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw rL(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var aL=/ERROR: [0-9]+:([0-9]+):/g;function rL(e,t){let n=aL.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(` `),s=a.length.toString().length+2,i=a.map((h,d)=>_.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;he.createProgram(),"Unable to create WebGLProgram.")}function Y_(e,t){if(we(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function fp(e,t){if(we(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function J_(e,t){let n=ma(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),we(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Q_(e,t){let n=ma(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),we(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function eL(){return J().getNumber("WEBGL_VERSION")===2?1:4}function e3(e){return ma(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function t3(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function n3(e){return ma(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function AA(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),we(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),we(e,()=>e.enableVertexAttribArray(o)),!0)}function r3(e,t,n){m3(e,n),we(e,()=>e.activeTexture(e.TEXTURE0+n)),we(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function tL(e,t){m3(e,t),we(e,()=>e.activeTexture(e.TEXTURE0+t)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function a3(e,t,n){return ma(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function s3(e,t,n){return e.getUniformLocation(t,n)}function i3(e,t,n,r){we(e,()=>r3(e,t,r)),we(e,()=>e.uniform1i(n,r))}function nL(e){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),we(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function mp(e,t,n){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function yA(e,t){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function yc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+o3(e,t))}function o3(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ma(e,t,n){let r=we(e,()=>t());if(r==null)throw new Error(n);return r}function m3(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(rn){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function Ti(e,t=2){return _.sizeFromShape(e.slice(0,e.length-t))}function Ei(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Ap(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Ti(e),...Ei(e)]),t}function l3(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?_.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=_.squeezeShape(e).newShape);let r=_.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=Ti(e),s=2,i=2;return e.length&&([s,i]=Ei(e)),r=a*(s/2)*(i/2),_.sizeToSquarishShape(r).map(o=>o*2)}return _.sizeToSquarishShape(r)}function gp(e){return e%2==0}function gc(e,t){if(e=e.slice(-2),t=t.slice(-2),_.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||gp(n)&&gp(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&gp(e[0])&&gp(t[0])}var xp,wp;function u3(e){if(xp==null){let t=qr(e);xp=t.getParameter(t.MAX_TEXTURE_SIZE)}return xp}function rL(){xp=null}function aL(){wp=null}function c3(e){if(wp==null){let t=qr(e);wp=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,wp)}function h3(e){if(e===0)return 0;let t,n=qr(e);return rr(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:rr(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function rr(e,t){return e.getExtension(t)!=null}function gA(e){try{if(qr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function d3(e){if(e===0)return!1;let t=qr(e);if(e===1){if(!rr(t,"OES_texture_float"))return!1}else if(!rr(t,"EXT_color_buffer_float"))return!1;return bA(t)}function p3(e){if(e===0)return!1;let t=qr(e);if(e===1){if(!rr(t,"OES_texture_float")||!rr(t,"WEBGL_color_buffer_float"))return!1}else{if(rr(t,"EXT_color_buffer_float"))return bA(t);let n="EXT_color_buffer_half_float";if(rr(t,n)){let r=t.getExtension(n);return fL(t,r)}return!1}return bA(t)}function bA(e){let t=wA(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function fL(e,t){let n=wA(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function f3(e){return e!==2?!1:qr(e).fenceSync!=null}function $l(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&_.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=J();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>gA(2)?2:gA(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>u3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>c3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:h3(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!qu.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>d3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>p3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>f3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>qu.isMobile()&&Ce.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function dn(){let e,t,n,r,a,s,i,o,l,c;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=` +`))}function H_(e){return Aa(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function G_(e,t){if(xe(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function pp(e,t){if(xe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function q_(e,t){let n=Aa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function X_(e,t){let n=Aa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function HP(){return J().getNumber("WEBGL_VERSION")===2?1:4}function K_(e){return Aa(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function Z_(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function Y_(e){return Aa(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function fA(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),xe(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),xe(e,()=>e.enableVertexAttribArray(o)),!0)}function J_(e,t,n){c3(e,n),xe(e,()=>e.activeTexture(e.TEXTURE0+n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function GP(e,t){c3(e,t),xe(e,()=>e.activeTexture(e.TEXTURE0+t)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Q_(e,t,n){return Aa(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function e3(e,t,n){return e.getUniformLocation(t,n)}function t3(e,t,n,r){xe(e,()=>J_(e,t,r)),xe(e,()=>e.uniform1i(n,r))}function qP(e){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),xe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function fp(e,t,n){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function mA(e,t){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function mc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+n3(e,t))}function n3(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Aa(e,t,n){let r=xe(e,()=>t());if(r==null)throw new Error(n);return r}function c3(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(rn){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function Ei(e,t=2){return _.sizeFromShape(e.slice(0,e.length-t))}function Ci(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function mp(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Ei(e),...Ci(e)]),t}function r3(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?_.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=_.squeezeShape(e).newShape);let r=_.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=Ei(e),s=2,i=2;return e.length&&([s,i]=Ci(e)),r=a*(s/2)*(i/2),_.sizeToSquarishShape(r).map(o=>o*2)}return _.sizeToSquarishShape(r)}function yp(e){return e%2==0}function Ac(e,t){if(e=e.slice(-2),t=t.slice(-2),_.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||yp(n)&&yp(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&yp(e[0])&&yp(t[0])}var gp,xp;function a3(e){if(gp==null){let t=Xr(e);gp=t.getParameter(t.MAX_TEXTURE_SIZE)}return gp}function XP(){gp=null}function KP(){xp=null}function s3(e){if(xp==null){let t=Xr(e);xp=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,xp)}function i3(e){if(e===0)return 0;let t,n=Xr(e);return rr(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:rr(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function rr(e,t){return e.getExtension(t)!=null}function AA(e){try{if(Xr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function o3(e){if(e===0)return!1;let t=Xr(e);if(e===1){if(!rr(t,"OES_texture_float"))return!1}else if(!rr(t,"EXT_color_buffer_float"))return!1;return xA(t)}function l3(e){if(e===0)return!1;let t=Xr(e);if(e===1){if(!rr(t,"OES_texture_float")||!rr(t,"WEBGL_color_buffer_float"))return!1}else{if(rr(t,"EXT_color_buffer_float"))return xA(t);let n="EXT_color_buffer_half_float";if(rr(t,n)){let r=t.getExtension(n);return sL(t,r)}return!1}return xA(t)}function xA(e){let t=gA(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function sL(e,t){let n=gA(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function u3(e){return e!==2?!1:Xr(e).fenceSync!=null}function $l(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&_.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=J();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>AA(2)?2:AA(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>a3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>s3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:i3(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Hu.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>o3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>l3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>u3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Hu.isMobile()&&Ce.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function dn(){let e,t,n,r,a,s,i,o,l,c;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=` bool isnan_custom(float val) { return (val > 0.0 || val < 0.0) ? false : val != 0.0; } @@ -78,11 +78,11 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ivec4 round(vec4 value) { return ivec4(floor(value + vec4(0.5))); } - `),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function Ri(e,t,n="index"){let r=_.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function _A(e){let t=_.computeStrides(e).map(n=>n.toString());return` + `),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function Mi(e,t,n="index"){let r=_.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function bA(e){let t=_.computeStrides(e).map(n=>n.toString());return` int getFlatIndex(ivec3 coords) { return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z; } -`}var A3=` +`}var h3=` const float FLOAT_MAX = 1.70141184e38; const float FLOAT_MIN = 1.17549435e-38; @@ -121,9 +121,9 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee return c / 255.0; } -`,mL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=xc.DENSE;let t=bc(e),n=dn();this.outputShape=e,this.userCode=` +`,iL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=yc.DENSE;let t=xc(e),n=dn();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { - ${Ri(["r","c","d"],e)} + ${Mi(["r","c","d"],e)} return ivec3(r, c, d); } @@ -142,9 +142,9 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${n.output} = result; } - `}},AL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=xc.DENSE;let t=bc(e),n=dn();this.outputShape=e,this.userCode=` + `}},oL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=yc.DENSE;let t=xc(e),n=dn();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { - ${Ri(["r","c","d"],e)} + ${Mi(["r","c","d"],e)} return ivec3(r, c, d); } @@ -163,23 +163,23 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${n.output} = result; } - `}},yL=class{constructor(e){this.variableNames=["A"],this.outTexUsage=ar.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=` - ${A3} + `}},lL=class{constructor(e){this.variableNames=["A"],this.outTexUsage=ar.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=` + ${h3} void main() { float x = getAAtOutCoords(); ${t.output} = encode_float(x); } - `}},gL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=ar.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=` - ${A3} + `}},uL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=ar.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=` + ${h3} void main() { ivec3 coords = getOutputCoords(); float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z)); ${t.output} = encode_float(x); } - `}},xL=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=dn(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=` - ${_A(e)} + `}},cL=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=dn(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=` + ${bA(e)} void main() { ivec3 coords = getOutputCoords(); @@ -208,7 +208,7 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${r.output} = vec4(${i}, 0., 0., 0.); } - `}},wL=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=dn(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=` + `}},hL=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=dn(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=` localCoords = coords; if(localCoords[2] + ${c} < ${e[2]}) { localCoords[2] += ${c}; @@ -237,7 +237,7 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee } } `}this.userCode=` - ${_A(e)} + ${bA(e)} void main() { ivec3 coords = getOutputCoords(); @@ -252,7 +252,7 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${r.output} = ${o}; } - `}},y3={};Me(y3,{bindVertexProgramAttributeStreams:()=>S3,createBufferFromOutputTexture:()=>E3,createFloat16MatrixTexture:()=>_3,createFloat16PackedMatrixTexture:()=>I3,createFloat32MatrixTexture:()=>b3,createIndexBuffer:()=>w3,createPackedMatrixTexture:()=>k3,createUnsignedBytesMatrixTexture:()=>v3,createVertexBuffer:()=>x3,createVertexShader:()=>g3,downloadByteEncodedFloatMatrixFromOutputTexture:()=>R3,downloadFloat32MatrixFromBuffer:()=>C3,downloadMatrixFromPackedOutputTexture:()=>F3,downloadPackedMatrixFromBuffer:()=>M3,getInternalFormatForFloat16MatrixTexture:()=>kA,getInternalFormatForFloat16PackedMatrixTexture:()=>NA,getInternalFormatForFloat32MatrixTexture:()=>vA,getInternalFormatForPackedMatrixTexture:()=>SA,getInternalFormatForUnsignedBytesMatrixTexture:()=>IA,uploadDenseMatrixToTexture:()=>N3,uploadPixelDataToTexture:()=>T3});function g3(e){let t=dn(),n=`${t.version} + `}},d3={};Me(d3,{bindVertexProgramAttributeStreams:()=>w3,createBufferFromOutputTexture:()=>k3,createFloat16MatrixTexture:()=>y3,createFloat16PackedMatrixTexture:()=>b3,createFloat32MatrixTexture:()=>A3,createIndexBuffer:()=>m3,createPackedMatrixTexture:()=>x3,createUnsignedBytesMatrixTexture:()=>g3,createVertexBuffer:()=>f3,createVertexShader:()=>p3,downloadByteEncodedFloatMatrixFromOutputTexture:()=>S3,downloadFloat32MatrixFromBuffer:()=>I3,downloadMatrixFromPackedOutputTexture:()=>T3,downloadPackedMatrixFromBuffer:()=>N3,getInternalFormatForFloat16MatrixTexture:()=>_A,getInternalFormatForFloat16PackedMatrixTexture:()=>IA,getInternalFormatForFloat32MatrixTexture:()=>wA,getInternalFormatForPackedMatrixTexture:()=>kA,getInternalFormatForUnsignedBytesMatrixTexture:()=>vA,uploadDenseMatrixToTexture:()=>_3,uploadPixelDataToTexture:()=>v3});function p3(e){let t=dn(),n=`${t.version} precision highp float; ${t.attribute} vec3 clipSpacePos; ${t.attribute} vec2 uv; @@ -261,22 +261,22 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee void main() { gl_Position = vec4(clipSpacePos, 1); resultUV = uv; - }`;return X_(e,n)}function x3(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return J_(e,t)}function w3(e){let t=new Uint16Array([0,1,2,2,1,3]);return Q_(e,t)}function _c(e,t,n,r,a,s){t3(t,n);let i=e3(e),o=e.TEXTURE_2D;return we(e,()=>e.bindTexture(o,i)),we(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),we(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),we(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function vA(e){return e.internalFormatFloat}function b3(e,t,n,r){let[a,s]=wc(t,n);return _c(e,a,s,vA(r),r.textureFormatFloat,e.FLOAT)}function kA(e){return e.internalFormatHalfFloat}function _3(e,t,n,r){let[a,s]=wc(t,n);return _c(e,a,s,kA(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function IA(e){return e.downloadTextureFormat}function v3(e,t,n,r){let[a,s]=wc(t,n);return _c(e,a,s,IA(r),e.RGBA,e.UNSIGNED_BYTE)}function SA(e){return e.internalFormatPackedFloat}function k3(e,t,n,r){let[a,s]=Dl(t,n);return _c(e,a,s,SA(r),e.RGBA,e.FLOAT)}function NA(e){return e.internalFormatPackedHalfFloat}function I3(e,t,n,r){let[a,s]=Dl(t,n);return _c(e,a,s,NA(r),e.RGBA,r.textureTypeHalfFloat)}function S3(e,t,n){let r=0,a=3*4,s=3*4+2*4;return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),AA(e,t,"clipSpacePos",n,3,s,r)&&AA(e,t,"uv",n,2,s,a)}function N3(e,t,n,r,a,s){we(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),we(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function T3(e,t,n){we(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function E3(e,t,n,r){let a=e.createBuffer();we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return we(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),we(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function C3(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function R3(e,t,n,r){let[a,s]=wc(t,n),i=4,o=new Uint8Array(oL(t*n,i));return we(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function M3(e,t,n,r,a,s,i,o){let l=e,c=new Float32Array(lL(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function F3(e,t,n){let r=new Float32Array(t*n*4);return we(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var bp=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,yp(t,e)):this.gl=qr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Ac(this.gl,a),rr(this.gl,s))this.textureHalfFloatExtension=Ac(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),rr(this.gl,r))this.colorBufferHalfFloatExtension=Ac(this.gl,r);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",rr(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(rr(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=x3(this.gl),this.indexBuffer=w3(this.gl),this.framebuffer=n3(this.gl),this.textureConfig=wA(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;we(e,()=>e.finish()),we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.deleteFramebuffer(this.framebuffer)),we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),we(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),b3(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),_3(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),v3(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),T3(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),N3(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),I3(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),k3(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(yA(this.gl,this.framebuffer),this.outputTexture=null),we(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>R3(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return M3(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return C3(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=E3(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>F3(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=K_(t,e),r=g3(t),a=Z_(t);return we(t,()=>t.attachShader(a,r)),we(t,()=>t.attachShader(a,n)),Y_(t,a),this.debug&&fp(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=S3(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&we(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&fp(this.gl,this.program),we(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?a3(this.gl,e,t):s3(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),we(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),i3(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=Dl(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&fp(this.gl,this.program),yc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),we(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),we(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Ac(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await _.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=bL(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&_.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),mp(this.gl,e,this.framebuffer),this.debug&&yc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(mp(this.gl,this.outputTexture,this.framebuffer),this.debug&&yc(this.gl)):yA(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;mp(r,e,this.framebuffer),this.debug&&yc(r),this.outputTexture=e,we(r,()=>r.viewport(0,0,t,n)),we(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),we(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function bL(e){let t=0;for(;t{let f=_.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${f>1?`[${f}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(` -`),i=e.map(p=>_L(p,t,r)).join(` -`),o=t.texShape,l=dn(),c=IL(l),u,h,d=TL(l);return t.isPacked?(u=vL(t.logicalShape,o),h=NL(l)):(u=kL(t.logicalShape,o),h=SL(l)),r&&(d+=EL),[d,c,h,s,u,i,n].join(` -`)}function Ol(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return RL(e);case 1:return ML(e);case 2:return FL(e);case 3:return $L(e);case 4:return DL(e);case 5:return OL(e);case 6:return zL(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function D3(e){switch(e.shapeInfo.logicalShape.length){case 0:return PL(e);case 1:return LL(e);case 2:return WL(e);case 3:return BL(e);default:return VL(e)}}function _L(e,t,n=!1){let r="";n?r+=D3(e):r+=Ol(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=jL(e,t):r+=UL(e,t)),r}function vL(e,t){switch(e.length){case 0:return O3();case 1:return HL(e,t);case 2:return XL(e,t);case 3:return GL(e,t);default:return qL(e,t)}}function kL(e,t){switch(e.length){case 0:return O3();case 1:return KL(e,t);case 2:return eW(e,t);case 3:return ZL(e,t);case 4:return YL(e,t);case 5:return JL(e,t);case 6:return QL(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function IL(e){return` + }`;return j_(e,n)}function f3(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return q_(e,t)}function m3(e){let t=new Uint16Array([0,1,2,2,1,3]);return X_(e,t)}function bc(e,t,n,r,a,s){Z_(t,n);let i=K_(e),o=e.TEXTURE_2D;return xe(e,()=>e.bindTexture(o,i)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),xe(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function wA(e){return e.internalFormatFloat}function A3(e,t,n,r){let[a,s]=gc(t,n);return bc(e,a,s,wA(r),r.textureFormatFloat,e.FLOAT)}function _A(e){return e.internalFormatHalfFloat}function y3(e,t,n,r){let[a,s]=gc(t,n);return bc(e,a,s,_A(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function vA(e){return e.downloadTextureFormat}function g3(e,t,n,r){let[a,s]=gc(t,n);return bc(e,a,s,vA(r),e.RGBA,e.UNSIGNED_BYTE)}function kA(e){return e.internalFormatPackedFloat}function x3(e,t,n,r){let[a,s]=Dl(t,n);return bc(e,a,s,kA(r),e.RGBA,e.FLOAT)}function IA(e){return e.internalFormatPackedHalfFloat}function b3(e,t,n,r){let[a,s]=Dl(t,n);return bc(e,a,s,IA(r),e.RGBA,r.textureTypeHalfFloat)}function w3(e,t,n){let r=0,a=3*4,s=3*4+2*4;return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),fA(e,t,"clipSpacePos",n,3,s,r)&&fA(e,t,"uv",n,2,s,a)}function _3(e,t,n,r,a,s){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function v3(e,t,n){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function k3(e,t,n,r){let a=e.createBuffer();xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return xe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function I3(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function S3(e,t,n,r){let[a,s]=gc(t,n),i=4,o=new Uint8Array(JP(t*n,i));return xe(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function N3(e,t,n,r,a,s,i,o){let l=e,c=new Float32Array(QP(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function T3(e,t,n){let r=new Float32Array(t*n*4);return xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var bp=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Ap(t,e)):this.gl=Xr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=fc(this.gl,a),rr(this.gl,s))this.textureHalfFloatExtension=fc(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),rr(this.gl,r))this.colorBufferHalfFloatExtension=fc(this.gl,r);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",rr(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(rr(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=f3(this.gl),this.indexBuffer=m3(this.gl),this.framebuffer=Y_(this.gl),this.textureConfig=gA(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;xe(e,()=>e.finish()),xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.deleteFramebuffer(this.framebuffer)),xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),xe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),A3(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),y3(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),g3(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),v3(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),_3(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),b3(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),x3(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(mA(this.gl,this.framebuffer),this.outputTexture=null),xe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>S3(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return N3(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return I3(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=k3(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>T3(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=U_(t,e),r=p3(t),a=H_(t);return xe(t,()=>t.attachShader(a,r)),xe(t,()=>t.attachShader(a,n)),G_(t,a),this.debug&&pp(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=w3(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&xe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&pp(this.gl,this.program),xe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?Q_(this.gl,e,t):e3(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),xe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),t3(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=Dl(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&pp(this.gl,this.program),mc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),xe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),xe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=fc(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await _.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=dL(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&_.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),fp(this.gl,e,this.framebuffer),this.debug&&mc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(fp(this.gl,this.outputTexture,this.framebuffer),this.debug&&mc(this.gl)):mA(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;fp(r,e,this.framebuffer),this.debug&&mc(r),this.outputTexture=e,xe(r,()=>r.viewport(0,0,t,n)),xe(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),xe(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function dL(e){let t=0;for(;t{let m=_.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${m>1?`[${m}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(` +`),i=e.map(p=>pL(p,t,r)).join(` +`),o=t.texShape,l=dn(),c=AL(l),u,h,d=xL(l);return t.isPacked?(u=fL(t.logicalShape,o),h=gL(l)):(u=mL(t.logicalShape,o),h=yL(l)),r&&(d+=bL),[d,c,h,s,u,i,n].join(` +`)}function Ol(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return _L(e);case 1:return vL(e);case 2:return kL(e);case 3:return IL(e);case 4:return SL(e);case 5:return NL(e);case 6:return TL(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function C3(e){switch(e.shapeInfo.logicalShape.length){case 0:return EL(e);case 1:return CL(e);case 2:return RL(e);case 3:return ML(e);default:return FL(e)}}function pL(e,t,n=!1){let r="";n?r+=C3(e):r+=Ol(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=$L(e,t):r+=DL(e,t)),r}function fL(e,t){switch(e.length){case 0:return R3();case 1:return OL(e,t);case 2:return LL(e,t);case 3:return zL(e,t);default:return PL(e,t)}}function mL(e,t){switch(e.length){case 0:return R3();case 1:return WL(e,t);case 2:return HL(e,t);case 3:return BL(e,t);case 4:return VL(e,t);case 5:return jL(e,t);case 6:return UL(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function AL(e){return` float sampleTexture(sampler2D textureSampler, vec2 uv) { return ${e.texture2D}(textureSampler, uv).r; } - `}function SL(e){return` + `}function yL(e){return` void setOutput(float val) { ${e.output} = vec4(val, 0, 0, 0); } - `}function NL(e){return` + `}function gL(e){return` void setOutput(vec4 val) { ${e.output} = val; } - `}function TL(e){return`${e.version} + `}function xL(e){return`${e.version} precision highp float; precision highp int; precision highp sampler2D; @@ -331,10 +331,10 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee return fract((p3.x + p3.y) * p3.z); } - ${tW} - ${nW} - ${rW} - `}var tW=` + ${GL} + ${qL} + ${XL} + `}var GL=` vec2 uvFromFlat(int texNumR, int texNumC, int index) { int texR = index / texNumC; int texC = index - texR * texNumC; @@ -346,7 +346,7 @@ vec2 packedUVfrom1D(int texNumR, int texNumC, int index) { int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,nW=` +`,qL=` vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texNumC, int row, int col) { int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2); @@ -354,7 +354,7 @@ vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,rW=` +`,XL=` vec2 packedUVfrom3D(int texNumR, int texNumC, int texelsInBatch, int texelsInLogicalRow, int b, int row, int col) { @@ -363,7 +363,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,EL=` +`,bL=` float getChannel(vec4 frag, vec2 innerDims) { vec2 modCoord = mod(innerDims, 2.); return modCoord.x == 0. ? @@ -374,11 +374,11 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, float modCoord = mod(float(dim), 2.); return modCoord == 0. ? frag.r : frag.g; } -`;function O3(){return` +`;function R3(){return` int getOutputCoords() { return 0; } - `}function HL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?` + `}function OL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?` int getOutputCoords() { return 2 * int(resultUV.x * ${n[1]}.0); } @@ -392,7 +392,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2(${n[0]}, ${n[1]})); return 2 * (resTexRC.x * ${n[1]} + resTexRC.y); } - `}function KL(e,t){return t[0]===1?` + `}function WL(e,t){return t[0]===1?` int getOutputCoords() { return int(resultUV.x * ${t[1]}.0); } @@ -406,7 +406,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2(${t[0]}, ${t[1]})); return resTexRC.x * ${t[1]} + resTexRC.y; } - `}function GL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return` + `}function zL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]})); @@ -420,7 +420,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, return ivec3(b, r, c); } - `}function ZL(e,t){let n=Ri(["r","c","d"],e);return` + `}function BL(e,t){let n=Mi(["r","c","d"],e);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); @@ -428,7 +428,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ${n} return ivec3(r, c, d); } - `}function qL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),s=a,i="",o="b, r, c";for(let l=2;l=1?u="coords = 0;":u=o.map(A=>`coords.${h[A+c]} = 0;`).join(` -`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,y)=>`coords.${h[y+c]}`).join(", ");let p="return outputValue;",f=_.sizeFromShape(e.shapeInfo.logicalShape)===1,m=_.sizeFromShape(t.logicalShape)===1;if(s===1&&!f&&!m)p=` + `}function $L(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=E3(e.shapeInfo.logicalShape,t.logicalShape),l=lt(i),c=i-s,u,h=["x","y","z","w","u","v"];s===0?u="":i<2&&o.length>=1?u="coords = 0;":u=o.map(A=>`coords.${h[A+c]} = 0;`).join(` +`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,y)=>`coords.${h[y+c]}`).join(", ");let p="return outputValue;",m=_.sizeFromShape(e.shapeInfo.logicalShape)===1,f=_.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)p=` return vec4(outputValue.xy, outputValue.xy); - `;else if(f&&!m)i===1?p=` + `;else if(m&&!f)i===1?p=` return vec4(outputValue.x, outputValue.x, 0., 0.); `:p=` return vec4(outputValue.x); @@ -808,22 +808,22 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec4 outputValue = get${r}(${d}); ${p} } - `}function UL(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&_.arraysEqual(i,s))return` + `}function DL(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&_.arraysEqual(i,s))return` float ${a}() { return sampleTexture(${n}, resultUV); } - `;let c=lt(l),u=$3(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(m=>`coords.${p[m+h]} = 0;`).join(` -`);let f="";return l<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,A)=>`coords.${p[A+h]}`).join(", "),` + `;let c=lt(l),u=E3(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(f=>`coords.${p[f+h]} = 0;`).join(` +`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,A)=>`coords.${p[A+h]}`).join(", "),` float ${a}() { ${c} coords = getOutputCoords(); ${d} - return get${r}(${f}); + return get${r}(${m}); } - `}function lt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Pl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Ll(e,t){return t.map(n=>e[n]).join(", ")}function aW(e,t,n,r){let a=t.userCode,s=n.map((p,f)=>{let m={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(m.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[f],shapeInfo:m}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=CL(s,o,a,t.packedInputs),c=e.createProgram(l),u=null,h=e.getUniformLocation(c,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let p=0;p{let a=n.logicalShape,s=t[r],i=s.shape;if(!_.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!_.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function sW(e,t,n,r,a){z3(t.inShapeInfos,n),z3([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(_.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function iW(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:oW,bincountImpl:P3,bincountReduceImpl:lW,ceilImpl:uW,concatImpl:cW,expImpl:hW,expm1Impl:dW,floorImpl:pW,gatherV2Impl:fW,greaterImpl:mW,lessImpl:AW,linSpaceImpl:yW,logImpl:gW,maxImpl:xW,maximumImpl:wW,minimumImpl:bW,multiplyImpl:_W,negImpl:vW,prodImpl:kW,rangeImpl:IW,rsqrtImpl:SW,simpleAbsImpl:L3,sliceImpl:NW,sparseReshapeImpl:TW,stridedSliceImpl:EW,subImpl:CW,tileImpl:RW,topKImpl:MW,transposeImpl:TA,uniqueImpl:FW}=nA;function W3(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function pn(e,t){return t===1?[e]:W3(e,t)}function $W(e,t){if(e===1)return"rc";let n="";for(let r=0;re[n]).join(", ")}function KL(e,t,n,r){let a=t.userCode,s=n.map((p,m)=>{let f={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(f.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=wL(s,o,a,t.packedInputs),c=e.createProgram(l),u=null,h=e.getUniformLocation(c,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let p=0;p{let a=n.logicalShape,s=t[r],i=s.shape;if(!_.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!_.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function ZL(e,t,n,r,a){M3(t.inShapeInfos,n),M3([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(_.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function YL(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:JL,bincountImpl:F3,bincountReduceImpl:QL,ceilImpl:eW,concatImpl:tW,expImpl:nW,expm1Impl:rW,floorImpl:aW,gatherV2Impl:sW,greaterImpl:iW,lessImpl:oW,linSpaceImpl:lW,logImpl:uW,maxImpl:cW,maximumImpl:hW,minimumImpl:dW,multiplyImpl:pW,negImpl:fW,prodImpl:mW,rangeImpl:AW,rsqrtImpl:yW,simpleAbsImpl:$3,sliceImpl:gW,sparseReshapeImpl:xW,stridedSliceImpl:bW,subImpl:wW,tileImpl:_W,topKImpl:vW,transposeImpl:SA,uniqueImpl:kW}=eA;function D3(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function pn(e,t){return t===1?[e]:D3(e,t)}function IW(e,t){if(e===1)return"rc";let n="";for(let r=0;r ${t[0]}`;let r="";for(let a=e-2;a= ${t[a]}`,a ${t[0]}`;let r="";for(let a=e-2;a= ${t[a]}`,a= ${t}; bool rEdge = rp1 >= ${n}; - `}function zW(e,t){let n=e.length,r=LW(n,t);return n===1?`getA(rc), + `}function TW(e,t){let n=e.length,r=CW(n,t);return n===1?`getA(rc), rc + 1 >= ${e[0]} ? 0. : getA(rc + 1), 0, 0`:`getA(${r[0]}), cEdge ? 0. : getA(${r[1]}), rEdge ? 0. : getA(${r[2]}), - rEdge || cEdge ? 0. : getA(${r[3]})`}var B3=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=` + rEdge || cEdge ? 0. : getA(${r[3]})`}var O3=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=` ${a} ${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""} int flatIndex = getFlatIndex(thisRC); @@ -860,8 +860,8 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims); ${r>0?"}":""} `}this.userCode=` - ${WW(t)} - ${_A(e)} + ${RW(t)} + ${bA(e)} void main() { ivec3 rc = getOutputCoords(); @@ -876,12 +876,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(result); } - `}};function WW(e){return` + `}};function RW(e){return` ivec3 inputCoordsFromReshapedOutCoords(int index) { - ${Ri(["r","c","d"],e)} + ${Mi(["r","c","d"],e)} return ivec3(r, c, d); } - `}var BW=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=j3(t,n),a=U3(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=V3(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===tn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===tn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===tn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===tn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===tn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=j3(n,r),s=U3(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=V3(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function VW(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function V3(e,t,n,r,a){let s=jW(t,r),i;if(a){let[l,c]=Dl(e[0],e[1]);i=l*c}else{let[l,c]=wc(e[0],e[1]);i=l*c}let o=VW(n,s);return i*o}function jW(e,t){switch(e){case tn.PACKED_2X2_FLOAT32:return SA(t);case tn.PACKED_2X2_FLOAT16:return NA(t);case tn.UNPACKED_FLOAT32:return vA(t);case tn.UNPACKED_FLOAT16:return kA(t);case tn.PACKED_4X1_UNSIGNED_BYTE:return IA(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function UW(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?tn.PACKED_2X2_FLOAT32:tn.UNPACKED_FLOAT32:e?tn.PACKED_2X2_FLOAT16:tn.UNPACKED_FLOAT16}function j3(e,t){if(e===ar.UPLOAD)return tn.PACKED_2X2_FLOAT32;if(e===ar.RENDER||e==null)return UW(t);if(e===ar.DOWNLOAD||e===ar.PIXELS)return tn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function U3(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Ga=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=` + `}var MW=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=P3(t,n),a=L3(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=z3(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===tn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===tn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===tn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===tn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===tn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=P3(n,r),s=L3(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=z3(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function FW(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function z3(e,t,n,r,a){let s=$W(t,r),i;if(a){let[l,c]=Dl(e[0],e[1]);i=l*c}else{let[l,c]=gc(e[0],e[1]);i=l*c}let o=FW(n,s);return i*o}function $W(e,t){switch(e){case tn.PACKED_2X2_FLOAT32:return kA(t);case tn.PACKED_2X2_FLOAT16:return IA(t);case tn.UNPACKED_FLOAT32:return wA(t);case tn.UNPACKED_FLOAT16:return _A(t);case tn.PACKED_4X1_UNSIGNED_BYTE:return vA(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function DW(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?tn.PACKED_2X2_FLOAT32:tn.UNPACKED_FLOAT32:e?tn.PACKED_2X2_FLOAT16:tn.UNPACKED_FLOAT16}function P3(e,t){if(e===ar.UPLOAD)return tn.PACKED_2X2_FLOAT32;if(e===ar.RENDER||e==null)return DW(t);if(e===ar.DOWNLOAD||e===ar.PIXELS)return tn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function L3(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var qa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=` float unaryOperation(float x) { ${t} } @@ -892,11 +892,11 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(y); } - `}},Sr="if (isnan(x)) return x;",HW="return x;",H3="return abs(x);",GW="return (x >= 0.0) ? x : (exp(x) - 1.0);",qW=Sr+` + `}},Nr="if (isnan(x)) return x;",OW="return x;",W3="return abs(x);",zW="return (x >= 0.0) ? x : (exp(x) - 1.0);",PW=Nr+` return (x < 0.0) ? 0.0 : x; -`,XW=Sr+` +`,LW=Nr+` return (x < 0.0) ? 0.0 : min(6.0, x); -`,_p="return x;",KW="return 1.0 / (1.0 + exp(-1.0 * x));",ZW="return x;",YW=` +`,wp="return x;",WW="return 1.0 / (1.0 + exp(-1.0 * x));",BW="return x;",VW=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); @@ -905,7 +905,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; -`,JW=` +`,jW=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -915,7 +915,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = isNaN.a ? x.a : result.a; return result; -`,QW=` +`,UW=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -925,7 +925,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = isNaN.a ? x.a : result.a; return result; -`,eB="return 1.0 / (1.0 + exp(-1.0 * x));",Wl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` +`,HW="return 1.0 / (1.0 + exp(-1.0 * x));",Wl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` vec4 unaryOperation(vec4 x) { ${t} } @@ -936,14 +936,14 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(y); } - `}},tB=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=pn("rc",t),r=lt(t),a=$W(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=` + `}},GW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=pn("rc",t),r=lt(t),a=IW(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=` void main() { ${r} rc = getOutputCoords(); vec4 packedInput = getA(${a}); setOutput(getChannel(packedInput, ${i})); } - `}},nB=Hr.whereImpl,rB=1e-7,aB=1e-4,EA={};function sB(e){return e in EA||(EA[e]={}),EA[e]}var iB=128,oB=600;function lB(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*oB/1024/1024}var Bl=class extends wu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=qr(J().getNumber("WEBGL_VERSION"));this.binaryCache=sB(J().getNumber("WEBGL_VERSION")),this.gpgpu=new bp(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new BW(this.gpgpu),this.numMBBeforeWarning=lB(),this.texData=new Rh(this,ua())}nextDataId(){return Bl.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:ar.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,a){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:ar.UPLOAD,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new Wl(i,_p):h=new Ga(i,_p);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,c;l&&(c=_.now());let u;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);u=E.mergeRealAndImagArrays(h,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=_.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(f=>p.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new Wl(r,_p):p=new Ga(r,_p);let f=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let p=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...bc(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=p[0],m=p[1];u=E.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let p=_.sizeFromShape(r);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}c!=null&&this.disposeIntermediateTensorInfo(c);let h=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ua().removeDataId(e,this),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>_.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=_.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=_.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=_.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:_.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=_.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=iB){return J().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&_.sizeFromShape(n.shape)0&&_.isString(n[0])){let a=n.map(s=>_.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return ua().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new tB(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new PW(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Ti(e.shape),...Ei(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[Ti(t),...Ei(t)],s=new B3(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=Ap(r),i;n?i=new AL(s):i=new mL(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===xc.DENSE){let m=bc(e.outputShape);i.texShape=m.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),_.sizeFromShape(s.shape)===0)return i.values=_.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(m.dataId);if(A.texture==null){if(!e.packedInputs&&_.sizeFromShape(m.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=m.shape)}else if(!!A.isPacked!=!!e.packedInputs)m=A.isPacked?this.unpackTensor(m):this.packTensor(m),o.push(m),A=this.texData.get(m.dataId);else if(A.isPacked&&!gc(A.shape,m.shape)){let y=m,g=m.shape;m.shape=A.shape,m=this.packedReshape(m,g),o.push(m),A=this.texData.get(m.dataId),y.shape=g}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=iW(e,l,c),h=this.getAndSaveBinary(u,()=>aW(this.gpgpu,e,l,c)),d=this.activeTimers!=null,p;d&&(p=this.startTimer()),sW(this.gpgpu,h,l,c,r),o.forEach(m=>this.disposeIntermediateTensorInfo(m)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let f=J().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=_.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let m=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),m}return s}compileAndRun(e,t,n,r,a=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=z(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(xe(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?rB:aB}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=_.now());let u=t.texShape;if(u==null&&(u=l3(n,o),t.texShape=u),a!=null){let h=Ap(n),d,p=u[1],f=u[0],m=a instanceof Uint8Array;o?([p,f]=Dl(u[0],u[1]),d=new wL(h,[f,p],m)):d=new xL(h,[f,p],m);let A=this.makeTensorInfo([f,p],r);m?this.texData.get(A.dataId).usage=ar.PIXELS:this.texData.get(A.dataId).usage=ar.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,f,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),x=this.texData.get(g.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=_.now()-c)}else{let h=this.acquireTexture(u,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=uB(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*_.bytesPerElement(t)}};Bl.nextDataId=0;function uB(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;rnew Bl,2);var cB={forceHalfFloat:q3},X3=` + `}},qW=Gr.whereImpl,XW=1e-7,KW=1e-4,NA={};function ZW(e){return e in NA||(NA[e]={}),NA[e]}var YW=128,JW=600;function QW(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*JW/1024/1024}var Bl=class extends gu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Xr(J().getNumber("WEBGL_VERSION"));this.binaryCache=ZW(J().getNumber("WEBGL_VERSION")),this.gpgpu=new bp(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new MW(this.gpgpu),this.numMBBeforeWarning=QW(),this.texData=new Ch(this,ca())}nextDataId(){return Bl.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:ar.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,a){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:ar.UPLOAD,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new Wl(i,wp):h=new qa(i,wp);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,c;l&&(c=_.now());let u;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);u=E.mergeRealAndImagArrays(h,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=_.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(m=>p.push(m))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new Wl(r,wp):p=new qa(r,wp);let m=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let p=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...xc(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=p[0],f=p[1];u=E.mergeRealAndImagArrays(m,f)}else if(l==null)u=this.getValuesFromTexture(e);else{let p=_.sizeFromShape(r);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}c!=null&&this.disposeIntermediateTensorInfo(c);let h=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ca().removeDataId(e,this),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>_.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=_.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=_.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=_.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:_.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=_.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=YW){return J().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&_.sizeFromShape(n.shape)0&&_.isString(n[0])){let a=n.map(s=>_.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return ca().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new GW(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new EW(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Ei(e.shape),...Ci(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[Ei(t),...Ci(t)],s=new O3(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=mp(r),i;n?i=new oL(s):i=new iL(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===yc.DENSE){let f=xc(e.outputShape);i.texShape=f.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),_.sizeFromShape(s.shape)===0)return i.values=_.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(f.dataId);if(A.texture==null){if(!e.packedInputs&&_.sizeFromShape(f.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=f.shape)}else if(!!A.isPacked!=!!e.packedInputs)f=A.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),A=this.texData.get(f.dataId);else if(A.isPacked&&!Ac(A.shape,f.shape)){let y=f,g=f.shape;f.shape=A.shape,f=this.packedReshape(f,g),o.push(f),A=this.texData.get(f.dataId),y.shape=g}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=YL(e,l,c),h=this.getAndSaveBinary(u,()=>KL(this.gpgpu,e,l,c)),d=this.activeTimers!=null,p;d&&(p=this.startTimer()),ZL(this.gpgpu,h,l,c,r),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let m=J().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=_.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,r,a=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=P(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(ve(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?XW:KW}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=_.now());let u=t.texShape;if(u==null&&(u=r3(n,o),t.texShape=u),a!=null){let h=mp(n),d,p=u[1],m=u[0],f=a instanceof Uint8Array;o?([p,m]=Dl(u[0],u[1]),d=new hL(h,[m,p],f)):d=new cL(h,[m,p],f);let A=this.makeTensorInfo([m,p],r);f?this.texData.get(A.dataId).usage=ar.PIXELS:this.texData.get(A.dataId).usage=ar.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,m,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),x=this.texData.get(g.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=_.now()-c)}else{let h=this.acquireTexture(u,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=eB(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*_.bytesPerElement(t)}};Bl.nextDataId=0;function eB(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;rnew Bl,2);var tB={forceHalfFloat:V3},j3=` if (isnan(a)) return a; if (isnan(b)) return b; `,Vl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=` @@ -956,12 +956,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, float b = getBAtOutCoords(); setOutput(binaryOperation(a, b)); } - `}},vp=` + `}},_p=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; -`,vc=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||_.sizeFromShape(this.outputShape)===1)s=` +`,wc=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||_.sizeFromShape(this.outputShape)===1)s=` result.y = 0.; result.z = 0.; result.w = 0.; @@ -993,30 +993,30 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(result); } - `}};function Vn(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var hB={kernelName:Es,backendName:"webgl",kernelFunc:Vn};function qa(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=Vn({inputs:{x:r},backend:n}),l=Vn({inputs:{x:a},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var dB={kernelName:Ph,backendName:"webgl",kernelFunc:qa},K3="return (a < 0.) ? b * a : a;",Z3=` + `}};function Vn(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var nB={kernelName:Cs,backendName:"webgl",kernelFunc:Vn};function Xa(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=Vn({inputs:{x:r},backend:n}),l=Vn({inputs:{x:a},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var rB={kernelName:zh,backendName:"webgl",kernelFunc:Xa},U3="return (a < 0.) ? b * a : a;",H3=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); -`;function pB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",_.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new vc(Z3,a.shape,i.shape):new Vl(K3,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var fB={kernelName:Cs,backendName:"webgl",kernelFunc:pB},Y3="return (a < 0.) ? b * a : a;",J3=` +`;function aB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",_.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new wc(H3,a.shape,i.shape):new Vl(U3,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var sB={kernelName:Rs,backendName:"webgl",kernelFunc:aB},G3="return (a < 0.) ? b * a : a;",q3=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); -`;function mB(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new vc(J3,r.shape,a.shape):new Vl(Y3,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var AB={kernelName:js,backendName:"webgl",kernelFunc:mB},Q3="if (isnan(x)) return x;",yB=` +`;function iB(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new wc(q3,r.shape,a.shape):new Vl(G3,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var oB={kernelName:Us,backendName:"webgl",kernelFunc:iB},X3="if (isnan(x)) return x;",lB=` if (isnan(a)) return a; if (isnan(b)) return b; -`,gB=` +`,uB=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; -`;function Xe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new Wl(i.shape,t):u=new Ga(i.shape,e),o.runWebGLProgram(u,[i],l)}}function nn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(r&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[A,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[v,w]=x,b={dataId:v.dataId,dtype:v.dtype,shape:l.shape},k={dataId:w.dataId,dtype:w.dtype,shape:c.shape},N=new Vl(e,l.shape,c.shape);return u.runWebGLProgram(N,[b,k],dr(v.dtype,w.dtype))}),g=qa({inputs:{real:A,imag:y},backend:u});return u.disposeIntermediateTensorInfo(A),u.disposeIntermediateTensorInfo(y),g}let h=s||dr(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&a!=null){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[A,y]=a(l.shape,c.shape,f.values,m.values,h),g=u.makeTensorInfo(y,h),x=u.texData.get(g.dataId);return x.values=A,g}let d=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new vc(t,l.shape,c.shape,n):p=new Vl(e,l.shape,c.shape),u.runWebGLProgram(p,[l,c],h)}}function kp(e,t=!1){if(e==="linear")return t?ZW:HW;if(e==="relu")return t?JW:qW;if(e==="elu")return t?YW:GW;if(e==="relu6")return t?QW:XW;if(e==="prelu")return t?J3:Y3;if(e==="leakyrelu")return t?Z3:K3;if(e==="sigmoid")return t?eB:KW;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var e7=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=r?e[1]:e[2],u=Math.ceil(c/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",A="";i&&(o?m=`vec4 activation(vec4 a) { +`;function Xe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new Wl(i.shape,t):u=new qa(i.shape,e),o.runWebGLProgram(u,[i],l)}}function nn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(r&&l.dtype==="complex64"){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[A,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,b]=x,w={dataId:v.dataId,dtype:v.dtype,shape:l.shape},k={dataId:b.dataId,dtype:b.dtype,shape:c.shape},N=new Vl(e,l.shape,c.shape);return u.runWebGLProgram(N,[w,k],dr(v.dtype,b.dtype))}),g=Xa({inputs:{real:A,imag:y},backend:u});return u.disposeIntermediateTensorInfo(A),u.disposeIntermediateTensorInfo(y),g}let h=s||dr(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&a!=null){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[A,y]=a(l.shape,c.shape,m.values,f.values,h),g=u.makeTensorInfo(y,h),x=u.texData.get(g.dataId);return x.values=A,g}let d=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new wc(t,l.shape,c.shape,n):p=new Vl(e,l.shape,c.shape),u.runWebGLProgram(p,[l,c],h)}}function vp(e,t=!1){if(e==="linear")return t?BW:OW;if(e==="relu")return t?jW:PW;if(e==="elu")return t?VW:zW;if(e==="relu6")return t?UW:LW;if(e==="prelu")return t?q3:G3;if(e==="leakyrelu")return t?H3:U3;if(e==="sigmoid")return t?HW:WW;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var K3=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=r?e[1]:e[2],u=Math.ceil(c/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",A="";i&&(o?f=`vec4 activation(vec4 a) { vec4 b = getPreluActivationWeightsAtOutCoords(); ${i} - }`:l?m=`vec4 activation(vec4 a) { + }`:l?f=`vec4 activation(vec4 a) { vec4 b = getLeakyreluAlphaAtOutCoords(); ${i} - }`:m=`vec4 activation(vec4 x) { + }`:f=`vec4 activation(vec4 x) { ${i} }`,A="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",x="rc.x";e[0]`The new shape (${l}) has ${c} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(a.dataId);return u.isPacked&&!gc(a.shape,l)&&!(u.texture!==null&&gc(u.shape,l))?wB(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var bB={kernelName:Ko,backendName:"webgl",kernelFunc:fe},a7=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${_.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";a%n>0&&(c=` + `}},J3="return a * b;";function TA(e){let{inputs:t,backend:n}=e,{a:r,b:a}=t,s=E.upcastType(r.dtype,a.dtype);if(r.dtype==="complex64"){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),c=new Y3(Z3.REAL,r.shape,a.shape),u=new Y3(Z3.IMAG,r.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:r.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),m=Xa({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}if(n.shouldExecuteOnCPU([r,a])){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),[c,u]=pW(r.shape,a.shape,o.values,l.values,s),h=n.makeTensorInfo(u,s),d=n.texData.get(h.dataId);return d.values=c,h}let i;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new wc(J3,r.shape,a.shape):i=new Vl(J3,r.shape,a.shape),n.runWebGLProgram(i,[r,a],s)}var cB={kernelName:Ws,backendName:"webgl",kernelFunc:TA};function hB(e,t,n){let r=[Ei(e.shape),...Ci(e.shape)],a={dtype:e.dtype,shape:r,dataId:e.dataId},s=[Ei(t),...Ci(t)],i=new O3(s,r),o=!0,l=n.runWebGLProgram(i,[a],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function fe(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=n,o=_.sizeFromShape(a.shape),l=_.inferFromImplicitShape(s,o),c=_.sizeFromShape(l);_.assert(o===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(a.dataId);return u.isPacked&&!Ac(a.shape,l)&&!(u.texture!==null&&Ac(u.shape,l))?hB(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var dB={kernelName:Ko,backendName:"webgl",kernelFunc:fe},Q3=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${_.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";a%n>0&&(c=` if (inIdx < 0 || inIdx >= ${a}) { return 0.0; } @@ -1112,7 +1112,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, } setOutput(sumValue); } - `}},_B=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,h=` + `}},pB=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,h=` if (${t==="sum"}) { sumValue += dot(values, ones); } else if (${t==="prod"}) { @@ -1197,12 +1197,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, } setOutput(${l}); } - `}};function vB(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=E.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function Fi(e,t,n,r){let a=vB(e.shape),s=e;for(let i=0;i6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=lt(this.rank),a=W3("rc",this.rank),s=new Array(this.rank);for(let c=0;c6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=lt(this.rank),a=D3("rc",this.rank),s=new Array(this.rank);for(let c=0;c=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${A}).`);let v=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,f]);_.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let w=n?[y,h,p]:[y,p,h],b=r?[g,f,d]:[g,d,f],k=fe({inputs:{x:e},backend:a,attrs:{shape:w}}),N=fe({inputs:{x:t},backend:a,attrs:{shape:b}}),C=[k,N],F=Math.max(y,g),O=n?k.shape[1]:k.shape[2],L=s!=null,V=i!=null,j=l==="leakyrelu",U=l!=null?kp(l,!0):null,X=L||V||j||U!=null,G;if((p===1||f===1)&&O>s7&&X===!1){let Y=k,ae=N;n&&(Y=fn({inputs:{x:k},backend:a,attrs:{perm:[0,2,1]}}),C.push(Y)),r&&(ae=fn({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),C.push(ae));let te=f!==1,ie=f===1,Q=Y;te&&(Q=fe({inputs:{x:Y},backend:a,attrs:{shape:[F,O,1]}}),C.push(Q));let he=f===1?2:1,oe=ae;ie&&(oe=fe({inputs:{x:ae},backend:a,attrs:{shape:[F,1,O]}}),C.push(oe));let me=CA({inputs:{a:Q,b:oe},backend:a});G=Sp({inputs:{x:me},backend:a,attrs:{axis:he,keepDims:!0}}),C.push(me)}else{let Y=dr(e.dtype,t.dtype),ae=new e7(w,b,[F,p,f],n,r,L,U,V,j),te=[k,N];if(s!=null&&te.push(s),V&&te.push(i),j){let ie=a.makeTensorInfo([],"float32",_.createScalarValue(o,"float32"));te.push(ie),C.push(ie)}G=a.runWebGLProgram(ae,te,Y)}let ee=fe({inputs:{x:G},backend:a,attrs:{shape:v}});C.push(G);for(let Y of C)a.disposeIntermediateTensorInfo(Y);return ee}function CB(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r;return Np({a,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:u})}var RB={kernelName:ii,backendName:"webgl",kernelFunc:CB},i7="return abs(x);";function MB(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=L3(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Wl(r.shape,i7):a=new Ga(r.shape,i7),n.runWebGLProgram(a,[r],r.dtype)}var FB={kernelName:lo,backendName:"webgl",kernelFunc:MB},$B=Sr+` + `}};function kp(e,t,n){let r=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new yB(e.shape,t):new AB(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function gB(e,t,n,r){let a=t,s=e.shape.length,i=_.parseAxisParam(a,e.shape),o=i,l=E.getAxesPermutation(o,s),c=l!=null,u=e;c&&(u=kp(e,l,r),o=E.getInnerMostAxes(o.length,s)),E.assertAxesAreInnerMostDims("sum",o,s);let[h,d]=E.computeOutAndReduceShapes(u.shape,o),p=h;n&&(p=E.expandShapeToKeepDim(h,i));let m=_.sizeFromShape(d),f=_.sizeFromShape(e.shape)/m,A=fe({inputs:{x:u},attrs:{shape:[f,m]},backend:r}),y=Ad(e.dtype),g=$i(A,y,"sum",r),x=fe({inputs:{x:g},attrs:{shape:p},backend:r});return r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(g),c&&r.disposeIntermediateTensorInfo(u),x}function Ip(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;return gB(a,s,i,n)}var xB={kernelName:ei,backendName:"webgl",kernelFunc:Ip};function fn(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{perm:s}=r,i=n,o=a.shape.length,l=new Array(o);for(let u=0;u=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${A}).`);let v=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,m]);_.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let b=n?[y,h,p]:[y,p,h],w=r?[g,m,d]:[g,d,m],k=fe({inputs:{x:e},backend:a,attrs:{shape:b}}),N=fe({inputs:{x:t},backend:a,attrs:{shape:w}}),C=[k,N],F=Math.max(y,g),O=n?k.shape[1]:k.shape[2],L=s!=null,V=i!=null,j=l==="leakyrelu",U=l!=null?vp(l,!0):null,X=L||V||j||U!=null,G;if((p===1||m===1)&&O>e7&&X===!1){let Y=k,ae=N;n&&(Y=fn({inputs:{x:k},backend:a,attrs:{perm:[0,2,1]}}),C.push(Y)),r&&(ae=fn({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),C.push(ae));let te=m!==1,ie=m===1,Q=Y;te&&(Q=fe({inputs:{x:Y},backend:a,attrs:{shape:[F,O,1]}}),C.push(Q));let he=m===1?2:1,oe=ae;ie&&(oe=fe({inputs:{x:ae},backend:a,attrs:{shape:[F,1,O]}}),C.push(oe));let me=TA({inputs:{a:Q,b:oe},backend:a});G=Ip({inputs:{x:me},backend:a,attrs:{axis:he,keepDims:!0}}),C.push(me)}else{let Y=dr(e.dtype,t.dtype),ae=new K3(b,w,[F,p,m],n,r,L,U,V,j),te=[k,N];if(s!=null&&te.push(s),V&&te.push(i),j){let ie=a.makeTensorInfo([],"float32",_.createScalarValue(o,"float32"));te.push(ie),C.push(ie)}G=a.runWebGLProgram(ae,te,Y)}let ee=fe({inputs:{x:G},backend:a,attrs:{shape:v}});C.push(G);for(let Y of C)a.disposeIntermediateTensorInfo(Y);return ee}function wB(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r;return Sp({a,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:u})}var _B={kernelName:oi,backendName:"webgl",kernelFunc:wB},t7="return abs(x);";function vB(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=$3(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Wl(r.shape,t7):a=new qa(r.shape,t7),n.runWebGLProgram(a,[r],r.dtype)}var kB={kernelName:lo,backendName:"webgl",kernelFunc:vB},IB=Nr+` if (abs(x) > 1.) { return NAN; } return acos(x); -`,DB=Xe({opSnippet:$B}),OB={kernelName:uo,backendName:"webgl",kernelFunc:DB},zB=Sr+` +`,SB=Xe({opSnippet:IB}),NB={kernelName:uo,backendName:"webgl",kernelFunc:SB},TB=Nr+` if (x < 1.0) return NAN; -return log(x + sqrt(x * x - 1.0));`,PB=Xe({opSnippet:zB}),LB={kernelName:co,backendName:"webgl",kernelFunc:PB},o7="return a + b;",WB=nn({opSnippet:o7,packedOpSnippet:o7,supportsComplex:!0,cpuKernelImpl:oW}),BB={kernelName:Ca,backendName:"webgl",kernelFunc:WB},VB=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` +return log(x + sqrt(x * x - 1.0));`,EB=Xe({opSnippet:TB}),CB={kernelName:co,backendName:"webgl",kernelFunc:EB},n7="return a + b;",RB=nn({opSnippet:n7,packedOpSnippet:n7,supportsComplex:!0,cpuKernelImpl:JL}),MB={kernelName:Ra,backendName:"webgl",kernelFunc:RB},FB=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} @@ -1234,7 +1234,7 @@ return log(x + sqrt(x * x - 1.0));`,PB=Xe({opSnippet:zB}),LB={kernelName:co,back float result = ${r}; setOutput(result); } - `}},jB=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` + `}},$B=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} @@ -1242,7 +1242,7 @@ return log(x + sqrt(x * x - 1.0));`,PB=Xe({opSnippet:zB}),LB={kernelName:co,back vec4 result = ${r}; setOutput(result); } - `}};function Tp(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return Vn({inputs:{x:r[0]},backend:n});if(r.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=Tp({inputs:r.slice(0,o),backend:n}),c=Tp({inputs:r.slice(o),backend:n});return Tp({inputs:[l,c],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>dr(o,l)),s=r.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new jB(r[0].shape,s):new VB(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var UB={kernelName:ds,backendName:"webgl",kernelFunc:Tp};function HB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,o)),E.assertAxesAreInnerMostDims("all",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),f=_.sizeFromShape(p),m=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=Fi(m,m.dtype,"all",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var GB={kernelName:ho,backendName:"webgl",kernelFunc:HB};function qB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,o)),E.assertAxesAreInnerMostDims("any",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),f=_.sizeFromShape(p),m=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=Fi(m,m.dtype,"any",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var XB={kernelName:po,backendName:"webgl",kernelFunc:qB},KB=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` + `}};function Np(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return Vn({inputs:{x:r[0]},backend:n});if(r.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=Np({inputs:r.slice(0,o),backend:n}),c=Np({inputs:r.slice(o),backend:n});return Np({inputs:[l,c],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>dr(o,l)),s=r.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new $B(r[0].shape,s):new FB(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var DB={kernelName:ps,backendName:"webgl",kernelFunc:Np};function OB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,o)),E.assertAxesAreInnerMostDims("all",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),m=_.sizeFromShape(p),f=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=$i(f,f.dtype,"all",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var zB={kernelName:ho,backendName:"webgl",kernelFunc:OB};function PB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,o)),E.assertAxesAreInnerMostDims("any",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),m=_.sizeFromShape(p),f=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=$i(f,f.dtype,"any",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var LB={kernelName:po,backendName:"webgl",kernelFunc:PB},WB=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; @@ -1262,7 +1262,7 @@ return log(x + sqrt(x * x - 1.0));`,PB=Xe({opSnippet:zB}),LB={kernelName:co,back } setOutput(float(bestIndex)); } - `}},ZB=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,_.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=lt(o),c=pn("coords",o),u,h;if(s===1){h=o+1;let k=lt(h);u=` + `}},BB=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,_.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=lt(o),c=pn("coords",o),u,h;if(s===1){h=o+1;let k=lt(h);u=` ${k} sourceLocR = ${k}(${c.join()}, 0); ++${c[o-1]}; ${k} sourceLocG = ${k}(${c.join()}, 0); @@ -1278,24 +1278,24 @@ return log(x + sqrt(x * x - 1.0));`,PB=Xe({opSnippet:zB}),LB={kernelName:co,back ${l} sourceLocA = coords; --${c[o-1]}; ${l} sourceLocB = coords; - --${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],f=d.map(k=>"int "+k),m=pn("sourceLocR",h-1).concat("inIdx.r"),A=pn("sourceLocG",h-1).concat("inIdx.g"),y=pn("sourceLocB",h-1).concat("inIdx.b"),g=pn("sourceLocA",h-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=r?"":` - inIdx = round(vec4(getBestIndicesAChannel(${m.join()}), + --${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],m=d.map(k=>"int "+k),f=pn("sourceLocR",h-1).concat("inIdx.r"),A=pn("sourceLocG",h-1).concat("inIdx.g"),y=pn("sourceLocB",h-1).concat("inIdx.b"),g=pn("sourceLocA",h-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=r?"":` + inIdx = round(vec4(getBestIndicesAChannel(${f.join()}), getBestIndicesAChannel(${A.join()}), getBestIndicesAChannel(${y.join()}), - getBestIndicesAChannel(${g.join()})));`,w=`vec4( - getAChannel(${m.join()}), + getBestIndicesAChannel(${g.join()})));`,b=`vec4( + getAChannel(${f.join()}), hasNextCol ? getAChannel(${A.join()}) : 0., hasNextRow ? getAChannel(${y.join()}) : 0., - hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,b=r?"":` - float getBestIndicesAChannel(${f.join()}) { + hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,w=r?"":` + float getBestIndicesAChannel(${m.join()}) { return getChannel(getBestIndicesA(${d.join()}), vec2(${d.slice(-2).join()})); }`;this.userCode=` - float getAChannel(${f.join()}) { + float getAChannel(${m.join()}) { return getChannel(getA(${d.join()}), vec2(${d.slice(-2).join()})); } - ${b} + ${w} void main() { ${l} coords = getOutputCoords(); bool hasNextCol = ${c[o-1]} < ${i[o-1]-1}; @@ -1305,12 +1305,12 @@ return log(x + sqrt(x * x - 1.0));`,PB=Xe({opSnippet:zB}),LB={kernelName:co,back sourceLocB${p}, sourceLocA${p}) * ${t}; ivec4 inIdx = srcIdx; vec4 bestIndex = vec4(inIdx); - vec4 bestValue = ${w}; + vec4 bestValue = ${b}; for (int i = 0; i < ${t}; i++) { inIdx = srcIdx; ${v} - vec4 candidate = ${w}; + vec4 candidate = ${b}; bvec4 nan = isnan(candidate); bvec4 replace = bvec4( vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan))); @@ -1324,23 +1324,23 @@ return log(x + sqrt(x * x - 1.0));`,PB=Xe({opSnippet:zB}),LB={kernelName:co,back } setOutput(bestIndex); } - `}};function l7(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=E.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new KB(o,n,r==null),c=[t];r!=null&&c.push(r);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let h=l7(e,t,n,u);return e.disposeIntermediateTensorInfo(u),h}function u7(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=E.computeOptimalWindowSize(s),o=new ZB(a,i,n,r==null),l=r==null?[t]:[t,r],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=u7(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function c7(e,t,n,r){let a=[n];if(E.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=E.computeOutAndReduceShapes(t.shape,a),l=_.sizeFromShape(o),c=fe({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=l7(e,c,r);s.push(u);let h=fe({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return u7(e,t,r)}function YB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=fn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=c7(n,l,i[0],"max");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var JB={kernelName:ps,backendName:"webgl",kernelFunc:YB};function QB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=fn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=c7(n,l,i[0],"min");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var eV={kernelName:vu,backendName:"webgl",kernelFunc:QB},tV=Sr+` + `}};function r7(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=E.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new WB(o,n,r==null),c=[t];r!=null&&c.push(r);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let h=r7(e,t,n,u);return e.disposeIntermediateTensorInfo(u),h}function a7(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=E.computeOptimalWindowSize(s),o=new BB(a,i,n,r==null),l=r==null?[t]:[t,r],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=a7(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function s7(e,t,n,r){let a=[n];if(E.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=E.computeOutAndReduceShapes(t.shape,a),l=_.sizeFromShape(o),c=fe({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=r7(e,c,r);s.push(u);let h=fe({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return a7(e,t,r)}function VB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=fn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=s7(n,l,i[0],"max");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var jB={kernelName:fs,backendName:"webgl",kernelFunc:VB};function UB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=fn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=s7(n,l,i[0],"min");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var HB={kernelName:wu,backendName:"webgl",kernelFunc:UB},GB=Nr+` if (abs(x) > 1.) { return NAN; } return asin(x); -`,nV=Xe({opSnippet:tV}),rV={kernelName:fo,backendName:"webgl",kernelFunc:nV},aV=Sr+"return log(x + sqrt(x * x + 1.0));",sV=Xe({opSnippet:aV}),iV={kernelName:mo,backendName:"webgl",kernelFunc:sV},oV=Sr+` +`,qB=Xe({opSnippet:GB}),XB={kernelName:fo,backendName:"webgl",kernelFunc:qB},KB=Nr+"return log(x + sqrt(x * x + 1.0));",ZB=Xe({opSnippet:KB}),YB={kernelName:mo,backendName:"webgl",kernelFunc:ZB},JB=Nr+` return atan(x); -`,lV=Xe({opSnippet:oV}),uV={kernelName:Ao,backendName:"webgl",kernelFunc:lV},cV=yB+` +`,QB=Xe({opSnippet:JB}),eV={kernelName:Ao,backendName:"webgl",kernelFunc:QB},tV=lB+` return atan(a, b); -`,hV=` +`,nV=` vec4 result = atan(a, b); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); - `+gB+` + `+uB+` return result; -`,dV=nn({opSnippet:cV,packedOpSnippet:hV}),pV={kernelName:go,backendName:"webgl",kernelFunc:dV},fV=Sr+` +`,rV=nn({opSnippet:tV,packedOpSnippet:nV}),aV={kernelName:go,backendName:"webgl",kernelFunc:rV},sV=Nr+` if ((x < -1.0) || (x > 1.0)) return NAN; -return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelName:yo,backendName:"webgl",kernelFunc:mV},kc=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let k=">=";this.userCode=` +return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,iV=Xe({opSnippet:sV}),oV={kernelName:yo,backendName:"webgl",kernelFunc:iV},_c=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let k=">=";this.userCode=` const ivec2 strides = ivec2(${i}, ${o}); const ivec2 pads = ivec2(${d}, ${p}); @@ -1385,14 +1385,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam if (value ${k} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; - minMaxPosition = ${r?a?m:A:`wR * ${h} + wC`}; + minMaxPosition = ${r?a?f:A:`wR * ${h} + wC`}; } } } setOutput(float(minMaxPosition)); } - `;return}let g="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,w=s%4,b=` - if (${f}) { + `;return}let g="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,b=s%4,w=` + if (${m}) { avgValue += dot(values, ones); } else { minMaxValue = ${g}(values, minMaxValue); @@ -1446,11 +1446,11 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam getValue(batch, xR, xC + 3 * ${c}, d) ); - ${b} + ${w} } int xC = xCCorner + ${v}; - if (${w===1}) { + if (${b===1}) { vec4 values = vec4( getValue(batch, xR, xC, d), initializationValue, @@ -1458,8 +1458,8 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam initializationValue ); - ${b} - } else if (${w===2}) { + ${w} + } else if (${b===2}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), @@ -1467,8 +1467,8 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam initializationValue ); - ${b} - } else if (${w===3}) { + ${w} + } else if (${b===3}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), @@ -1476,15 +1476,15 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam initializationValue ); - ${b} + ${w} } } setOutput(${x}); } - `}},RA=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",x="0.0";if(g||(x="-1.0 / 1e-20"),n){let C=">=";this.userCode=` + `}},EA=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",x="0.0";if(g||(x="-1.0 / 1e-20"),n){let C=">=";this.userCode=` const ivec3 strides = ivec3(${i}, ${o}, ${l}); - const ivec3 pads = ivec3(${m}, ${A}, ${y}); + const ivec3 pads = ivec3(${f}, ${A}, ${y}); void main() { ivec5 coords = getOutputCoords(); @@ -1518,7 +1518,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam continue; } - for (int wC = 0; wC < ${f}; + for (int wC = 0; wC < ${m}; wC += ${h}) { int xC = xCCorner + wC; @@ -1535,15 +1535,15 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam if (value ${C} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; - minMaxPosition = ${r?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${f} + - wR * ${f} + wC`}; + minMaxPosition = ${r?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${m} + + wR * ${m} + wC`}; } } } } setOutput(float(minMaxPosition)); } - `;return}let v="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let b=Math.floor(s/4)*4,k=s%4,N=` + `;return}let v="max",b=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(b="avgValue / count");let w=Math.floor(s/4)*4,k=s%4,N=` if (${g}) { avgValue += dot(values, ones); } else { @@ -1552,7 +1552,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam `;this.userCode=` const ivec3 strides = ivec3(${i}, ${o}, ${l}); - const ivec3 pads = ivec3(${m}, ${A}, ${y}); + const ivec3 pads = ivec3(${f}, ${A}, ${y}); const float initializationValue = ${x}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); @@ -1598,7 +1598,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam continue; } - for (int wC = 0; wC < ${b}; wC += 4) { + for (int wC = 0; wC < ${w}; wC += 4) { int xC = xCCorner + wC * ${h}; vec4 values = vec4( @@ -1611,7 +1611,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam ${N} } - int xC = xCCorner + ${b}; + int xC = xCCorner + ${w}; if (${k===1}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), @@ -1641,10 +1641,10 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam ${N} } } - setOutput(${w}); + setOutput(${b}); } } - `}};function yV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;$l(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))return Vn({inputs:{x:a},backend:n});let h=new kc(u,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var gV={kernelName:fs,backendName:"webgl",kernelFunc:yV};function xV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r,u=[1,1,1],h=E.computePool3DInfo(a.shape,s,i,u,o,l,c),d=new RA(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var wV={kernelName:ku,backendName:"webgl",kernelFunc:xV},bV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,h=1/(t*n);this.userCode=` + `}};function lV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;$l(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))return Vn({inputs:{x:a},backend:n});let h=new _c(u,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var uV={kernelName:ms,backendName:"webgl",kernelFunc:lV};function cV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r,u=[1,1,1],h=E.computePool3DInfo(a.shape,s,i,u,o,l,c),d=new EA(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var hV={kernelName:_u,backendName:"webgl",kernelFunc:cV},dV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,h=1/(t*n);this.userCode=` const ivec2 pads = ivec2(${c}, ${u}); const float avgMultiplier = float(${h}); @@ -1686,8 +1686,8 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } setOutput(dotProd); } - `}},_V=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=u-1-e.padInfo.front,f=h-1-e.padInfo.top,m=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=` - const ivec3 pads = ivec3(${p}, ${f}, ${m}); + `}},pV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=u-1-e.padInfo.front,m=h-1-e.padInfo.top,f=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=` + const ivec3 pads = ivec3(${p}, ${m}, ${f}); const float avgMultiplier = float(${A}); void main() { @@ -1742,7 +1742,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } setOutput(dotProd); } - `}};function vV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=E.computePool3DInfo(i.shape,o,l,h,c,u),p=new _V(d);return n.runWebGLProgram(p,[a],i.dtype)}var kV={kernelName:Oh,backendName:"webgl",kernelFunc:vV};function IV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;$l([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=E.computePool2DInfo(i.shape,o,l,1,c),h=new bV(u);return n.runWebGLProgram(h,[a],i.dtype)}var SV={kernelName:Dh,backendName:"webgl",kernelFunc:IV};function NV(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return Np({a,b:s,transposeA:i,transposeB:o,backend:n})}var TV={kernelName:ms,backendName:"webgl",kernelFunc:NV},EV=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` + `}};function fV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=E.computePool3DInfo(i.shape,o,l,h,c,u),p=new pV(d);return n.runWebGLProgram(p,[a],i.dtype)}var mV={kernelName:Dh,backendName:"webgl",kernelFunc:fV};function AV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;$l([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=E.computePool2DInfo(i.shape,o,l,1,c),h=new dV(u);return n.runWebGLProgram(h,[a],i.dtype)}var yV={kernelName:$h,backendName:"webgl",kernelFunc:AV};function gV(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return Sp({a,b:s,transposeA:i,transposeB:o,backend:n})}var xV={kernelName:As,backendName:"webgl",kernelFunc:gV},bV=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { float x = getXAtOutCoords(); float mean = getMeanAtOutCoords(); @@ -1752,7 +1752,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam float inv = scale * inversesqrt(variance + float(${s})); setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1))); } - `}},CV=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` + `}},wV=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { vec4 offset = ${i}; vec4 scale = ${o}; @@ -1765,7 +1765,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam setOutput((x - mean) * inv + offset); } - `}},RV=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;_.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[r,a,s],u=null;i!=null&&(u=i.shape,c.push(i));let h=null;o!=null&&(h=o.shape,c.push(o));let d=J().getBool("WEBGL_PACK_NORMALIZATION")?new CV(r.shape,a.shape,s.shape,u,h,l):new EV(r.shape,a.shape,s.shape,u,h,l);return t.runWebGLProgram(d,c,c[0].dtype)},MV={kernelName:Ns,backendName:"webgl",kernelFunc:RV},$V=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=`uniform int start[${this.rank}];`,r=FV(this.rank),a,s=e.map((i,o)=>`sourceLoc.${MA[o]} = start[${o}] + coords.${MA[o]};`);a=` + `}},_V=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;_.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[r,a,s],u=null;i!=null&&(u=i.shape,c.push(i));let h=null;o!=null&&(h=o.shape,c.push(o));let d=J().getBool("WEBGL_PACK_NORMALIZATION")?new wV(r.shape,a.shape,s.shape,u,h,l):new bV(r.shape,a.shape,s.shape,u,h,l);return t.runWebGLProgram(d,c,c[0].dtype)},vV={kernelName:Ts,backendName:"webgl",kernelFunc:_V},IV=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=`uniform int start[${this.rank}];`,r=kV(this.rank),a,s=e.map((i,o)=>`sourceLoc.${CA[o]} = start[${o}] + coords.${CA[o]};`);a=` ${t} sourceLoc; ${t} coords = getOutputCoords(); ${s.join(` @@ -1776,7 +1776,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam ${a} setOutput(getSource(${r})); } - `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},MA=["x","y","z","w","u","v"];function FV(e){if(e===1)return"sourceLoc";if(e<=6)return MA.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var DV=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=pn("coords",this.rank),r=pn("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=` + `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},CA=["x","y","z","w","u","v"];function kV(e){if(e===1)return"sourceLoc";if(e<=6)return CA.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var SV=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=pn("coords",this.rank),r=pn("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=` result.x = ${s}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${r[this.rank-1]}; @@ -1806,7 +1806,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam ${o} setOutput(result); } - `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function OV(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=un.computeFlatOffset(t,_.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function Ic(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=un.parseSliceParams(a,s,i);if(un.assertParamsValid(a,o,l),_.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=NW(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:c}=n.texData.get(a.dataId),u=un.isSliceContinous(a.shape,o,l);if(c||!u){let h=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new DV(l):new $V(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),OV(a,o,l,n)}var zV={kernelName:Qo,backendName:"webgl",kernelFunc:Ic},PV=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;_.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,x)=>g*x),l=E.getReshaped(a.shape,s,o),c=E.getPermuted(l.length,s.length),u=E.getReshapedPermuted(a.shape,s,o),h=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(u,i,s.length),p=[],f=fe({inputs:{x:a},backend:n,attrs:{shape:l}}),m=fn({inputs:{x:f},backend:n,attrs:{perm:c}}),A=fe({inputs:{x:m},backend:n,attrs:{shape:u}}),y=Ic({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(f),p.push(m),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},LV={kernelName:Iu,backendName:"webgl",kernelFunc:PV};function WV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),c=P3(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var BV={kernelName:zh,backendName:"webgl",kernelFunc:WV},VV="return float(a != b);",h7=nn({opSnippet:VV,dtype:"bool"}),jV={kernelName:Bo,backendName:"webgl",kernelFunc:h7};function Sc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Vn({inputs:{x:a.complexTensorInfos.real},backend:n})}var UV={kernelName:sd,backendName:"webgl",kernelFunc:Sc},HV="return float(int(x));";function GV(e,t){let n=new Ga(e.shape,HV),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function FA(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Vn({inputs:{x:a},backend:n});let i=Rt(a.shape),o=FA({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=qa({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Sc({inputs:{input:a},backend:n}),o=FA({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!_.hasEncodingLoss(a.dtype,s)){let i=Vn({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return GV(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",_.getTypedArrayFromDType("bool",1)),o=h7({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var qV={kernelName:As,backendName:"webgl",kernelFunc:FA},d7="return ceil(x);",XV=Xe({opSnippet:d7,packedOpSnippet:d7,cpuKernelImpl:uW}),KV={kernelName:ys,backendName:"webgl",kernelFunc:XV},ZV=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=` + `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function NV(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=un.computeFlatOffset(t,_.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function vc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=un.parseSliceParams(a,s,i);if(un.assertParamsValid(a,o,l),_.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=gW(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:c}=n.texData.get(a.dataId),u=un.isSliceContinous(a.shape,o,l);if(c||!u){let h=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new SV(l):new IV(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),NV(a,o,l,n)}var TV={kernelName:Qo,backendName:"webgl",kernelFunc:vc},EV=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;_.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,x)=>g*x),l=E.getReshaped(a.shape,s,o),c=E.getPermuted(l.length,s.length),u=E.getReshapedPermuted(a.shape,s,o),h=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(u,i,s.length),p=[],m=fe({inputs:{x:a},backend:n,attrs:{shape:l}}),f=fn({inputs:{x:m},backend:n,attrs:{perm:c}}),A=fe({inputs:{x:f},backend:n,attrs:{shape:u}}),y=vc({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(m),p.push(f),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},CV={kernelName:vu,backendName:"webgl",kernelFunc:EV};function RV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),c=F3(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var MV={kernelName:Oh,backendName:"webgl",kernelFunc:RV},FV="return float(a != b);",i7=nn({opSnippet:FV,dtype:"bool"}),$V={kernelName:Bo,backendName:"webgl",kernelFunc:i7};function kc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Vn({inputs:{x:a.complexTensorInfos.real},backend:n})}var DV={kernelName:ad,backendName:"webgl",kernelFunc:kc},OV="return float(int(x));";function zV(e,t){let n=new qa(e.shape,OV),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function RA(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Vn({inputs:{x:a},backend:n});let i=Rt(a.shape),o=RA({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Xa({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=kc({inputs:{input:a},backend:n}),o=RA({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!_.hasEncodingLoss(a.dtype,s)){let i=Vn({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return zV(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",_.getTypedArrayFromDType("bool",1)),o=i7({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var PV={kernelName:ys,backendName:"webgl",kernelFunc:RA},o7="return ceil(x);",LV=Xe({opSnippet:o7,packedOpSnippet:o7,cpuKernelImpl:eW}),WV={kernelName:gs,backendName:"webgl",kernelFunc:LV},BV=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=` uniform float minVal; uniform float maxVal; @@ -1819,7 +1819,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam setOutput(clamp(value, minVal, maxVal)); } - `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},YV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` + `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},VV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` uniform float minVal; uniform float maxVal; @@ -1833,7 +1833,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam setOutput(clamp(value, vec4(minVal), vec4(maxVal))); } - `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function JV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;J().getBool("WEBGL_PACK_CLIP")?o=new YV(a.shape):o=new ZV(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var QV={kernelName:Ra,backendName:"webgl",kernelFunc:JV},ej=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` + `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function jV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;J().getBool("WEBGL_PACK_CLIP")?o=new VV(a.shape):o=new BV(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var UV={kernelName:Ma,backendName:"webgl",kernelFunc:jV},HV=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` void main() { float re = abs(getRealAtOutCoords()); float im = abs(getImagAtOutCoords()); @@ -1846,7 +1846,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx)) ); } - `}};function p7(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function tj(e){let{inputs:t,backend:n}=e,{x:r}=t,a=n.texData.get(r.dataId),s=new ej(r.shape),i=[p7(r,a.complexTensorInfos.real),p7(r,a.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var nj={kernelName:Su,backendName:"webgl",kernelFunc:tj},rj=class{constructor(e){this.outputShape=[],this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m= ${o[f-1]}) { + }`;for(let m=1;m= ${o[m-1]}) { return getChannel( - getT${f}(${Ep(i,l,m)}), - vec2(${Ep(c,l,m)})); + getT${m}(${Tp(i,l,f)}), + vec2(${Tp(c,l,f)})); }`}let d=o.length,p=o[o.length-1];h+=` return getChannel( - getT${d}(${Ep(i,l,p)}), - vec2(${Ep(c,l,p)}));`,this.userCode=` - float getValue(${i.map(f=>"int "+f)}) { + getT${d}(${Tp(i,l,p)}), + vec2(${Tp(c,l,p)}));`,this.userCode=` + float getValue(${i.map(m=>"int "+m)}) { ${h} } @@ -1892,7 +1892,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } setOutput(result); } - `}};function Ep(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function Cp(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Vn({inputs:{x:a.complexTensorInfos.imag},backend:n})}var sj={kernelName:Jh,backendName:"webgl",kernelFunc:Cp};function jl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(m=>Sc({inputs:{input:m},backend:n})),h=e.map(m=>Cp({inputs:{input:m},backend:n})),d=jl(u,t,n),p=jl(h,t,n),f=qa({inputs:{real:d,imag:p},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),h.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}let a=n.shouldExecuteOnCPU(e);if(r==="string"&&(a=!0),a){let u=e.map(y=>{let g=_.sizeFromShape(y.shape.slice(t));return fe({inputs:{x:y},backend:n,attrs:{shape:[-1,g]}})}),h=u.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),d=E.computeOutShape(u.map(y=>y.shape),1),p=u[0].shape[0]===1,f=cW(h,d,r,p),m=E.computeOutShape(e.map(y=>y.shape),t),A=n.makeTensorInfo(m,r,f);return u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),h=jl(e.slice(0,u),t,n),d=jl(e.slice(u),t,n),p=jl([h,d],t,n);return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new aj(e.map(h=>h.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:s,outShape:i}=ij(e,t,n),o=new rj(s.map(u=>u.shape)),l=n.runWebGLProgram(o,s,r);s.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=fe({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),c}function ij(e,t,n){let r=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>fe({inputs:{x:a},attrs:{shape:[-1,_.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function f7(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=_.parseAxisParam(a,t[0].shape)[0],i=E.computeOutShape(t.map(c=>c.shape),s);if(_.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>_.sizeFromShape(c.shape)>0);if(o.length===1)return Vn({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return E.assertParamsConsistent(l,s),jl(o,s,n)}var oj={kernelName:xo,backendName:"webgl",kernelFunc:f7},m7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",A=m?1:2,y=m?2:3,g=m?3:1,x="",v="";n&&(r?x=`float activation(float a) { + `}};function Tp(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function Ep(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Vn({inputs:{x:a.complexTensorInfos.imag},backend:n})}var ZV={kernelName:Yh,backendName:"webgl",kernelFunc:Ep};function jl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(f=>kc({inputs:{input:f},backend:n})),h=e.map(f=>Ep({inputs:{input:f},backend:n})),d=jl(u,t,n),p=jl(h,t,n),m=Xa({inputs:{real:d,imag:p},backend:n});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}let a=n.shouldExecuteOnCPU(e);if(r==="string"&&(a=!0),a){let u=e.map(y=>{let g=_.sizeFromShape(y.shape.slice(t));return fe({inputs:{x:y},backend:n,attrs:{shape:[-1,g]}})}),h=u.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),d=E.computeOutShape(u.map(y=>y.shape),1),p=u[0].shape[0]===1,m=tW(h,d,r,p),f=E.computeOutShape(e.map(y=>y.shape),t),A=n.makeTensorInfo(f,r,m);return u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),h=jl(e.slice(0,u),t,n),d=jl(e.slice(u),t,n),p=jl([h,d],t,n);return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new KV(e.map(h=>h.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:s,outShape:i}=YV(e,t,n),o=new XV(s.map(u=>u.shape)),l=n.runWebGLProgram(o,s,r);s.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=fe({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),c}function YV(e,t,n){let r=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>fe({inputs:{x:a},attrs:{shape:[-1,_.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function u7(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=_.parseAxisParam(a,t[0].shape)[0],i=E.computeOutShape(t.map(c=>c.shape),s);if(_.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>_.sizeFromShape(c.shape)>0);if(o.length===1)return Vn({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return E.assertParamsConsistent(l,s),jl(o,s,n)}var JV={kernelName:xo,backendName:"webgl",kernelFunc:u7},c7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",A=f?1:2,y=f?2:3,g=f?3:1,x="",v="";n&&(r?x=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:a?x=`float activation(float a) { @@ -1902,7 +1902,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam float activation(float x) { ${n} } - `,v="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=` + `,v="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${x} const ivec2 strides = ivec2(${o}, ${l}); @@ -1943,7 +1943,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam getW(wR, wC, d1 + 3, d2) ); - if (${m}) { + if (${f}) { vec4 xValues = vec4( getX(batch, xR, xC, d1), getX(batch, xR, xC, d1 + 1), @@ -1962,9 +1962,9 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } } - if (${f===1}) { + if (${m===1}) { - if (${m}) { + if (${f}) { dotProd += getX(batch, xR, xC, ${p}) * getW(wR, wC, ${p}, d2); @@ -1974,13 +1974,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam getW(wR, wC, ${p}, d2); } - } else if (${f===2}) { + } else if (${m===2}) { vec2 wValues = vec2( getW(wR, wC, ${p}, d2), getW(wR, wC, ${p} + 1, d2) ); - if (${m}) { + if (${f}) { vec2 xValues = vec2( getX(batch, xR, xC, ${p}), getX(batch, xR, xC, ${p} + 1) @@ -1994,14 +1994,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam dotProd += dot(xValues, wValues); } - } else if (${f===3}) { + } else if (${m===3}) { vec3 wValues = vec3( getW(wR, wC, ${p}, d2), getW(wR, wC, ${p} + 1, d2), getW(wR, wC, ${p} + 2, d2) ); - if (${m}) { + if (${f}) { vec3 xValues = vec3( getX(batch, xR, xC, ${p}), getX(batch, xR, xC, ${p} + 1), @@ -2022,11 +2022,11 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } float result = dotProd; - ${w} + ${b} ${v} setOutput(result); } - `}},lj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=` + `}},QV=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=` const ivec3 strides = ivec3(${a}, ${s}, ${i}); const ivec3 pads = ivec3(${t}, ${n}, ${r}); @@ -2082,11 +2082,11 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam dotProd += dot(xValues, wValues); } - if (${f===1}) { + if (${m===1}) { dotProd += getX(batch, xF, xR, xC, ${p}) * getW(wF, wR, wC, ${p}, d2); - } else if (${f===2}) { + } else if (${m===2}) { vec2 xValues = vec2( getX(batch, xF, xR, xC, ${p}), getX(batch, xF, xR, xC, ${p} + 1) @@ -2096,7 +2096,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam getW(wF, wR, wC, ${p} + 1, d2) ); dotProd += dot(xValues, wValues); - } else if (${f===3}) { + } else if (${m===3}) { vec3 xValues = vec3( getX(batch, xF, xR, xC, ${p}), getX(batch, xF, xR, xC, ${p} + 1), @@ -2114,18 +2114,18 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } setOutput(dotProd); } - `}},uj=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:h}=n,{left:d,top:p}=o,f=a*r,m=dn(),A=h==="channelsLast",y=A?0:1,g=A?1:2,x="";for(let v=0;v<=1;v++)for(let w=0;w<=1;w++)x+=` - blockIndex = rc.y + ${w}; + `}},ej=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:h}=n,{left:d,top:p}=o,m=a*r,f=dn(),A=h==="channelsLast",y=A?0:1,g=A?1:2,x="";for(let v=0;v<=1;v++)for(let b=0;b<=1;b++)x+=` + blockIndex = rc.y + ${b}; pos = rc.x + ${v}; if(blockIndex < ${e[1]} && pos < ${e[0]}) { offsetY = int(blockIndex / (${l})) * ${i} - ${p}; - d0 = offsetY + ${u} * (pos / ${f}); + d0 = offsetY + ${u} * (pos / ${m}); if(d0 < ${t[y]} && d0 >= 0) { offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.); - d1 = offsetX + ${c} * (int(mod(float(pos), ${f}.) / ${a}.)); + d1 = offsetX + ${c} * (int(mod(float(pos), ${m}.) / ${a}.)); if(d1 < ${t[g]} && d1 >= 0) { @@ -2133,12 +2133,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam if (${A}) { innerDims = vec2(d1, ch); - result[${v*2+w}] = getChannel( + result[${v*2+b}] = getChannel( getA(d0, int(innerDims.x), int(innerDims.y)), innerDims); } else { innerDims = vec2(d0, d1); - result[${v*2+w}] = getChannel( + result[${v*2+b}] = getChannel( getA(ch, int(innerDims.x), int(innerDims.y)), innerDims); } @@ -2156,9 +2156,9 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam ${x} - ${m.output} = result; + ${f.output} = result; } - `}};function A7({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=r.texData.get(e.dataId),u=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",f=!1,m=!1,A,y=[],g=(h===1||d===1)&&u>s7,x=l[2]%2!=0&&!!c.isPacked;if(g||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let v=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],w=fe({inputs:{x:e},backend:r,attrs:{shape:[1,v,n.inChannels]}}),b=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),k=Np({a:w,b,transposeA:f,transposeB:m,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=fe({inputs:{x:k},backend:r,attrs:{shape:n.outShape}}),y.push(w),y.push(b),y.push(k)}else{let v=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),w={dataId:e.dataId,shape:[1,v,n.inChannels],dtype:e.dtype},b=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,_.assert(gc(c.shape,w.shape),()=>`packed reshape ${c.shape} to ${w.shape} isn't free`);let k=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(k);let N=Np({a:w,b:k,backend:r,transposeA:f,transposeB:m,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=r.texData.get(N.dataId);_.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=b,C.shape=n.outShape,A=Vn({inputs:{x:N},backend:r}),A.shape=n.outShape,y.push(N)}for(let v of y)r.disposeIntermediateTensorInfo(v);return A}function y7({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:h,outHeight:d,dataFormat:p}=n,f=p==="channelsLast",m=l*c*u,A=d*h,y=[m,A],g=!0,x=!1,v=[],w=fe({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),b=fe({inputs:{x:t},backend:r,attrs:{shape:[1,m,_.sizeFromShape(t.shape)/m]}});v.push(w),v.push(b);let k=new uj(y,w.shape,n),N=r.runWebGLProgram(k,[w],"float32"),C=fe({inputs:{x:N},backend:r,attrs:{shape:[1,y[0],y[1]]}});v.push(N),v.push(C);let F=a!=null,O=s!=null,L=o==="leakyrelu",V=o?kp(o,!0):null,j=new e7(C.shape,b.shape,[1,A,n.outChannels],g,x,F,V,O,L),U=[C,b];if(a&&U.push(a),O&&U.push(s),L){let Y=r.makeTensorInfo([],"float32",_.createScalarValue(i,"float32"));U.push(Y),v.push(Y)}let X=r.runWebGLProgram(j,U,"float32"),G=f?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=fe({inputs:{x:X},backend:r,attrs:{shape:G}});v.push(X);for(let Y of v)r.disposeIntermediateTensorInfo(Y);return ee}function cj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r,h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=A7({x:a,filter:s,convInfo:d,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=y7({x:a,filter:s,convInfo:d,backend:n});else{let m=new m7(d);p=n.runWebGLProgram(m,[a,s],"float32")}let f=fe({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),f}var hj={kernelName:gs,backendName:"webgl",kernelFunc:cj},dj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=` + `}};function h7({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=r.texData.get(e.dataId),u=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",m=!1,f=!1,A,y=[],g=(h===1||d===1)&&u>e7,x=l[2]%2!=0&&!!c.isPacked;if(g||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let v=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],b=fe({inputs:{x:e},backend:r,attrs:{shape:[1,v,n.inChannels]}}),w=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),k=Sp({a:b,b:w,transposeA:m,transposeB:f,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=fe({inputs:{x:k},backend:r,attrs:{shape:n.outShape}}),y.push(b),y.push(w),y.push(k)}else{let v=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),b={dataId:e.dataId,shape:[1,v,n.inChannels],dtype:e.dtype},w=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,_.assert(Ac(c.shape,b.shape),()=>`packed reshape ${c.shape} to ${b.shape} isn't free`);let k=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(k);let N=Sp({a:b,b:k,backend:r,transposeA:m,transposeB:f,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=r.texData.get(N.dataId);_.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=w,C.shape=n.outShape,A=Vn({inputs:{x:N},backend:r}),A.shape=n.outShape,y.push(N)}for(let v of y)r.disposeIntermediateTensorInfo(v);return A}function d7({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:h,outHeight:d,dataFormat:p}=n,m=p==="channelsLast",f=l*c*u,A=d*h,y=[f,A],g=!0,x=!1,v=[],b=fe({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),w=fe({inputs:{x:t},backend:r,attrs:{shape:[1,f,_.sizeFromShape(t.shape)/f]}});v.push(b),v.push(w);let k=new ej(y,b.shape,n),N=r.runWebGLProgram(k,[b],"float32"),C=fe({inputs:{x:N},backend:r,attrs:{shape:[1,y[0],y[1]]}});v.push(N),v.push(C);let F=a!=null,O=s!=null,L=o==="leakyrelu",V=o?vp(o,!0):null,j=new K3(C.shape,w.shape,[1,A,n.outChannels],g,x,F,V,O,L),U=[C,w];if(a&&U.push(a),O&&U.push(s),L){let Y=r.makeTensorInfo([],"float32",_.createScalarValue(i,"float32"));U.push(Y),v.push(Y)}let X=r.runWebGLProgram(j,U,"float32"),G=m?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=fe({inputs:{x:X},backend:r,attrs:{shape:G}});v.push(X);for(let Y of v)r.disposeIntermediateTensorInfo(Y);return ee}function tj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r,h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=h7({x:a,filter:s,convInfo:d,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=d7({x:a,filter:s,convInfo:d,backend:n});else{let f=new c7(d);p=n.runWebGLProgram(f,[a,s],"float32")}let m=fe({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),m}var nj={kernelName:xs,backendName:"webgl",kernelFunc:tj},rj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; @@ -2200,7 +2200,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } setOutput(dotProd); } - `}},pj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=` + `}},aj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=` const ivec2 pads = ivec2(${i}, ${o}); void main() { @@ -2253,7 +2253,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } setOutput(dotProd); } - `}},fj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=` + `}},sj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=` void main() { ivec5 coords = getOutputCoords(); int wF = coords.x; @@ -2295,7 +2295,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } setOutput(dotProd); } - `}},mj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=r-1-e.padInfo.left;this.userCode=` + `}},ij=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=r-1-e.padInfo.left;this.userCode=` const ivec3 pads = ivec3(${o}, ${l}, ${c}); void main() { @@ -2352,13 +2352,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } setOutput(dotProd); } - `}};function Aj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=r,h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,u,i,1,o,c,!1,h),p=new dj(d);return n.runWebGLProgram(p,[a,s],"float32")}var yj={kernelName:Lh,backendName:"webgl",kernelFunc:Aj};function gj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=r,h=E.convertConv2DDataFormat(c),d=E.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),p=new pj(d);return n.runWebGLProgram(p,[a,s],"float32")}var xj={kernelName:xs,backendName:"webgl",kernelFunc:gj};function wj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=E.computeConv3DInfo(a.shape,s.shape,i,l,o),u=new lj(c);return n.runWebGLProgram(u,[a,s],"float32")}var bj={kernelName:Nu,backendName:"webgl",kernelFunc:wj};function _j(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,c=E.computeConv3DInfo(a.shape,l,i,1,o),u=new fj(c);return n.runWebGLProgram(u,[a,s],"float32")}var vj={kernelName:Wh,backendName:"webgl",kernelFunc:_j};function kj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,c=E.computeConv3DInfo(l,s.shape,o,1,i),u=new mj(c);return n.runWebGLProgram(u,[a,s],"float32")}var Ij={kernelName:Bh,backendName:"webgl",kernelFunc:kj},Sj=Q3+` + `}};function oj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=r,h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,u,i,1,o,c,!1,h),p=new rj(d);return n.runWebGLProgram(p,[a,s],"float32")}var lj={kernelName:Ph,backendName:"webgl",kernelFunc:oj};function uj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=r,h=E.convertConv2DDataFormat(c),d=E.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),p=new aj(d);return n.runWebGLProgram(p,[a,s],"float32")}var cj={kernelName:bs,backendName:"webgl",kernelFunc:uj};function hj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=E.computeConv3DInfo(a.shape,s.shape,i,l,o),u=new QV(c);return n.runWebGLProgram(u,[a,s],"float32")}var dj={kernelName:Iu,backendName:"webgl",kernelFunc:hj};function pj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,c=E.computeConv3DInfo(a.shape,l,i,1,o),u=new sj(c);return n.runWebGLProgram(u,[a,s],"float32")}var fj={kernelName:Lh,backendName:"webgl",kernelFunc:pj};function mj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,c=E.computeConv3DInfo(l,s.shape,o,1,i),u=new ij(c);return n.runWebGLProgram(u,[a,s],"float32")}var Aj={kernelName:Wh,backendName:"webgl",kernelFunc:mj},yj=X3+` return cos(x); -`,Nj=Xe({opSnippet:Sj}),Tj={kernelName:ws,backendName:"webgl",kernelFunc:Nj},Ej=` +`,gj=Xe({opSnippet:yj}),xj={kernelName:ws,backendName:"webgl",kernelFunc:gj},bj=` float e2x = exp(-x); return (e2x + 1.0 / e2x) / 2.0; -`,Cj=Xe({opSnippet:Ej}),Rj={kernelName:wo,backendName:"webgl",kernelFunc:Cj},Mj=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,h]=n;this.outputShape=[c,u,h,l];let d=r==="bilinear"?1:0,[p,f]=[`${i-1}.0`,`${o-1}.0`],[m,A,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,x,v]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=` - const float height_ratio = float(${m}); +`,wj=Xe({opSnippet:bj}),_j={kernelName:bo,backendName:"webgl",kernelFunc:wj},vj=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,h]=n;this.outputShape=[c,u,h,l];let d=r==="bilinear"?1:0,[p,m]=[`${i-1}.0`,`${o-1}.0`],[f,A,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,x,v]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=` + const float height_ratio = float(${f}); const float width_ratio = float(${g}); void main() { ivec4 coords = getOutputCoords(); @@ -2388,7 +2388,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam return; } float in_x = ${v}; - if( in_x < 0.0 || in_x > ${f} ) { + if( in_x < 0.0 || in_x > ${m} ) { setOutput(float(${a})); return; } @@ -2418,21 +2418,21 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam setOutput(newValue); } } - `}},Fj=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,u=new Mj(a.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[a,s,i],"float32")},$j={kernelName:bo,backendName:"webgl",kernelFunc:Fj},w7=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${g7(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=` + `}},kj=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,u=new vj(a.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[a,s,i],"float32")},Ij={kernelName:wo,backendName:"webgl",kernelFunc:kj},m7=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${p7(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=` uniform float index; void main() { ${lt(r)} coords = getOutputCoords(); - int end = ${x7(r,"coords")}; + int end = ${f7(r,"coords")}; float val = ${a}; int pow2 = int(pow(2.0, index)); if (${i}) { int idx = ${o}; - ${x7(r,"coords")} = idx; - val += getX(${g7(r,"coords")}); + ${f7(r,"coords")} = idx; + val += getX(${p7(r,"coords")}); } setOutput(val); } - `}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function g7(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function x7(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Dj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,c=E.getAxesPermutation([s],l),u=a;c!=null&&(u=fn({inputs:{x:a},backend:n,attrs:{perm:c}}));let h=E.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=u.shape[h],p=Vn({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(d))-1;f++){let m=new w7(u.shape,!1,o),A=m.getCustomSetupFunc(f),y=p;p=n.runWebGLProgram(m,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let f=new w7(u.shape,i,o),m=p;p=n.runWebGLProgram(f,[p],p.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=E.getUndoAxesPermutation(c),m=fn({inputs:{x:p},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(u),m}return p}var Oj={kernelName:bs,backendName:"webgl",kernelFunc:Dj};function zj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),c=n.readSync(s.dataId),u=P3(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(a.shape.length===2){let l=n.bufferSync(a),c=n.bufferSync(s),u=lW(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var Pj={kernelName:Vh,backendName:"webgl",kernelFunc:zj},Lj=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` + `}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function p7(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function f7(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Sj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,c=E.getAxesPermutation([s],l),u=a;c!=null&&(u=fn({inputs:{x:a},backend:n,attrs:{perm:c}}));let h=E.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=u.shape[h],p=Vn({inputs:{x:u},backend:n});for(let m=0;m<=Math.ceil(Math.log2(d))-1;m++){let f=new m7(u.shape,!1,o),A=f.getCustomSetupFunc(m),y=p;p=n.runWebGLProgram(f,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let m=new m7(u.shape,i,o),f=p;p=n.runWebGLProgram(m,[p],p.dtype),n.disposeIntermediateTensorInfo(f)}if(c!=null){let m=E.getUndoAxesPermutation(c),f=fn({inputs:{x:p},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(u),f}return p}var Nj={kernelName:_s,backendName:"webgl",kernelFunc:Sj};function Tj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),c=n.readSync(s.dataId),u=F3(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(a.shape.length===2){let l=n.bufferSync(a),c=n.bufferSync(s),u=QL(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var Ej={kernelName:Bh,backendName:"webgl",kernelFunc:Tj},Cj=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -2451,7 +2451,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam float result = ${this.getInputSamplingString()}; setOutput(result); } - `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Wj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=new Lj(f,s,i);return n.runWebGLProgram(m,[a],a.dtype)}var Bj={kernelName:_o,backendName:"webgl",kernelFunc:Wj},b7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) { + `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Rj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),m=i==="NHWC"?[o,h,d,p]:[o,p,h,d],f=new Cj(m,s,i);return n.runWebGLProgram(f,[a],a.dtype)}var Mj={kernelName:_o,backendName:"webgl",kernelFunc:Rj},A7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:a?A=`float activation(float a) { @@ -2472,8 +2472,8 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam int batch = coords.x; ivec2 xRCCorner = coords.yz * strides - pads; int d2 = coords.w; - int d1 = d2 / ${m}; - int q = d2 - d1 * ${m}; + int d1 = d2 / ${f}; + int q = d2 - d1 * ${f}; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; @@ -2489,7 +2489,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam continue; } - for (int wC = 0; wC < ${f}; wC++) { + for (int wC = 0; wC < ${m}; wC++) { int xC = xCCorner + wC * ${d}; if (xC < 0 || xC >= ${i}) { @@ -2507,18 +2507,18 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam ${y} setOutput(result); } - `}},_7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.outChannels/e.inChannels,i=e.inHeight,o=e.inWidth,l=e.padInfo.top,c=e.padInfo.left,u=e.strideHeight,h=e.strideWidth,d=e.dilationHeight,p=e.dilationWidth,f=e.filterHeight,m=e.filterWidth,A=m,y=` + `}},y7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.outChannels/e.inChannels,i=e.inHeight,o=e.inWidth,l=e.padInfo.top,c=e.padInfo.left,u=e.strideHeight,h=e.strideWidth,d=e.dilationHeight,p=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,A=f,y=` int xR; int xC; int xCOffset; - vec4 wTexel; vec4 previous; vec4 final;`;for(let w=0;w=0 && xR < ${i}) { - `;for(let b=0;b= 0 && xCOffset < ${o}) { xTexelC${k} = getX(batch, xR, xCOffset, d1); @@ -2556,7 +2556,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } xC${k} = xTexelC${k}; - `,k+1= 0 && xCOffset < ${o}) { @@ -2588,7 +2588,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } xC${k+1} = xTexelC${k+2}; - `}}else k= 0 && xCOffset < ${o}) { xTexelC${k} = getX(batch, xR, xCOffset, d1); @@ -2609,7 +2609,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } xC${k} = vec4(xTexelC${k}.zw, xTexelC${k+2}.zw); - `,k+1= 0 && xCOffset < ${o}) { @@ -2634,13 +2634,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam xC${k} = vec4( xTexelC${k}.xy, xTexelC${k+2}.xy); - `,k+1`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let h=E.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!0),d;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new _7(h):d=new b7(h),n.runWebGLProgram(d,[a,s],"float32")}var jj={kernelName:_s,backendName:"webgl",kernelFunc:Vj},Uj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=` + `}};function Fj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=r,u=l;u==null&&(u=[1,1]),_.assert(E.eitherStridesOrDilationsAreOne(i,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let h=E.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!0),d;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new y7(h):d=new A7(h),n.runWebGLProgram(d,[a,s],"float32")}var $j={kernelName:vs,backendName:"webgl",kernelFunc:Fj},Dj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; @@ -2714,7 +2714,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } setOutput(dotProd); } - `}},Hj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=` + `}},Oj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=` const ivec2 pads = ivec2(${s}, ${i}); void main() { @@ -2759,13 +2759,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } setOutput(dotProd); } - `}};function Gj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=r,h=E.computeConv2DInfo(a.shape,u,i,o,l,c,!0),d=new Uj(h);return n.runWebGLProgram(d,[a,s],"float32")}var qj={kernelName:jh,backendName:"webgl",kernelFunc:Gj};function Xj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=r,h=E.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new Hj(h);return n.runWebGLProgram(d,[a,s],"float32")}var Kj={kernelName:Uh,backendName:"webgl",kernelFunc:Xj},Zj=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` + `}};function zj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=r,h=E.computeConv2DInfo(a.shape,u,i,o,l,c,!0),d=new Dj(h);return n.runWebGLProgram(d,[a,s],"float32")}var Pj={kernelName:Vh,backendName:"webgl",kernelFunc:zj};function Lj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=r,h=E.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new Oj(h);return n.runWebGLProgram(d,[a,s],"float32")}var Wj={kernelName:jh,backendName:"webgl",kernelFunc:Lj},Bj=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` void main() { ivec2 coords = getOutputCoords(); float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0; setOutput(val); } - `}};function Yj(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=_.sizeFromShape(r.shape),i=fe({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new Zj(s),l=n.runWebGLProgram(o,[i],i.dtype),c=fe({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var Jj={kernelName:Hh,backendName:"webgl",kernelFunc:Yj},Qj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:h}=r;this.userCode=` + `}};function Vj(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=_.sizeFromShape(r.shape),i=fe({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new Bj(s),l=n.runWebGLProgram(o,[i],i.dtype),c=fe({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var jj={kernelName:Uh,backendName:"webgl",kernelFunc:Vj},Uj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:h}=r;this.userCode=` const ivec2 strides = ivec2(${a}, ${s}); const ivec2 pads = ivec2(${u}, ${h}); const float neg_infinity = -3.4e38; @@ -2803,7 +2803,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam float result = curVal; setOutput(result); } - `}};function eU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=E.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),u,h=new Qj(c);u=n.runWebGLProgram(h,[a,s],"float32");let d=fe({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var tU={kernelName:Tu,backendName:"webgl",kernelFunc:eU};function nU(e){let{inputs:t,backend:n,attrs:r}=e,{equation:a}=r,s=t,{allDims:i,summedDims:o,idDims:l}=E.decodeEinsumEquation(a,s.length);E.checkEinsumDimSizes(i.length,l,s);let{path:c,steps:u}=E.getEinsumComputePath(o,l),h=u.length,d=null,p=i.length,f=[];for(let m=0;m=0&&(d=Sp({inputs:{x:d},backend:n,attrs:{axis:c[m]-(i.length-p),keepDims:!1}}),f.push(d)),p--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var rU={kernelName:Xh,backendName:"webgl",kernelFunc:nU},aU="return (x >= 0.0) ? x : (exp(x) - 1.0);",sU=` + `}};function Hj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=E.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),u,h=new Uj(c);u=n.runWebGLProgram(h,[a,s],"float32");let d=fe({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var Gj={kernelName:Su,backendName:"webgl",kernelFunc:Hj};function qj(e){let{inputs:t,backend:n,attrs:r}=e,{equation:a}=r,s=t,{allDims:i,summedDims:o,idDims:l}=E.decodeEinsumEquation(a,s.length);E.checkEinsumDimSizes(i.length,l,s);let{path:c,steps:u}=E.getEinsumComputePath(o,l),h=u.length,d=null,p=i.length,m=[];for(let f=0;f=0&&(d=Ip({inputs:{x:d},backend:n,attrs:{axis:c[f]-(i.length-p),keepDims:!1}}),m.push(d)),p--)}for(let f of m)f!==d&&n.disposeIntermediateTensorInfo(f);return d}var Xj={kernelName:qh,backendName:"webgl",kernelFunc:qj},Kj="return (x >= 0.0) ? x : (exp(x) - 1.0);",Zj=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); @@ -2812,12 +2812,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; -`,iU=Xe({opSnippet:aU,packedOpSnippet:sU}),oU={kernelName:vo,backendName:"webgl",kernelFunc:iU},lU="return (b >= 1.0) ? a : a * (b + 1.0);",uU=` +`,Yj=Xe({opSnippet:Kj,packedOpSnippet:Zj}),Jj={kernelName:vo,backendName:"webgl",kernelFunc:Yj},Qj="return (b >= 1.0) ? a : a * (b + 1.0);",eU=` vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.))); return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0)))); -`,cU=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new vc(uU,r.shape,a.shape):new Vl(lU,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},hU={kernelName:Kh,backendName:"webgl",kernelFunc:cU},dU=` +`,tU=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new wc(eU,r.shape,a.shape):new Vl(Qj,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},nU={kernelName:Xh,backendName:"webgl",kernelFunc:tU},rU=` return vec4(equal(a, b)); -`,pU="return float(a == b);",fU=nn({opSnippet:pU,packedOpSnippet:dU,dtype:"bool"}),mU={kernelName:Io,backendName:"webgl",kernelFunc:fU},AU=` +`,aU="return float(a == b);",sU=nn({opSnippet:aU,packedOpSnippet:rU,dtype:"bool"}),iU={kernelName:Io,backendName:"webgl",kernelFunc:sU},oU=` // Error function is calculated approximately with elementary function. // See "Handbook of Mathematical Functions with Formulas, // Graphs, and Mathematical Tables", Abramowitz and Stegun. @@ -2832,7 +2832,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam x = abs(x); float t = 1.0 / (1.0 + p * x); return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x)); -`,yU=Xe({opSnippet:AU}),gU={kernelName:ko,backendName:"webgl",kernelFunc:yU},v7="return exp(x);",k7=Xe({opSnippet:v7,packedOpSnippet:v7,cpuKernelImpl:hW}),xU={kernelName:ks,backendName:"webgl",kernelFunc:k7};function $A(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(_.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),fe({inputs:{x:s},backend:r,attrs:{shape:o}})}var wU={kernelName:So,backendName:"webgl",kernelFunc:$A},I7="return exp(x) - 1.0;",bU=Xe({opSnippet:I7,packedOpSnippet:I7,cpuKernelImpl:dW}),_U={kernelName:No,backendName:"webgl",kernelFunc:bU},S7=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` +`,lU=Xe({opSnippet:oU}),uU={kernelName:ko,backendName:"webgl",kernelFunc:lU},g7="return exp(x);",x7=Xe({opSnippet:g7,packedOpSnippet:g7,cpuKernelImpl:nW}),cU={kernelName:Is,backendName:"webgl",kernelFunc:x7};function MA(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(_.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),fe({inputs:{x:s},backend:r,attrs:{shape:o}})}var hU={kernelName:So,backendName:"webgl",kernelFunc:MA},b7="return exp(x) - 1.0;",dU=Xe({opSnippet:b7,packedOpSnippet:b7,cpuKernelImpl:rW}),pU={kernelName:No,backendName:"webgl",kernelFunc:dU},w7=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` const float exponentMultiplier = ${a}; float unaryOpComplex(float real, float expR, float imag, float expI) { @@ -2865,13 +2865,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam ivec2 coords = getOutputCoords(); setOutput(mulMatDFT(coords[0], coords[1])); } - `}};function N7(e,t,n){let r=n.texData.get(e.dataId),a=_.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=fe({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new S7("real",l,t),u=new S7("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),f=qa({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let m=fe({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(f),m}function vU(e){let{inputs:t,backend:n}=e,{input:r}=t;return N7(r,!1,n)}var kU={kernelName:Zh,backendName:"webgl",kernelFunc:vU},IU=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=` + `}};function _7(e,t,n){let r=n.texData.get(e.dataId),a=_.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=fe({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new w7("real",l,t),u=new w7("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),m=Xa({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let f=fe({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function fU(e){let{inputs:t,backend:n}=e,{input:r}=t;return _7(r,!1,n)}var mU={kernelName:Kh,backendName:"webgl",kernelFunc:fU},AU=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=` uniform float value; void main() { // Input can be obtained from uniform value. setOutput(value); } - `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function DA(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||_.inferDtype(a),s==="string"){let i=_.getArrayFromDType(s,_.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new IU(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var SU={kernelName:Eu,backendName:"webgl",kernelFunc:DA},NU=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` + `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function FA(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||_.inferDtype(a),s==="string"){let i=_.getArrayFromDType(s,_.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new AU(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var yU={kernelName:Nu,backendName:"webgl",kernelFunc:FA},gU=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; @@ -2885,7 +2885,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } setOutput(outputValue); } - `}},TU={kernelName:To,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new NU(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},T7="return floor(x);",EU=Xe({opSnippet:T7,packedOpSnippet:T7,cpuKernelImpl:pW}),CU={kernelName:Is,backendName:"webgl",kernelFunc:EU},RU=` + `}},xU={kernelName:To,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new gU(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},v7="return floor(x);",bU=Xe({opSnippet:v7,packedOpSnippet:v7,cpuKernelImpl:aW}),wU={kernelName:Ss,backendName:"webgl",kernelFunc:bU},_U=` float s = sign(a) * sign(b); int ia = round(a); int ib = round(b); @@ -2895,7 +2895,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } else { return NAN; } -`,MU=` +`,vU=` ivec4 ia = round(a); ivec4 ib = round(b); bvec4 cond = notEqual(ib, ivec4(0)); @@ -2916,7 +2916,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam result[3] = idiv(ia[3], ib[3], s[3]); } return vec4(result); -`,FU=nn({opSnippet:RU,packedOpSnippet:MU,dtype:"int32"}),$U={kernelName:Ss,backendName:"webgl",kernelFunc:FU},DU=class{constructor(e){this.variableNames=["A"];let t=dn(),[n,r]=e;this.outputShape=e,this.userCode=` +`,kU=nn({opSnippet:_U,packedOpSnippet:vU,dtype:"int32"}),IU={kernelName:Ns,backendName:"webgl",kernelFunc:kU},SU=class{constructor(e){this.variableNames=["A"];let t=dn(),[n,r]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; @@ -2938,7 +2938,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam setOutput(floor(value * 255.0 + 0.5)); } - `}},OU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=dn(),[n,r]=e;this.outputShape=e,this.userCode=` + `}},NU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=dn(),[n,r]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; @@ -2972,7 +2972,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam ${t.output} = result; } - `}},PU={kernelName:dd,backendName:"webgl",kernelFunc:zU},Ul;function zU(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,[l,c]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],u=[c,l],h=[c,l,s];(o||i)&&(Ul==null&&(Ul=document.createElement("canvas").getContext("2d")),Ul.canvas.width=l,Ul.canvas.height=c,Ul.drawImage(a,0,0,l,c),a=Ul.canvas);let d=n.makeTensorInfo(u,"int32");n.texData.get(d.dataId).usage=ar.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),a);let p=J().getBool("WEBGL_PACK")?new OU(h):new DU(h),f=n.runWebGLProgram(p,[d],"int32");return n.disposeData(d.dataId),f}function LU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=E.convertConv2DDataFormat(u),A=E.computeConv2DInfo(a.shape,s.shape,l,h,c,d,!1,m),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=A7({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=y7({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else{let v=i!=null,w=o!=null,b=p==="leakyrelu",k=p?kp(p,!1):null,N=new m7(A,v,k,w,b),C=[a,s];if(i&&C.push(i),o&&C.push(o),b){let F=n.makeTensorInfo([],"float32",_.createScalarValue(f,"float32"));C.push(F),g.push(F)}y=n.runWebGLProgram(N,C,"float32")}let x=fe({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var WU={kernelName:oi,backendName:"webgl",kernelFunc:LU};function BU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,f=[],m=u;m==null&&(m=[1,1]),_.assert(E.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let A=E.computeConv2DInfo(a.shape,s.shape,l,m,c,h,!0),y=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?kp(d,y):null,x=[a,s],v=i!=null,w=o!=null,b=d==="leakyrelu";if(v&&x.push(i),w&&x.push(o),b){let C=n.makeTensorInfo([],"float32",_.createScalarValue(p,"float32"));x.push(C),f.push(C)}let k;y?k=new _7(A,v,g,w,b):k=new b7(A,v,g,w,b);let N=n.runWebGLProgram(k,x,"float32");return f.forEach(C=>n.disposeIntermediateTensorInfo(C)),N}var VU={kernelName:li,backendName:"webgl",kernelFunc:BU},jU=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=lt(t.length),a=lt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=` + `}},EU={kernelName:hd,backendName:"webgl",kernelFunc:TU},Ul;function TU(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,[l,c]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],u=[c,l],h=[c,l,s];(o||i)&&(Ul==null&&(Ul=document.createElement("canvas").getContext("2d")),Ul.canvas.width=l,Ul.canvas.height=c,Ul.drawImage(a,0,0,l,c),a=Ul.canvas);let d=n.makeTensorInfo(u,"int32");n.texData.get(d.dataId).usage=ar.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),a);let p=J().getBool("WEBGL_PACK")?new NU(h):new SU(h),m=n.runWebGLProgram(p,[d],"int32");return n.disposeData(d.dataId),m}function CU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=E.convertConv2DDataFormat(u),A=E.computeConv2DInfo(a.shape,s.shape,l,h,c,d,!1,f),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=h7({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:m});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=d7({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,b=o!=null,w=p==="leakyrelu",k=p?vp(p,!1):null,N=new c7(A,v,k,b,w),C=[a,s];if(i&&C.push(i),o&&C.push(o),w){let F=n.makeTensorInfo([],"float32",_.createScalarValue(m,"float32"));C.push(F),g.push(F)}y=n.runWebGLProgram(N,C,"float32")}let x=fe({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var RU={kernelName:li,backendName:"webgl",kernelFunc:CU};function MU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,m=[],f=u;f==null&&(f=[1,1]),_.assert(E.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let A=E.computeConv2DInfo(a.shape,s.shape,l,f,c,h,!0),y=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?vp(d,y):null,x=[a,s],v=i!=null,b=o!=null,w=d==="leakyrelu";if(v&&x.push(i),b&&x.push(o),w){let C=n.makeTensorInfo([],"float32",_.createScalarValue(p,"float32"));x.push(C),m.push(C)}let k;y?k=new y7(A,v,g,b,w):k=new A7(A,v,g,b,w);let N=n.runWebGLProgram(k,x,"float32");return m.forEach(C=>n.disposeIntermediateTensorInfo(C)),N}var FU={kernelName:ui,backendName:"webgl",kernelFunc:MU},$U=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=lt(t.length),a=lt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=` ${r} strides = ${r}(${this.strides}); void main() { ${a} coords = getOutputCoords(); @@ -2983,21 +2983,21 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } setOutput(getX(flattenIndex, coords[1])); } - `}};function UU(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,c,u]=E.prepareAndValidate(r,a),h=fe({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=fe({inputs:{x:r},backend:n,attrs:{shape:[_.sizeFromShape(r.shape)/c,c]}}),p=new jU(i,u,[l,c]),f=n.runWebGLProgram(p,[d,h],d.dtype),m=fe({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(f),m}var HU={kernelName:Co,backendName:"webgl",kernelFunc:UU},qU=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=lt(this.rank),r=GU(e,2);this.userCode=` + `}};function DU(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,c,u]=E.prepareAndValidate(r,a),h=fe({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=fe({inputs:{x:r},backend:n,attrs:{shape:[_.sizeFromShape(r.shape)/c,c]}}),p=new $U(i,u,[l,c]),m=n.runWebGLProgram(p,[d,h],d.dtype),f=fe({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(m),f}var OU={kernelName:Co,backendName:"webgl",kernelFunc:DU},PU=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=lt(this.rank),r=zU(e,2);this.userCode=` void main() { ${n} resRC = getOutputCoords(); setOutput(getA(${r})); } - `}};function GU(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;an.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(c.outputShape,v.dtype,v.values)}let m=new qU(d.shape,f),A=n.runWebGLProgram(m,[d,p],d.dtype);h.push(A);let y=fe({inputs:{x:A},backend:n,attrs:{shape:c.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var KU={kernelName:Eo,backendName:"webgl",kernelFunc:XU},ZU="return float(a > b);",YU=` + `}};function zU(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;an.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(c.outputShape,v.dtype,v.values)}let f=new PU(d.shape,m),A=n.runWebGLProgram(f,[d,p],d.dtype);h.push(A);let y=fe({inputs:{x:A},backend:n,attrs:{shape:c.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var WU={kernelName:Eo,backendName:"webgl",kernelFunc:LU},BU="return float(a > b);",VU=` return vec4(greaterThan(a, b)); -`,JU=nn({opSnippet:ZU,packedOpSnippet:YU,cpuKernelImpl:mW,dtype:"bool"}),QU={kernelName:Ro,backendName:"webgl",kernelFunc:JU},eH="return float(a >= b);",tH=` +`,jU=nn({opSnippet:BU,packedOpSnippet:VU,cpuKernelImpl:iW,dtype:"bool"}),UU={kernelName:Ro,backendName:"webgl",kernelFunc:jU},HU="return float(a >= b);",GU=` return vec4(greaterThanEqual(a, b)); -`,nH=nn({opSnippet:eH,packedOpSnippet:tH,dtype:"bool"}),rH={kernelName:Ts,backendName:"webgl",kernelFunc:nH};function aH(e){let{inputs:t,backend:n}=e,{input:r}=t;return N7(r,!0,n)}var sH={kernelName:Yh,backendName:"webgl",kernelFunc:aH},iH="return float(!isnan(x) && !isinf(x));",oH=Xe({opSnippet:iH,dtype:"bool"}),lH={kernelName:Mo,backendName:"webgl",kernelFunc:oH},uH="return float(isinf(x));",cH=Xe({opSnippet:uH,dtype:"bool"}),hH={kernelName:Fo,backendName:"webgl",kernelFunc:cH},dH="return float(isnan(x));",pH=Xe({opSnippet:dH,dtype:"bool"}),fH={kernelName:$o,backendName:"webgl",kernelFunc:pH},mH="return float(a < b);",AH=` +`,qU=nn({opSnippet:HU,packedOpSnippet:GU,dtype:"bool"}),XU={kernelName:Es,backendName:"webgl",kernelFunc:qU};function KU(e){let{inputs:t,backend:n}=e,{input:r}=t;return _7(r,!0,n)}var ZU={kernelName:Zh,backendName:"webgl",kernelFunc:KU},YU="return float(!isnan(x) && !isinf(x));",JU=Xe({opSnippet:YU,dtype:"bool"}),QU={kernelName:Mo,backendName:"webgl",kernelFunc:JU},eH="return float(isinf(x));",tH=Xe({opSnippet:eH,dtype:"bool"}),nH={kernelName:Fo,backendName:"webgl",kernelFunc:tH},rH="return float(isnan(x));",aH=Xe({opSnippet:rH,dtype:"bool"}),sH={kernelName:$o,backendName:"webgl",kernelFunc:aH},iH="return float(a < b);",oH=` return vec4(lessThan(a, b)); -`,yH=nn({opSnippet:mH,packedOpSnippet:AH,cpuKernelImpl:AW,dtype:"bool"}),gH={kernelName:Do,backendName:"webgl",kernelFunc:yH},xH="return float(a <= b);",wH=` +`,lH=nn({opSnippet:iH,packedOpSnippet:oH,cpuKernelImpl:oW,dtype:"bool"}),uH={kernelName:Do,backendName:"webgl",kernelFunc:lH},cH="return float(a <= b);",hH=` return vec4(lessThanEqual(a, b)); -`,bH=nn({opSnippet:xH,packedOpSnippet:wH,dtype:"bool"}),_H={kernelName:Oo,backendName:"webgl",kernelFunc:bH};function vH(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=yW(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var kH={kernelName:Qh,backendName:"webgl",kernelFunc:vH},IH=`if (x < 0.0) return NAN; - return log(x);`,SH=` +`,dH=nn({opSnippet:cH,packedOpSnippet:hH,dtype:"bool"}),pH={kernelName:Oo,backendName:"webgl",kernelFunc:dH};function fH(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=lW(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var mH={kernelName:Jh,backendName:"webgl",kernelFunc:fH},AH=`if (x < 0.0) return NAN; + return log(x);`,yH=` vec4 result = log(x); vec4 isNaN = vec4(lessThan(x, vec4(0.0))); result.r = isNaN.r == 1.0 ? NAN : result.r; @@ -3006,16 +3006,16 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam result.a = isNaN.a == 1.0 ? NAN : result.a; return result; -`,NH=Xe({opSnippet:IH,packedOpSnippet:SH,cpuKernelImpl:gW}),TH={kernelName:Rs,backendName:"webgl",kernelFunc:NH},EH="return log(1.0 + x);",CH=Xe({opSnippet:EH}),RH={kernelName:zo,backendName:"webgl",kernelFunc:CH},MH="return float(a >= 1.0 && b >= 1.0);",FH=` +`,gH=Xe({opSnippet:AH,packedOpSnippet:yH,cpuKernelImpl:uW}),xH={kernelName:Ms,backendName:"webgl",kernelFunc:gH},bH="return log(1.0 + x);",wH=Xe({opSnippet:bH}),_H={kernelName:zo,backendName:"webgl",kernelFunc:wH},vH="return float(a >= 1.0 && b >= 1.0);",kH=` return vec4( vec4(greaterThanEqual(a, vec4(1.0))) * vec4(greaterThanEqual(b, vec4(1.0)))); -`,$H=nn({opSnippet:MH,packedOpSnippet:FH,dtype:"bool"}),DH={kernelName:Po,backendName:"webgl",kernelFunc:$H},OH="return float(!(x >= 1.0));",zH=Xe({opSnippet:OH}),PH={kernelName:Cu,backendName:"webgl",kernelFunc:zH},LH="return float(a >= 1.0 || b >= 1.0);",WH=` +`,IH=nn({opSnippet:vH,packedOpSnippet:kH,dtype:"bool"}),SH={kernelName:Po,backendName:"webgl",kernelFunc:IH},NH="return float(!(x >= 1.0));",TH=Xe({opSnippet:NH}),EH={kernelName:Tu,backendName:"webgl",kernelFunc:TH},CH="return float(a >= 1.0 || b >= 1.0);",RH=` return min( vec4(greaterThanEqual(a, vec4(1.0))) + vec4(greaterThanEqual(b, vec4(1.0))), vec4(1.0)); -`,BH=nn({opSnippet:LH,packedOpSnippet:WH,dtype:"bool"}),VH={kernelName:Ru,backendName:"webgl",kernelFunc:BH},jH=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` +`,MH=nn({opSnippet:CH,packedOpSnippet:RH,dtype:"bool"}),FH={kernelName:Eu,backendName:"webgl",kernelFunc:MH},$H=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3034,7 +3034,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam float val = x * ${o}; setOutput(val); } - `}},UH=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` + `}},DH=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords.x; @@ -3096,7 +3096,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam vec4 result = xAtOutputCoords * ${o}; setOutput(result); } - `}},HH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,c=J().getBool("WEBGL_PACK_NORMALIZATION")?new UH(a.shape,s,i,o,l):new jH(a.shape,s,i,o,l);return n.runWebGLProgram(c,[a],a.dtype)},GH={kernelName:Mu,backendName:"webgl",kernelFunc:HH},qH=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=` + `}},OH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,c=J().getBool("WEBGL_PACK_NORMALIZATION")?new DH(a.shape,s,i,o,l):new $H(a.shape,s,i,o,l);return n.runWebGLProgram(c,[a],a.dtype)},zH={kernelName:Cu,backendName:"webgl",kernelFunc:OH},PH=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3151,14 +3151,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } setOutput(result); } - `}},XH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=r,h=new qH(a.shape,o,l,c,u);return n.runWebGLProgram(h,[a,s,i],a.dtype)},KH={kernelName:ed,backendName:"webgl",kernelFunc:XH};function ZH(e,t,n,r){let a=_.sizeFromShape(t),s=_.sizeFromShape(e.shape)/a,i=fe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=Fi(i,e.dtype,"max",r),l=fe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function E7(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=u!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,x=new Array(o);for(let b=0;b{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=r,h=new PH(a.shape,o,l,c,u);return n.runWebGLProgram(h,[a,s,i],a.dtype)},WH={kernelName:Qh,backendName:"webgl",kernelFunc:LH};function BH(e,t,n,r){let a=_.sizeFromShape(t),s=_.sizeFromShape(e.shape)/a,i=fe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=$i(i,e.dtype,"max",r),l=fe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function k7(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=u!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,x=new Array(o);for(let w=0;w`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))return Vn({inputs:{x:a},backend:n});let h=new kc(u,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var rG={kernelName:$s,backendName:"webgl",kernelFunc:nG};function aG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=r,u=[1,1,1],h=E.computePool3DInfo(a.shape,s,i,u,o,c,l),d=new RA(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var sG={kernelName:Fu,backendName:"webgl",kernelFunc:aG},iG=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=` +`,HH=nn({opSnippet:jH,packedOpSnippet:UH,cpuKernelImpl:hW}),GH={kernelName:$s,backendName:"webgl",kernelFunc:HH};function qH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;$l(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))return Vn({inputs:{x:a},backend:n});let h=new _c(u,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var XH={kernelName:Ds,backendName:"webgl",kernelFunc:qH};function KH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=r,u=[1,1,1],h=E.computePool3DInfo(a.shape,s,i,u,o,c,l),d=new EA(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var ZH={kernelName:Ru,backendName:"webgl",kernelFunc:KH},YH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=` const ivec2 pads = ivec2(${i}, ${o}); void main() { @@ -3204,7 +3204,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } setOutput(dotProd); } - `}},oG=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=c-1-e.padInfo.left,p=o*l*c-1;this.userCode=` + `}},JH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=c-1-e.padInfo.left,p=o*l*c-1;this.userCode=` const ivec3 pads = ivec3(${u}, ${h}, ${d}); void main() { @@ -3268,14 +3268,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam } setOutput(dotProd); } - `}};function lG(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=E.computePool3DInfo(i.shape,o,l,h,c,u),p=new RA(d,"max",!0),f=n.runWebGLProgram(p,[i],i.dtype),m=new oG(d),A=n.runWebGLProgram(m,[a,f],i.dtype);return n.disposeIntermediateTensorInfo(f),A}var uG={kernelName:nd,backendName:"webgl",kernelFunc:lG};function cG(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;$l([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=E.computePool2DInfo(o.shape,l,c,1,u,h),p=!0,f=new kc(d,"max",p),m=n.runWebGLProgram(f,[o],o.dtype),A=new iG(d),y=n.runWebGLProgram(A,[a,m],o.dtype);return n.disposeIntermediateTensorInfo(m),y}var hG={kernelName:td,backendName:"webgl",kernelFunc:cG};function dG(e,t,n,r){let a=new kc(n,"max",!1),s=r.runWebGLProgram(a,[e],"float32");a=new kc(n,"max",!0,!0,t);let i=r.runWebGLProgram(a,[e],"float32");return[s,i]}var pG={kernelName:rd,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;_.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let c=[1,1];_.assert(E.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,s,c,i),[h,d]=dG(r,o,u,l);return[h,d]}};function fG(e,t,n,r){let a=_.sizeFromShape(t),s=_.sizeFromShape(e.shape)/a,i=fe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=Fi(i,"float32","mean",r),l=fe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var mG={kernelName:Ds,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=_.parseAxisParam(s,r.shape),c=l,u=E.getAxesPermutation(c,o),h=u!=null,d=i.shouldExecuteOnCPU([r]),p=[],f=r;if(h){if(d){let x=i.texData.get(f.dataId).values,v=new Array(o);for(let k=0;k{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;_.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let c=[1,1];_.assert(E.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,s,c,i),[h,d]=rG(r,o,u,l);return[h,d]}};function sG(e,t,n,r){let a=_.sizeFromShape(t),s=_.sizeFromShape(e.shape)/a,i=fe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=$i(i,"float32","mean",r),l=fe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var iG={kernelName:Os,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=_.parseAxisParam(s,r.shape),c=l,u=E.getAxesPermutation(c,o),h=u!=null,d=i.shouldExecuteOnCPU([r]),p=[],m=r;if(h){if(d){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let k=0;kc[0]+e[u]+c[1]);let r=e.length,a=lt(r),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=` +`,hG=nn({opSnippet:uG,packedOpSnippet:cG,cpuKernelImpl:dW}),dG={kernelName:Ps,backendName:"webgl",kernelFunc:hG},pG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let r=e.length,a=lt(r),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=` int start = ${s}; int end = ${i}; @@ -3304,7 +3304,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam ${a} coords = outC - start; setOutput(getX(${o})); } - `}},vG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,f)=>p[0]+e[f]+p[1]);let r=e.length,a=lt(r),s=t.map(p=>p[0]).join(","),i=t.map((p,f)=>p[0]+e[f]).join(","),o=pn("rc",r),l=pn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=` + `}},fG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,m)=>p[0]+e[m]+p[1]);let r=e.length,a=lt(r),s=t.map(p=>p[0]).join(","),i=t.map((p,m)=>p[0]+e[m]).join(","),o=pn("rc",r),l=pn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=` ${a} source = rc; if (source < start) { source = start * 2 - source - ${h}; @@ -3360,13 +3360,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam ${d} setOutput(result); } - `}},kG=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new vG(r.shape,a,s):new _G(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},IG={kernelName:Ps,backendName:"webgl",kernelFunc:kG},SG=`if (b == 0.0) return NAN; - return mod(a, b);`,NG=` + `}},mG=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fG(r.shape,a,s):new pG(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},AG={kernelName:Ls,backendName:"webgl",kernelFunc:mG},yG=`if (b == 0.0) return NAN; + return mod(a, b);`,gG=` vec4 result = mod(a, b); vec4 isNaN = vec4(equal(b, vec4(0.0))); - `+vp+` + `+_p+` return result; -`,TG=nn({opSnippet:SG,packedOpSnippet:NG}),EG={kernelName:Lo,backendName:"webgl",kernelFunc:TG},CG=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=` +`,xG=nn({opSnippet:yG,packedOpSnippet:gG}),bG={kernelName:Lo,backendName:"webgl",kernelFunc:xG},wG=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=` uniform float seed; void main() { @@ -3388,11 +3388,11 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mV=Xe({opSnippet:fV}),AV={kernelNam // If no other event happened, last event happened. setOutput(float(${t-1})); } - `}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},RG=` + `}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},_G=` if (a == b) { return 1.0; }; -return a / b;`,MG=` +return a / b;`,vG=` // vec4 one = vec4(equal(a, b)); // return one + (vec4(1.0) - one) * a / b; vec4 result = a / b; @@ -3410,14 +3410,14 @@ return a / b;`,MG=` } return result; -`,C7=nn({opSnippet:RG,packedOpSnippet:MG,checkOutOfBounds:!0}),FG={kernelName:vs,backendName:"webgl",kernelFunc:C7},R7="return a - b;",M7=nn({opSnippet:R7,packedOpSnippet:R7,supportsComplex:!0,cpuKernelImpl:CW}),$G={kernelName:ni,backendName:"webgl",kernelFunc:M7};function F7(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=_.parseAxisParam([s],a.shape),o=E7({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=E.expandShapeToKeepDim(o.shape,i),c=fe({inputs:{x:o},backend:n,attrs:{shape:l}}),u=M7({inputs:{a,b:c},backend:n}),h=k7({inputs:{x:u},backend:n}),d=Sp({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=fe({inputs:{x:d},backend:n,attrs:{shape:l}}),f=C7({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}var DG={kernelName:ei,backendName:"webgl",kernelFunc:F7};function OG(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:F7({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),c=l.shape[0],u=l.shape[1],h=new CG(c,u,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var zG={kernelName:ad,backendName:"webgl",kernelFunc:OG},$7="return -x;";function PG(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=vW(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Wl(r.shape,$7):a=new Ga(r.shape,$7),n.runWebGLProgram(a,[r],r.dtype)}var LG={kernelName:Wo,backendName:"webgl",kernelFunc:PG},WG=Hr.nonMaxSuppressionV3Impl;function BG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,c=n.readSync(a.dataId),u=n.readSync(s.dataId),{selectedIndices:h}=WG(c,u,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var VG={kernelName:Vo,backendName:"webgl",kernelFunc:BG},jG=Hr.nonMaxSuppressionV4Impl;function UG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=jG(u,h,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var HG={kernelName:jo,backendName:"webgl",kernelFunc:UG},GG=Hr.nonMaxSuppressionV5Impl;function qG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,f=l,m=c,{selectedIndices:A,selectedScores:y}=GG(u,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var XG={kernelName:Uo,backendName:"webgl",kernelFunc:qG},KG=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` +`,I7=nn({opSnippet:_G,packedOpSnippet:vG,checkOutOfBounds:!0}),kG={kernelName:ks,backendName:"webgl",kernelFunc:I7},S7="return a - b;",N7=nn({opSnippet:S7,packedOpSnippet:S7,supportsComplex:!0,cpuKernelImpl:wW}),IG={kernelName:ri,backendName:"webgl",kernelFunc:N7};function T7(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=_.parseAxisParam([s],a.shape),o=k7({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=E.expandShapeToKeepDim(o.shape,i),c=fe({inputs:{x:o},backend:n,attrs:{shape:l}}),u=N7({inputs:{a,b:c},backend:n}),h=x7({inputs:{x:u},backend:n}),d=Ip({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=fe({inputs:{x:d},backend:n,attrs:{shape:l}}),m=I7({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}var SG={kernelName:ti,backendName:"webgl",kernelFunc:T7};function NG(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:T7({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),c=l.shape[0],u=l.shape[1],h=new wG(c,u,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var TG={kernelName:rd,backendName:"webgl",kernelFunc:NG},E7="return -x;";function EG(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=fW(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Wl(r.shape,E7):a=new qa(r.shape,E7),n.runWebGLProgram(a,[r],r.dtype)}var CG={kernelName:Wo,backendName:"webgl",kernelFunc:EG},RG=Gr.nonMaxSuppressionV3Impl;function MG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,c=n.readSync(a.dataId),u=n.readSync(s.dataId),{selectedIndices:h}=RG(c,u,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var FG={kernelName:Vo,backendName:"webgl",kernelFunc:MG},$G=Gr.nonMaxSuppressionV4Impl;function DG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=$G(u,h,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var OG={kernelName:jo,backendName:"webgl",kernelFunc:DG},zG=Gr.nonMaxSuppressionV5Impl;function PG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,m=l,f=c,{selectedIndices:A,selectedScores:y}=zG(u,h,d,p,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var LG={kernelName:Uo,backendName:"webgl",kernelFunc:PG},WG=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int index = round(getIndices(coords.x)); setOutput(mix(float(${r}), float(${n}), float(index == coords.y))); } - `}},ZG=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=_.sizeFromShape(a.shape),c=new KG(l,s,i,o),u=fe({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(c,[u],a.dtype);n.disposeIntermediateTensorInfo(u);let d=[...a.shape,s],p=fe({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},YG={kernelName:Ws,backendName:"webgl",kernelFunc:ZG};function Rp(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=Sc({inputs:{input:r},backend:n}),s=Rp({inputs:{x:a},backend:n}),i=Cp({inputs:{input:r},backend:n}),o=Rp({inputs:{x:i},backend:n}),l=qa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return DA({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var JG={kernelName:ol,backendName:"webgl",kernelFunc:Rp};function D7(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=Sc({inputs:{input:r},backend:n}),s=D7({inputs:{x:a},backend:n}),i=Cp({inputs:{input:r},backend:n}),o=Rp({inputs:{x:i},backend:n}),l=qa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return DA({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var QG={kernelName:Ho,backendName:"webgl",kernelFunc:D7};function eq(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return $A({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=$A({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=f7({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var tq={kernelName:Go,backendName:"webgl",kernelFunc:eq},nq=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let r=e.length,a=lt(r),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=` + `}},BG=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=_.sizeFromShape(a.shape),c=new WG(l,s,i,o),u=fe({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(c,[u],a.dtype);n.disposeIntermediateTensorInfo(u);let d=[...a.shape,s],p=fe({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},VG={kernelName:Bs,backendName:"webgl",kernelFunc:BG};function Cp(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=kc({inputs:{input:r},backend:n}),s=Cp({inputs:{x:a},backend:n}),i=Ep({inputs:{input:r},backend:n}),o=Cp({inputs:{x:i},backend:n}),l=Xa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return FA({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var jG={kernelName:ol,backendName:"webgl",kernelFunc:Cp};function C7(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=kc({inputs:{input:r},backend:n}),s=C7({inputs:{x:a},backend:n}),i=Ep({inputs:{input:r},backend:n}),o=Cp({inputs:{x:i},backend:n}),l=Xa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return FA({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var UG={kernelName:Ho,backendName:"webgl",kernelFunc:C7};function HG(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return MA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=MA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=u7({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var GG={kernelName:Go,backendName:"webgl",kernelFunc:HG},qG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let r=e.length,a=lt(r),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=` int start = ${s}; int end = ${i}; uniform float value; @@ -3444,19 +3444,19 @@ return a / b;`,MG=` setOutput(getX(${o})); } } - `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},rq=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,a=lt(r),s=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=pn("rc",r),l=pn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1; + `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},XG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let r=e.length,a=lt(r),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=pn("rc",r),l=pn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1; if(${c}) { `,r===1?"":`} rc = outputLoc; ${o[r-2]} += 1; if(${o[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${o[r-1]} += 1; - if(${c}) {`],d=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let f=0,m=r===1?2:4;f= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let m=0,f=r===1?2:4;m{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},O7=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new rq(a.shape,s,i):new nq(a.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[a],a.dtype,l)},aq={kernelName:Bs,backendName:"webgl",kernelFunc:O7},sq=` + `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},R7=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new XG(a.shape,s,i):new qG(a.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[a],a.dtype,l)},KG={kernelName:Vs,backendName:"webgl",kernelFunc:R7},ZG=` if(a < 0.0 && floor(b) < b){ return NAN; } @@ -3478,7 +3478,7 @@ return a / b;`,MG=` } return (round(mod(b, 2.0)) != 1) ? pow(abs(a), b) : sign(a) * pow(abs(a), b); -`,iq=` +`,YG=` // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise. vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1))); vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); @@ -3492,11 +3492,11 @@ return a / b;`,MG=` result.a = isExpZero.a ? 1.0 : result.a; vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b)); - `+vp+` + `+_p+` return result; -`,oq=nn({opSnippet:sq,packedOpSnippet:iq}),lq={kernelName:Vs,backendName:"webgl",kernelFunc:oq};function uq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],c=_.parseAxisParam(s,a.shape),u=c,h=E.getAxesPermutation(u,o),d=a;h!=null&&(d=fn({inputs:{x:a},backend:n,attrs:{perm:h}}),u=E.getInnerMostAxes(u.length,o),l.push(d)),E.assertAxesAreInnerMostDims("prod",u,o);let p;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:A,outDtype:y}=kW(d.shape,d.dtype,f,u);p=n.makeTensorInfo(A,y,m)}else{let[f,m]=E.computeOutAndReduceShapes(d.shape,u),A=_.sizeFromShape(m),y=fe({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=yd(a.dtype),x=Fi(y,g,"prod",n);p=fe({inputs:{x},backend:n,attrs:{shape:f}}),l.push(y),l.push(x)}if(i){l.push(p);let f=E.expandShapeToKeepDim(p.shape,c);p=fe({inputs:{x:p},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var cq={kernelName:qo,backendName:"webgl",kernelFunc:uq},z7=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=IW(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},hq={kernelName:$u,backendName:"webgl",kernelFunc:z7},dq="return 1.0 / x;",pq=Xe({opSnippet:dq}),fq={kernelName:Xo,backendName:"webgl",kernelFunc:pq},mq=Sr+` +`,JG=nn({opSnippet:ZG,packedOpSnippet:YG}),QG={kernelName:js,backendName:"webgl",kernelFunc:JG};function eq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],c=_.parseAxisParam(s,a.shape),u=c,h=E.getAxesPermutation(u,o),d=a;h!=null&&(d=fn({inputs:{x:a},backend:n,attrs:{perm:h}}),u=E.getInnerMostAxes(u.length,o),l.push(d)),E.assertAxesAreInnerMostDims("prod",u,o);let p;if(n.shouldExecuteOnCPU([d])){let m=n.texData.get(d.dataId).values,{outVals:f,outShape:A,outDtype:y}=mW(d.shape,d.dtype,m,u);p=n.makeTensorInfo(A,y,f)}else{let[m,f]=E.computeOutAndReduceShapes(d.shape,u),A=_.sizeFromShape(f),y=fe({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=Ad(a.dtype),x=$i(y,g,"prod",n);p=fe({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(p);let m=E.expandShapeToKeepDim(p.shape,c);p=fe({inputs:{x:p},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),p}var tq={kernelName:qo,backendName:"webgl",kernelFunc:eq},M7=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=AW(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},nq={kernelName:Mu,backendName:"webgl",kernelFunc:M7},rq="return 1.0 / x;",aq=Xe({opSnippet:rq}),sq={kernelName:Xo,backendName:"webgl",kernelFunc:aq},iq=Nr+` return (x < 0.0) ? 0.0 : x; -`,Aq=` +`,oq=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -3506,9 +3506,9 @@ return a / b;`,MG=` result.a = isNaN.a ? x.a : result.a; return result; -`,yq=Xe({opSnippet:mq,packedOpSnippet:Aq}),gq={kernelName:Us,backendName:"webgl",kernelFunc:yq},xq=Sr+` +`,lq=Xe({opSnippet:iq,packedOpSnippet:oq}),uq={kernelName:Hs,backendName:"webgl",kernelFunc:lq},cq=Nr+` return (x < 0.0) ? 0.0 : min(6.0, x); -`,wq=` +`,hq=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -3518,7 +3518,7 @@ return a / b;`,MG=` result.a = isNaN.a ? x.a : result.a; return result; -`,bq=Xe({opSnippet:xq,packedOpSnippet:wq}),_q={kernelName:Gs,backendName:"webgl",kernelFunc:bq},vq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` +`,dq=Xe({opSnippet:cq,packedOpSnippet:hq}),pq={kernelName:qs,backendName:"webgl",kernelFunc:dq},fq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${c[0]/u[0]}, ${c[1]/u[1]}); @@ -3551,7 +3551,7 @@ return a / b;`,MG=` setOutput(newValue); } - `}},kq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` + `}},mq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${c[0]/u[0]}, ${c[1]/u[1]}, @@ -3628,7 +3628,7 @@ return a / b;`,MG=` setOutput(newValue); } - `}};function Iq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new kq(a.shape,l,c,s,i):new vq(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],"float32")}var Sq={kernelName:Hs,backendName:"webgl",kernelFunc:Iq},Nq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=` + `}};function Aq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new mq(a.shape,l,c,s,i):new fq(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],"float32")}var yq={kernelName:Gs,backendName:"webgl",kernelFunc:Aq},gq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,m=Math.ceil(d)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3645,7 +3645,7 @@ return a / b;`,MG=` const float invWidthScale = float(${d}); const int winHeight = int(${p}); - const int winWidth = int(${f}); + const int winWidth = int(${m}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); @@ -3709,7 +3709,7 @@ return a / b;`,MG=` setOutput(accumulator); } - `}};function Tq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new Nq(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Eq={kernelName:od,backendName:"webgl",kernelFunc:Tq},Cq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` + `}};function xq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new gq(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var bq={kernelName:id,backendName:"webgl",kernelFunc:xq},wq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${c[0]/u[0]}, ${c[1]/u[1]}); @@ -3731,7 +3731,7 @@ return a / b;`,MG=` setOutput(newValue); } - `}};function Rq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=new Cq(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],a.dtype)}var Mq={kernelName:Du,backendName:"webgl",kernelFunc:Rq},Fq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=` + `}};function _q(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=new wq(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],a.dtype)}var vq={kernelName:Fu,backendName:"webgl",kernelFunc:_q},kq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,m=Math.ceil(d)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3748,7 +3748,7 @@ return a / b;`,MG=` const float invWidthScale = float(${d}); const int winHeight = int(${p}); - const int winWidth = int(${f}); + const int winWidth = int(${m}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); @@ -3801,7 +3801,7 @@ return a / b;`,MG=` setOutput(accumulator); } - `}};function $q(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new Fq(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Dq={kernelName:id,backendName:"webgl",kernelFunc:$q},Oq=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` + `}};function Iq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new kq(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Sq={kernelName:sd,backendName:"webgl",kernelFunc:Iq},Nq=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` void main() { int coord = getOutputCoords(); setOutput(getX(${e[0]} - coord - 1)); @@ -3811,7 +3811,7 @@ return a / b;`,MG=` ${s} coords = getOutputCoords(); setOutput(getX(${a})); } - `}},zq=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=pn("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=lt(n);n===1?this.userCode=` + `}},Tq=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=pn("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=lt(n);n===1?this.userCode=` void main(){ int rc = getOutputCoords(); vec4 result = vec4(0.); @@ -3839,7 +3839,7 @@ return a / b;`,MG=` } setOutput(result); } - `;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function c(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function u(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let f=e.map((y,g)=>d(g,p)),m=f.join(","),A=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${A}))`}function d(p,f){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${f[p]} - 1`:`${f[p]}`}}};function Pq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=_.parseAxisParam(s,a.shape);if(i===0)return Vn({inputs:{x:a},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new zq(a.shape,o):new Oq(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var Lq={kernelName:qs,backendName:"webgl",kernelFunc:Pq},Wq=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],r=e[2];this.outputShape=e;let a="";typeof t=="number"?a=`float outputValue = ${t.toFixed(2)};`:a=` + `;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function c(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function u(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let m=e.map((y,g)=>d(g,p)),f=m.join(","),A=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${A}))`}function d(p,m){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${m[p]} - 1`:`${m[p]}`}}};function Eq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=_.parseAxisParam(s,a.shape);if(i===0)return Vn({inputs:{x:a},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Tq(a.shape,o):new Nq(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var Cq={kernelName:Xs,backendName:"webgl",kernelFunc:Eq},Rq=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],r=e[2];this.outputShape=e;let a="";typeof t=="number"?a=`float outputValue = ${t.toFixed(2)};`:a=` vec3 fill = vec3(${t.join(",")}); float outputValue = fill[coords[3]];`,this.userCode=` uniform vec4 params; @@ -3859,7 +3859,7 @@ return a / b;`,MG=` } setOutput(outputValue); } - `}getCustomSetupFunc(e,t,n,r){return(a,s)=>{this.paramsLoc==null&&(this.paramsLoc=a.getUniformLocationNoThrow(s,"params")),a.gl.uniform4f(this.paramsLoc,e,t,n,r)}}},Bq={kernelName:ll,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new Wq(r.shape,s),[c,u]=E.getImageCenter(i,r.shape[1],r.shape[2]),h=l.getCustomSetupFunc(c,u,Math.sin(a),Math.cos(a));return o.runWebGLProgram(l,[r],r.dtype,h)}},Vq=` + `}getCustomSetupFunc(e,t,n,r){return(a,s)=>{this.paramsLoc==null&&(this.paramsLoc=a.getUniformLocationNoThrow(s,"params")),a.gl.uniform4f(this.paramsLoc,e,t,n,r)}}},Mq={kernelName:ll,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new Rq(r.shape,s),[c,u]=E.getImageCenter(i,r.shape[1],r.shape[2]),h=l.getCustomSetupFunc(c,u,Math.sin(a),Math.cos(a));return o.runWebGLProgram(l,[r],r.dtype,h)}},Fq=` // OpenGL ES does not support round function. // The algorithm is based on banker's rounding. float base = floor(x); @@ -3874,7 +3874,7 @@ return a / b;`,MG=` return base + 1.0; } } -`,jq=Xe({opSnippet:Vq}),Uq={kernelName:Xs,backendName:"webgl",kernelFunc:jq},Hq="return inversesqrt(x);",Gq=Xe({opSnippet:Hq,cpuKernelImpl:SW}),qq={kernelName:Ks,backendName:"webgl",kernelFunc:Gq},P7=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=lt(a.length),l=lt(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=` +`,$q=Xe({opSnippet:Fq}),Dq={kernelName:Ks,backendName:"webgl",kernelFunc:$q},Oq="return inversesqrt(x);",zq=Xe({opSnippet:Oq,cpuKernelImpl:yW}),Pq={kernelName:Zs,backendName:"webgl",kernelFunc:zq},F7=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=lt(a.length),l=lt(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=` ${o} strides = ${o}(${a}); void main() { @@ -3894,7 +3894,7 @@ return a / b;`,MG=` } setOutput(mix(getDefaultValue(), sum, float(found))); } - `}};function Xq(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:h}=E.calculateShapes(s,a,i),d=[h/c,c];if(h===0)return n.makeTensorInfo(i,a.dtype);let p=fe({inputs:{x:a},backend:n,attrs:{shape:[l,o]}}),f=fe({inputs:{x:s},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new P7(l,o,p.shape.length,f.shape.length,u,d),y=n.runWebGLProgram(A,[f,p,m],f.dtype),g=fe({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),g}var Kq={kernelName:Zo,backendName:"webgl",kernelFunc:Xq},Zq=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,a;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0); -`,eX=Xe({opSnippet:Qq}),tX={kernelName:Jo,backendName:"webgl",kernelFunc:eX},nX="return 1.0 / (1.0 + exp(-1.0 * x));",rX=Xe({opSnippet:nX}),aX={kernelName:Ys,backendName:"webgl",kernelFunc:rX},sX=` +`,Hq=Xe({opSnippet:Uq}),Gq={kernelName:Jo,backendName:"webgl",kernelFunc:Hq},qq="return 1.0 / (1.0 + exp(-1.0 * x));",Xq=Xe({opSnippet:qq}),Kq={kernelName:Js,backendName:"webgl",kernelFunc:Xq},Zq=` if (isnan(x)) { return 0.0; } return sign(x); -`,iX=Xe({opSnippet:sX}),oX={kernelName:tl,backendName:"webgl",kernelFunc:iX},lX=Q3+` +`,Yq=Xe({opSnippet:Zq}),Jq={kernelName:tl,backendName:"webgl",kernelFunc:Yq},Qq=X3+` return sin(x); -`,uX=Xe({opSnippet:lX}),cX={kernelName:Zs,backendName:"webgl",kernelFunc:uX},hX=` +`,eX=Xe({opSnippet:Qq}),tX={kernelName:Ys,backendName:"webgl",kernelFunc:eX},nX=` float e2x = exp(x); return (e2x - 1.0 / e2x) / 2.0; -`,dX=Xe({opSnippet:hX}),pX={kernelName:el,backendName:"webgl",kernelFunc:dX},fX=` +`,rX=Xe({opSnippet:nX}),aX={kernelName:el,backendName:"webgl",kernelFunc:rX},sX=` float epsilon = 1.1920928955078125e-7; float threshold = log(epsilon) + 2.0; @@ -3938,9 +3938,9 @@ return a / b;`,MG=` result = log(exp_x + 1.0); } return result; -`,mX=Xe({opSnippet:fX}),AX={kernelName:nl,backendName:"webgl",kernelFunc:mX},yX=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;_.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;yn.disposeIntermediateTensorInfo(y)),A},gX={kernelName:Ou,backendName:"webgl",kernelFunc:yX};function xX(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:a,newShape:s}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(a.dataId)),o=n.readSync(r.dataId),l=Array.from(n.readSync(s.dataId)),[c,u,h]=TW(o,r.shape,r.dtype,i,l);return[n.makeTensorInfo(u,r.dtype,c),n.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var wX={kernelName:ld,backendName:"webgl",kernelFunc:xX};function bX(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,strides:u,outputSize:h}=E.calculateShapes(s,a,o),d=!1,p=new P7(c,l,a.shape.length,s.shape.length,u,[h,1],d),f=n.runWebGLProgram(p,[s,a,i],s.dtype),m=fe({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),m}var _X={kernelName:ud,backendName:"webgl",kernelFunc:bX};function vX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=_.parseAxisParam(i,a.shape)[0],l=E.prepareSplitSize(a,s,o),c=a.shape.length,u=new Array(c).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let f=Ic({inputs:{x:a},backend:n,attrs:{begin:u,size:p}});return u[o]+=d,f})}var kX={kernelName:rl,backendName:"webgl",kernelFunc:vX},IX="return sqrt(x);",SX=Xe({opSnippet:IX}),NX={kernelName:Js,backendName:"webgl",kernelFunc:SX},TX="return x * x;",EX=Xe({opSnippet:TX}),CX={kernelName:zu,backendName:"webgl",kernelFunc:EX},L7="return (a - b) * (a - b);",RX=nn({opSnippet:L7,packedOpSnippet:L7}),MX={kernelName:ti,backendName:"webgl",kernelFunc:RX};function FX({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=Sr+` +`,iX=Xe({opSnippet:sX}),oX={kernelName:nl,backendName:"webgl",kernelFunc:iX},lX=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;_.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;yn.disposeIntermediateTensorInfo(y)),A},uX={kernelName:$u,backendName:"webgl",kernelFunc:lX};function cX(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:a,newShape:s}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(a.dataId)),o=n.readSync(r.dataId),l=Array.from(n.readSync(s.dataId)),[c,u,h]=xW(o,r.shape,r.dtype,i,l);return[n.makeTensorInfo(u,r.dtype,c),n.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var hX={kernelName:od,backendName:"webgl",kernelFunc:cX};function dX(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,strides:u,outputSize:h}=E.calculateShapes(s,a,o),d=!1,p=new F7(c,l,a.shape.length,s.shape.length,u,[h,1],d),m=n.runWebGLProgram(p,[s,a,i],s.dtype),f=fe({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var pX={kernelName:ld,backendName:"webgl",kernelFunc:dX};function fX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=_.parseAxisParam(i,a.shape)[0],l=E.prepareSplitSize(a,s,o),c=a.shape.length,u=new Array(c).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let m=vc({inputs:{x:a},backend:n,attrs:{begin:u,size:p}});return u[o]+=d,m})}var mX={kernelName:rl,backendName:"webgl",kernelFunc:fX},AX="return sqrt(x);",yX=Xe({opSnippet:AX}),gX={kernelName:Qs,backendName:"webgl",kernelFunc:yX},xX="return x * x;",bX=Xe({opSnippet:xX}),wX={kernelName:Du,backendName:"webgl",kernelFunc:bX},$7="return (a - b) * (a - b);",_X=nn({opSnippet:$7,packedOpSnippet:$7}),vX={kernelName:ni,backendName:"webgl",kernelFunc:_X};function kX({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=Nr+` return x > 0.0 ? 1.0 : float(${t.alpha}); - `,s=new Ga(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var $X={kernelName:Fa,backendName:"webgl",kernelFunc:FX},DX=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=lt(n.length),s=lt(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=` + `,s=new qa(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var IX={kernelName:$a,backendName:"webgl",kernelFunc:kX},SX=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=lt(n.length),s=lt(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=` ${a} begin = ${a}(${e}); ${a} strides = ${a}(${t}); @@ -3948,15 +3948,15 @@ return a / b;`,MG=` ${s} coords = getOutputCoords(); setOutput(getX(${i})); } - `}};function OX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=un.sliceInfo(a.shape,s,i,o,l,c,u,h,d),x=fe({inputs:{x:a},backend:n,attrs:{shape:y}}),v;if(p){let b=Ic({inputs:{x},backend:n,attrs:{begin:f,size:A}});v=fe({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))v=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let b=n.texData.get(x.dataId).values,k=Be(x.shape,x.dtype,b),N=EW(g,k,m,f);v=n.makeTensorInfo(g,x.dtype,N.values)}else{let b=new DX(f,m,g);v=n.runWebGLProgram(b,[x],x.dtype)}let w=fe({inputs:{x:v},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),w}var zX={kernelName:al,backendName:"webgl",kernelFunc:OX},PX="return tan(x);",LX=Xe({opSnippet:PX}),WX={kernelName:ri,backendName:"webgl",kernelFunc:LX},BX=` + `}};function NX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=un.sliceInfo(a.shape,s,i,o,l,c,u,h,d),x=fe({inputs:{x:a},backend:n,attrs:{shape:y}}),v;if(p){let w=vc({inputs:{x},backend:n,attrs:{begin:m,size:A}});v=fe({inputs:{x:w},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(w)}else if(g.some(w=>w===0))v=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let w=n.texData.get(x.dataId).values,k=Be(x.shape,x.dtype,w),N=bW(g,k,f,m);v=n.makeTensorInfo(g,x.dtype,N.values)}else{let w=new SX(m,f,g);v=n.runWebGLProgram(w,[x],x.dtype)}let b=fe({inputs:{x:v},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),b}var TX={kernelName:al,backendName:"webgl",kernelFunc:NX},EX="return tan(x);",CX=Xe({opSnippet:EX}),RX={kernelName:ai,backendName:"webgl",kernelFunc:CX},MX=` float e2x = exp(-2.0 * abs(x)); return sign(x) * (1.0 - e2x) / (1.0 + e2x); -`,VX=Xe({opSnippet:BX}),jX={kernelName:ai,backendName:"webgl",kernelFunc:VX},HX=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a5){let o=n.readSync(a.dataId).map(u=>_.decodeString(u)),l=Be(a.shape,a.dtype,o),c=RW(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new HX(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var GX={kernelName:Ma,backendName:"webgl",kernelFunc:W7};function qX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,c]=MW(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var XX={kernelName:sl,backendName:"webgl",kernelFunc:qX},KX=class{constructor(e,t,n,r,a,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(r){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=` + `}};function DX(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a5){let o=n.readSync(a.dataId).map(u=>_.decodeString(u)),l=Be(a.shape,a.dtype,o),c=_W(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new OX(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var zX={kernelName:Fa,backendName:"webgl",kernelFunc:D7};function PX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,c]=vW(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var LX={kernelName:sl,backendName:"webgl",kernelFunc:PX},WX=class{constructor(e,t,n,r,a,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(r){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=` float mapCoord(float outCoord, float len) { float inCoord = outCoord; if(${o} == 2) { @@ -4068,7 +4068,7 @@ return a / b;`,MG=` } setOutput(outputValue); } - `}};function ZX(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=r,[u,h,d,p]=a.shape,[f,m]=c!=null?c:[h,d],A=[u,f,m,p],y=new KX(h,d,i,o,l,A);return n.runWebGLProgram(y,[a,s],"float32")}var YX={kernelName:cd,backendName:"webgl",kernelFunc:ZX};function JX(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;$l(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=FW(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var QX={kernelName:hd,backendName:"webgl",kernelFunc:JX};function eK(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],c=new Array(o-1),u=0;for(let m=0;mn.disposeIntermediateTensorInfo(m)),f}var tK={kernelName:il,backendName:"webgl",kernelFunc:eK},nK=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,h=` + `}};function BX(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=r,[u,h,d,p]=a.shape,[m,f]=c!=null?c:[h,d],A=[u,m,f,p],y=new WX(h,d,i,o,l,A);return n.runWebGLProgram(y,[a,s],"float32")}var VX={kernelName:ud,backendName:"webgl",kernelFunc:BX};function jX(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;$l(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=kW(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var UX={kernelName:cd,backendName:"webgl",kernelFunc:jX};function HX(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],c=new Array(o-1),u=0;for(let f=0;fn.disposeIntermediateTensorInfo(f)),m}var GX={kernelName:il,backendName:"webgl",kernelFunc:HX},qX=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,h=` sumValue += dot(values, segFilter); `,d="";a%n>0&&(d=` if (inIdx < 0 || inIdx >= ${a}) { @@ -4174,26 +4174,26 @@ return a / b;`,MG=` } setOutput(${l}); } - `}};function rK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],c=0,u=E.getAxesPermutation([c],o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),l.push(h),c=E.getInnerMostAxes(1,o)[0]);let d=E.segment_util.computeOutShape(h.shape,c,i),p=_.sizeFromShape([h.shape[c]]),f=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(f);let m=yd(a.dtype),A=(v,w,b,k,N)=>{let C=v.shape[0],F=v.shape[1],O=E.segment_util.segOpComputeOptimalWindowSize(F,N),L={windowSize:O,inSize:F,batchSize:C,numSegments:N},V=new nK(L,w),j=n.compileAndRun(V,[v,b],k);if(l.push(j),j.shape[1]===N)return j;let U=z7({backend:n,attrs:{start:0,stop:N,step:1,dtype:"float32"}}),X=W7({inputs:{x:U},backend:n,attrs:{reps:[F/O]}});return l.push(U),l.push(X),A(j,w,X,k,N)},y=A(f,"unsortedSegmentSum",s,m,i),g=fe({inputs:{x:y},backend:n,attrs:{shape:d}}),x=g;if(u!=null){l.push(g);let v=E.getUndoAxesPermutation(u);x=fn({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var aK={kernelName:Pu,backendName:"webgl",kernelFunc:rK},sK=[GH,KH,RB,FB,OB,LB,BB,UB,GB,XB,JB,eV,rV,iV,pV,uV,AV,wV,gV,kV,SV,TV,MV,LV,BV,qV,KV,QV,nj,dB,oj,yj,xj,hj,vj,Ij,bj,Tj,Rj,$j,Oj,Pj,Bj,qj,Kj,jj,Jj,tU,rU,oU,hU,mU,gU,xU,wU,_U,kU,SU,TU,CU,$U,PU,WU,VU,HU,KU,QU,rH,hB,sH,sj,lH,hH,fH,fB,gH,_H,kH,RH,TH,DH,PH,VH,YH,sG,rG,uG,hG,pG,tG,mG,yG,bG,IG,EG,zG,xB,LG,VG,HG,XG,jV,YG,QG,tq,aq,lq,AB,cq,hq,UV,FG,fq,_q,gq,bB,Sq,Eq,Mq,Dq,Lq,Bq,Uq,qq,Kq,Jq,tX,aX,oX,cX,pX,zV,DG,AX,gX,wX,_X,kX,NX,CX,MX,$X,zX,$G,TB,WX,jX,GX,XX,YX,EB,QX,tK,aK,JG];for(let e of sK)ui(e);var Mn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Mn||(Mn={}));var Nc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(Nc||(Nc={}));var B7;function iK(e){B7=e.wasm.cwrap(ii,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function oK(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,f=0;if(i!=null){let N=n.dataIdMap.get(i.dataId);if(N.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${N.shape.length}.`);f=N.id}let m=o==null?0:n.dataIdMap.get(o.dataId).id,A=Nc[u];if(A==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=c?s.shape[1]:s.shape[2],x=a.shape[0],v=n.makeOutput([x,y,g],a.dtype),w=n.dataIdMap.get(v.dataId).id,b=new Uint8Array(new Int32Array(a.shape).buffer),k=new Uint8Array(new Int32Array(s.shape).buffer);return B7(d,b,a.shape.length,p,k,s.shape.length,l,c,A,f,m,h||0,w),v}var lK={kernelName:ii,backendName:"wasm",setupFunc:iK,kernelFunc:oK};function mn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return _.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var uK=mn(lo);function An(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,h=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,p=n!=null?n:c.dtype,f=E.assertAndGetBroadcastShape(c.shape,u.shape),m=o.makeOutput(f,p);if(_.sizeFromShape(f)===0)return m;let A=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),g=o.dataIdMap.get(m.dataId).id,x=()=>r(h,A,c.shape.length,d,y,u.shape.length,Mn[c.dtype],g);if(t&&c.dtype==="float32")return x(),m;let v=E.getBroadcastDims(c.shape,f),w=E.getBroadcastDims(u.shape,f),b=v.every((N,C)=>N===C),k=w.every((N,C)=>N===C);if(b&&k)return x(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var cK=!0,hK=An(Ca,cK),V7;function dK(e){V7=e.wasm.cwrap(ds,null,["array","number","number","number"])}function pK(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(_.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return V7(s,a.length,Mn[r.dtype],i),r}var fK={kernelName:ds,backendName:"wasm",setupFunc:dK,kernelFunc:pK};function Mp(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var mK={kernelName:Es,backendName:"wasm",kernelFunc:Mp},j7;function AK(e){j7=e.wasm.cwrap(si,null,["number","array","number","number","number","array","number"])}function Fp(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=gK(t.x.shape,r.perm),i=!0;for(let f=0;f=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var xK={kernelName:si,backendName:"wasm",kernelFunc:Fp,setupFunc:AK};function Xa(e,t,n){let r=e.shape,a=e.shape.length,s=_.parseAxisParam(t,r),i=s,o=E.getAxesPermutation(i,a),l=null,c=!1;if(o!=null){let u=new Array(a);for(let d=0;d`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:i,dtype:r.dtype}}var MK={kernelName:Ko,backendName:"wasm",kernelFunc:Nr},X7;function FK(e){X7=e.wasm.cwrap(ms,null,["number","array","number","number","array","number","number","number","number"])}function $K(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=_.sizeFromShape(f),y=_.sizeFromShape(m),g=A===y||A===1||y===1;_.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let x=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);_.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[A,u,d]:[A,d,u],w=o?[y,p,h]:[y,h,p],b=Nr({inputs:{x:a},backend:n,attrs:{shape:v}}),k=Nr({inputs:{x:s},backend:n,attrs:{shape:w}}),N=n.dataIdMap.get(b.dataId).id,C=n.dataIdMap.get(k.dataId).id,F=i?b.shape[2]:b.shape[1],O=o?k.shape[1]:k.shape[2],L=Math.max(A,y),V=n.makeOutput([L,F,O],b.dtype),j=n.dataIdMap.get(V.dataId).id,U=new Uint8Array(new Int32Array(b.shape).buffer),X=new Uint8Array(new Int32Array(k.shape).buffer);return X7(N,U,b.shape.length,C,X,k.shape.length,i,o,j),n.disposeData(b.dataId),n.disposeData(k.dataId),V.shape=x,V}var DK={kernelName:ms,backendName:"wasm",setupFunc:FK,kernelFunc:$K};function $p(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var OK={kernelName:As,backendName:"wasm",kernelFunc:$p},zK=mn(ys),K7;function PK(e){K7=e.wasm.cwrap(Ra,null,["number","number","number","number"])}function LK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(l.dataId).id;return K7(o,s,i,c),l}var WK={kernelName:Ra,backendName:"wasm",setupFunc:PK,kernelFunc:LK};function Z7(e){let{inputs:t,backend:n}=e,r=_.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=E.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>_.sizeFromShape(p.shape)>0);if(s.length===1)return Mp({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(_.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(E.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(x=>{let v=_.sizeFromShape(x.shape.slice(r));return Nr({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),f=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));a=E.computeOutShape(p.map(x=>x.shape),1);let m=p[0].shape[0]===1,A=aA(f,a,t[0].dtype,m),y=E.computeOutShape(s.map(x=>x.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=E.fromStringArrayToUint8(A),p.forEach(x=>n.disposeData(x.dataId)),i}let l=_.sizeFromShape(s[0].shape.slice(0,r)),c=0,u=s.map(p=>{let f=_.sizeFromShape(p.shape.slice(r));return c+=f,f}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p`cumsum does not support ${a.dtype} tensors in the WASM backend`);let c=E.getAxesPermutation([s],l),u=a;c!==null&&(u=Fp({inputs:{x:a},attrs:{perm:c},backend:n}));let h=E.getInnerMostAxes(1,l)[0];E.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(u.shape,u.dtype),p=u.shape[h],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(d.dataId).id;ev(f,i?1:0,o?1:0,p,m,Mn[a.dtype]);let A=d;if(c!==null){let y=E.getUndoAxesPermutation(c);A=Fp({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return A}var eZ={kernelName:bs,backendName:"wasm",setupFunc:JK,kernelFunc:QK},tv;function tZ(e){tv=e.wasm.cwrap(_o,null,["number","number","number","array","number","array","array","number","number"])}function nZ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(_.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(f).buffer),x=new Uint8Array(new Int32Array(_.computeStrides(f)).buffer),v=t.dataIdMap.get(m.dataId).id;return tv(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,x,f.length,v),m}var rZ={kernelName:_o,backendName:"wasm",setupFunc:tZ,kernelFunc:nZ},nv;function aZ(e){nv=e.wasm.cwrap(_s,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function sZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:h}=n,d=c==null?[1,1]:c,p=E.computeConv2DInfo(a.shape,s.shape,l,d,u,h,!0),f=p.filterHeight,m=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,x=p.padInfo.left,v=p.dilationHeight,w=p.dilationWidth,b=p.strideHeight,k=p.strideWidth,N=p.inChannels,C=p.outChannels,F=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let O=r.makeOutput(p.outShape,"float32"),L=r.dataIdMap.get(O.dataId).id;return nv(i,a.shape[0],a.shape[1],a.shape[2],o,f,m,A,y,g,x,F,v,w,b,k,N,C,L),O}var iZ={kernelName:_s,backendName:"wasm",setupFunc:aZ,kernelFunc:sZ},oZ=!1,lZ=An(Io,oZ,"bool"),uZ=mn(ks);function zA(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(_.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Nr({inputs:{x:a},backend:r,attrs:{shape:o}})}var cZ={kernelName:So,backendName:"wasm",kernelFunc:zA};function hZ(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var dZ={kernelName:Eu,backendName:"wasm",kernelFunc:hZ},rv;function pZ(e){rv=e.wasm.cwrap(To,null,["number","number","number","number","number","number"])}function fZ(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,c,u]=r.shape;return rv(s,o,l,c,u,i),a}var mZ={kernelName:To,backendName:"wasm",kernelFunc:fZ,setupFunc:pZ},AZ=mn(Is),yZ=!1,gZ=An(Ss,yZ),av;function xZ(e){av=e.wasm.cwrap(Ns,null,["number","number","number","number","number","number","number"])}function wZ(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(s.shape,s.dtype);if(_.sizeFromShape(s.shape)===0)return m;let A=t.dataIdMap.get(m.dataId).id;return av(u,h,d,p,f,a,A),m}var bZ={kernelName:Ns,backendName:"wasm",setupFunc:xZ,kernelFunc:wZ},sv;function _Z(e){sv=e.wasm.cwrap(oi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function vZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(a.shape,s.shape,l,u,c,d),A=Nc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,x=m.outChannels,v=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);v=Q.id}let w=m.filterHeight,b=m.filterWidth,k=m.padInfo.top,N=m.padInfo.right,C=m.padInfo.bottom,F=m.padInfo.left,O=m.dilationHeight,L=m.dilationWidth,V=m.strideHeight,j=m.strideWidth,U=m.inChannels,X=m.padInfo.type==="SAME"?1:0,G=m.batchSize,ee=m.inHeight,Y=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(m.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return sv(y,G,ee,Y,g,w,b,v,k,N,C,F,X,O,L,V,j,U,x,A,ie,f||0,te),ae}var kZ={kernelName:oi,backendName:"wasm",setupFunc:_Z,kernelFunc:vZ},iv;function IZ(e){iv=e.wasm.cwrap(li,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function SZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(a.shape,s.shape,l,u,c,d,!0),A=Nc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,x=m.outChannels,v=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);v=Q.id}let w=m.filterHeight,b=m.filterWidth,k=m.padInfo.top,N=m.padInfo.right,C=m.padInfo.bottom,F=m.padInfo.left,O=m.dilationHeight,L=m.dilationWidth,V=m.strideHeight,j=m.strideWidth,U=m.inChannels,X=m.padInfo.type==="SAME"?1:0,G=m.batchSize,ee=m.inHeight,Y=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(m.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return iv(y,G,ee,Y,g,w,b,v,k,N,C,F,X,O,L,V,j,U,x,A,ie,f||0,te),ae}var NZ={kernelName:li,backendName:"wasm",setupFunc:IZ,kernelFunc:SZ},ov;function TZ(e){ov=e.wasm.cwrap(Co,null,["number","number","number","number","number","number","array","number"])}function EZ(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=tm.prepareAndValidate(r,a),c=t.makeOutput(s,r.dtype);if(i===0)return c;let u=a.shape,h=u[u.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,f=new Uint8Array(new Int32Array(l).buffer),m=t.dataIdMap.get(c.dataId).id;return ov(d,Mn[r.dtype],p,i,h,o,f,m),c}var CZ={kernelName:Co,backendName:"wasm",setupFunc:TZ,kernelFunc:EZ},lv;function RZ(e){lv=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function MZ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=_.parseAxisParam(i,a.shape)[0],c=E.segment_util.collectGatherOpShapeInfo(a,s,l,o),u=Nr({inputs:{x:a},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),h=_.sizeFromShape(s.shape),d=Nr({inputs:{x:s},attrs:{shape:[c.batchSize,h/c.batchSize]},backend:t}),p=[c.batchSize,c.outerSize,h/c.batchSize,c.sliceSize],f=t.makeOutput(p,a.dtype);if(_.sizeFromShape(a.shape)===0)return f;let m=u.shape.length-1,A=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(f.dataId).id,x=new Uint8Array(new Int32Array(_.computeStrides(u.shape)).buffer),v=new Uint8Array(new Int32Array(_.computeStrides(p)).buffer);return lv(A,Mn[a.dtype],x,m,y,c.batchSize,v,g),t.disposeData(u.dataId),t.disposeData(d.dataId),f.shape=c.outputShape,f}var FZ={kernelName:Eo,backendName:"wasm",setupFunc:RZ,kernelFunc:MZ},$Z=!1,DZ=An(Ro,$Z,"bool"),OZ=!1,zZ=An(Ts,OZ,"bool"),uv;function PZ(e){uv=e.wasm.cwrap(Cs,null,["number","number","number"])}function LZ(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(_.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;uv(a,n,i)}return s}var WZ={kernelName:Cs,backendName:"wasm",setupFunc:PZ,kernelFunc:LZ},BZ=!1,VZ=An(Do,BZ,"bool"),jZ=!1,UZ=An(Oo,jZ,"bool"),HZ=mn(Rs),GZ=!1,qZ=An(Po,GZ,"bool"),cv;function XZ(e){cv=e.wasm.cwrap(Ms,null,["number, number, number"])}function KZ(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:h,inputWasTransposed:d}=Xa(i,a,t);if(d){let g=t.dataIdMap.get(c.dataId).id;l=c,o=g}let p=l.shape.length;E.assertAxesAreInnerMostDims("max",u,p);let[f,m]=E.computeOutAndReduceShapes(l.shape,u),A=_.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(_.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;cv(o,A,g)}if(d&&t.disposeData(c.dataId),s){let g=E.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var ZZ={kernelName:Ms,backendName:"wasm",setupFunc:XZ,kernelFunc:KZ},YZ=!1,JZ=An(Fs,YZ),hv;function QZ(e){hv=e.wasm.cwrap($s,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function eY(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(a.shape,i,o,1,l,c),h=u.filterHeight,d=u.filterWidth,p=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,A=u.padInfo.left,y=u.dilationHeight,g=u.dilationWidth,x=u.strideHeight,v=u.strideWidth,w=u.inChannels,b=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let k=r.makeOutput(u.outShape,"float32"),N=r.dataIdMap.get(k.dataId).id;return hv(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,y,g,x,v,w,b,N),k}var tY={kernelName:$s,backendName:"wasm",setupFunc:QZ,kernelFunc:eY},dv;function nY(e){dv=e.wasm.cwrap(Ds,null,["number, number, number"])}function rY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Xa(i,a,t),f=h;if(p){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,A]=E.computeOutAndReduceShapes(c.shape,f),y=_.sizeFromShape(A),g=c;c.dtype!=="float32"&&(g=$p({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let x=t.makeOutput(m,"float32");if(_.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;dv(l,y,v)}if(p&&t.disposeData(u.dataId),s){let v=E.expandShapeToKeepDim(x.shape,d);x.shape=v}return c.dtype!=="float32"&&t.disposeData(g.dataId),x}var aY={kernelName:Ds,backendName:"wasm",setupFunc:nY,kernelFunc:rY},pv;function sY(e){pv=e.wasm.cwrap(Os,null,["number, number, number"])}function iY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Xa(i,a,t);if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x)}let f=c.shape.length;E.assertAxesAreInnerMostDims("min",h,f);let[m,A]=E.computeOutAndReduceShapes(c.shape,h),y=_.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;pv(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var oY={kernelName:Os,backendName:"wasm",setupFunc:sY,kernelFunc:iY},lY=!1,uY=An(zs,lY),PA;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(PA||(PA={}));var fv;function cY(e){fv=e.wasm.cwrap(Ps,null,["number","array","number","number","array","array","number","number"])}function hY(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,mode:a}}=e,s=r.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(f=>f[0]),h=r.map(f=>f[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return fv(i,c,t.shape.length,Mn[t.dtype],d,p,PA[a],l),o}var dY={kernelName:Ps,backendName:"wasm",kernelFunc:hY,setupFunc:cY},pY=!0,fY=An(Ls,pY),mY=mn(Wo);function LA(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var mv;function AY(e){mv=e.wasm.cwrap(Vo,"number",["number","number","number","number","number"])}function yY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,h=mv(c,u,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:f,pValidOutputs:m}=LA(t,h);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([p],"int32",d)}var gY={kernelName:Vo,backendName:"wasm",setupFunc:AY,kernelFunc:yY},Av;function xY(e){Av=e.wasm.cwrap(jo,"number",["number","number","number","number","number","bool"])}function wY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=Av(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=LA(t,d);t.wasm._free(m);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var bY={kernelName:jo,backendName:"wasm",setupFunc:xY,kernelFunc:wY},yv;function _Y(e){yv=e.wasm.cwrap(Uo,"number",["number","number","number","number","number","number"])}function vY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=yv(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=LA(t,d);t.wasm._free(A);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([f],"float32",m);return[y,g]}var kY={kernelName:Uo,backendName:"wasm",setupFunc:_Y,kernelFunc:vY},IY=!1,SY=An(Bo,IY,"bool"),gv;function NY(e){gv=e.wasm.cwrap(Ws,null,["number","number","number","number","number"])}function TY(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(a.dataId).id;return gv(u,s,i,o,c),l}var EY={kernelName:Ws,backendName:"wasm",setupFunc:NY,kernelFunc:TY};function CY(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var RY={kernelName:Ho,backendName:"wasm",kernelFunc:CY};function MY(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return zA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=zA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=Z7({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeData(u.dataId)),c}var FY={kernelName:Go,backendName:"wasm",kernelFunc:MY},xv;function $Y(e){xv=e.wasm.cwrap(Bs,null,["number","array","number","number","array","array","number","number"])}function DY(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(f=>f[0]),h=r.map(f=>f[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return xv(i,c,t.shape.length,Mn[t.dtype],d,p,a,l),o}var OY={kernelName:Bs,backendName:"wasm",kernelFunc:DY,setupFunc:$Y},zY=!1,PY=An(Vs,zY),wv;function LY(e){wv=e.wasm.cwrap(js,null,["number","number","number"])}function WY(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return wv(s,i,l),o}var BY={kernelName:js,backendName:"wasm",setupFunc:LY,kernelFunc:WY},bv;function VY(e){bv=e.wasm.cwrap(qo,null,["number","number","number","number"])}function jY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Xa(i,a,t),f=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,A]=E.computeOutAndReduceShapes(c.shape,f),y=_.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;bv(l,y,Mn[g.dtype],x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var UY={kernelName:qo,backendName:"wasm",setupFunc:VY,kernelFunc:jY},HY=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=oA(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},GY={kernelName:$u,backendName:"wasm",kernelFunc:HY},qY=!0,XY=An(vs,qY),KY=mn(Us),ZY=mn(Gs),_v;function YY(e){_v=e.wasm.cwrap(Hs,null,["number","number","number","number","number","number","number","number","number","number"])}function JY(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,[u,h,d,p]=a.shape,f=[u,l,c,p],m=t.dataIdMap.get(a.dataId),A;m.dtype!=="float32"&&(A=$p({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(A.dataId));let y=m.id,g=t.makeOutput(f,"float32");if(_.sizeFromShape(a.shape)===0)return g;let x=t.dataIdMap.get(g.dataId).id;return _v(y,u,h,d,p,l,c,s?1:0,i?1:0,x),A!=null&&t.disposeData(A.dataId),g}var QY={kernelName:Hs,backendName:"wasm",setupFunc:YY,kernelFunc:JY},vv;function eJ(e){vv=e.wasm.cwrap(qs,null,["number","array","number","array","number","number"])}function tJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=_.parseAxisParam(s,a.shape);if(a.shape.length===0)return Mp({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);vv(l,u,i.length,h,a.shape.length,c);let d=Nr({inputs:{x:o},attrs:{shape:a.shape},backend:n});return n.disposeData(o.dataId),d}var nJ={kernelName:qs,backendName:"wasm",kernelFunc:tJ,setupFunc:eJ},kv;function rJ(e){kv=e.wasm.cwrap(ll,null,["number","number","number","number","number","number","number","number","array","number","number"])}function aJ(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(l.dataId).id,[h,d,p,f]=a.shape,[m,A]=E.getImageCenter(o,d,p),y=i===0,g=255,x=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],v=new Uint8Array(new Int32Array(x).buffer);return kv(c,h,d,p,f,s,m,A,v,x.length,u),l}var sJ={kernelName:ll,backendName:"wasm",kernelFunc:aJ,setupFunc:rJ},iJ=mn(Xs),oJ=mn(Ks),Iv;function lJ(e){Iv=e.wasm.cwrap(Zo,null,["number","number","number","number","number","number","array","number","number"])}function uJ(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(_.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=nm.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,f=t.dataIdMap.get(s.dataId).id,m=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return Iv(p,f,Mn[s.dtype],l,c,u,m,d,A),o}var cJ={kernelName:Zo,backendName:"wasm",setupFunc:lJ,kernelFunc:uJ},Sv;function hJ(e){Sv=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function dJ(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(c.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:_.sizeFromShape(a.shape.slice(1));return Sv(i,o,l,p,u),c}var pJ={kernelName:Yo,backendName:"wasm",kernelFunc:dJ,setupFunc:hJ},Nv;function fJ(e){Nv=e.wasm.cwrap(Ys,null,["number","number"])}function mJ(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return _.sizeFromShape(a.shape)===0||Nv(r,s),a}var AJ={kernelName:"Sigmoid",backendName:"wasm",setupFunc:fJ,kernelFunc:mJ},yJ=mn(Zs);function Dp(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=un.parseSliceParams(t,n,r),o=un.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),c=a.makeOutput(i,t.dtype),u=_.computeStrides(t.shape),h=a.dataIdMap.get(c.dataId);if(o){let f=un.computeFlatOffset(s,u);return t.dtype==="string"?h.stringBytes=l.slice(f,f+_.sizeFromShape(i)):a.typedArrayFromHeap(c).set(l.subarray(f,f+_.sizeFromShape(i))),c}if(t.dtype==="string"){let f=up(l,s,i,t.shape,t.dtype);return h.stringBytes=f,c}let d=a.typedArrayFromHeap(c),p=t.shape.length;if(p===2)gJ(l,u[0],d,s,i);else if(p===3)xJ(l,u[0],u[1],d,s,i);else if(p===4)wJ(l,u[0],u[1],u[2],d,s,i);else{let f=up(l,s,i,t.shape,t.dtype);d.set(f)}return c}function gJ(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let c=i;c{let d=[...u];d[o]=h;let p=Dp({inputs:{x:a},attrs:{begin:c,size:d},backend:r});return c[o]+=h,p})}var SJ={kernelName:rl,backendName:"wasm",kernelFunc:IJ},NJ=mn(Js),TJ=mn(zu),EJ=!0,CJ=An(ti,EJ),Ev;function RJ(e){Ev=e.wasm.cwrap(Fa,null,["number","number","number"])}function MJ(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return Ev(i,a,l),o}var FJ={kernelName:Fa,backendName:"wasm",setupFunc:RJ,kernelFunc:MJ},Cv;function $J(e){Cv=e.wasm.cwrap(al,null,["number","array","number","array","array","array","array","array","number","number"])}function DJ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,p=E.slice_util.maskToAxes(u);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=a.shape.length-s.length,m=E.slice_util.maskToAxes(h),A=a.shape.slice();m.forEach(F=>{s[F]=0,i[F]=1,A.splice(F,0,1)});let y=Nr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:x,strides:v}=E.slice_util.getNormalizedAxes(y.shape,p,f,s,i,o,l,c,u);s=g,i=x,o=v;let w=E.slice_util.maskToAxes(d);w.forEach(F=>{i[F]=s[F]+1,o[F]=1});let b=E.slice_util.computeOutShape(s,i,o),k=b.filter((F,O)=>w.indexOf(O)===-1);if(o.every(F=>F===1)){let F=Dp({inputs:{x:y},attrs:{begin:s,size:b},backend:t});t.disposeData(y.dataId);let O=Nr({inputs:{x:F},attrs:{shape:k},backend:t});return t.disposeData(F.dataId),O}let N=t.makeOutput(k,"float32");if(!k.some(F=>F===0)){let F=t.dataIdMap.get(y.dataId).id,O=new Uint8Array(new Int32Array(_.computeStrides(y.shape)).buffer),L=new Uint8Array(new Int32Array(s).buffer),V=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(o).buffer),U=new Uint8Array(new Int32Array(k).buffer),X=new Uint8Array(new Int32Array(_.computeStrides(k)).buffer),G=t.dataIdMap.get(N.dataId).id;Cv(F,O,y.shape.length,L,V,j,U,X,k.length,G)}t.disposeData(y.dataId);let C=Nr({inputs:{x:N},attrs:{shape:k},backend:t});return t.disposeData(N.dataId),C}var OJ={kernelName:al,backendName:"wasm",setupFunc:$J,kernelFunc:DJ},zJ=!0,PJ=An(ni,zJ),Rv;function LJ(e){Rv=e.wasm.cwrap(Qs,null,["number, number, number"])}function WJ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Xa(i,a,t),f=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,A]=E.computeOutAndReduceShapes(c.shape,f),y=_.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;Rv(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var BJ={kernelName:Qs,backendName:"wasm",setupFunc:LJ,kernelFunc:WJ},VJ=mn(ri),jJ=mn(ai),Mv;function UJ(e){Mv=e.wasm.cwrap(Ma,null,["number","array","number","array","number","number"])}function HJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let c=t.makeOutput(l,r.dtype),u=t.dataIdMap.get(c.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return Fv(i,o,r.shape.length,Mn[r.dtype],a,s,u,d),[c,h]},KJ={kernelName:sl,backendName:"wasm",setupFunc:qJ,kernelFunc:XJ};function ZJ(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),c=0;for(let p=0;p({dataId:p,dtype:f,shape:l}))}var YJ={kernelName:il,backendName:"wasm",kernelFunc:ZJ};function JJ(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var QJ={kernelName:ol,backendName:"wasm",kernelFunc:JJ},eQ=[uK,hK,fK,_K,IK,TK,RK,DK,OK,zK,WK,BK,UK,qK,XK,YK,eZ,rZ,iZ,lZ,uZ,cZ,dZ,mZ,AZ,gZ,lK,bZ,kZ,NZ,CZ,FZ,DZ,zZ,mK,WZ,VZ,UZ,HZ,qZ,ZZ,JZ,tY,aY,oY,uY,dY,fY,mY,gY,bY,kY,SY,EY,RY,FY,OY,PY,BY,UY,GY,XY,KY,ZY,MK,QY,nJ,sJ,oJ,iJ,cJ,pJ,AJ,yJ,bJ,kJ,SJ,NJ,TJ,CJ,FJ,OJ,PJ,BJ,VJ,jJ,GJ,KJ,xK,YJ,QJ];for(let e of eQ)ui(e);var WA=J();WA.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));WA.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(WA.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var $v=so(E9()),tQ='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',nQ=so(C9()),Dv=class extends wu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Rh(this,ua())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=_.now();return e(),{kernelMs:_.now()-t}}move(e,t,n,r,a){let s=this.dataIdNextNumber++;if(r==="string"){let c=t;this.dataIdMap.set(e,{id:s,stringBytes:c,shape:n,dtype:r,memoryOffset:null,refCount:a});return}let i=_.sizeFromShape(n),o=i*_.bytesPerElement(r),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:r,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+_.sizeFromShape(r)*_.bytesPerElement(n));return rQ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let a=this.dataIdNextNumber++;r={id:a},this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=_.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=_.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function aQ(e){return(t,n)=>(_.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance,s.module)})})}),{})}function Ov(e,t,n){if(Op!=null)return Op;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),Tc!=null&&Tc[r]!=null?Tc[r]:n+r}async function sQ(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let c=tQ,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return o.endsWith(".wasm")?Ov(e,t,Ec!=null?Ec:l):l+o},BA&&(a.instantiateWasm=aQ(Ov(e,t,Ec!=null?Ec:"")));let s=!1;a.onAbort=()=>{s||Cc||(Cc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Op==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+$v.default.toString()],{type:"text/javascript"}),i=(0,$v.default)(a)):i=(0,nQ.default)(a),i.then(o=>{s=!0,Cc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function rQ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var iQ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Op=null,Ec=null,Tc={},Cc=!1,BA=!1;function oQ(e,t=!1){if(lm("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Cc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Op=e,BA=t}function lQ(e,t=!1){if(Cc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Ec=e;else{Tc=e;let n=iQ.filter(r=>Tc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}BA=t}var zv="3.5.0",uQ=2;yl("wasm",async()=>{let{wasm:e}=await sQ();return new Dv(e)},uQ);Z().prototype.abs=function(){return this.throwIfDisposed(),zt(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),cm(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),hm(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),kd(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),Zu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),mi(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),dm(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),M(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),H(this,[e,t,n,r])};Z().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),H(this,[e,t,n,r,a])};Z().prototype.asin=function(){return this.throwIfDisposed(),pm(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),fm(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),mm(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),Am(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),ym(this)};Z().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),Ju(this,e,t,n,r)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Qu(this,e,t)};Z().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),gi(this,e,t,n,r,a)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),xl(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),bm(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),En(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Pe&&(e=[e]),rt([this,...e],t)};Z().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Sd(this,e,t,n,r,a,s)};Z().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),Nd(this,e,t,n,r,a)};Z().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),ca(this,e,t,n,r,a,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),ec(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),Td(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Ed(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),km(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),bl(this,e,t,n,r,a,s)};Z().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),Im(this,e,t,n,r,a)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),Sm(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),Ae(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),ub(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),_l(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),Wa(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),Nm(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),er(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),Qt(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),Tm(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),cc(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),vl(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),vd(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),xi(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Va(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),pr(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),Nl(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),Gd(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),hb(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),db(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),Cm(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),nc(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),wi(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),Rd(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),Rm(this,e,t,n,r)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),mb(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),$d(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),$m(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),zn(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),Md(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),fr(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),rc(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),Dd(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),xb(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ve(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),ac(this,e,t,n,r)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Rn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),jr(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),It(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),kl(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),Il(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Om(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),zm(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),P(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),kt(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Zd(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),vi(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),ml(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),Ln(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),ha(this,e,t)};Z().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),_b(this,e,t,n,r,a)};Z().prototype.pow=function(e){return this.throwIfDisposed(),da(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),ic(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),zd(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),Wm(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),Ur(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),Ld(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Wb(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),Bb(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),Wn(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),hc(this)};Z().prototype.round=function(){return this.throwIfDisposed(),Bm(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),Wd(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),Bd(this)};Z().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Vm(this,e,t,n,r,a,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),Tn(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),jm(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),Vd(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),jd(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Re(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),uc(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),bi(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),sc(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),Lt(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),en(this)};Z().prototype.square=function(){return this.throwIfDisposed(),ot(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),qd(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),ja(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Pe?[this,e]:[this,...e];return cn(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),Tl(this,e)};Z().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),Hm(this,e,t,n,r,a,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),ye(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Te(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),Gm(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),yi(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),Ba(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),ge(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),ge(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),ge(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),qm(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),Je(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),Kd(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Xm(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),mr(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),Cn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),He(this)};var Pv={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,Tl(ge(n,"float32"),-1))}}},cQ={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=ot(ge(n,"float32")),a=en(ye(xe(1),r));return kt(Ae(e,a))}}}},hQ={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=en(ye(ot(ge(n,"float32")),1));return Ae(e,r)}}}},dQ={kernelName:Ca,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=e,i=Pt(n.shape,a);return i.length>0&&(s=Te(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Pt(r.shape,a);return i.length>0&&(s=Te(s,i)),H(s,r.shape)}}}},pQ={kernelName:ds,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},fQ={kernelName:ps,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},mQ={kernelName:vu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},AQ={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,en(ye(xe(1),ot(ge(n,"float32")))))}}},yQ={kernelName:mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=en(se(xe(1),ot(ge(n,"float32"))));return Ae(e,r)}}}},gQ={kernelName:go,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=se(ot(n),ot(r)),i=P(e,Ae(r,s)),o=Pt(n.shape,a);return o.length>0&&(i=Te(i,o)),H(i,n.shape)},b:()=>{let s=se(ot(n),ot(r)),i=kt(P(e,Ae(n,s))),o=Pt(r.shape,a);return o.length>0&&(i=Te(i,o)),H(i,r.shape)}}}},xQ={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,se(ot(ge(n,"float32")),1))}}},wQ={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,ye(xe(1),ot(ge(n,"float32"))))}}};function bQ(e,t,n,r,a,s){let i=R(e,"dy","avgPool3dGrad"),o=R(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&M(Ut(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:c},d={filterSize:n,strides:r,pad:a,dimRoundingMode:s},p=$.runKernel(Oh,h,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var _Q=D({avgPool3dGrad_:bQ}),vQ={kernelName:ku,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>_Q(e,r,a,s,i,o)}}};function kQ(e,t,n,r,a){let s=R(e,"dy","avgPoolGrad"),i=R(t,"input","avgPoolGrad");M(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=$.runKernel(Dh,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var IQ=D({avgPoolGrad_:kQ}),SQ={kernelName:fs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>IQ(e,r,a,s,i)}}},NQ={kernelName:ms,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Ve(e,a,!1,!0),b:()=>Ve(r,e,!0,!1)}:!s&&i?{a:()=>Ve(e,a,!1,!1),b:()=>Ve(e,r,!0,!1)}:s&&!i?{a:()=>Ve(a,e,!1,!0),b:()=>Ve(r,e,!1,!1)}:{a:()=>Ve(a,e,!0,!0),b:()=>Ve(e,r,!0,!0)}}},TQ={kernelName:Iu,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>sc(e,r,a)}}},EQ={kernelName:nw,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l1&&o.push(l);return{x:()=>Te(e,o,!0)}}},CQ={kernelName:As,gradFunc:e=>({x:()=>e.clone()})},RQ={kernelName:ys,gradFunc:e=>({x:()=>He(e)})},MQ={kernelName:Ra,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>Cn(fr(Va(r,a),wi(r,s)),e,He(e))}}},FQ={kernelName:Su,inputsToSave:["x"],gradFunc:Pv.gradFunc},$Q={kernelName:xo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=hr(a,t[0].shape)[0],i=r.map(o=>o[s]);return Lt(e,i,s).map(o=>()=>o)}},DQ={kernelName:gs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return M(La(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>_m(r.shape,e,a,i,o,l),filter:()=>Jm(r,e,a.shape,i,o,l)}}},OQ={kernelName:xs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>ca(e,a,s,i,o,1,l),filter:()=>Jm(e,r,a.shape,s,i,o,l)}}};function zQ(e,t,n,r,a){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),M(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),M(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return $.runKernel(Wh,o,l)}var PQ=D({conv3DBackpropFilter_:zQ}),LQ={kernelName:Nu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;M(La(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>ib(i.shape,e,o,a,s),filter:()=>PQ(i,e,o.shape,a,s)}}},WQ={kernelName:ws,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(kt(Vd(ge(n,"float32"))),e)}}},BQ={kernelName:wo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(jd(ge(n,"float32")),e)}}},VQ={kernelName:bs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=gb([a],r.rank),l=Ed(e,a,s,!i);return o!=null&&(l=Je(l,o)),l}}}},jQ={kernelName:_s,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;M(La(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),M(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),M(Br(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&M(Ut(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>Fb(l.shape,e,c,a,s,r,i),filter:()=>Mb(l,e,c.shape,a,s,r,i)}}},UQ={kernelName:Tu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>$.runKernel(Gh,s,n),filter:()=>$.runKernel(qh,i,n)}}},HQ={kernelName:vo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>$.runKernel(Kh,r)}}},GQ={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=P(er(kt(ot(n))),2/Math.sqrt(Math.PI));return{x:()=>P(e,r)}}},qQ={kernelName:ks,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,n)}}},XQ={kernelName:So,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},KQ={kernelName:No,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,er(n))}}},ZQ={kernelName:Is,gradFunc:e=>({x:()=>He(e)})},YQ={kernelName:Ss,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Ae(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=P(e,ge(n,"float32")),i=Pt(r.shape,a);i.length>0&&(s=H(Te(s,i),r.shape));let o=ot(r);return kt(Ae(s,ge(o,"float32")))}}}},JQ={kernelName:Ns,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?xe(1):o,c=Pt(s.shape,a.shape),u=[];if(s.rank===1){for(let m=0;ms.rank===1?H(P(P(e,Ba(H(p,[1,1,1,s.shape[0]]),u)),l),a.shape):H(P(P(e,p),l),a.shape),mean:()=>{let m=P(P(p,xe(-1)),d);return s.rank===1&&(m=Te(m,c)),H(m,s.shape)},variance:()=>{let m=P(P(f,h),d);return s.rank===1&&(m=Te(m,c)),H(m,s.shape)},scale:()=>{let m=P(h,p),A=P(e,m);return s.rank===1&&(A=Te(A,c)),H(A,s.shape)},offset:()=>{let m=e;return s.rank===1&&(m=Te(m,c)),H(m,s.shape)}}}},QQ={kernelName:Eo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=hr(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,c=o.slice(0,i),u=c.length,h=o.slice(s,o.length).slice(1),d=h.length,p=Lv(0,u),f=Lv(u+1,u+1+d),m=Wv([c,[l],h]),A=H(e,m),y=H(a,[l]),g=Wv([[u],p,f]),x=Je(A,g),v=Xm(x,y,r.shape[i]),w=Fm(g);return v=Je(v,w),v},indices:()=>a}}};function Lv(e,t){let n=[];for(let r=e;r{let[n,r]=t;return{a:()=>He(n),b:()=>He(r)}}},tee={kernelName:Es,gradFunc:e=>({x:()=>ge(e,"float32")})},nee={kernelName:Mo,gradFunc:e=>({x:()=>He(e)})},ree={kernelName:Fo,gradFunc:e=>({x:()=>He(e)})},aee={kernelName:$o,gradFunc:e=>({x:()=>He(e)})},see={kernelName:Cs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=pr(r,0);return{x:()=>Cn(s,e,P(e,a))}}},iee={kernelName:zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,se(n,1))}}},oee={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,ge(n,"float32"))}}},lee={kernelName:rw,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=er(r);return ye(e,P(Te(e,a,s),i))}}}};function uee(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return $.runKernel(ed,o,l)}var cee=D({localResponseNormalizationBackprop_:uee}),hee={kernelName:Mu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>cee(r,a,e,s,i,o,l)}}};function Bv(e,t,n,r){return t.rankP(e,ge(Wa(n,t),e.dtype))}}var Vv={kernelName:Ms,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=hr(a,s.shape),l=Bv(e,i,s,o);return{x:()=>l.x()}}},dee={kernelName:Fs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>P(e,ge(Va(n,r),"float32")),b:()=>P(e,ge(Rd(n,r),"float32"))}}};function pee(e,t,n,r,a,s,i){let o=R(e,"dy","maxPool3dGrad"),l=R(t,"input","maxPool3dGrad"),c=R(n,"output","maxPool3dGrad"),u=o,h=l,d=c,p=!1;l.rank===4&&(p=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=H(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),M(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),M(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&M(Ut(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let f={dy:u,input:h,output:d},m={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=$.runKernel(nd,f,m);return p?H(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var fee=D({maxPool3dGrad_:pee}),mee={kernelName:Fu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>fee(e,r,a,s,i,o,l)}}};function Aee(e,t,n,r,a,s,i){let o=R(e,"dy","maxPoolGrad"),l=R(t,"input","maxPoolGrad"),c=R(n,"output","maxPoolGrad");M(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),M(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&M(Ut(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return $.runKernel(td,u,h)}var yee=D({maxPoolGrad_:Aee}),gee={kernelName:$s,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>yee(e,r,a,s,i,o)}}},xee={kernelName:Ds,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=hr(a,r.shape),i=yb(r.shape,s)[1],o=Et(i);return{x:()=>{let l=r.shape.slice();s.forEach(u=>{l[u]=1});let c=H(e,l);return Ae(P(c,Pn(r.shape,"float32")),o)}}}},wee={kernelName:Os,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=hr(a,s.shape),l=Bv(e,i,s,o);return{x:()=>l.x()}}},bee={kernelName:zs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>P(e,ge(wi(n,r),"float32")),b:()=>P(e,ge(pr(n,r),"float32"))}}},_ee={kernelName:Ps,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Re(e,s,r.shape)}}},vee={kernelName:Lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Pt(n.shape,a);return s.length>0?H(Te(e,s),n.shape):e},b:()=>{let s=P(e,kt(vl(Ae(n,r)))),i=Pt(r.shape,a);return i.length>0?H(Te(s,i),r.shape):s}}}},kee={kernelName:Ls,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=P(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=P(e,ge(n,"float32")),i=Pt(r.shape,a);return i.length>0?H(Te(s,i),r.shape):s}}}},Iee={kernelName:Wo,gradFunc:e=>({x:()=>kt(e)})},See={kernelName:Ws,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Rt(n.shape,"float32")}}},Nee={kernelName:Ho,gradFunc:e=>({x:()=>He(e)})},Tee={kernelName:Go,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return mr(e,r).map(a=>()=>a)}},jv={kernelName:Bs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Re(e,s,r.shape)}}},Eee={kernelName:Vs,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=ft(s.shape,i.shape);return{a:()=>{let l=ge(i,"float32"),c=P(e,P(l,da(s,ye(l,xe(1))))),u=Pt(s.shape,o);return u.length>0&&(c=Te(c,u)),H(c,s.shape)},b:()=>{let l=pr(s,0),c=Cn(l,zn(s),He(s)),u=P(e,P(a,c)),h=Pt(i.shape,o);return h.length>0&&(u=Te(u,h)),H(u,i.shape)}}}},Cee={kernelName:js,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=pr(n,0);return{x:()=>Cn(a,e,P(e,r)),alpha:()=>{let s=Cn(a,He(e),P(e,n)),i=Pt(r.shape,e.shape);return i.length>0&&(s=Te(s,i)),H(s,r.shape)}}}},Ree={kernelName:vs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Ae(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=P(e,ge(n,"float32")),i=Pt(r.shape,a);i.length>0&&(s=H(Te(s,i),r.shape));let o=ot(r);return kt(Ae(s,ge(o,"float32")))}}}},Mee={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,kt(ot(n)))}}},Fee={kernelName:Gs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=P(wi(n,6),Tl(n));return{x:()=>P(e,ge(r,"float32"))}}},$ee={kernelName:Us,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,ge(Tl(n),"float32"))}}},Dee={kernelName:Ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},Oee={kernelName:Hs,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(od,a,n)}}},zee={kernelName:Du,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(id,a,n)}}},Pee={kernelName:qs,gradFunc:(e,t,n)=>{let{dims:r}=n,a=hr(r,e.shape);return{x:()=>Wn(e,a)}}},Lee={kernelName:Xs,gradFunc:e=>({x:()=>He(e)})},Wee={kernelName:Ks,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>kt(Ae(e,P(da(n,1.5),2)))}}},Bee={kernelName:Yo,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ge(He(n),"float32"),t:()=>P(e,ge(n,e.dtype)),e:()=>P(e,ge(rc(n),e.dtype))}}},Vee={kernelName:Jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=pr(n,xe(0)),a=xe(Hb),s=xe(Gb),i=P(e,s),o=P(P(e,a),er(ge(n,"float32")));return Cn(r,i,o)}}}},jee={kernelName:Ys,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,P(n,ye(xe(1),n)))}}},Uee={kernelName:tl,gradFunc:e=>({x:()=>He(e)})},Hee={kernelName:Zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(ec(ge(n,"float32")),e)}}},Gee={kernelName:el,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(Td(ge(n,"float32")),e)}}},qee={kernelName:Qo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=Vw(r,a,s),c=[];for(let u=0;uha(e,c)}}},Xee={kernelName:ei,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=P(e,r);return{logits:()=>ye(i,P(Te(i,[a],s),r))}}},Kee={kernelName:nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,Tn(n))}}},Uv={kernelName:Ou,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>Qu(e,r,a)}}},Hv={kernelName:rl,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>rt(e,r)}}},Zee={kernelName:Js,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,P(en(ge(n,"float32")),2))}}},Yee={kernelName:zu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,P(ge(n,"float32"),2))}}},Jee={kernelName:ti,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xe(2);return{a:()=>P(e,P(a,ye(n,r))),b:()=>P(e,P(a,ye(r,n)))}}},Qee={kernelName:Fa,gradFunc:e=>({x:()=>He(e)})},ete={kernelName:ni,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=e,i=Pt(n.shape,a);return i.length>0&&(s=Te(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Pt(r.shape,a);return i.length>0&&(s=Te(s,i)),H(kt(s),r.shape)}}}},tte={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;hr(s,r.shape).forEach(l=>{a[l]=1});let i=H(e,a),o=P(i,Pn(r.shape,"float32"));return{x:()=>o}}},nte={kernelName:ri,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,ot(ec(n)))}}},rte={kernelName:ai,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(ye(xe(1),ot(n)),e)}}},ate={kernelName:Ma,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=He(r);if(r.rank===1)for(let i=0;i{let r=n,{perm:a}=r,s=Fm(a);return{x:()=>Je(e,s)}}},ite={kernelName:il,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>cn(e,a)}}},lte={kernelName:Pu,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ote(e,n)}}};function ote(e,t){let n=jr(t,He(t)),r=xi(e,n),a=Va(t,xe(0,"int32")),s=r.rank-a.rank;for(let o=0;o({x:()=>He(e)})},cte=[Pv,cQ,hQ,dQ,pQ,fQ,mQ,AQ,yQ,gQ,xQ,wQ,vQ,SQ,NQ,TQ,EQ,CQ,RQ,MQ,FQ,$Q,OQ,DQ,LQ,WQ,BQ,VQ,jQ,UQ,Ree,HQ,GQ,qQ,XQ,KQ,YQ,ZQ,JQ,QQ,eee,tee,nee,ree,aee,see,iee,oee,lee,hee,Vv,Vv,dee,mee,gee,xee,wee,bee,_ee,vee,kee,Iee,See,Nee,Tee,jv,jv,Eee,Cee,Mee,Fee,$ee,Dee,Oee,zee,Pee,Lee,Wee,Bee,Vee,jee,Uee,Hee,Gee,qee,Xee,Kee,Uv,Uv,Hv,Hv,Zee,Jee,Yee,Qee,ete,tte,nte,rte,ate,ste,ite,lte,ute];for(let e of cte)aw(e);var Gv={};Me(Gv,{maxNorm:()=>hte,minMaxNorm:()=>fte,nonNeg:()=>pte,unitNorm:()=>dte});var VA;function Wt(){return VA==null&&(VA=Kw().epsilon()),VA}function Tr(){return"channelsLast"}var Aa=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Aa.prototype)}},Er=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Er.prototype)}},B=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,B.prototype)}},De=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,De.prototype)}},qv=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,qv.prototype)}};function $i(e,t){if(Array.isArray(e)){let n=[];for(let r=0;rn.toUpperCase())}var Ar={};function jA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function UA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>UA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:UA(r))}}}function Rc(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in Ar)i=Ar[s];else if(i=t[s],i==null)throw new B(`Unknown ${r}: ${e}. This may be due to one of the following reasons: + `}};function XX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],c=0,u=E.getAxesPermutation([c],o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),l.push(h),c=E.getInnerMostAxes(1,o)[0]);let d=E.segment_util.computeOutShape(h.shape,c,i),p=_.sizeFromShape([h.shape[c]]),m=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(m);let f=Ad(a.dtype),A=(v,b,w,k,N)=>{let C=v.shape[0],F=v.shape[1],O=E.segment_util.segOpComputeOptimalWindowSize(F,N),L={windowSize:O,inSize:F,batchSize:C,numSegments:N},V=new qX(L,b),j=n.compileAndRun(V,[v,w],k);if(l.push(j),j.shape[1]===N)return j;let U=M7({backend:n,attrs:{start:0,stop:N,step:1,dtype:"float32"}}),X=D7({inputs:{x:U},backend:n,attrs:{reps:[F/O]}});return l.push(U),l.push(X),A(j,b,X,k,N)},y=A(m,"unsortedSegmentSum",s,f,i),g=fe({inputs:{x:y},backend:n,attrs:{shape:d}}),x=g;if(u!=null){l.push(g);let v=E.getUndoAxesPermutation(u);x=fn({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var KX={kernelName:Ou,backendName:"webgl",kernelFunc:XX},ZX=[zH,WH,_B,kB,NB,CB,MB,DB,zB,LB,jB,HB,XB,YB,aV,eV,oV,hV,uV,mV,yV,xV,vV,CV,MV,PV,WV,UV,qV,rB,JV,lj,cj,nj,fj,Aj,dj,xj,_j,Ij,Nj,Ej,Mj,Pj,Wj,$j,jj,Gj,Xj,Jj,nU,iU,uU,cU,hU,pU,mU,yU,xU,wU,IU,EU,RU,FU,OU,WU,UU,XU,nB,ZU,ZV,QU,nH,sH,sB,uH,pH,mH,_H,xH,SH,EH,FH,VH,ZH,XH,eG,nG,aG,GH,iG,lG,dG,AG,bG,TG,cB,CG,FG,OG,LG,$V,VG,UG,GG,KG,QG,oB,tq,nq,DV,kG,sq,pq,uq,dB,yq,bq,vq,Sq,Cq,Mq,Dq,Pq,Wq,jq,Gq,Kq,Jq,tX,aX,TV,SG,oX,uX,hX,pX,mX,gX,wX,vX,IX,TX,IG,xB,RX,$X,zX,LX,VX,bB,UX,GX,KX,jG];for(let e of ZX)ci(e);var Mn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Mn||(Mn={}));var Ic;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(Ic||(Ic={}));var O7;function YX(e){O7=e.wasm.cwrap(oi,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function JX(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let N=n.dataIdMap.get(i.dataId);if(N.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${N.shape.length}.`);m=N.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,A=Ic[u];if(A==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=c?s.shape[1]:s.shape[2],x=a.shape[0],v=n.makeOutput([x,y,g],a.dtype),b=n.dataIdMap.get(v.dataId).id,w=new Uint8Array(new Int32Array(a.shape).buffer),k=new Uint8Array(new Int32Array(s.shape).buffer);return O7(d,w,a.shape.length,p,k,s.shape.length,l,c,A,m,f,h||0,b),v}var QX={kernelName:oi,backendName:"wasm",setupFunc:YX,kernelFunc:JX};function mn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return _.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var eK=mn(lo);function An(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,h=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,p=n!=null?n:c.dtype,m=E.assertAndGetBroadcastShape(c.shape,u.shape),f=o.makeOutput(m,p);if(_.sizeFromShape(m)===0)return f;let A=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),g=o.dataIdMap.get(f.dataId).id,x=()=>r(h,A,c.shape.length,d,y,u.shape.length,Mn[c.dtype],g);if(t&&c.dtype==="float32")return x(),f;let v=E.getBroadcastDims(c.shape,m),b=E.getBroadcastDims(u.shape,m),w=v.every((N,C)=>N===C),k=b.every((N,C)=>N===C);if(w&&k)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var tK=!0,nK=An(Ra,tK),z7;function rK(e){z7=e.wasm.cwrap(ps,null,["array","number","number","number"])}function aK(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(_.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return z7(s,a.length,Mn[r.dtype],i),r}var sK={kernelName:ps,backendName:"wasm",setupFunc:rK,kernelFunc:aK};function Rp(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var iK={kernelName:Cs,backendName:"wasm",kernelFunc:Rp},P7;function oK(e){P7=e.wasm.cwrap(ii,null,["number","array","number","number","number","array","number"])}function Mp(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=uK(t.x.shape,r.perm),i=!0;for(let m=0;m=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var cK={kernelName:ii,backendName:"wasm",kernelFunc:Mp,setupFunc:oK};function Ka(e,t,n){let r=e.shape,a=e.shape.length,s=_.parseAxisParam(t,r),i=s,o=E.getAxesPermutation(i,a),l=null,c=!1;if(o!=null){let u=new Array(a);for(let d=0;d`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:i,dtype:r.dtype}}var vK={kernelName:Ko,backendName:"wasm",kernelFunc:Tr},j7;function kK(e){j7=e.wasm.cwrap(As,null,["number","array","number","number","array","number","number","number","number"])}function IK(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=_.sizeFromShape(m),y=_.sizeFromShape(f),g=A===y||A===1||y===1;_.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);_.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[A,u,d]:[A,d,u],b=o?[y,p,h]:[y,h,p],w=Tr({inputs:{x:a},backend:n,attrs:{shape:v}}),k=Tr({inputs:{x:s},backend:n,attrs:{shape:b}}),N=n.dataIdMap.get(w.dataId).id,C=n.dataIdMap.get(k.dataId).id,F=i?w.shape[2]:w.shape[1],O=o?k.shape[1]:k.shape[2],L=Math.max(A,y),V=n.makeOutput([L,F,O],w.dtype),j=n.dataIdMap.get(V.dataId).id,U=new Uint8Array(new Int32Array(w.shape).buffer),X=new Uint8Array(new Int32Array(k.shape).buffer);return j7(N,U,w.shape.length,C,X,k.shape.length,i,o,j),n.disposeData(w.dataId),n.disposeData(k.dataId),V.shape=x,V}var SK={kernelName:As,backendName:"wasm",setupFunc:kK,kernelFunc:IK};function Fp(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var NK={kernelName:ys,backendName:"wasm",kernelFunc:Fp},TK=mn(gs),U7;function EK(e){U7=e.wasm.cwrap(Ma,null,["number","number","number","number"])}function CK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(l.dataId).id;return U7(o,s,i,c),l}var RK={kernelName:Ma,backendName:"wasm",setupFunc:EK,kernelFunc:CK};function H7(e){let{inputs:t,backend:n}=e,r=_.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=E.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>_.sizeFromShape(p.shape)>0);if(s.length===1)return Rp({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(_.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(E.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(x=>{let v=_.sizeFromShape(x.shape.slice(r));return Tr({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));a=E.computeOutShape(p.map(x=>x.shape),1);let f=p[0].shape[0]===1,A=nA(m,a,t[0].dtype,f),y=E.computeOutShape(s.map(x=>x.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=E.fromStringArrayToUint8(A),p.forEach(x=>n.disposeData(x.dataId)),i}let l=_.sizeFromShape(s[0].shape.slice(0,r)),c=0,u=s.map(p=>{let m=_.sizeFromShape(p.shape.slice(r));return c+=m,m}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p`cumsum does not support ${a.dtype} tensors in the WASM backend`);let c=E.getAxesPermutation([s],l),u=a;c!==null&&(u=Mp({inputs:{x:a},attrs:{perm:c},backend:n}));let h=E.getInnerMostAxes(1,l)[0];E.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(u.shape,u.dtype),p=u.shape[h],m=n.dataIdMap.get(u.dataId).id,f=n.dataIdMap.get(d.dataId).id;K7(m,i?1:0,o?1:0,p,f,Mn[a.dtype]);let A=d;if(c!==null){let y=E.getUndoAxesPermutation(c);A=Mp({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return A}var HK={kernelName:_s,backendName:"wasm",setupFunc:jK,kernelFunc:UK},Z7;function GK(e){Z7=e.wasm.cwrap(_o,null,["number","number","number","array","number","array","array","number","number"])}function qK(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),m=i==="NHWC"?[o,h,d,p]:[o,p,h,d],f=t.makeOutput(m,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(_.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(_.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return Z7(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,x,m.length,v),f}var XK={kernelName:_o,backendName:"wasm",setupFunc:GK,kernelFunc:qK},Y7;function KK(e){Y7=e.wasm.cwrap(vs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ZK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:h}=n,d=c==null?[1,1]:c,p=E.computeConv2DInfo(a.shape,s.shape,l,d,u,h,!0),m=p.filterHeight,f=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,x=p.padInfo.left,v=p.dilationHeight,b=p.dilationWidth,w=p.strideHeight,k=p.strideWidth,N=p.inChannels,C=p.outChannels,F=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let O=r.makeOutput(p.outShape,"float32"),L=r.dataIdMap.get(O.dataId).id;return Y7(i,a.shape[0],a.shape[1],a.shape[2],o,m,f,A,y,g,x,F,v,b,w,k,N,C,L),O}var YK={kernelName:vs,backendName:"wasm",setupFunc:KK,kernelFunc:ZK},JK=!1,QK=An(Io,JK,"bool"),eZ=mn(Is);function DA(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(_.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Tr({inputs:{x:a},backend:r,attrs:{shape:o}})}var tZ={kernelName:So,backendName:"wasm",kernelFunc:DA};function nZ(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var rZ={kernelName:Nu,backendName:"wasm",kernelFunc:nZ},J7;function aZ(e){J7=e.wasm.cwrap(To,null,["number","number","number","number","number","number"])}function sZ(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,c,u]=r.shape;return J7(s,o,l,c,u,i),a}var iZ={kernelName:To,backendName:"wasm",kernelFunc:sZ,setupFunc:aZ},oZ=mn(Ss),lZ=!1,uZ=An(Ns,lZ),Q7;function cZ(e){Q7=e.wasm.cwrap(Ts,null,["number","number","number","number","number","number","number"])}function hZ(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,m=c!=null?t.dataIdMap.get(c.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(_.sizeFromShape(s.shape)===0)return f;let A=t.dataIdMap.get(f.dataId).id;return Q7(u,h,d,p,m,a,A),f}var dZ={kernelName:Ts,backendName:"wasm",setupFunc:cZ,kernelFunc:hZ},ev;function pZ(e){ev=e.wasm.cwrap(li,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function fZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=n,f=E.computeConv2DInfo(a.shape,s.shape,l,u,c,d),A=Ic[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);v=Q.id}let b=f.filterHeight,w=f.filterWidth,k=f.padInfo.top,N=f.padInfo.right,C=f.padInfo.bottom,F=f.padInfo.left,O=f.dilationHeight,L=f.dilationWidth,V=f.strideHeight,j=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(f.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return ev(y,G,ee,Y,g,b,w,v,k,N,C,F,X,O,L,V,j,U,x,A,ie,m||0,te),ae}var mZ={kernelName:li,backendName:"wasm",setupFunc:pZ,kernelFunc:fZ},tv;function AZ(e){tv=e.wasm.cwrap(ui,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function yZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=n,f=E.computeConv2DInfo(a.shape,s.shape,l,u,c,d,!0),A=Ic[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);v=Q.id}let b=f.filterHeight,w=f.filterWidth,k=f.padInfo.top,N=f.padInfo.right,C=f.padInfo.bottom,F=f.padInfo.left,O=f.dilationHeight,L=f.dilationWidth,V=f.strideHeight,j=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(f.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return tv(y,G,ee,Y,g,b,w,v,k,N,C,F,X,O,L,V,j,U,x,A,ie,m||0,te),ae}var gZ={kernelName:ui,backendName:"wasm",setupFunc:AZ,kernelFunc:yZ},nv;function xZ(e){nv=e.wasm.cwrap(Co,null,["number","number","number","number","number","number","array","number"])}function bZ(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=Qf.prepareAndValidate(r,a),c=t.makeOutput(s,r.dtype);if(i===0)return c;let u=a.shape,h=u[u.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(c.dataId).id;return nv(d,Mn[r.dtype],p,i,h,o,m,f),c}var wZ={kernelName:Co,backendName:"wasm",setupFunc:xZ,kernelFunc:bZ},rv;function _Z(e){rv=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function vZ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=_.parseAxisParam(i,a.shape)[0],c=E.segment_util.collectGatherOpShapeInfo(a,s,l,o),u=Tr({inputs:{x:a},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),h=_.sizeFromShape(s.shape),d=Tr({inputs:{x:s},attrs:{shape:[c.batchSize,h/c.batchSize]},backend:t}),p=[c.batchSize,c.outerSize,h/c.batchSize,c.sliceSize],m=t.makeOutput(p,a.dtype);if(_.sizeFromShape(a.shape)===0)return m;let f=u.shape.length-1,A=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(_.computeStrides(u.shape)).buffer),v=new Uint8Array(new Int32Array(_.computeStrides(p)).buffer);return rv(A,Mn[a.dtype],x,f,y,c.batchSize,v,g),t.disposeData(u.dataId),t.disposeData(d.dataId),m.shape=c.outputShape,m}var kZ={kernelName:Eo,backendName:"wasm",setupFunc:_Z,kernelFunc:vZ},IZ=!1,SZ=An(Ro,IZ,"bool"),NZ=!1,TZ=An(Es,NZ,"bool"),av;function EZ(e){av=e.wasm.cwrap(Rs,null,["number","number","number"])}function CZ(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(_.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;av(a,n,i)}return s}var RZ={kernelName:Rs,backendName:"wasm",setupFunc:EZ,kernelFunc:CZ},MZ=!1,FZ=An(Do,MZ,"bool"),$Z=!1,DZ=An(Oo,$Z,"bool"),OZ=mn(Ms),zZ=!1,PZ=An(Po,zZ,"bool"),sv;function LZ(e){sv=e.wasm.cwrap(Fs,null,["number, number, number"])}function WZ(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:h,inputWasTransposed:d}=Ka(i,a,t);if(d){let g=t.dataIdMap.get(c.dataId).id;l=c,o=g}let p=l.shape.length;E.assertAxesAreInnerMostDims("max",u,p);let[m,f]=E.computeOutAndReduceShapes(l.shape,u),A=_.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(_.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;sv(o,A,g)}if(d&&t.disposeData(c.dataId),s){let g=E.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var BZ={kernelName:Fs,backendName:"wasm",setupFunc:LZ,kernelFunc:WZ},VZ=!1,jZ=An($s,VZ),iv;function UZ(e){iv=e.wasm.cwrap(Ds,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function HZ(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(a.shape,i,o,1,l,c),h=u.filterHeight,d=u.filterWidth,p=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,A=u.padInfo.left,y=u.dilationHeight,g=u.dilationWidth,x=u.strideHeight,v=u.strideWidth,b=u.inChannels,w=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let k=r.makeOutput(u.outShape,"float32"),N=r.dataIdMap.get(k.dataId).id;return iv(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,m,f,A,y,g,x,v,b,w,N),k}var GZ={kernelName:Ds,backendName:"wasm",setupFunc:UZ,kernelFunc:HZ},ov;function qZ(e){ov=e.wasm.cwrap(Os,null,["number, number, number"])}function XZ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Ka(i,a,t),m=h;if(p){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=E.getInnerMostAxes(m.length,c.shape.length))}E.assertAxesAreInnerMostDims("mean",m,c.shape.length);let[f,A]=E.computeOutAndReduceShapes(c.shape,m),y=_.sizeFromShape(A),g=c;c.dtype!=="float32"&&(g=Fp({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let x=t.makeOutput(f,"float32");if(_.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;ov(l,y,v)}if(p&&t.disposeData(u.dataId),s){let v=E.expandShapeToKeepDim(x.shape,d);x.shape=v}return c.dtype!=="float32"&&t.disposeData(g.dataId),x}var KZ={kernelName:Os,backendName:"wasm",setupFunc:qZ,kernelFunc:XZ},lv;function ZZ(e){lv=e.wasm.cwrap(zs,null,["number, number, number"])}function YZ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Ka(i,a,t);if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x)}let m=c.shape.length;E.assertAxesAreInnerMostDims("min",h,m);let[f,A]=E.computeOutAndReduceShapes(c.shape,h),y=_.sizeFromShape(A),g=t.makeOutput(f,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;lv(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var JZ={kernelName:zs,backendName:"wasm",setupFunc:ZZ,kernelFunc:YZ},QZ=!1,eY=An(Ps,QZ),OA;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(OA||(OA={}));var uv;function tY(e){uv=e.wasm.cwrap(Ls,null,["number","array","number","number","array","array","number","number"])}function nY(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,mode:a}}=e,s=r.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(m=>m[0]),h=r.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return uv(i,c,t.shape.length,Mn[t.dtype],d,p,OA[a],l),o}var rY={kernelName:Ls,backendName:"wasm",kernelFunc:nY,setupFunc:tY},aY=!0,sY=An(Ws,aY),iY=mn(Wo);function zA(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var cv;function oY(e){cv=e.wasm.cwrap(Vo,"number",["number","number","number","number","number"])}function lY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,h=cv(c,u,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:m,pValidOutputs:f}=zA(t,h);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([p],"int32",d)}var uY={kernelName:Vo,backendName:"wasm",setupFunc:oY,kernelFunc:lY},hv;function cY(e){hv=e.wasm.cwrap(jo,"number",["number","number","number","number","number","bool"])}function hY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=hv(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=zA(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var dY={kernelName:jo,backendName:"wasm",setupFunc:cY,kernelFunc:hY},dv;function pY(e){dv=e.wasm.cwrap(Uo,"number",["number","number","number","number","number","number"])}function fY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=dv(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=zA(t,d);t.wasm._free(A);let y=t.makeOutput([m],"int32",p),g=t.makeOutput([m],"float32",f);return[y,g]}var mY={kernelName:Uo,backendName:"wasm",setupFunc:pY,kernelFunc:fY},AY=!1,yY=An(Bo,AY,"bool"),pv;function gY(e){pv=e.wasm.cwrap(Bs,null,["number","number","number","number","number"])}function xY(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(a.dataId).id;return pv(u,s,i,o,c),l}var bY={kernelName:Bs,backendName:"wasm",setupFunc:gY,kernelFunc:xY};function wY(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var _Y={kernelName:Ho,backendName:"wasm",kernelFunc:wY};function vY(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return DA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=DA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=H7({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeData(u.dataId)),c}var kY={kernelName:Go,backendName:"wasm",kernelFunc:vY},fv;function IY(e){fv=e.wasm.cwrap(Vs,null,["number","array","number","number","array","array","number","number"])}function SY(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(m=>m[0]),h=r.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return fv(i,c,t.shape.length,Mn[t.dtype],d,p,a,l),o}var NY={kernelName:Vs,backendName:"wasm",kernelFunc:SY,setupFunc:IY},TY=!1,EY=An(js,TY),mv;function CY(e){mv=e.wasm.cwrap(Us,null,["number","number","number"])}function RY(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return mv(s,i,l),o}var MY={kernelName:Us,backendName:"wasm",setupFunc:CY,kernelFunc:RY},Av;function FY(e){Av=e.wasm.cwrap(qo,null,["number","number","number","number"])}function $Y(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Ka(i,a,t),m=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=E.getInnerMostAxes(m.length,c.shape.length))}E.assertAxesAreInnerMostDims("prod",m,c.shape.length);let[f,A]=E.computeOutAndReduceShapes(c.shape,m),y=_.sizeFromShape(A),g=t.makeOutput(f,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;Av(l,y,Mn[g.dtype],x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var DY={kernelName:qo,backendName:"wasm",setupFunc:FY,kernelFunc:$Y},OY=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=sA(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},zY={kernelName:Mu,backendName:"wasm",kernelFunc:OY},PY=!0,LY=An(ks,PY),WY=mn(Hs),BY=mn(qs),yv;function VY(e){yv=e.wasm.cwrap(Gs,null,["number","number","number","number","number","number","number","number","number","number"])}function jY(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,[u,h,d,p]=a.shape,m=[u,l,c,p],f=t.dataIdMap.get(a.dataId),A;f.dtype!=="float32"&&(A=Fp({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(A.dataId));let y=f.id,g=t.makeOutput(m,"float32");if(_.sizeFromShape(a.shape)===0)return g;let x=t.dataIdMap.get(g.dataId).id;return yv(y,u,h,d,p,l,c,s?1:0,i?1:0,x),A!=null&&t.disposeData(A.dataId),g}var UY={kernelName:Gs,backendName:"wasm",setupFunc:VY,kernelFunc:jY},gv;function HY(e){gv=e.wasm.cwrap(Xs,null,["number","array","number","array","number","number"])}function GY(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=_.parseAxisParam(s,a.shape);if(a.shape.length===0)return Rp({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);gv(l,u,i.length,h,a.shape.length,c);let d=Tr({inputs:{x:o},attrs:{shape:a.shape},backend:n});return n.disposeData(o.dataId),d}var qY={kernelName:Xs,backendName:"wasm",kernelFunc:GY,setupFunc:HY},xv;function XY(e){xv=e.wasm.cwrap(ll,null,["number","number","number","number","number","number","number","number","array","number","number"])}function KY(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(l.dataId).id,[h,d,p,m]=a.shape,[f,A]=E.getImageCenter(o,d,p),y=i===0,g=255,x=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],v=new Uint8Array(new Int32Array(x).buffer);return xv(c,h,d,p,m,s,f,A,v,x.length,u),l}var ZY={kernelName:ll,backendName:"wasm",kernelFunc:KY,setupFunc:XY},YY=mn(Ks),JY=mn(Zs),bv;function QY(e){bv=e.wasm.cwrap(Zo,null,["number","number","number","number","number","number","array","number","number"])}function eJ(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(_.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=em.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return bv(p,m,Mn[s.dtype],l,c,u,f,d,A),o}var tJ={kernelName:Zo,backendName:"wasm",setupFunc:QY,kernelFunc:eJ},wv;function nJ(e){wv=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function rJ(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(c.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:_.sizeFromShape(a.shape.slice(1));return wv(i,o,l,p,u),c}var aJ={kernelName:Yo,backendName:"wasm",kernelFunc:rJ,setupFunc:nJ},_v;function sJ(e){_v=e.wasm.cwrap(Js,null,["number","number"])}function iJ(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return _.sizeFromShape(a.shape)===0||_v(r,s),a}var oJ={kernelName:"Sigmoid",backendName:"wasm",setupFunc:sJ,kernelFunc:iJ},lJ=mn(Ys);function $p(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=un.parseSliceParams(t,n,r),o=un.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),c=a.makeOutput(i,t.dtype),u=_.computeStrides(t.shape),h=a.dataIdMap.get(c.dataId);if(o){let m=un.computeFlatOffset(s,u);return t.dtype==="string"?h.stringBytes=l.slice(m,m+_.sizeFromShape(i)):a.typedArrayFromHeap(c).set(l.subarray(m,m+_.sizeFromShape(i))),c}if(t.dtype==="string"){let m=lp(l,s,i,t.shape,t.dtype);return h.stringBytes=m,c}let d=a.typedArrayFromHeap(c),p=t.shape.length;if(p===2)uJ(l,u[0],d,s,i);else if(p===3)cJ(l,u[0],u[1],d,s,i);else if(p===4)hJ(l,u[0],u[1],u[2],d,s,i);else{let m=lp(l,s,i,t.shape,t.dtype);d.set(m)}return c}function uJ(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let c=i;c{let d=[...u];d[o]=h;let p=$p({inputs:{x:a},attrs:{begin:c,size:d},backend:r});return c[o]+=h,p})}var yJ={kernelName:rl,backendName:"wasm",kernelFunc:AJ},gJ=mn(Qs),xJ=mn(Du),bJ=!0,wJ=An(ni,bJ),kv;function _J(e){kv=e.wasm.cwrap($a,null,["number","number","number"])}function vJ(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return kv(i,a,l),o}var kJ={kernelName:$a,backendName:"wasm",setupFunc:_J,kernelFunc:vJ},Iv;function IJ(e){Iv=e.wasm.cwrap(al,null,["number","array","number","array","array","array","array","array","number","number"])}function SJ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,p=E.slice_util.maskToAxes(u);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=a.shape.length-s.length,f=E.slice_util.maskToAxes(h),A=a.shape.slice();f.forEach(F=>{s[F]=0,i[F]=1,A.splice(F,0,1)});let y=Tr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:x,strides:v}=E.slice_util.getNormalizedAxes(y.shape,p,m,s,i,o,l,c,u);s=g,i=x,o=v;let b=E.slice_util.maskToAxes(d);b.forEach(F=>{i[F]=s[F]+1,o[F]=1});let w=E.slice_util.computeOutShape(s,i,o),k=w.filter((F,O)=>b.indexOf(O)===-1);if(o.every(F=>F===1)){let F=$p({inputs:{x:y},attrs:{begin:s,size:w},backend:t});t.disposeData(y.dataId);let O=Tr({inputs:{x:F},attrs:{shape:k},backend:t});return t.disposeData(F.dataId),O}let N=t.makeOutput(k,"float32");if(!k.some(F=>F===0)){let F=t.dataIdMap.get(y.dataId).id,O=new Uint8Array(new Int32Array(_.computeStrides(y.shape)).buffer),L=new Uint8Array(new Int32Array(s).buffer),V=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(o).buffer),U=new Uint8Array(new Int32Array(k).buffer),X=new Uint8Array(new Int32Array(_.computeStrides(k)).buffer),G=t.dataIdMap.get(N.dataId).id;Iv(F,O,y.shape.length,L,V,j,U,X,k.length,G)}t.disposeData(y.dataId);let C=Tr({inputs:{x:N},attrs:{shape:k},backend:t});return t.disposeData(N.dataId),C}var NJ={kernelName:al,backendName:"wasm",setupFunc:IJ,kernelFunc:SJ},TJ=!0,EJ=An(ri,TJ),Sv;function CJ(e){Sv=e.wasm.cwrap(ei,null,["number, number, number"])}function RJ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Ka(i,a,t),m=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=E.getInnerMostAxes(m.length,c.shape.length))}E.assertAxesAreInnerMostDims("sum",m,c.shape.length);let[f,A]=E.computeOutAndReduceShapes(c.shape,m),y=_.sizeFromShape(A),g=t.makeOutput(f,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;Sv(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var MJ={kernelName:ei,backendName:"wasm",setupFunc:CJ,kernelFunc:RJ},FJ=mn(ai),$J=mn(si),Nv;function DJ(e){Nv=e.wasm.cwrap(Fa,null,["number","array","number","array","number","number"])}function OJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let c=t.makeOutput(l,r.dtype),u=t.dataIdMap.get(c.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return Tv(i,o,r.shape.length,Mn[r.dtype],a,s,u,d),[c,h]},WJ={kernelName:sl,backendName:"wasm",setupFunc:PJ,kernelFunc:LJ};function BJ(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),c=0;for(let p=0;p({dataId:p,dtype:m,shape:l}))}var VJ={kernelName:il,backendName:"wasm",kernelFunc:BJ};function jJ(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var UJ={kernelName:ol,backendName:"wasm",kernelFunc:jJ},HJ=[eK,nK,sK,pK,AK,xK,_K,SK,NK,TK,RK,MK,DK,PK,LK,VK,HK,XK,YK,QK,eZ,tZ,rZ,iZ,oZ,uZ,QX,dZ,mZ,gZ,wZ,kZ,SZ,TZ,iK,RZ,FZ,DZ,OZ,PZ,BZ,jZ,GZ,KZ,JZ,eY,rY,sY,iY,uY,dY,mY,yY,bY,_Y,kY,NY,EY,MY,DY,zY,LY,WY,BY,vK,UY,qY,ZY,JY,YY,tJ,aJ,oJ,lJ,dJ,mJ,yJ,gJ,xJ,wJ,kJ,NJ,EJ,MJ,FJ,$J,zJ,WJ,cK,VJ,UJ];for(let e of HJ)ci(e);var PA=J();PA.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));PA.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(PA.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var Ev=so(b9()),GJ='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',qJ=so(w9()),Cv=class extends gu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Ch(this,ca())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=_.now();return e(),{kernelMs:_.now()-t}}move(e,t,n,r,a){let s=this.dataIdNextNumber++;if(r==="string"){let c=t;this.dataIdMap.set(e,{id:s,stringBytes:c,shape:n,dtype:r,memoryOffset:null,refCount:a});return}let i=_.sizeFromShape(n),o=i*_.bytesPerElement(r),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:r,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+_.sizeFromShape(r)*_.bytesPerElement(n));return XJ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let a=this.dataIdNextNumber++;r={id:a},this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=_.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=_.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function KJ(e){return(t,n)=>(_.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance,s.module)})})}),{})}function Rv(e,t,n){if(Dp!=null)return Dp;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),Sc!=null&&Sc[r]!=null?Sc[r]:n+r}async function ZJ(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let c=GJ,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return o.endsWith(".wasm")?Rv(e,t,Nc!=null?Nc:l):l+o},LA&&(a.instantiateWasm=KJ(Rv(e,t,Nc!=null?Nc:"")));let s=!1;a.onAbort=()=>{s||Tc||(Tc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Dp==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Ev.default.toString()],{type:"text/javascript"}),i=(0,Ev.default)(a)):i=(0,qJ.default)(a),i.then(o=>{s=!0,Tc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function XJ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var YJ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Dp=null,Nc=null,Sc={},Tc=!1,LA=!1;function JJ(e,t=!1){if(im("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Tc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Dp=e,LA=t}function QJ(e,t=!1){if(Tc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Nc=e;else{Sc=e;let n=YJ.filter(r=>Sc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}LA=t}var Mv="3.5.0",eQ=2;yl("wasm",async()=>{let{wasm:e}=await ZJ();return new Cv(e)},eQ);Z().prototype.abs=function(){return this.throwIfDisposed(),zt(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),lm(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),um(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),vd(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),Xu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),Ai(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),cm(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),M(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),H(this,[e,t,n,r])};Z().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),H(this,[e,t,n,r,a])};Z().prototype.asin=function(){return this.throwIfDisposed(),hm(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),dm(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),pm(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),fm(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),mm(this)};Z().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),Zu(this,e,t,n,r)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Yu(this,e,t)};Z().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),xi(this,e,t,n,r,a)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),xl(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),xm(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),En(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Pe&&(e=[e]),ot([this,...e],t)};Z().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Id(this,e,t,n,r,a,s)};Z().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),Sd(this,e,t,n,r,a)};Z().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),ha(this,e,t,n,r,a,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),Ju(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),Nd(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Td(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),_m(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),wl(this,e,t,n,r,a,s)};Z().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),vm(this,e,t,n,r,a)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),km(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),Ae(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),aw(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),_l(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),Ba(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),Im(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),er(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),Qt(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),Sm(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),lc(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),vl(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),_d(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),bi(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),ja(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),pr(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),Nl(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),Hd(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),iw(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),ow(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),Tm(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),ec(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),wi(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),Cd(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),Em(this,e,t,n,r)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),cw(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Fd(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Mm(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),zn(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),Rd(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),fr(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),tc(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),$d(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),fw(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ve(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),nc(this,e,t,n,r)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Rn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),Ur(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),It(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),kl(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),Il(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),$m(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),Dm(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),kt(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Kd(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),ki(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),ml(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),Ln(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),da(this,e,t)};Z().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),yw(this,e,t,n,r,a)};Z().prototype.pow=function(e){return this.throwIfDisposed(),pa(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),ac(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),Od(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),Pm(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),Hr(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),Pd(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Dw(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),Ow(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),Wn(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),uc(this)};Z().prototype.round=function(){return this.throwIfDisposed(),Lm(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),Ld(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),Wd(this)};Z().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Wm(this,e,t,n,r,a,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),Tn(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),Bm(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),Bd(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),Vd(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Re(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),oc(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),_i(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),rc(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),Lt(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),en(this)};Z().prototype.square=function(){return this.throwIfDisposed(),it(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Gd(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),Ua(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Pe?[this,e]:[this,...e];return cn(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),Tl(this,e)};Z().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),jm(this,e,t,n,r,a,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),ye(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Te(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),Um(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),gi(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),Va(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),ge(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),ge(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),ge(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),Hm(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),Je(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),Xd(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Gm(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),mr(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),Cn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),He(this)};var Fv={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Tl(ge(n,"float32"),-1))}}},tQ={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=it(ge(n,"float32")),a=en(ye(ve(1),r));return kt(Ae(e,a))}}}},nQ={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=en(ye(it(ge(n,"float32")),1));return Ae(e,r)}}}},rQ={kernelName:Ra,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=e,i=Pt(n.shape,a);return i.length>0&&(s=Te(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Pt(r.shape,a);return i.length>0&&(s=Te(s,i)),H(s,r.shape)}}}},aQ={kernelName:ps,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},sQ={kernelName:fs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},iQ={kernelName:wu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},oQ={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,en(ye(ve(1),it(ge(n,"float32")))))}}},lQ={kernelName:mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=en(se(ve(1),it(ge(n,"float32"))));return Ae(e,r)}}}},uQ={kernelName:go,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=se(it(n),it(r)),i=z(e,Ae(r,s)),o=Pt(n.shape,a);return o.length>0&&(i=Te(i,o)),H(i,n.shape)},b:()=>{let s=se(it(n),it(r)),i=kt(z(e,Ae(n,s))),o=Pt(r.shape,a);return o.length>0&&(i=Te(i,o)),H(i,r.shape)}}}},cQ={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,se(it(ge(n,"float32")),1))}}},hQ={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,ye(ve(1),it(ge(n,"float32"))))}}};function dQ(e,t,n,r,a,s){let i=R(e,"dy","avgPool3dGrad"),o=R(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&M(Ut(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:c},d={filterSize:n,strides:r,pad:a,dimRoundingMode:s},p=$.runKernel(Dh,h,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var pQ=D({avgPool3dGrad_:dQ}),fQ={kernelName:_u,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>pQ(e,r,a,s,i,o)}}};function mQ(e,t,n,r,a){let s=R(e,"dy","avgPoolGrad"),i=R(t,"input","avgPoolGrad");M(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=$.runKernel($h,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var AQ=D({avgPoolGrad_:mQ}),yQ={kernelName:ms,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>AQ(e,r,a,s,i)}}},gQ={kernelName:As,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Ve(e,a,!1,!0),b:()=>Ve(r,e,!0,!1)}:!s&&i?{a:()=>Ve(e,a,!1,!1),b:()=>Ve(e,r,!0,!1)}:s&&!i?{a:()=>Ve(a,e,!1,!0),b:()=>Ve(r,e,!1,!1)}:{a:()=>Ve(a,e,!0,!0),b:()=>Ve(e,r,!0,!0)}}},xQ={kernelName:vu,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>rc(e,r,a)}}},bQ={kernelName:Yx,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l1&&o.push(l);return{x:()=>Te(e,o,!0)}}},wQ={kernelName:ys,gradFunc:e=>({x:()=>e.clone()})},_Q={kernelName:gs,gradFunc:e=>({x:()=>He(e)})},vQ={kernelName:Ma,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>Cn(fr(ja(r,a),wi(r,s)),e,He(e))}}},kQ={kernelName:ku,inputsToSave:["x"],gradFunc:Fv.gradFunc},IQ={kernelName:xo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=hr(a,t[0].shape)[0],i=r.map(o=>o[s]);return Lt(e,i,s).map(o=>()=>o)}},SQ={kernelName:xs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return M(Wa(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>bm(r.shape,e,a,i,o,l),filter:()=>Zm(r,e,a.shape,i,o,l)}}},NQ={kernelName:bs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>ha(e,a,s,i,o,1,l),filter:()=>Zm(e,r,a.shape,s,i,o,l)}}};function TQ(e,t,n,r,a){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),M(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),M(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return $.runKernel(Lh,o,l)}var EQ=D({conv3DBackpropFilter_:TQ}),CQ={kernelName:Iu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;M(Wa(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>tw(i.shape,e,o,a,s),filter:()=>EQ(i,e,o.shape,a,s)}}},RQ={kernelName:ws,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(kt(Bd(ge(n,"float32"))),e)}}},MQ={kernelName:bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Vd(ge(n,"float32")),e)}}},FQ={kernelName:_s,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=pw([a],r.rank),l=Td(e,a,s,!i);return o!=null&&(l=Je(l,o)),l}}}},$Q={kernelName:vs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;M(Wa(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),M(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),M(Vr(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&M(Ut(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>Tw(l.shape,e,c,a,s,r,i),filter:()=>Nw(l,e,c.shape,a,s,r,i)}}},DQ={kernelName:Su,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>$.runKernel(Hh,s,n),filter:()=>$.runKernel(Gh,i,n)}}},OQ={kernelName:vo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>$.runKernel(Xh,r)}}},zQ={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=z(er(kt(it(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,r)}}},PQ={kernelName:Is,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},LQ={kernelName:So,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},WQ={kernelName:No,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,er(n))}}},BQ={kernelName:Ss,gradFunc:e=>({x:()=>He(e)})},VQ={kernelName:Ns,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Ae(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=z(e,ge(n,"float32")),i=Pt(r.shape,a);i.length>0&&(s=H(Te(s,i),r.shape));let o=it(r);return kt(Ae(s,ge(o,"float32")))}}}},jQ={kernelName:Ts,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?ve(1):o,c=Pt(s.shape,a.shape),u=[];if(s.rank===1){for(let f=0;fs.rank===1?H(z(z(e,Va(H(p,[1,1,1,s.shape[0]]),u)),l),a.shape):H(z(z(e,p),l),a.shape),mean:()=>{let f=z(z(p,ve(-1)),d);return s.rank===1&&(f=Te(f,c)),H(f,s.shape)},variance:()=>{let f=z(z(m,h),d);return s.rank===1&&(f=Te(f,c)),H(f,s.shape)},scale:()=>{let f=z(h,p),A=z(e,f);return s.rank===1&&(A=Te(A,c)),H(A,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Te(f,c)),H(f,s.shape)}}}},UQ={kernelName:Eo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=hr(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,c=o.slice(0,i),u=c.length,h=o.slice(s,o.length).slice(1),d=h.length,p=$v(0,u),m=$v(u+1,u+1+d),f=Dv([c,[l],h]),A=H(e,f),y=H(a,[l]),g=Dv([[u],p,m]),x=Je(A,g),v=Gm(x,y,r.shape[i]),b=Rm(g);return v=Je(v,b),v},indices:()=>a}}};function $v(e,t){let n=[];for(let r=e;r{let[n,r]=t;return{a:()=>He(n),b:()=>He(r)}}},GQ={kernelName:Cs,gradFunc:e=>({x:()=>ge(e,"float32")})},qQ={kernelName:Mo,gradFunc:e=>({x:()=>He(e)})},XQ={kernelName:Fo,gradFunc:e=>({x:()=>He(e)})},KQ={kernelName:$o,gradFunc:e=>({x:()=>He(e)})},ZQ={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=pr(r,0);return{x:()=>Cn(s,e,z(e,a))}}},YQ={kernelName:zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,se(n,1))}}},JQ={kernelName:Ms,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,ge(n,"float32"))}}},QQ={kernelName:Jx,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=er(r);return ye(e,z(Te(e,a,s),i))}}}};function eee(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return $.runKernel(Qh,o,l)}var tee=D({localResponseNormalizationBackprop_:eee}),nee={kernelName:Cu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>tee(r,a,e,s,i,o,l)}}};function Ov(e,t,n,r){return t.rankz(e,ge(Ba(n,t),e.dtype))}}var zv={kernelName:Fs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=hr(a,s.shape),l=Ov(e,i,s,o);return{x:()=>l.x()}}},ree={kernelName:$s,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>z(e,ge(ja(n,r),"float32")),b:()=>z(e,ge(Cd(n,r),"float32"))}}};function aee(e,t,n,r,a,s,i){let o=R(e,"dy","maxPool3dGrad"),l=R(t,"input","maxPool3dGrad"),c=R(n,"output","maxPool3dGrad"),u=o,h=l,d=c,p=!1;l.rank===4&&(p=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=H(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),M(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),M(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&M(Ut(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:u,input:h,output:d},f={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=$.runKernel(td,m,f);return p?H(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var see=D({maxPool3dGrad_:aee}),iee={kernelName:Ru,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>see(e,r,a,s,i,o,l)}}};function oee(e,t,n,r,a,s,i){let o=R(e,"dy","maxPoolGrad"),l=R(t,"input","maxPoolGrad"),c=R(n,"output","maxPoolGrad");M(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),M(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&M(Ut(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return $.runKernel(ed,u,h)}var lee=D({maxPoolGrad_:oee}),uee={kernelName:Ds,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>lee(e,r,a,s,i,o)}}},cee={kernelName:Os,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=hr(a,r.shape),i=dw(r.shape,s)[1],o=Et(i);return{x:()=>{let l=r.shape.slice();s.forEach(u=>{l[u]=1});let c=H(e,l);return Ae(z(c,Pn(r.shape,"float32")),o)}}}},hee={kernelName:zs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=hr(a,s.shape),l=Ov(e,i,s,o);return{x:()=>l.x()}}},dee={kernelName:Ps,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>z(e,ge(wi(n,r),"float32")),b:()=>z(e,ge(pr(n,r),"float32"))}}},pee={kernelName:Ls,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Re(e,s,r.shape)}}},fee={kernelName:Lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Pt(n.shape,a);return s.length>0?H(Te(e,s),n.shape):e},b:()=>{let s=z(e,kt(vl(Ae(n,r)))),i=Pt(r.shape,a);return i.length>0?H(Te(s,i),r.shape):s}}}},mee={kernelName:Ws,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=z(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=z(e,ge(n,"float32")),i=Pt(r.shape,a);return i.length>0?H(Te(s,i),r.shape):s}}}},Aee={kernelName:Wo,gradFunc:e=>({x:()=>kt(e)})},yee={kernelName:Bs,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Rt(n.shape,"float32")}}},gee={kernelName:Ho,gradFunc:e=>({x:()=>He(e)})},xee={kernelName:Go,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return mr(e,r).map(a=>()=>a)}},Pv={kernelName:Vs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Re(e,s,r.shape)}}},bee={kernelName:js,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=ft(s.shape,i.shape);return{a:()=>{let l=ge(i,"float32"),c=z(e,z(l,pa(s,ye(l,ve(1))))),u=Pt(s.shape,o);return u.length>0&&(c=Te(c,u)),H(c,s.shape)},b:()=>{let l=pr(s,0),c=Cn(l,zn(s),He(s)),u=z(e,z(a,c)),h=Pt(i.shape,o);return h.length>0&&(u=Te(u,h)),H(u,i.shape)}}}},wee={kernelName:Us,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=pr(n,0);return{x:()=>Cn(a,e,z(e,r)),alpha:()=>{let s=Cn(a,He(e),z(e,n)),i=Pt(r.shape,e.shape);return i.length>0&&(s=Te(s,i)),H(s,r.shape)}}}},_ee={kernelName:ks,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Ae(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=z(e,ge(n,"float32")),i=Pt(r.shape,a);i.length>0&&(s=H(Te(s,i),r.shape));let o=it(r);return kt(Ae(s,ge(o,"float32")))}}}},vee={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,kt(it(n)))}}},kee={kernelName:qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=z(wi(n,6),Tl(n));return{x:()=>z(e,ge(r,"float32"))}}},Iee={kernelName:Hs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ge(Tl(n),"float32"))}}},See={kernelName:Ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},Nee={kernelName:Gs,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(id,a,n)}}},Tee={kernelName:Fu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(sd,a,n)}}},Eee={kernelName:Xs,gradFunc:(e,t,n)=>{let{dims:r}=n,a=hr(r,e.shape);return{x:()=>Wn(e,a)}}},Cee={kernelName:Ks,gradFunc:e=>({x:()=>He(e)})},Ree={kernelName:Zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>kt(Ae(e,z(pa(n,1.5),2)))}}},Mee={kernelName:Yo,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ge(He(n),"float32"),t:()=>z(e,ge(n,e.dtype)),e:()=>z(e,ge(tc(n),e.dtype))}}},Fee={kernelName:Jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=pr(n,ve(0)),a=ve(Ww),s=ve(Bw),i=z(e,s),o=z(z(e,a),er(ge(n,"float32")));return Cn(r,i,o)}}}},$ee={kernelName:Js,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,ye(ve(1),n)))}}},Dee={kernelName:tl,gradFunc:e=>({x:()=>He(e)})},Oee={kernelName:Ys,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Ju(ge(n,"float32")),e)}}},zee={kernelName:el,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Nd(ge(n,"float32")),e)}}},Pee={kernelName:Qo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=zb(r,a,s),c=[];for(let u=0;uda(e,c)}}},Lee={kernelName:ti,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=z(e,r);return{logits:()=>ye(i,z(Te(i,[a],s),r))}}},Wee={kernelName:nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Tn(n))}}},Lv={kernelName:$u,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>Yu(e,r,a)}}},Wv={kernelName:rl,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>ot(e,r)}}},Bee={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,z(en(ge(n,"float32")),2))}}},Vee={kernelName:Du,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(ge(n,"float32"),2))}}},jee={kernelName:ni,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ve(2);return{a:()=>z(e,z(a,ye(n,r))),b:()=>z(e,z(a,ye(r,n)))}}},Uee={kernelName:$a,gradFunc:e=>({x:()=>He(e)})},Hee={kernelName:ri,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=e,i=Pt(n.shape,a);return i.length>0&&(s=Te(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Pt(r.shape,a);return i.length>0&&(s=Te(s,i)),H(kt(s),r.shape)}}}},Gee={kernelName:ei,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;hr(s,r.shape).forEach(l=>{a[l]=1});let i=H(e,a),o=z(i,Pn(r.shape,"float32"));return{x:()=>o}}},qee={kernelName:ai,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,it(Ju(n)))}}},Xee={kernelName:si,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(ye(ve(1),it(n)),e)}}},Kee={kernelName:Fa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=He(r);if(r.rank===1)for(let i=0;i{let r=n,{perm:a}=r,s=Rm(a);return{x:()=>Je(e,s)}}},Yee={kernelName:il,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>cn(e,a)}}},Qee={kernelName:Ou,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Jee(e,n)}}};function Jee(e,t){let n=Ur(t,He(t)),r=bi(e,n),a=ja(t,ve(0,"int32")),s=r.rank-a.rank;for(let o=0;o({x:()=>He(e)})},tte=[Fv,tQ,nQ,rQ,aQ,sQ,iQ,oQ,lQ,uQ,cQ,hQ,fQ,yQ,gQ,xQ,bQ,wQ,_Q,vQ,kQ,IQ,NQ,SQ,CQ,RQ,MQ,FQ,$Q,DQ,_ee,OQ,zQ,PQ,LQ,WQ,VQ,BQ,jQ,UQ,HQ,GQ,qQ,XQ,KQ,ZQ,YQ,JQ,QQ,nee,zv,zv,ree,iee,uee,cee,hee,dee,pee,fee,mee,Aee,yee,gee,xee,Pv,Pv,bee,wee,vee,kee,Iee,See,Nee,Tee,Eee,Cee,Ree,Mee,Fee,$ee,Dee,Oee,zee,Pee,Lee,Wee,Lv,Lv,Wv,Wv,Bee,jee,Vee,Uee,Hee,Gee,qee,Xee,Kee,Zee,Yee,Qee,ete];for(let e of tte)Qx(e);var Bv={};Me(Bv,{maxNorm:()=>nte,minMaxNorm:()=>ste,nonNeg:()=>ate,unitNorm:()=>rte});var WA;function Wt(){return WA==null&&(WA=Ub().epsilon()),WA}function Er(){return"channelsLast"}var ya=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ya.prototype)}},Cr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Cr.prototype)}},B=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,B.prototype)}},De=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,De.prototype)}},Vv=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Vv.prototype)}};function Di(e,t){if(Array.isArray(e)){let n=[];for(let r=0;rn.toUpperCase())}var Ar={};function BA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function VA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>VA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:VA(r))}}}function Ec(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in Ar)i=Ar[s];else if(i=t[s],i==null)throw new B(`Unknown ${r}: ${e}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new B(`${r}: Improper config format: ${JSON.stringify(s)}. 'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in Ar?[o,l]=Ar.className:i in t&&([o,l]=t[i]),o==null)throw new B(`Unknown ${r}: ${i}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. -2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let p of Object.keys(Ar))c[p]=Ar[p];for(let p of Object.keys(n))c[p]=n[p];let u=s.config;u.customObjects=c;let h=Object.assign({},Ar);for(let p of Object.keys(n))Ar[p]=n[p];UA(s.config);let d=l(o,s.config,n,a);return Ar=Object.assign({},h),d}else{let c=Object.assign({},Ar);for(let h of Object.keys(n))Ar[h]=n[h];let u=new o(s.config);return Ar=Object.assign({},c),u}}}function mte(e,t){return et?1:0}function zp(e,t){return-1*mte(e,t)}function Ka(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function Ate(e){if(e==null)throw new B(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Oi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new B(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function HA(e,t,n=0,r=Infinity){return Xr(n>=0),Xr(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function qt(e,t){Array.isArray(e)?(_.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>qt(n,`element ${r+1} of ${t}`))):_.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Kv(e)}.`)}function Kv(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Kv(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function yte(e,t){let n=_.now(),r;return(...a)=>{let s=_.now();return s-nen(Te(P(e,e),t,!0)))}var Mc=class extends re.Serializable{getConfig(){return{}}},qA=class extends Mc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return z(()=>{let t=GA(e,this.axis),n=En(t,0,this.maxValue);return P(e,Ae(n,se(Wt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};qA.className="MaxNorm";re.registerClass(qA);var XA=class extends Mc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return z(()=>Ae(e,se(Wt(),GA(e,this.axis))))}getConfig(){return{axis:this.axis}}};XA.className="UnitNorm";re.registerClass(XA);var KA=class extends Mc{apply(e){return Ur(e)}};KA.className="NonNeg";re.registerClass(KA);var ZA=class extends Mc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return z(()=>{let t=GA(e,this.axis),n=se(P(this.rate,En(t,this.minValue,this.maxValue)),P(1-this.rate,t));return P(e,Ae(n,se(Wt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};ZA.className="MinMaxNorm";re.registerClass(ZA);var Yv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Bt(e){return jA(e)}function Jv(e,t={}){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Vt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Yv?Yv[e]:e,config:{}};return Jv(t)}else return e instanceof Mc?e:Jv(e)}function hte(e){return new qA(e)}function dte(e){return new XA(e)}function pte(){return new KA}function fte(e){return new ZA(e)}var Qv={};Me(Qv,{constant:()=>wte,glorotNormal:()=>Nte,glorotUniform:()=>Ste,heNormal:()=>Tte,heUniform:()=>Ete,identity:()=>kte,leCunNormal:()=>Cte,leCunUniform:()=>Rte,ones:()=>xte,orthogonal:()=>Mte,randomNormal:()=>_te,randomUniform:()=>bte,truncatedNormal:()=>vte,varianceScaling:()=>Ite,zeros:()=>gte});var Fte=["channelsFirst","channelsLast"],$te=["nearest","bilinear"],Dte=["valid","same","causal"],Ote=["max","avg"],zte=["sum","mul","concat","ave"],Hl=new Map;function Ct(e){Oi(Fte,"DataFormat",e)}function Pte(e){Oi($te,"InterpolationFormat",e)}function sr(e){Oi(Dte,"PaddingMode",e)}function e6(e){Oi(Ote,"PoolMode",e)}var Fc=[],t6="/";function zi(e,t){Fc.push(e);try{let n=t();return Fc.pop(),n}catch(n){throw Fc.pop(),n}}function Lte(){return Fc.length===0?"":Fc.join(t6)+t6}function r6(e){if(!n6(e))throw new Error("Not a valid tensor name: '"+e+"'");return Lte()+e}function a6(e){if(!n6(e))throw new Error("Not a valid tensor name: '"+e+"'");Hl.has(e)||Hl.set(e,0);let t=Hl.get(e);if(Hl.set(e,Hl.get(e)+1),t>0){let n=`${e}_${t}`;return Hl.set(n,1),n}else return e}var Wte=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function n6(e){return!!e.match(Wte)}function Bte(e){return e===parseInt(e.toString(),10)}function Za(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a{if(e.shape.length!==2)throw new B(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Dc(e,1);return YA(n,[1,t,1])})}function jte(e){let t=[Za(e.shape)];return e.reshape(t)}function Ute(e){if(e.rank<=1)throw new B(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Za(e.shape,1)];return e.reshape(t)}function Pi(e,t,n){return z(()=>{switch(e.rank){case 1:return Ud(e,t,n);case 2:return Um(e,[t,0],[n,e.shape[1]]);case 3:return Hd(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return lc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new B(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function JA(e,t,n){return z(()=>{switch(e.rank){case 1:return Ud(e,t,n);case 2:return Um(e,[0,t],[e.shape[0],n]);case 3:return Hd(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return lc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Pp(e,t,n,r){return z(()=>{switch(e.rank){case 1:return Ud(e,t,n);case 2:switch(r){case 1:return Pi(e,t,n);case 2:return JA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return Pi(e,t,n);case 2:return Hd(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return JA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return Pi(e,t,n);case 2:return lc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return lc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return JA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function QA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),rt(e,t)}function i6(e,t){switch(e.rank){case 1:return rb([e,t]);case 2:return wl([e,t],0);case 3:return ab([e,t],0);case 4:return sb([e,t],0);default:throw new B(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function YA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new B(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ba(e,t)}function Lp(e,t=0,n=1,r,a){return vb(e,t,n,r,a)}function Kr(e,t,n,r){if(e.rank<2||t.rank<2)throw new De(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new De(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return Ua.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?ey(e.rank,r,Tr()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=t.transpose(u).reshape([l,-1]);let h=[...a,...c],d=!1,p=!1;return Ua.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?ey(e.rank,r,Tr()):null,activation:n}).reshape(h)}}function o6(e,t,n){return z(()=>(Array.isArray(t)?t=sn(t,"int32"):t=t.toInt(),xi(e,t,n)))}function Oc(e){return P(e,e)}function ey(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new B(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new B(`Unsupported input rank by biasAdd: ${t.rank}`)}function Rr(e,t,n){return z(()=>(n==null&&(n=Tr()),Ct(n),e.add(ey(e.rank,t,n))))}function Hte(e,t=1){if(t!==1)throw new De(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return _l(e)}function Gte(e){return z(()=>Ae(e,zt(e).add(1)))}function l6(e,t,n,r){return z(()=>Cb(e,t,n,r))}function qte(e){return z(()=>{let t=se(.5,P(.2,e));return En(t,0,1)})}function zc(e,t,n=!1){return n?e():t()}var Xte=["fanIn","fanOut","fanAvg"],Kte=["normal","uniform","truncatedNormal"];function Zte(e){Oi(Xte,"FanMode",e)}function Yte(e){Oi(Kte,"Distribution",e)}var yr=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},ty=class extends yr{apply(e,t){return Rt(e,t)}};ty.className="Zeros";re.registerClass(ty);var Wp=class extends yr{apply(e,t){return Pn(e,t)}};Wp.className="Ones";re.registerClass(Wp);var ny=class extends yr{constructor(e){super();if(typeof e!="object")throw new B(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new B(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return z(()=>P(xe(this.value),Pn(e,t)))}getConfig(){return{value:this.value}}};ny.className="Constant";re.registerClass(ny);var ry=class extends yr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Sl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};ry.className="RandomUniform";re.registerClass(ry);var ay=class extends yr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`randomNormal does not support dType ${t}.`);return Lp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ay.className="RandomNormal";re.registerClass(ay);var sy=class extends yr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`truncatedNormal does not support dType ${t}.`);return Xd(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};sy.className="TruncatedNormal";re.registerClass(sy);var iy=class extends yr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return z(()=>{if(e.length!==2||e[0]!==e[1])throw new B("Identity matrix initializer can only be used for 2D square matrices.");return P(this.gain,Em(e[0]))})}getConfig(){return{gain:this.gain}}};iy.className="Identity";re.registerClass(iy);function Jte(e,t="channelsLast"){let n,r;if(Ct(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Za(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Za(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Za(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var $n=class extends yr{constructor(e){super();if(e.scale<0)throw new B(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Zte(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Yte(this.distribution),this.seed=e.seed}apply(e,t){let n=Jte(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`${this.getClassName()} does not support dType ${t}.`);return Xd(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Sl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};$n.className="VarianceScaling";re.registerClass($n);var Bp=class extends $n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Bp.className="GlorotUniform";re.registerClass(Bp);var Vp=class extends $n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Vp.className="GlorotNormal";re.registerClass(Vp);var jp=class extends $n{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};jp.className="HeNormal";re.registerClass(jp);var Up=class extends $n{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Up.className="HeUniform";re.registerClass(Up);var Hp=class extends $n{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Hp.className="LeCunNormal";re.registerClass(Hp);var Gp=class extends $n{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Gp.className="LeCunNormal";re.registerClass(Gp);var oy=class extends yr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new De("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return z(()=>{if(e.length<2)throw new De("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=Lp(n,0,1,"float32"),a=jb.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),P(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};oy.className="Orthogonal";re.registerClass(oy);var u6={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function c6(e,t={}){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function St(e){return jA(e)}function gt(e){if(typeof e=="string"){let t=e in u6?u6[e]:e;if(t==="GlorotNormal")return new Vp;if(t==="GlorotUniform")return new Bp;if(t==="HeNormal")return new jp;if(t==="HeUniform")return new Up;if(t==="LeCunNormal")return new Hp;if(t==="LeCunUniform")return new Gp;{let n={};return n.className=t,n.config={},c6(n)}}else return e instanceof yr?e:c6(e)}function gte(){return new ty}function xte(){return new Wp}function wte(e){return new ny(e)}function bte(e){return new ry(e)}function _te(e){return new ay(e)}function vte(e){return new sy(e)}function kte(e){return new iy(e)}function Ite(e){return new $n(e)}function Ste(e){return new Bp(e)}function Nte(e){return new Vp(e)}function Tte(e){return new jp(e)}function Ete(e){return new Up(e)}function Cte(e){return new Hp(e)}function Rte(e){return new Gp(e)}function Mte(e){return new oy(e)}var h6={};Me(h6,{Layer:()=>qe,RNN:()=>Zr,RNNCell:()=>Pc,activation:()=>mne,add:()=>kne,alphaDropout:()=>ore,average:()=>Ine,averagePooling1d:()=>ly,averagePooling2d:()=>uy,averagePooling3d:()=>cy,avgPool1d:()=>$ne,avgPool2d:()=>One,avgPool3d:()=>Pne,avgPooling1d:()=>Dne,avgPooling2d:()=>zne,avgPooling3d:()=>Lne,batchNormalization:()=>Rne,bidirectional:()=>Qne,concatenate:()=>Sne,conv1d:()=>ine,conv2d:()=>one,conv2dTranspose:()=>lne,conv3d:()=>une,conv3dTranspose:()=>cne,convLstm2d:()=>Kne,convLstm2dCell:()=>Zne,cropping2D:()=>dne,dense:()=>Ane,depthwiseConv2d:()=>fne,dot:()=>Cne,dropout:()=>yne,elu:()=>ene,embedding:()=>vne,flatten:()=>xne,gaussianDropout:()=>ire,gaussianNoise:()=>sre,globalAveragePooling1d:()=>Wne,globalAveragePooling2d:()=>Bne,globalMaxPool1d:()=>tre,globalMaxPool2d:()=>nre,globalMaxPooling1d:()=>p6,globalMaxPooling2d:()=>f6,gru:()=>jne,gruCell:()=>Une,input:()=>d6,inputLayer:()=>Qte,layerNormalization:()=>Mne,leakyReLU:()=>nne,lstm:()=>Hne,lstmCell:()=>Gne,masking:()=>lre,maxPool1d:()=>rre,maxPool2d:()=>are,maxPooling1d:()=>m6,maxPooling2d:()=>A6,maxPooling3d:()=>Vne,maximum:()=>Nne,minimum:()=>Tne,multiply:()=>Ene,permute:()=>_ne,prelu:()=>rne,reLU:()=>tne,repeatVector:()=>wne,reshape:()=>bne,rnn:()=>Yne,separableConv2d:()=>hne,simpleRNN:()=>qne,simpleRNNCell:()=>Xne,softmax:()=>ane,spatialDropout1d:()=>gne,stackedRNNCells:()=>Jne,thresholdedReLU:()=>sne,timeDistributed:()=>ere,upSampling2d:()=>pne,zeroPadding2d:()=>Fne});var ure=0;function y6(){return ure++}var qp={};function Xp(e=""){return e in qp||(qp[e]=0),qp[e]+=1,e+qp[e].toString()}function hy(e){return Array.isArray(e)&&Array.isArray(e[0])}function Kp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new B(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function st(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new B(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Zp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var g6="Variable",x6=class{constructor(e,t="float32",n=g6,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=y6(),n=n==null?g6:n,this.originalName=r6(n),this.name=a6(this.originalName),this.trainable_=r,this.constraint=a,this.val=Ib(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),cre(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function cre(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function dy(e){return e.map(t=>t.read())}function py(e){e.forEach(t=>{t[0].write(t[1])})}var Ft=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Mr=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=y6(),s!=null&&(this.originalName=r6(s),this.name=a6(this.originalName)),this.rank=t.length}},hre=0,Yp=class{constructor(e,t){this.callArgs=t,this.id=hre++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},dre=0,qe=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=dre++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ya(n)+"_"+Xp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Er(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new B(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Fn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Fn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Aa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Aa(`Layer ${this.name} is not connected, no input to return.`);return Fn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Aa(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Aa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Fn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=At(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=At(this.inputSpec);if(e.length!==t.length)throw new B(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;na.maxNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of At(e))s.push(i.shape);this.build(Fn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=At(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Fn(o),this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=pre(e),i=this.computeOutputShape(s),o,l=fre(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new Mr(l,c,this,At(e),t,this.name,u)):o=new Mr(l,i,this,At(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Aa(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Aa(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Er(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Zp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return dy(e?this.trainableWeights:this.weights)}setWeights(e){z(()=>{let t=this.weights;if(t.length!==e.length)throw new B(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=dy(t);for(let a=0;aa.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=At(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=At(e);t=At(t),n=At(n),r=At(r),a=Kp(a),s=Kp(s);let l=[],c=[],u=[];for(let h of o)l.push(h.sourceLayer),c.push(h.nodeIndex),u.push(h.tensorIndex);new Yp({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;he.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function pre(e){e=At(e);let t=[];for(let n of e)t.push(n.shape);return Fn(t)}function fre(e){return"float32"}function w6(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s0){let a=await Promise.all(t);for(let s=0;sse(this.totals[r],P(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:z(()=>{let r=P(Ae(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Ht(t[n])}))}},I6=class extends Xl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;inew S6(n,t))}var gr=class{constructor(){}static registerCallbackConstructor(e,t){_.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),gr.checkForDuplicate(t),gr.constructors[e]==null&&(gr.constructors[e]=[]),gr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in gr.constructors)gr.constructors[+t].forEach(n=>{if(n===e)throw new B("Duplicate callback constructor.")})}static clear(){gr.constructors={}}static createCallbacks(e){let t=[];for(let n in gr.constructors){let r=+n;e>=r&&t.push(...gr.constructors[r])}return t.map(n=>new n)}};gr.constructors={};function T6(e,t,n,r,a,s,i,o,l){let c=new I6,u=[new Are,...gr.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let h=new k6(u);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:c}}function Fr(e,t={},n=!1){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Jp(e,t){return z(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Te(Oc(e),t,!0),r=tc(n.shape,Wt()),a=en(jr(n,r));return Ae(e,a)})}function Li(e,t){return z(()=>It(Oc(ye(t,e)),-1))}function Qp(e,t){return z(()=>It(zt(ye(t,e)),-1))}function Kl(e,t){return z(()=>{let n=ye(e,t),r=En(zt(e),Wt(),Number.MAX_VALUE),a=zt(Ae(n,r));return P(100,It(a,-1))})}function yre(e,t){return z(()=>{let n=En(t,Wt(),Number.MAX_VALUE),r=zn(se(1,n)),a=En(e,Wt(),Number.MAX_VALUE),s=zn(se(1,a));return It(Oc(ye(r,s)),-1)})}function gre(e,t){return z(()=>{let n=jr(0,ye(1,P(e,t)));return It(Oc(n),-1)})}function xre(e,t){return z(()=>{let n=jr(0,ye(1,P(e,t)));return It(n,-1)})}function wre(e,t){return z(()=>{let n=Te(P(e,t),-1),r=Rn(P(ye(1,e),t),-1);return jr(0,se(1,ye(r,n)))})}function bre(e,t){return z(()=>{let n=Math.log(2),r=ye(t,e),a=ye(se(r,bi(P(-2,r))),n);return It(a,-1)})}function Lc(e,t,n=!1){return z(()=>{if(n)t=uc(t);else{let r=Te(t,t.shape.length-1,!0);t=Ae(t,r)}return t=En(t,Wt(),1-Wt()),kt(Te(P(e.toFloat(),zn(t)),t.shape.length-1))})}function e0(e,t,n=!1){return z(()=>{let r=vl(jte(e)).toInt();t=En(t,Wt(),1-Wt());let a=t.shape,s=ml(r,a[a.length-1]).reshape(a);return Lc(s,t,n)})}function _re(e,t){if(!_.arraysEqual(e.shape,t.shape))throw new B(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return z(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function t0(e,t){return z(()=>{let n;return n=En(t,Wt(),1-Wt()),n=zn(Ae(n,ye(1,n))),It(_re(e,n),-1)})}function vre(e,t){return z(()=>{let n=En(e,Wt(),1),r=En(t,Wt(),1);return Te(P(e,zn(Ae(n,r))),-1)})}function kre(e,t){return z(()=>{let n=zn(se(Wt(),t));return It(ye(t,P(e,n)),-1)})}function fy(e,t){return z(()=>{let n=Jp(e,-1),r=Jp(t,-1),a=P(n,r);return kt(Te(a,-1))})}var n0={meanSquaredError:Li,meanAbsoluteError:Qp,meanAbsolutePercentageError:Kl,meanSquaredLogarithmicError:yre,squaredHinge:gre,hinge:xre,categoricalHinge:wre,logcosh:bre,categoricalCrossentropy:Lc,sparseCategoricalCrossentropy:e0,binaryCrossentropy:t0,kullbackLeiblerDivergence:vre,poisson:kre,cosineProximity:fy};function my(e){if(typeof e=="string"){if(e in n0)return n0[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new B(t)}else return e}function Ay(e,t){return z(()=>{let n=P(.5,Ln(t)),r=$c(pr(t,n),e.dtype);return It(Wa(e,r),-1)})}function yy(e,t){return z(()=>$c(Wa(mi(e,-1),mi(t,-1)),"float32"))}function E6(e,t){return z(()=>fr(e.equal(1),t.equal(1)).sum().cast("float32"))}function Ire(e,t){return z(()=>fr(e.equal(1),t.equal(0)).sum().cast("float32"))}function Sre(e,t){return z(()=>fr(e.equal(0),t.equal(1)).sum().cast("float32"))}function C6(e,t){return z(()=>{let n=E6(e,t),r=Sre(e,t),a=n.add(r);return Cn(pr(a,0),n.div(a),0).cast("float32")})}function Nre(e,t){return z(()=>{let n=E6(e,t),r=Ire(e,t),a=n.add(r);return Cn(pr(a,0),n.div(a),0).cast("float32")})}function R6(e,t){return t0(e,t)}function M6(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Wa(e,t).asType("float32")}var Tre=Li,Ere=Li,Cre=Qp,Rre=Qp,Mre=Kl,Fre=Kl,gy=Lc,$re=fy,F6=e0,r0={binaryAccuracy:Ay,categoricalAccuracy:yy,precision:C6,categoricalCrossentropy:gy,sparseCategoricalCrossentropy:F6,mse:Tre,MSE:Ere,mae:Cre,MAE:Rre,mape:Mre,MAPE:Fre,cosine:$re};function Dre(e){if(typeof e=="string"&&e in r0)return r0[e];if(typeof e!="string"&&e!=null)return e;throw new B(`Unknown metric ${e}`)}function a0(e){if(Xr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(n0))if(n0[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(r0))if(r0[n]===e){t=n;break}return t!==void 0?t:e.name}}function Ore(e){let t={Adagrad:()=>Ii.adagrad(.01),Adadelta:()=>Ii.adadelta(1,.95,Wt()),Adam:()=>Ii.adam(.001,.9,.999,Wt()),Adamax:()=>Ii.adamax(.002,.9,.999,Wt(),0),RMSProp:()=>Ii.rmsprop(.001,.9,0,Wt()),SGD:()=>Ii.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new B(`Unknown Optimizer ${e}`)}var $6=1*1024*1024;function D6(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!xy(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>$6&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${$6}.`)}}function xy(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!xy(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!xy(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Bre(e,t,n,r=console.log){let a=Pre(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!a){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}r("_".repeat(t)),s0(s,n,r),r("=".repeat(t));let o=e.layers;for(let u=0;u1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function s0(e,t,n=console.log){let r="";for(let a=0;a0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function Lre(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];s0(i,t,n)}function Wre(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(u){a="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let h=0;hf.name),l=[],c=t.names();for(let f of o)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),h,d;if(_y[u]==null){let f=jre(i,t);h=f.sorted,d=f.recipientCounts,_y[u]=h,z6[u]=d}h=_y[u],d={},a||Object.assign(d,z6[u]);let p=new Wi(t);for(let f=0;fr.maxNumTensors&&(r.maxNumTensors=C),C0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=P6(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=P6(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(c=>r[l].add(c))}}return{sorted:n,recipientCounts:Hre(r)}}function Hre(e){let t={};for(let n in e)t[n]=e[n].size;return t}function P6(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)a[c.name]==null&&(a[c.name]=new Set),a[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:r,recipientMap:a}}function Ure(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;ry.name)}`);Ka(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let g=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;Xr(x===0,"input layer has >1 nodes"),Xr(v===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;yy.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,x,v,w,b)=>{(v==null||w==null||b==null)&&(v=y.sourceLayer,w=y.nodeIndex,b=y.tensorIndex);let k=v.inboundNodes[w];if(x.indexOf(k)!==-1)throw new Er(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(g.indexOf(k)!==-1)return;this.containerNodes.add(Yr.nodeKey(v,w)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(k)===-1&&x.push(k);let N=k.inboundLayers.length;for(let C=0;C=0;)x.splice(x.indexOf(k),1);i.push(k)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],x=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,x),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let v=0;vparseInt(y,10)).sort(zp);this.layers=[];for(let y of p){let g=d[y];g.sort((x,v)=>{let w=s[x.id],b=s[v.id];return wb?1:0});for(let x of g)x instanceof Yr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(zp);let f=this.inputs.slice(),m=[];for(let y of p)for(let g of h[y]){let x=g.outboundLayer;if(x!=null){for(let v of g.inputTensors)if(f.indexOf(v)===-1)throw new Er(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let v of g.outputTensors)f.push(v);m.push(x.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(x=>x===y).length;if(g!==1)throw new Er(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Yp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new B("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new B(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new B(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new B(`${s.length} of ${r} weights are not set: ${s}`)}py(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${by}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=wy(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return z(()=>{e=At(e);let n=new Wi;for(let r=0;r{e=At(e);let n;return t==null?n=$i(null,e.length):n=At(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Kp(e);if(t.length!==this.inputLayers.length)throw new B(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;iparseInt(i,10)).sort(zp);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;fparseInt(o,10)).sort(zp);for(let o of r){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,h=c.inputTensors,d=c.outputTensors,p=new Array;for(let f of h)f.id in n&&p.push(n[f.id]);if(p.length===h.length){let f={},m,A,y,g;if(c.callArgs!=null&&(f=c.callArgs),p.length===1){let[x,v]=p[0];f.mask==null&&(f.mask=v),y=At(u.call(x,f)),g=At(u.computeMask(x,v)),m=[x],A=[v]}else m=p.map(x=>x[0]),A=p.map(x=>x[1]),f.mask==null&&(f.mask=A),y=At(u.call(m,f)),g=At(u.computeMask(m,A));if(u.activityRegularizer)throw new De("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x{let e=[];for(let t of this.layers)for(let n=0;n0){let f=[];for(let m=0;m0&&m.apply(Fn(y),g)}function l(m){let A=m.name,y=Fr(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,m.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new B(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!Ate(s);)for(let m of u){let A=a[m.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let m of p){let A=m[0],y=m[1],g=m[2];Xr(A in a);let x=a[A].inboundNodes[y].outputTensors;h.push(x[g])}let f=t.outputLayers;for(let m of f){let A=m[0],y=m[1],g=m[2];Xr(A in a);let x=a[A].inboundNodes[y].outputTensors;d.push(x[g])}return new e({inputs:h,outputs:d,name:c})}get stateful(){if(this._stateful)throw new B("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){z(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Gre(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function L6(e,t){return Gre(e,t,"classWeight")}async function W6(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=z(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());_e(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),sn(i,"float32")}else return null}function qre(e,t){return P(e,t)}var Xre=32;function V6(e,t){let n,r,a=t;n=a.xs,r=a.ys,_.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=B6("input",e.inputNames,n),i=B6("output",e.outputNames,r),o=s[0].shape[0];_.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),_.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function B6(e,t,n){if(n instanceof Pe)return[n];if(Array.isArray(n))return _.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new B(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function Kre(e){if(e.length===3)throw new De("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Yre(e,t,n){let r=n.batchesPerEpoch!=null;if(_.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),_.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),_.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),_.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),_.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(j6(n.validationData))_.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=Kre(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;a?c=l.slice().concat(l.map(A=>"val_"+A)):c=l.slice();let u=N6(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=T6(u,h,n.epochs,null,null,Zre(t,n),null,a,c);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f=n.batchesPerEpoch:x.done){if(a){let v;j6(n.validationData)?v=At(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=At(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?Xre:n.validationBatchSize,verbose:0}));for(let w=0;w0)throw new De("Verbose mode is not implemented yet.");_.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=Jre(t)?t:await t.iterator(),o=0,l=0;for(;r?l{if(c.value){let{xs:u,ys:h}=V6(e,c.value),d=u.concat(h),p=z(()=>a(d));if(_e(d),l===0)for(let m=0;mse(s[m],P(f,A))),l>0&&_e(y)}_e(p),o+=f,++l}return s}),c.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Vc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>Pi(r,t,n-t)):Pi(e,t,n-t)}function ky(e,t){return z(()=>e==null?null:Array.isArray(e)?e.map(n=>ky(n,t)):o6(e,t.dtype==="int32"?t:t.toInt()))}function Iy(e,t){let n=[],r=0,a=null;for(;r=e&&(a=e),n.push([r,a]),r=a;return n}async function eae(e,t,n,r,a,s,i,o,l,c,u,h,d,p,f){a==null&&(a=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,p==null))throw new B("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=Cr(0,A)),i==null&&(i=1);let{callbackList:g,history:x}=T6(o,i,s,d,A,p,a,m,h);g.setModel(e),e.history=x,await g.onTrainBegin(),e.stopTraining_=!1;for(let v=d;v{let F=k[N][0],O=k[N][1],L=Pi(b,F,O-F);C.batch=N,C.size=O-F;let V=ky(n,L),j=t(V);for(let U=0;U0){if(f=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new De("validationData including sample weights is not supported yet."):new B(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let b=!0,k=await e.standardizeUserData(i,o,null,null,b,h);l=k[0],c=k[1],m=l.concat(c)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){f=!0;let b=Math.floor(a[0].shape[0]*(1-r.validationSplit)),k=a[0].shape[0];l=Vc(a,b,k),a=Vc(a,0,b),c=Vc(s,b,k),s=Vc(s,0,b),m=l.concat(c)}else r.validationSteps!=null&&(f=!0);let A=a.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),x,v;f?(e.makeTestFunction(),x=e.testFunction,v=g.slice().concat(g.map(b=>"val_"+b))):(x=null,m=[],v=g.slice());let w=N6(r.callbacks,r.yieldEvery);return await eae(e,y,A,g,h,r.epochs,r.verbose,w,x,m,r.shuffle,v,r.initialEpoch,null,null)}finally{e.isTraining=!1,Bi(a,t),Bi(s,n),Bi(l,i),Bi(c,o),u!=null&&_e(u)}}function U6(e){let t=[];e instanceof Pe&&(e=[e]);for(let n=0;nn.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof Pe)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function nae(e){return e instanceof Pe}function Sy(e){return Array.isArray(e)}function H6(e){return!nae(e)&&!Sy(e)}function G6(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Sy(e)&&e.length>0)i=!0;else if(H6(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new B(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(H6(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new B(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Sy(e)){if(e=e,e.length!==t.length)throw new B(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new B(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=U6(s),n!=null)for(let i=0;i=0&&c!==u)throw new B(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function rae(e,t,n){let r=Ka(e.map(s=>s.shape[0]));r.sort();let a=Ka(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new B(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new B(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!_.arraysEqual(r,a))throw new B(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function aae(e,t,n){let r=[Li,t0,Lc];for(let a=0;a1)throw new B(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var iae="layers-model",ga=class extends Yr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new B("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Bre(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Ore(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof fa))throw new B("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new B(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(my(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new B(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>my(s))}else{let s=my(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s{for(let s=0;s1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=sae(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};zi("metric",()=>{for(let s=0;s{let l="",c,u,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let f=this.internalOutputShapes[s];f[f.length-1]===1||this.lossFunctions[s]===t0?["accuracy","acc"].indexOf(d)!==-1?u=Ay:["crossentropy","ce"].indexOf(d)!==-1&&(u=R6):this.lossFunctions[s]===e0?["accuracy","acc"].indexOf(d)!==-1?u=M6:["crossentropy","ce"].indexOf(d)!==-1&&(u=F6):["accuracy","acc"].indexOf(d)!==-1?u=yy:["crossentropy","ce"].indexOf(d)!==-1&&(u=gy);let m;["accuracy","acc"].indexOf(d)!==-1?m="acc":["crossentropy","ce"].indexOf(d)!==-1&&(m="ce"),h=u,c=l+m}else h=Dre(d),c=l+a0(d);let p;zi(c,()=>{p=h}),a(s,c,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;vy(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return Fn(l)}finally{Bi(s[0],e),Bi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Qre(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new B(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new B(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new B("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new Wi;if(e instanceof Pe&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new B(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;oi.name);for(let i=0;i0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new B(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return z(()=>{let r=this.checkNumSamples(e);if(n)throw new De("Verbose predictLoop() is not implemented yet.");let a=Iy(r,t),s=this.outputs.map(i=>[]);for(let i=0;i{let o=a[i][0],l=a[i][1],c=Vc(e,o,l),u=[];if(Array.isArray(c))for(let d=0;ds[l].push(o));return Fn(s.map(i=>rt(i,0)))})}predict(e,t={}){let n=U6(e);q6(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return vy(r),this.predictLoop(n,r)}finally{Bi(n,e)}}predictOnBatch(e){q6(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new Er("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s0&&e[0].shape[0]%r!=0)throw new B(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let c=L6(r,this.outputNames);l=[];for(let u=0;u{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new De("Verbose mode is not implemented yet.");if(a!=null)throw new De("steps mode in testLoop() is not implemented yet");{let o=Iy(s,n),l=sn(Cr(0,s));for(let c=0;c1&&(a+=`_${Xv(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let p=0;p1&&p{d=se(d,p)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>z(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;lya(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=ya(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ya(a0(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ya(a0(e)));{let e={};for(let t in this.metrics)e[t]=ya(a0(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Wc(e.optimizer_config),n=Fr(t),r;if(typeof e.loss=="string")r=Di(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>Di(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=Di(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>Di(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=Di(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Nn.getSaveHandlers(e);if(i.length===0)throw new B(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new B(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new B("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Nn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:iae,generatedBy:`TensorFlow.js tfjs-layers v${by}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Nn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Nn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;D6(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){D6(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};ga.className="Model";re.registerClass(ga);var X6=class extends ga{};X6.className="Functional";re.registerClass(X6);async function oae(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=Wc(n),a=Fr(r,t);if(e.weightsManifest!=null){let s=await Nn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),_e(s)}return a}async function uae(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Nn.getLoadHandlers(e,t);if(n.length===0)n.push(Nn.browserHTTPRequest(e,t));else if(n.length>1)throw new B(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return lae(e,void 0,t)}async function lae(e,t,n){if(n==null&&(n={}),e.load==null)throw new B("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=Fr(Wc(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new B("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=cae(r.weightData,r.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),_e(c),_e(u.map(h=>h.tensor))}return o}function cae(e,t){let n=Nn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Zl=class extends ga{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Xp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new B(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Zl||e instanceof ga,n;if(t){if(n=e,n.outputs.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new B("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new B("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=b6({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new B(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=w6(this.outputs[0])}this.inboundNodes=[],new Yp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:$i(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(st(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new ga({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Er("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Er("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Er("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Er("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new B("Legacy serialization format not supported yet.");a=t}else _.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Zl))throw new De(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=Fr(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new B("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new B("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Zl.className="Sequential";re.registerClass(Zl);function hae(e){return new ga(e)}function dae(e){return new Zl(e)}function pae(e,t){return t==null&&(t={}),uae(e,t)}function d6(e){return b6(e)}function fae(e,t){gr.registerCallbackConstructor(e,t)}var Dn=class extends re.Serializable{getConfig(){return{}}},K6=class extends Dn{apply(e,t=1){return Hte(e,t)}};K6.className="elu";re.registerClass(K6);var Z6=class extends Dn{apply(e){return Bd(e)}};Z6.className="selu";re.registerClass(Z6);var Y6=class extends Dn{apply(e){return Ur(e)}};Y6.className="relu";re.registerClass(Y6);var J6=class extends Dn{apply(e){return z(()=>Il(6,Ur(e)))}};J6.className="relu6";re.registerClass(J6);var Q6=class extends Dn{apply(e){return e}};Q6.className="linear";re.registerClass(Q6);var e4=class extends Dn{apply(e){return Tn(e)}};e4.className="sigmoid";re.registerClass(e4);var t4=class extends Dn{apply(e){return qte(e)}};t4.className="hardSigmoid";re.registerClass(t4);var n4=class extends Dn{apply(e){return bi(e)}};n4.className="softplus";re.registerClass(n4);var r4=class extends Dn{apply(e){return Gte(e)}};r4.className="softsign";re.registerClass(r4);var a4=class extends Dn{apply(e){return yi(e)}};a4.className="tanh";re.registerClass(a4);var Ny=class extends Dn{apply(e,t=-1){return uc(e,t)}};Ny.className="softmax";re.registerClass(Ny);var s4=class extends Dn{apply(e,t=-1){return $d(e,t)}};s4.className="logSoftmax";re.registerClass(s4);var i4=class extends Dn{apply(e,t=1){return z(()=>Tn(e.mul(t)).mul(e))}};i4.className="swish";re.registerClass(i4);var o4=class extends Dn{apply(e){return z(()=>P(e,yi(bi(e))))}};o4.className="mish";re.registerClass(o4);function Qa(e){return e.getClassName()}function Ty(e,t={}){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function es(e){if(e==null){let t={};return t.className="linear",t.config={},Ty(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Ty(t)}else return e instanceof Dn?e:Ty(e)}function Ey(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var l4=class extends re.Serializable{},jc=class extends l4{constructor(e){super();Ey(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return z(()=>{let t=Rt([1]);return this.hasL1&&(t=se(t,Te(P(this.l1,zt(e))))),this.hasL2&&(t=se(t,Te(P(this.l2,Oc(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};jc.className="L1L2";re.registerClass(jc);function mae(e){return Ey(e),new jc({l1:e!=null?e.l1:null,l2:0})}function Aae(e){return Ey(e),new jc({l2:e!=null?e.l2:null,l1:0})}var u4={l1l2:"L1L2"};function ut(e){return jA(e)}function c4(e,t={}){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function xt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in u4?u4[e]:e,config:{}};return c4(t)}else return e instanceof l4?e:c4(e)}var Cy=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=Ur(e);return this.maxValue!=null&&(n=En(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Cy.className="ReLU";re.registerClass(Cy);var Ry=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return nc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Ry.className="LeakyReLU";re.registerClass(Ry);var My=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=gt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=xt(e.alphaRegularizer),this.alphaConstraint=Vt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new B(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=st(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r(Ct(t),t==="channelsFirst"?Je(e,[0,2,3,1]):e))}function h4(e,t){return z(()=>(Ct(t),t==="channelsFirst"?Je(e,[0,2,3,4,1]):e))}function yae(e,t,n,r=1,a="valid",s,i=1){return z(()=>{if(s==null&&(s=Tr()),Ct(s),e.shape.length!==3)throw new B(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new B(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new B(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Je(e,[0,2,1])),a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Sd(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Rr(o,n)),o})}function d4(e,t,n,r=[1,1],a="valid",s,i,o=null){return z(()=>{if(s==null&&(s=Tr()),Ct(s),e.rank!==3&&e.rank!==4)throw new B(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new B(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Oy(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ua.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Je(l,[0,3,1,2])),l})}function gae(e,t,n,r=[1,1,1],a="valid",s,i){return z(()=>{if(s==null&&(s=Tr()),Ct(s),e.rank!==4&&e.rank!==5)throw new B(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new B(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=h4(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=vm(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Rr(o,n)),s==="channelsFirst"&&(o=Je(o,[0,4,1,2,3])),o})}var zy=class extends qe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",zy.verifyArgs(t),this.rank=e,qt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new De(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Yl(t.kernelSize,e,"kernelSize"),this.strides=Yl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,sr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ct(this.dataFormat),this.activation=es(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=gt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Vt(t.biasConstraint),this.biasRegularizer=xt(t.biasRegularizer),this.activityRegularizer=xt(t.activityRegularizer),this.dilationRate=Yl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new B(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new B(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new B(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Xr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!HA(e.kernelSize,"number",1,3))throw new B(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Qa(this.activation),useBias:this.useBias,biasInitializer:St(this.biasInitializer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Uc=class extends zy{constructor(e,t){super(e,t);this.kernel=null,Uc.verifyArgs(t),this.filters=t.filters,qt(this.filters,"filters"),this.kernelInitializer=gt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Vt(t.kernelConstraint),this.kernelRegularizer=xt(t.kernelRegularizer)}build(e){e=st(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return z(()=>{e=ze(e);let n,r=this.bias==null?null:this.bias.read(),a=Zv(this.activation.getClassName());if(a!=null&&this.rank===2)n=d4(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=yae(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=d4(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=gae(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new De("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=st(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a 0 but got ${JSON.stringify(e.filters)}`)}},Hc=class extends Uc{constructor(e){super(2,e);Hc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!HA(e.kernelSize,"number",1,2))throw new B(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Hc.className="Conv2D";re.registerClass(Hc);var Gc=class extends Uc{constructor(e){super(3,e);Gc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new B(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Gc.className="Conv3D";re.registerClass(Gc);var Py=class extends Hc{constructor(e){super(e);if(this.inputSpec=[new Ft({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==4)throw new B("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ft({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return z(()=>{let n=ze(e);if(n.shape.length!==4)throw new B(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],c=this.kernelSize[0],u=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=Jr(o,h,c,this.padding),f=Jr(l,d,u,this.padding),m=[a,p,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Je(n,[0,2,3,1]));let A=Nd(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=Je(A,[0,3,1,2])),this.bias!=null&&(A=Rr(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=st(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=Jr(t[r],o,s,this.padding),t[a]=Jr(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Py.className="Conv2DTranspose";re.registerClass(Py);var Ly=class extends Gc{constructor(e){super(e);if(this.inputSpec=[new Ft({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==5)throw new B("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ft({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return z(()=>{let n=ze(e);if(n.shape.length!==5)throw new B(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=r[o],c=r[s],u=r[i],h=this.kernelSize[0],d=this.kernelSize[1],p=this.kernelSize[2],f=this.strides[0],m=this.strides[1],A=this.strides[2],y=Jr(l,f,h,this.padding),g=Jr(c,m,d,this.padding),x=Jr(u,A,p,this.padding),v=[a,y,g,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Je(n,[0,2,3,4,1]));let w=ob(n,this.kernel.read(),v,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=Je(w,[0,4,1,2,3])),this.bias!==null&&(w=Rr(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=st(e);let t=e.slice(),n,r,a,s;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3,s=4):(n=4,r=1,a=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],h=this.strides[2];return t[n]=this.filters,t[r]=Jr(t[r],c,i,this.padding),t[a]=Jr(t[a],u,o,this.padding),t[s]=Jr(t[s],h,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Ly.className="Conv3DTranspose";re.registerClass(Ly);var p4=class extends Uc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new B("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new B("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new B(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=xt(t.depthwiseRegularizer),this.depthwiseConstraint=Vt(t.depthwiseConstraint),this.pointwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=xt(t.pointwiseRegularizer),this.pointwiseConstraint=Vt(t.pointwiseConstraint)}build(e){if(e=st(e),e.length{e=ze(e);let n;if(this.rank===1)throw new De("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Je(e,[0,2,3,1])),n=Vm(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Rr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Je(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=St(this.depthwiseInitializer),e.pointwiseInitializer=St(this.pointwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.pointwiseRegularizer=ut(this.pointwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseConstraint),e.pointwiseConstraint=Bt(this.pointwiseConstraint),e}};p4.className="SeparableConv";var Wy=class extends p4{constructor(e){super(2,e)}};Wy.className="SeparableConv2D";re.registerClass(Wy);var i0=class extends Uc{constructor(e){super(1,e);i0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!HA(e.kernelSize,"number",1,1))throw new B(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};i0.className="Conv1D";re.registerClass(i0);var By=class extends qe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return z(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=Pp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Pp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Pp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Pp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};By.className="Cropping2D";re.registerClass(By);var Vy=class extends qe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,Pte(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return z(()=>{let n=ze(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=Je(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return Je(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Vy.className="UpSampling2D";re.registerClass(Vy);function xae(e,t,n=[1,1],r="valid",a,s){return z(()=>{a==null&&(a=Tr()),Ct(a);let i=Oy(e,a);if(e.rank!==4)throw new B(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new B(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=bl(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=Je(i,[0,3,1,2])),i})}var jy=class extends zy{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=gt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Vt(e.depthwiseConstraint),this.depthwiseRegularizer=xt(e.depthwiseRegularizer)}build(e){if(e=st(e),e.length<4)throw new B(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return z(()=>{e=ze(e);let n=xae(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Rr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=$r(t,this.kernelSize[0],this.padding,this.strides[0]),s=$r(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=St(this.depthwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseRegularizer),e}};jy.className="DepthwiseConv2D";re.registerClass(jy);function f4(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new B("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function m4(e,t,n,r=!1,a,s,i=!1,o=!1){return z(()=>{let l=t.shape.length;if(l<3)throw new B(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(Cr(2,l));if(t=Je(t,c),s!=null)throw new De("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=Qt(a,-1)),a=Je(a,c)),r&&(t=Wn(t,0),a!=null&&(a=Wn(a,0)));let u=[],h,d=n,p=t.shape[0],f=mr(t),m;a!=null&&(m=mr(a));for(let y=0;ye(g,d));if(a==null)h=x[0],d=x[1];else{let v=z(()=>{let w=m[y],b=Ln(w).sub(w),k=x[0].mul(w).add(d[0].mul(b)),N=d.map((C,F)=>x[1][F].mul(w).add(C.mul(b)));return{output:k,newStates:N}});h=v.output,d=v.newStates}o&&u.push(h)}let A;return o&&(A=cn(u,1)),[h,A,d]})}var Zr=class extends qe{constructor(e){super(e);let t;if(e.cell==null)throw new B("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new o0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new B("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ft({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Cr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){hy(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return z(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;ni.shape[i.shape.length-1]),s))throw new B(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Ft({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){z(()=>{if(!this.stateful)throw new Aa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Rt([n,r])):this.states_=[Rt([n,this.cell.stateSize])];else if(e==null)_e(this.states_),this.keptStates!=null&&(_e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Rt([n,r])):this.states_[0]=Rt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):_e(this.states_);for(let r=0;rHt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=f4(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Ft({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof Mr){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return z(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=ze(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new B(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=m4((d,p)=>{let f=this.cell.call([d].concat(p),i);return[f[0],f.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,r);let h=this.returnSequences?c:l;return this.returnState?[h].concat(u):h})}getInitialState(e){return z(()=>{let t=Rt(e.shape);return t=Te(t,[1,2]),t=Dc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?YA(t,[1,n]):t):this.cell.stateSize>1?[YA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Zr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=Fr(r,n);return new e(Object.assign(t,{cell:a}))}};Zr.className="RNN";re.registerClass(Zr);var Pc=class extends qe{},l0=class extends Pc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,qt(this.units,"units"),this.activation=es(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Gl([1,Ya([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ya([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return z(()=>{if(e=e,e.length!==2)throw new B(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0Ln(e),rate:this.dropout,training:r})),0Ln(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Kr(P(e,s),this.kernel.read()):a=Kr(e,this.kernel.read()),this.bias!=null&&(a=Rr(a,this.bias.read())),i!=null&&(n=P(n,i));let o=se(a,Kr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Qa(this.activation),useBias:this.useBias,kernelInitializer:St(this.kernelInitializer),recurrentInitializer:St(this.recurrentInitializer),biasInitializer:St(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),recurrentConstraint:Bt(this.recurrentConstraint),biasConstraint:Bt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};l0.className="SimpleRNNCell";re.registerClass(l0);var Uy=class extends Zr{constructor(e){e.cell=new l0(e),super(e)}call(e,t){return z(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};Uy.className="SimpleRNN";re.registerClass(Uy);var u0=class extends Pc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new B("GRUCell does not support reset_after parameter set to true.");this.units=e.units,qt(this.units,"units"),this.activation=es(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=es(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Gl([1,Ya([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ya([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return z(()=>{if(e=e,e.length!==2)throw new B(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0Ln(e),rate:this.dropout,training:n,count:3})),0Ln(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Hy.className="GRU";re.registerClass(Hy);var qc=class extends Pc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,qt(this.units,"units"),this.activation=es(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=es(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Gl([1,Ya([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ya([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=st(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends yr{apply(i,o){let l=a.apply([s]),c=new Wp().apply([s]),u=a.apply([s*2]);return i6(i6(l,c),u)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return z(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new B(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0Ln(e),rate:this.dropout,training:n,count:4})),0Ln(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Gy.className="LSTM";re.registerClass(Gy);var o0=class extends Pc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return z(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i{zi(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push(Fr(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return dy(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;sl6(t(),n),i=()=>zc(s,t,r);return!a||a<=1?Ht(i().clone()):Array(a).fill(void 0).map(i).map(o=>Ht(o.clone()))}var wae=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a{if(this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new B("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return z(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Rt(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){z(()=>{if(!this.stateful)throw new Aa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Rt(a)):this.states_=[Rt(a)];else if(e==null)_e(this.states_),this.keptStates!=null&&(_e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Rt(a)):this.states_[0]=Rt(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):_e(this.states_);for(let s=0;sHt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=$r(l,r[0],a,s[0],i[0]),h=$r(c,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,h]:[u,h,n]]}};A4.className="ConvRNN2D";var c0=class extends qc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,qt(this.filters,"filters"),this.kernelSize=Yl(n,2,"kernelSize"),this.kernelSize.forEach(o=>qt(o,"kernelSize")),this.strides=Yl(r||1,2,"strides"),this.strides.forEach(o=>qt(o,"strides")),this.padding=a||"valid",sr(this.padding),this.dataFormat=s||"channelsLast",Ct(this.dataFormat),this.dilationRate=Yl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>qt(o,"dilationRate"))}build(e){var t;e=st(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends yr{apply(u,h){let d=l.apply([c]),p=Pn([c]),f=l.apply([c*2]);return QA([d,p,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return z(()=>{if(e.length!==3)throw new B(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0Ln(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,ae,te)=>!ae||!ae[te]?Y:P(ae[te],Y),c=l(r,o,0),u=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0Ln(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,f=l(a,p,0),m=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[x,v,w,b]=Lt(this.kernel.read(),i,g),[k,N,C,F]=this.useBias?Lt(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,x,k,this.padding),u=this.inputConv(u,v,N,this.padding),h=this.inputConv(h,w,C,this.padding),d=this.inputConv(d,b,F,this.padding);let[O,L,V,j]=Lt(this.recurrentKernel.read(),i,g);f=this.recurrentConv(f,O),m=this.recurrentConv(m,L),A=this.recurrentConv(A,V),y=this.recurrentConv(y,j);let U=this.recurrentActivation.apply(se(c,f)),X=this.recurrentActivation.apply(se(u,m)),G=se(P(X,s),P(U,this.activation.apply(se(h,A)))),ee=P(this.recurrentActivation.apply(se(d,y)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=wae(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=ca(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Rr(a,n,this.dataFormat):a}recurrentConv(e,t){return ca(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};c0.className="ConvLSTM2DCell";re.registerClass(c0);var qy=class extends A4{constructor(e){let t=new c0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};qy.className="ConvLSTM2D";re.registerClass(qy);var h0=class extends qe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r{this.invokeCallHook(e,t);let n=ze(e);if(0l6(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};h0.className="Dropout";re.registerClass(h0);var Xy=class extends h0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Xy.className="SpatialDropout1D";re.registerClass(Xy);var Ky=class extends qe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,qt(this.units,"units"),this.activation=es(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Vt(e.kernelConstraint),this.biasConstraint=Vt(e.biasConstraint),this.kernelRegularizer=xt(e.kernelRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=st(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=st(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e),r=Zv(this.activation.getClassName()),a;return r!=null?a=Kr(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Kr(n,this.kernel.read()),this.bias!=null&&(a=Rr(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:Qa(this.activation),useBias:this.useBias,kernelInitializer:St(this.kernelInitializer),biasInitializer:St(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Ky.className="Dense";re.registerClass(Ky);var Zy=class extends qe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=st(e);for(let t of e.slice(1))if(t==null)throw new B(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Za(e,1)]}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:Qa(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Yy.className="Activation";re.registerClass(Yy);var Jy=class extends qe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return z(()=>(e=ze(e),Vte(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Jy.className="RepeatVector";re.registerClass(Jy);var Qy=class extends qe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=ze(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Qy.className="Reshape";re.registerClass(Qy);var eg=class extends qe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Cr(1,e.dims.length+1);if(!_.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ft({ndim:this.dims.length+1})]}computeOutputShape(e){e=st(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return Je(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};eg.className="Permute";re.registerClass(eg);var tg=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),r=-1;return Zu(vi(n,this.maskValue),r)}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e),r=-1,a=!0,s=Zu(vi(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};tg.className="Masking";re.registerClass(tg);var ng=class extends qe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(At(e.inputLength))}this.inputDim=e.inputDim,qt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,qt(this.outputDim,"outputDim"),this.embeddingsInitializer=gt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=xt(e.embeddingsRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.embeddingsConstraint=Vt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return z(()=>this.maskZero?(e=ze(e),vi(e,He(e))):null)}computeOutputShape(e){if(e=st(e),this.inputLength==null)return[...e,this.outputDim];let t=At(this.inputLength);if(t.length!==e.length-1)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r{this.invokeCallHook(e,t);let n=ze(e);return n.dtype!=="int32"&&(n=$c(n,"int32")),o6(this.embeddings.read(),n.as1D()).reshape(st(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:St(this.embeddingsInitializer),embeddingsRegularizer:ut(this.embeddingsRegularizer),activityRegularizer:ut(this.activityRegularizer),embeddingsConstraint:Bt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};ng.className="Embedding";re.registerClass(ng);var Vi=class extends qe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new De}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new B(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;aa.length);e.indexOf(null)===-1&&Ka(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return z(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Ya(r);for(let s of e){let i=s.rank;for(let o=0;o1){let c=Cr(1,l).concat([0]);n.push(Je(o,c)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=Je(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(Cr(0,i-1));s=Je(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r{if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an Array");if(!Array.isArray(e))throw new B("`inputs` should be an Array");if(t.length!==e.length)throw new B(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:Qt(r,0));let n=t[0];for(let r=1;r{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new B("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return z(()=>QA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new B("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new B("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new B(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return z(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s3||t.shape.length>3)throw new De("batchDot is not implemented for tensors of 4D or higher rank yet");if(_.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),_.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new De("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return z(()=>{let i;if(r>a){i=r-a;let l=[];for(let c=0;cr){i=a-r;let l=[];for(let c=0;c0){let l;r>a?l=r+a-3:l=r-1;let c=[];for(let u=l;u"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new B(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new B(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>Xc(a,e[s].shape.length)):r=[Xc(this.axes,t.shape.length),Xc(this.axes,n.shape.length)],this.normalize&&(t=Jp(t,r[0]),n=Jp(n,r[1])),bae(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Xc(this.axes,e.length),Xc(this.axes,t.length)],n}computeOutputShape(e){_.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};ug.className="Dot";re.registerClass(ug);var cg=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e);return zc(()=>Lp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};cg.className="GaussianNoise";re.registerClass(cg);var hg=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?zc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(Lp(n.shape,1,r))},()=>n,t.training||!1):n})}};hg.className="GaussianDropout";re.registerClass(hg);var dg=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return z(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return zc(()=>{let r=ze(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=Va(Sl(n),this.rate);o=$c(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>ze(e),t.training||!1)}return e})}};dg.className="AlphaDropout";re.registerClass(dg);function Kc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=Qw(e,t,n,r,a,s);else if(e.rank===3)i=eb(e,t,n,r,a,s);else if(e.rank===4)i=tb(e,t,n,r,a,s);else throw new De(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function _ae(e,t,n,r,a=.001){return z(()=>{let s=Od(e,r),i=s.mean,o=s.variance;return[Kc(e,i,o,n,t,a),i,o]})}function vae(e,t,n,r,a=.001){return z(()=>{let s=Od(e,r),i=s.mean,o=s.variance,l=[];for(let p of Cr(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let c=i.reshape(l),u=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[Kc(e,c,u,d,h,a),i,o]})}function kae(e,t,n,r,a=.001){return _.arraysEqual(r.slice().sort(),Cr(0,e.rank-1))?_ae(e,t,n,r,a):vae(e,t,n,r,a)}var pg=class extends qe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.movingMeanInitializer=gt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=gt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Vt(e.betaConstraint),this.gammaConstraint=Vt(e.gammaConstraint),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer)}build(e){e=st(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new B(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ft({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return z(()=>{let n=t.training==null?!1:t.training,r=ze(e),a=r.shape,s=a.length,i=Cr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=$i(1,s);l[o]=a[o];let c=i.slice();c.sort();let u=!_.arraysEqual(c,Cr(0,s).slice(0,s-1)),h=()=>{if(u){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return Kc(r,A,y,g,x,this.epsilon)}else return Kc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,f]=kae(r,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(A,y,g)=>{z(()=>{let x=1-g,v=A.read(),w=v.sub(y).mul(x);A.write(v.sub(w))})};return(()=>{m(this.movingMean,p,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:St(this.betaInitializer),gammaInitializer:St(this.gammaInitializer),movingMeanInitializer:St(this.movingMeanInitializer),movingVarianceInitializer:St(this.movingVarianceInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer),betaConstraint:Bt(this.betaConstraint),gammaConstraint:Bt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};pg.className="BatchNormalization";re.registerClass(pg);var fg=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=st(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Ka(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=ze(e),r=n.shape,a=r.length;return z(()=>{let s=!0,{mean:i,variance:o}=Od(n,this.axis,s),l=$i(1,a);for(let f of this.axis)l[f]=r[f];let c=f=>f!=null&&f.shape.length!==a&&this.axis!==[a-1]?f.reshape(l):f,u=c(this.gamma.read()),h=c(this.beta.read()),d=[],p=[];for(let f=0;f{if(e.rank!==4)throw new B(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new B("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Tr()),n!=="channelsLast"&&n!=="channelsFirst")throw new B(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],ha(e,r)})}var mg=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Tr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new B(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new B(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new B(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){e=st(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return z(()=>Iae(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};mg.className="ZeroPadding2D";re.registerClass(mg);function d0(e,t,n,r,a,s){return z(()=>{Ct(a),e6(s),sr(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=Tr()),s==null&&(s="max"),e=Oy(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=ac(e,t,n,o):i=Ju(e,t,n,o),a==="channelsFirst"&&(i=Je(i,[0,3,1,2])),i})}function y4(e,t,n,r,a,s){return z(()=>{Ct(a),e6(s),sr(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=Tr()),s==null&&(s="max"),e=h4(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Dm(e,t,n,o):i=wm(e,t,n,o),a==="channelsFirst"&&(i=Je(i,[0,4,1,2,3])),i})}var g4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new B(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(qt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new B(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,sr(this.padding),this.inputSpec=[new Ft({ndim:3})]}computeOutputShape(e){e=st(e);let t=$r(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return z(()=>{this.invokeCallHook(e,t),e=Dc(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ja(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Ag=class extends g4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),d0(e,t,n,r,a,"max")}};Ag.className="MaxPooling1D";re.registerClass(Ag);var yg=class extends g4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),d0(e,t,n,r,a,"avg")}};yg.className="AveragePooling1D";re.registerClass(yg);var x4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new B(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];qt(this.poolSize,"poolSize"),qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),sr(this.padding),this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=$r(t,this.poolSize[0],this.padding,this.strides[0]),n=$r(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return z(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},gg=class extends x4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),d0(e,t,n,r,a,"max")}};gg.className="MaxPooling2D";re.registerClass(gg);var xg=class extends x4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),d0(e,t,n,r,a,"avg")}};xg.className="AveragePooling2D";re.registerClass(xg);var w4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new B(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];qt(this.poolSize,"poolSize"),qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),sr(this.padding),this.inputSpec=[new Ft({ndim:5})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=$r(t,this.poolSize[0],this.padding,this.strides[0]),n=$r(n,this.poolSize[1],this.padding,this.strides[1]),r=$r(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return z(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},wg=class extends w4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),y4(e,t,n,r,a,"max")}};wg.className="MaxPooling3D";re.registerClass(wg);var bg=class extends w4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),y4(e,t,n,r,a,"avg")}};bg.className="AveragePooling3D";re.registerClass(bg);var b4=class extends qe{constructor(e){super(e);this.inputSpec=[new Ft({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new De}},_g=class extends b4{constructor(e){super(e||{})}call(e,t){return z(()=>{let n=ze(e);return It(n,1)})}};_g.className="GlobalAveragePooling1D";re.registerClass(_g);var vg=class extends b4{constructor(e){super(e||{})}call(e,t){return z(()=>{let n=ze(e);return Rn(n,1)})}};vg.className="GlobalMaxPooling1D";re.registerClass(vg);var _4=class extends qe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new De}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},kg=class extends _4{call(e,t){return z(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?It(n,[1,2]):It(n,[2,3])})}};kg.className="GlobalAveragePooling2D";re.registerClass(kg);var Ig=class extends _4{call(e,t){return z(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Rn(n,[1,2]):Rn(n,[2,3])})}};Ig.className="GlobalMaxPooling2D";re.registerClass(Ig);var v4=class extends qe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=Fr(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},Sg=class extends v4{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=st(e),e.length<3)throw new B(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=st(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return z(()=>(e=ze(e),m4((n,r)=>[ze(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Sg.className="TimeDistributed";re.registerClass(Sg);function Sae(e){Oi(zte,"BidirectionalMergeMode",e)}var Nae="concat",Ng=class extends v4{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Fr(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=Fr(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?Nae:e.mergeMode,Sae(this.mergeMode),e.weights)throw new De("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):Fn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=f4(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new B("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Ft({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(r!=null)throw new De("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Mr;for(let l of s)if(l instanceof Mr!==o)throw new B("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let h=super.apply(l,t);return this.inputSpec=u,h}else return super.apply(e,t)}call(e,t){return z(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Wn(a,1));let i;return this.mergeMode==="concat"?i=QA([r,a]):this.mergeMode==="sum"?i=se(r,a):this.mergeMode==="ave"?i=P(.5,se(r,a)):this.mergeMode==="mul"?i=P(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){zi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),zi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Fr(t.layer);if(delete t.layer,t.numConstants!=null)throw new De("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};Ng.className="Bidirectional";re.registerClass(Ng);function Qte(e){return new ql(e)}function ene(e){return new Fy(e)}function tne(e){return new Cy(e)}function nne(e){return new Ry(e)}function rne(e){return new My(e)}function ane(e){return new Dy(e)}function sne(e){return new $y(e)}function ine(e){return new i0(e)}function one(e){return new Hc(e)}function lne(e){return new Py(e)}function une(e){return new Gc(e)}function cne(e){return new Ly(e)}function hne(e){return new Wy(e)}function dne(e){return new By(e)}function pne(e){return new Vy(e)}function fne(e){return new jy(e)}function mne(e){return new Yy(e)}function Ane(e){return new Ky(e)}function yne(e){return new h0(e)}function gne(e){return new Xy(e)}function xne(e){return new Zy(e)}function wne(e){return new Jy(e)}function bne(e){return new Qy(e)}function _ne(e){return new eg(e)}function vne(e){return new ng(e)}function kne(e){return new rg(e)}function Ine(e){return new sg(e)}function Sne(e){return new lg(e)}function Nne(e){return new ig(e)}function Tne(e){return new og(e)}function Ene(e){return new ag(e)}function Cne(e){return new ug(e)}function Rne(e){return new pg(e)}function Mne(e){return new fg(e)}function Fne(e){return new mg(e)}function ly(e){return new yg(e)}function $ne(e){return ly(e)}function Dne(e){return ly(e)}function uy(e){return new xg(e)}function One(e){return uy(e)}function zne(e){return uy(e)}function cy(e){return new bg(e)}function Pne(e){return cy(e)}function Lne(e){return cy(e)}function Wne(e){return new _g(e)}function Bne(e){return new kg(e)}function p6(e){return new vg(e)}function f6(e){return new Ig(e)}function m6(e){return new Ag(e)}function A6(e){return new gg(e)}function Vne(e){return new wg(e)}function jne(e){return new Hy(e)}function Une(e){return new u0(e)}function Hne(e){return new Gy(e)}function Gne(e){return new qc(e)}function qne(e){return new Uy(e)}function Xne(e){return new l0(e)}function Kne(e){return new qy(e)}function Zne(e){return new c0(e)}function Yne(e){return new Zr(e)}function Jne(e){return new o0(e)}function Qne(e){return new Ng(e)}function ere(e){return new Sg(e)}var tre=p6,nre=f6,rre=m6,are=A6;function sre(e){return new cg(e)}function ire(e){return new hg(e)}function ore(e){return new dg(e)}function lre(e){return new tg(e)}var k4={};Me(k4,{MAPE:()=>Pae,MSE:()=>Bae,binaryAccuracy:()=>Tae,binaryCrossentropy:()=>Eae,categoricalAccuracy:()=>Rae,categoricalCrossentropy:()=>Mae,cosineProximity:()=>Dae,mape:()=>Lae,meanAbsoluteError:()=>Oae,meanAbsolutePercentageError:()=>zae,meanSquaredError:()=>Wae,mse:()=>Vae,precision:()=>Fae,recall:()=>$ae,sparseCategoricalAccuracy:()=>Cae});function Tae(e,t){return Ay(e,t)}function Eae(e,t){return R6(e,t)}function Cae(e,t){return M6(e,t)}function Rae(e,t){return yy(e,t)}function Mae(e,t){return gy(e,t)}function Fae(e,t){return C6(e,t)}function $ae(e,t){return Nre(e,t)}function Dae(e,t){return fy(e,t)}function Oae(e,t){return Qp(e,t)}function zae(e,t){return Kl(e,t)}function Pae(e,t){return Kl(e,t)}function Lae(e,t){return Kl(e,t)}function Wae(e,t){return Li(e,t)}function Bae(e,t){return Li(e,t)}function Vae(e,t){return Li(e,t)}var I4={};Me(I4,{modelFromJSON:()=>oae});var S4={};Me(S4,{l1:()=>Uae,l1l2:()=>jae,l2:()=>Hae});function jae(e){return new jc(e)}function Uae(e){return mae(e)}function Hae(e){return Aae(e)}var N4=class extends Xl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof ga))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function p0(e,t){return et}var E4=class extends N4{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new De("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=p0:this.mode==="max"?this.monitorFunc=T4:this.monitor.indexOf("acc")!==-1?this.monitorFunc=T4:this.monitorFunc=p0,this.monitorFunc===p0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===p0?Infinity:-Infinity}async onEpochEnd(e,t){await Ja(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Gae(e){return new E4(e)}var qae={earlyStopping:Gae},Dr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Dr||(Dr={}));var C4;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(C4||(C4={}));var Tg={};function Xae(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Tg[e]=n}function R4(e){return Tg[e]}function Kae(e){delete Tg[e]}function I(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return yn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>yn(h,n,r,a));let c=yn(t.inputNames.slice(o)[0],n,r,a),u=c.dataSync();return s.type==="number"?u[0]:_.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function yn(e,t,n,r){let[a,s]=jn(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[f0(a,o)]);return i!==void 0?t[f0(a,i)][s]:void 0}function Zae(e,t,n){return t[f0(e,n.currentContextId)]}function xa(e,t){let[n,r]=jn(e);return[f0(n,t&&t.currentContextId),r]}function f0(e,t){return t?`${e}-${t}`:e}function jn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function m0(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function wa(e){return e.kept?e:Wr(e)}var M4={};Me(M4,{json:()=>Yae});var Yae=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],F4={};Me(F4,{json:()=>Jae});var Jae=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],$4={};Me($4,{json:()=>Qae});var Qae=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],D4={};Me(D4,{json:()=>ese});var ese=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],O4={};Me(O4,{json:()=>tse});var tse=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],z4={};Me(z4,{json:()=>nse});var nse=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],P4={};Me(P4,{json:()=>rse});var rse=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],L4={};Me(L4,{json:()=>ase});var ase=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],W4={};Me(W4,{json:()=>sse});var sse=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],B4={};Me(B4,{json:()=>ise});var ise=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],V4={};Me(V4,{json:()=>ose});var ose=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],j4={};Me(j4,{json:()=>lse});var lse=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],U4={};Me(U4,{json:()=>use});var use=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],H4={};Me(H4,{json:()=>cse});var cse=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],G4={};Me(G4,{json:()=>hse});var hse=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],q4={};Me(q4,{json:()=>dse});var dse=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],X4={};Me(X4,{json:()=>pse});var pse=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],Z4=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[M4,F4,$4,D4,O4,z4,P4,V4,B4,L4,j4,U4,H4,G4,q4,X4,W4],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?a.push(f[m.name]):(m.input==null||m.input.length===0)&&s.push(f[m.name]),f),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(f=>{let m=i[f];m.inputNames.forEach(A=>{let[y]=xa(A);m.inputs.push(i[y]),i[y].children.push(m)})}),Object.keys(u).length===0?h.forEach(f=>{let m=i[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=xa(f),A=i[m];A!=null&&(A.signatureKey=u[f],l.push(A))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=xa(f),A=i[m];A&&(A.signatureKey=c[f],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=R4(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=Eg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Eg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=zg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=zg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=Rg(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=Rg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=Og(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Og(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=Cg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Cg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=Lg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Lg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=Dg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Dg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=Pg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Pg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=Fg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Fg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=$g(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=$g(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=K4(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=K4(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&r.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=xa(c.name),h={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Mg(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,s.push(h),a[u]=h}),Object.keys(a).forEach(c=>{let u=a[c];u.inputNames.forEach(h=>{let[d]=xa(h);u.inputs.push(a[d]),a[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,h]=xa(o[c.name]),d=a[u];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function fse(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function Y4(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):fse(e);return t?n:n.toLowerCase()}function Eg(e,t,n,r=!1){let a=e[t];return a!=null?Y4(a.s,r):n}function Cg(e,t,n){let r=e[t];return r?r.b:n}function Rg(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function Mg(e){switch(typeof e=="string"&&(e=Dr[e]),e){case Dr.DT_FLOAT:return"float32";case Dr.DT_INT32:case Dr.DT_INT64:case Dr.DT_INT8:case Dr.DT_UINT8:return"int32";case Dr.DT_BOOL:return"bool";case Dr.DT_DOUBLE:return"float32";case Dr.DT_STRING:return"string";default:return null}}function K4(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function Fg(e,t,n){let r=e[t];return r&&r.type?Mg(r.type):n}function $g(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>Mg(a)):n}function J4(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Dg(e,t,n){let r=e[t];return r&&r.shape?J4(r.shape):n}function Og(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function zg(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>Y4(s,r)):n}function Pg(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>J4(a)):n}function Lg(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var mse=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return yn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return yn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Rg(this.node.rawAttrs,e,t);if(n.s!=null)return Eg(this.node.rawAttrs,e,t);if(n.b!=null)return Cg(this.node.rawAttrs,e,t);if(n.shape!=null)return Dg(this.node.rawAttrs,e,t);if(n.type!=null)return Fg(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Og(this.node.rawAttrs,e,t);if(n.list.s!=null)return zg(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Pg(this.node.rawAttrs,e,t);if(n.list.b!=null)return Lg(this.node.rawAttrs,e,t);if(n.list.type!=null)return $g(this.node.rawAttrs,e,t)}return t}},Ase=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[Pa(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[zm(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[P(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[Ae(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[Sm(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[vd(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ye(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Il(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[jr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[da(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[qd(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},yse=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(I("x",e,t,n))];case"Acos":return[cm(I("x",e,t,n))];case"Acosh":return[hm(I("x",e,t,n))];case"Asin":return[pm(I("x",e,t,n))];case"Asinh":return[fm(I("x",e,t,n))];case"Atan":return[mm(I("x",e,t,n))];case"Atan2":return[Am(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[ym(I("x",e,t,n))];case"Ceil":return[bm(I("x",e,t,n))];case"Complex":return[$a(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[ec(I("x",e,t,n))];case"Cosh":return[Td(I("x",e,t,n))];case"Elu":return[_l(I("x",e,t,n))];case"Erf":return[Nm(I("x",e,t,n))];case"Exp":return[er(I("x",e,t,n))];case"Expm1":return[Tm(I("x",e,t,n))];case"Floor":return[vl(I("x",e,t,n))];case"Log":return[zn(I("x",e,t,n))];case"Log1p":return[Md(I("x",e,t,n))];case"Imag":return[Cd(I("x",e,t,n))];case"Neg":return[kt(I("x",e,t,n))];case"Reciprocal":return[Wm(I("x",e,t,n))];case"Real":return[oc(I("x",e,t,n))];case"Relu":return[Ur(I("x",e,t,n))];case"Round":return[Bm(I("x",e,t,n))];case"Selu":return[Bd(I("x",e,t,n))];case"Sigmoid":return[Tn(I("x",e,t,n))];case"Sin":return[Vd(I("x",e,t,n))];case"Sign":return[jm(I("x",e,t,n))];case"Sinh":return[jd(I("x",e,t,n))];case"Softplus":return[bi(I("x",e,t,n))];case"Sqrt":return[en(I("x",e,t,n))];case"Square":return[ot(I("x",e,t,n))];case"Tanh":return[yi(I("x",e,t,n))];case"Tan":return[Gm(I("x",e,t,n))];case"ClipByValue":return[En(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Ld(I("x",e,t,n))];case"Rsqrt":return[Wd(yn(e.inputNames[0],t,n))];case"Prod":return[zd(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[nc(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[ic(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[Cm(yn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function xr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){_.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;rn+` Shapes ${e} and ${t} must match`)}}}function Q4(e){return!(typeof e=="number"||e.some(t=>t<0))}function Zc(e,t,n){let r=Wg(e,n),a=!Q4(r);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(a&&t.forEach(s=>{r=Wg(s.shape,r)}),!Q4(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function Wg(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=a>=0?a:s}return n}var gse=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=xe(0),Ht(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, - because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),xr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Ht(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,mr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to +2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let p of Object.keys(Ar))c[p]=Ar[p];for(let p of Object.keys(n))c[p]=n[p];let u=s.config;u.customObjects=c;let h=Object.assign({},Ar);for(let p of Object.keys(n))Ar[p]=n[p];VA(s.config);let d=l(o,s.config,n,a);return Ar=Object.assign({},h),d}else{let c=Object.assign({},Ar);for(let h of Object.keys(n))Ar[h]=n[h];let u=new o(s.config);return Ar=Object.assign({},c),u}}}function ite(e,t){return et?1:0}function Op(e,t){return-1*ite(e,t)}function Za(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function ote(e){if(e==null)throw new B(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function zi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new B(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function jA(e,t,n=0,r=Infinity){return Kr(n>=0),Kr(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function qt(e,t){Array.isArray(e)?(_.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>qt(n,`element ${r+1} of ${t}`))):_.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Uv(e)}.`)}function Uv(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Uv(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function lte(e,t){let n=_.now(),r;return(...a)=>{let s=_.now();return s-nen(Te(z(e,e),t,!0)))}var Cc=class extends re.Serializable{getConfig(){return{}}},HA=class extends Cc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=UA(e,this.axis),n=En(t,0,this.maxValue);return z(e,Ae(n,se(Wt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};HA.className="MaxNorm";re.registerClass(HA);var GA=class extends Cc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>Ae(e,se(Wt(),UA(e,this.axis))))}getConfig(){return{axis:this.axis}}};GA.className="UnitNorm";re.registerClass(GA);var qA=class extends Cc{apply(e){return Hr(e)}};qA.className="NonNeg";re.registerClass(qA);var XA=class extends Cc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=UA(e,this.axis),n=se(z(this.rate,En(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,Ae(n,se(Wt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};XA.className="MinMaxNorm";re.registerClass(XA);var Gv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Bt(e){return BA(e)}function qv(e,t={}){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Vt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Gv?Gv[e]:e,config:{}};return qv(t)}else return e instanceof Cc?e:qv(e)}function nte(e){return new HA(e)}function rte(e){return new GA(e)}function ate(){return new qA}function ste(e){return new XA(e)}var Xv={};Me(Xv,{constant:()=>hte,glorotNormal:()=>gte,glorotUniform:()=>yte,heNormal:()=>xte,heUniform:()=>bte,identity:()=>mte,leCunNormal:()=>wte,leCunUniform:()=>_te,ones:()=>cte,orthogonal:()=>vte,randomNormal:()=>pte,randomUniform:()=>dte,truncatedNormal:()=>fte,varianceScaling:()=>Ate,zeros:()=>ute});var kte=["channelsFirst","channelsLast"],Ite=["nearest","bilinear"],Ste=["valid","same","causal"],Nte=["max","avg"],Tte=["sum","mul","concat","ave"],Hl=new Map;function Ct(e){zi(kte,"DataFormat",e)}function Ete(e){zi(Ite,"InterpolationFormat",e)}function sr(e){zi(Ste,"PaddingMode",e)}function Kv(e){zi(Nte,"PoolMode",e)}var Rc=[],Zv="/";function Pi(e,t){Rc.push(e);try{let n=t();return Rc.pop(),n}catch(n){throw Rc.pop(),n}}function Cte(){return Rc.length===0?"":Rc.join(Zv)+Zv}function Jv(e){if(!Yv(e))throw new Error("Not a valid tensor name: '"+e+"'");return Cte()+e}function Qv(e){if(!Yv(e))throw new Error("Not a valid tensor name: '"+e+"'");Hl.has(e)||Hl.set(e,0);let t=Hl.get(e);if(Hl.set(e,Hl.get(e)+1),t>0){let n=`${e}_${t}`;return Hl.set(n,1),n}else return e}var Rte=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function Yv(e){return!!e.match(Rte)}function Mte(e){return e===parseInt(e.toString(),10)}function Ya(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a{if(e.shape.length!==2)throw new B(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Fc(e,1);return KA(n,[1,t,1])})}function $te(e){let t=[Ya(e.shape)];return e.reshape(t)}function Dte(e){if(e.rank<=1)throw new B(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ya(e.shape,1)];return e.reshape(t)}function Li(e,t,n){return P(()=>{switch(e.rank){case 1:return jd(e,t,n);case 2:return Vm(e,[t,0],[n,e.shape[1]]);case 3:return Ud(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return ic(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new B(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function ZA(e,t,n){return P(()=>{switch(e.rank){case 1:return jd(e,t,n);case 2:return Vm(e,[0,t],[e.shape[0],n]);case 3:return Ud(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return ic(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function zp(e,t,n,r){return P(()=>{switch(e.rank){case 1:return jd(e,t,n);case 2:switch(r){case 1:return Li(e,t,n);case 2:return ZA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return Li(e,t,n);case 2:return Ud(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return ZA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return Li(e,t,n);case 2:return ic(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return ic(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return ZA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function YA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ot(e,t)}function t6(e,t){switch(e.rank){case 1:return Jb([e,t]);case 2:return bl([e,t],0);case 3:return Qb([e,t],0);case 4:return ew([e,t],0);default:throw new B(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function KA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new B(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Va(e,t)}function Pp(e,t=0,n=1,r,a){return gw(e,t,n,r,a)}function Zr(e,t,n,r){if(e.rank<2||t.rank<2)throw new De(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new De(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return Ha.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?JA(e.rank,r,Er()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(u).reshape([l,-1]);let h=[...a,...c],d=!1,p=!1;return Ha.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?JA(e.rank,r,Er()):null,activation:n}).reshape(h)}}function n6(e,t,n){return P(()=>(Array.isArray(t)?t=sn(t,"int32"):t=t.toInt(),bi(e,t,n)))}function $c(e){return z(e,e)}function JA(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new B(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new B(`Unsupported input rank by biasAdd: ${t.rank}`)}function Mr(e,t,n){return P(()=>(n==null&&(n=Er()),Ct(n),e.add(JA(e.rank,t,n))))}function Ote(e,t=1){if(t!==1)throw new De(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return _l(e)}function zte(e){return P(()=>Ae(e,zt(e).add(1)))}function r6(e,t,n,r){return P(()=>Iw(e,t,n,r))}function Pte(e){return P(()=>{let t=se(.5,z(.2,e));return En(t,0,1)})}function Dc(e,t,n=!1){return n?e():t()}var Lte=["fanIn","fanOut","fanAvg"],Wte=["normal","uniform","truncatedNormal"];function Bte(e){zi(Lte,"FanMode",e)}function Vte(e){zi(Wte,"Distribution",e)}var yr=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},QA=class extends yr{apply(e,t){return Rt(e,t)}};QA.className="Zeros";re.registerClass(QA);var Lp=class extends yr{apply(e,t){return Pn(e,t)}};Lp.className="Ones";re.registerClass(Lp);var ey=class extends yr{constructor(e){super();if(typeof e!="object")throw new B(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new B(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return P(()=>z(ve(this.value),Pn(e,t)))}getConfig(){return{value:this.value}}};ey.className="Constant";re.registerClass(ey);var ty=class extends yr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Sl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};ty.className="RandomUniform";re.registerClass(ty);var ny=class extends yr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`randomNormal does not support dType ${t}.`);return Pp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ny.className="RandomNormal";re.registerClass(ny);var ry=class extends yr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`truncatedNormal does not support dType ${t}.`);return qd(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ry.className="TruncatedNormal";re.registerClass(ry);var ay=class extends yr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return P(()=>{if(e.length!==2||e[0]!==e[1])throw new B("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,Nm(e[0]))})}getConfig(){return{gain:this.gain}}};ay.className="Identity";re.registerClass(ay);function jte(e,t="channelsLast"){let n,r;if(Ct(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Ya(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Ya(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Ya(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var $n=class extends yr{constructor(e){super();if(e.scale<0)throw new B(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Bte(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Vte(this.distribution),this.seed=e.seed}apply(e,t){let n=jte(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`${this.getClassName()} does not support dType ${t}.`);return qd(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Sl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};$n.className="VarianceScaling";re.registerClass($n);var Wp=class extends $n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Wp.className="GlorotUniform";re.registerClass(Wp);var Bp=class extends $n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Bp.className="GlorotNormal";re.registerClass(Bp);var Vp=class extends $n{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Vp.className="HeNormal";re.registerClass(Vp);var jp=class extends $n{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};jp.className="HeUniform";re.registerClass(jp);var Up=class extends $n{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Up.className="LeCunNormal";re.registerClass(Up);var Hp=class extends $n{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return $n.className}};Hp.className="LeCunNormal";re.registerClass(Hp);var sy=class extends yr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new De("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return P(()=>{if(e.length<2)throw new De("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=Pp(n,0,1,"float32"),a=Pw.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),z(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};sy.className="Orthogonal";re.registerClass(sy);var a6={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function s6(e,t={}){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function St(e){return BA(e)}function gt(e){if(typeof e=="string"){let t=e in a6?a6[e]:e;if(t==="GlorotNormal")return new Bp;if(t==="GlorotUniform")return new Wp;if(t==="HeNormal")return new Vp;if(t==="HeUniform")return new jp;if(t==="LeCunNormal")return new Up;if(t==="LeCunUniform")return new Hp;{let n={};return n.className=t,n.config={},s6(n)}}else return e instanceof yr?e:s6(e)}function ute(){return new QA}function cte(){return new Lp}function hte(e){return new ey(e)}function dte(e){return new ty(e)}function pte(e){return new ny(e)}function fte(e){return new ry(e)}function mte(e){return new ay(e)}function Ate(e){return new $n(e)}function yte(e){return new Wp(e)}function gte(e){return new Bp(e)}function xte(e){return new Vp(e)}function bte(e){return new jp(e)}function wte(e){return new Up(e)}function _te(e){return new Hp(e)}function vte(e){return new sy(e)}var i6={};Me(i6,{Layer:()=>qe,RNN:()=>Yr,RNNCell:()=>Oc,activation:()=>ine,add:()=>mne,alphaDropout:()=>Jne,average:()=>Ane,averagePooling1d:()=>iy,averagePooling2d:()=>oy,averagePooling3d:()=>ly,avgPool1d:()=>Ine,avgPool2d:()=>Nne,avgPool3d:()=>Ene,avgPooling1d:()=>Sne,avgPooling2d:()=>Tne,avgPooling3d:()=>Cne,batchNormalization:()=>_ne,bidirectional:()=>Une,concatenate:()=>yne,conv1d:()=>Yte,conv2d:()=>Jte,conv2dTranspose:()=>Qte,conv3d:()=>ene,conv3dTranspose:()=>tne,convLstm2d:()=>Wne,convLstm2dCell:()=>Bne,cropping2D:()=>rne,dense:()=>one,depthwiseConv2d:()=>sne,dot:()=>wne,dropout:()=>lne,elu:()=>Hte,embedding:()=>fne,flatten:()=>cne,gaussianDropout:()=>Yne,gaussianNoise:()=>Zne,globalAveragePooling1d:()=>Rne,globalAveragePooling2d:()=>Mne,globalMaxPool1d:()=>Gne,globalMaxPool2d:()=>qne,globalMaxPooling1d:()=>l6,globalMaxPooling2d:()=>u6,gru:()=>$ne,gruCell:()=>Dne,input:()=>o6,inputLayer:()=>Ute,layerNormalization:()=>vne,leakyReLU:()=>qte,lstm:()=>One,lstmCell:()=>zne,masking:()=>Qne,maxPool1d:()=>Xne,maxPool2d:()=>Kne,maxPooling1d:()=>c6,maxPooling2d:()=>h6,maxPooling3d:()=>Fne,maximum:()=>gne,minimum:()=>xne,multiply:()=>bne,permute:()=>pne,prelu:()=>Xte,reLU:()=>Gte,repeatVector:()=>hne,reshape:()=>dne,rnn:()=>Vne,separableConv2d:()=>nne,simpleRNN:()=>Pne,simpleRNNCell:()=>Lne,softmax:()=>Kte,spatialDropout1d:()=>une,stackedRNNCells:()=>jne,thresholdedReLU:()=>Zte,timeDistributed:()=>Hne,upSampling2d:()=>ane,zeroPadding2d:()=>kne});var ere=0;function d6(){return ere++}var Gp={};function qp(e=""){return e in Gp||(Gp[e]=0),Gp[e]+=1,e+Gp[e].toString()}function uy(e){return Array.isArray(e)&&Array.isArray(e[0])}function Xp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new B(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function at(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new B(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Kp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var p6="Variable",f6=class{constructor(e,t="float32",n=p6,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=d6(),n=n==null?p6:n,this.originalName=Jv(n),this.name=Qv(this.originalName),this.trainable_=r,this.constraint=a,this.val=bw(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),tre(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function tre(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function cy(e){return e.map(t=>t.read())}function hy(e){e.forEach(t=>{t[0].write(t[1])})}var Ft=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Fr=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=d6(),s!=null&&(this.originalName=Jv(s),this.name=Qv(this.originalName)),this.rank=t.length}},nre=0,Zp=class{constructor(e,t){this.callArgs=t,this.id=nre++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},rre=0,qe=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=rre++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ga(n)+"_"+qp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Cr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new B(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Fn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Fn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ya(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ya(`Layer ${this.name} is not connected, no input to return.`);return Fn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ya(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ya(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Fn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=At(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=At(this.inputSpec);if(e.length!==t.length)throw new B(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;na.maxNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of At(e))s.push(i.shape);this.build(Fn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=At(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Fn(o),this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=are(e),i=this.computeOutputShape(s),o,l=sre(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new Fr(l,c,this,At(e),t,this.name,u)):o=new Fr(l,i,this,At(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ya(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ya(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Cr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Kp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return cy(e?this.trainableWeights:this.weights)}setWeights(e){P(()=>{let t=this.weights;if(t.length!==e.length)throw new B(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=cy(t);for(let a=0;aa.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=At(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=At(e);t=At(t),n=At(n),r=At(r),a=Xp(a),s=Xp(s);let l=[],c=[],u=[];for(let h of o)l.push(h.sourceLayer),c.push(h.nodeIndex),u.push(h.tensorIndex);new Zp({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;he.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function are(e){e=At(e);let t=[];for(let n of e)t.push(n.shape);return Fn(t)}function sre(e){return"float32"}function m6(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s0){let a=await Promise.all(t);for(let s=0;sse(this.totals[r],z(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:P(()=>{let r=z(Ae(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Ht(t[n])}))}},b6=class extends Xl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;inew w6(n,t))}var gr=class{constructor(){}static registerCallbackConstructor(e,t){_.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),gr.checkForDuplicate(t),gr.constructors[e]==null&&(gr.constructors[e]=[]),gr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in gr.constructors)gr.constructors[+t].forEach(n=>{if(n===e)throw new B("Duplicate callback constructor.")})}static clear(){gr.constructors={}}static createCallbacks(e){let t=[];for(let n in gr.constructors){let r=+n;e>=r&&t.push(...gr.constructors[r])}return t.map(n=>new n)}};gr.constructors={};function v6(e,t,n,r,a,s,i,o,l){let c=new b6,u=[new ore,...gr.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let h=new x6(u);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:c}}function $r(e,t={},n=!1){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Yp(e,t){return P(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Te($c(e),t,!0),r=Qu(n.shape,Wt()),a=en(Ur(n,r));return Ae(e,a)})}function Wi(e,t){return P(()=>It($c(ye(t,e)),-1))}function Jp(e,t){return P(()=>It(zt(ye(t,e)),-1))}function Kl(e,t){return P(()=>{let n=ye(e,t),r=En(zt(e),Wt(),Number.MAX_VALUE),a=zt(Ae(n,r));return z(100,It(a,-1))})}function lre(e,t){return P(()=>{let n=En(t,Wt(),Number.MAX_VALUE),r=zn(se(1,n)),a=En(e,Wt(),Number.MAX_VALUE),s=zn(se(1,a));return It($c(ye(r,s)),-1)})}function ure(e,t){return P(()=>{let n=Ur(0,ye(1,z(e,t)));return It($c(n),-1)})}function cre(e,t){return P(()=>{let n=Ur(0,ye(1,z(e,t)));return It(n,-1)})}function hre(e,t){return P(()=>{let n=Te(z(e,t),-1),r=Rn(z(ye(1,e),t),-1);return Ur(0,se(1,ye(r,n)))})}function dre(e,t){return P(()=>{let n=Math.log(2),r=ye(t,e),a=ye(se(r,_i(z(-2,r))),n);return It(a,-1)})}function zc(e,t,n=!1){return P(()=>{if(n)t=oc(t);else{let r=Te(t,t.shape.length-1,!0);t=Ae(t,r)}return t=En(t,Wt(),1-Wt()),kt(Te(z(e.toFloat(),zn(t)),t.shape.length-1))})}function Qp(e,t,n=!1){return P(()=>{let r=vl($te(e)).toInt();t=En(t,Wt(),1-Wt());let a=t.shape,s=ml(r,a[a.length-1]).reshape(a);return zc(s,t,n)})}function pre(e,t){if(!_.arraysEqual(e.shape,t.shape))throw new B(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return P(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function e0(e,t){return P(()=>{let n;return n=En(t,Wt(),1-Wt()),n=zn(Ae(n,ye(1,n))),It(pre(e,n),-1)})}function fre(e,t){return P(()=>{let n=En(e,Wt(),1),r=En(t,Wt(),1);return Te(z(e,zn(Ae(n,r))),-1)})}function mre(e,t){return P(()=>{let n=zn(se(Wt(),t));return It(ye(t,z(e,n)),-1)})}function dy(e,t){return P(()=>{let n=Yp(e,-1),r=Yp(t,-1),a=z(n,r);return kt(Te(a,-1))})}var t0={meanSquaredError:Wi,meanAbsoluteError:Jp,meanAbsolutePercentageError:Kl,meanSquaredLogarithmicError:lre,squaredHinge:ure,hinge:cre,categoricalHinge:hre,logcosh:dre,categoricalCrossentropy:zc,sparseCategoricalCrossentropy:Qp,binaryCrossentropy:e0,kullbackLeiblerDivergence:fre,poisson:mre,cosineProximity:dy};function py(e){if(typeof e=="string"){if(e in t0)return t0[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new B(t)}else return e}function fy(e,t){return P(()=>{let n=z(.5,Ln(t)),r=Mc(pr(t,n),e.dtype);return It(Ba(e,r),-1)})}function my(e,t){return P(()=>Mc(Ba(Ai(e,-1),Ai(t,-1)),"float32"))}function k6(e,t){return P(()=>fr(e.equal(1),t.equal(1)).sum().cast("float32"))}function Are(e,t){return P(()=>fr(e.equal(1),t.equal(0)).sum().cast("float32"))}function yre(e,t){return P(()=>fr(e.equal(0),t.equal(1)).sum().cast("float32"))}function I6(e,t){return P(()=>{let n=k6(e,t),r=yre(e,t),a=n.add(r);return Cn(pr(a,0),n.div(a),0).cast("float32")})}function gre(e,t){return P(()=>{let n=k6(e,t),r=Are(e,t),a=n.add(r);return Cn(pr(a,0),n.div(a),0).cast("float32")})}function S6(e,t){return e0(e,t)}function N6(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Ba(e,t).asType("float32")}var xre=Wi,bre=Wi,wre=Jp,_re=Jp,vre=Kl,kre=Kl,Ay=zc,Ire=dy,T6=Qp,n0={binaryAccuracy:fy,categoricalAccuracy:my,precision:I6,categoricalCrossentropy:Ay,sparseCategoricalCrossentropy:T6,mse:xre,MSE:bre,mae:wre,MAE:_re,mape:vre,MAPE:kre,cosine:Ire};function Sre(e){if(typeof e=="string"&&e in n0)return n0[e];if(typeof e!="string"&&e!=null)return e;throw new B(`Unknown metric ${e}`)}function r0(e){if(Kr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(t0))if(t0[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(n0))if(n0[n]===e){t=n;break}return t!==void 0?t:e.name}}function Nre(e){let t={Adagrad:()=>Si.adagrad(.01),Adadelta:()=>Si.adadelta(1,.95,Wt()),Adam:()=>Si.adam(.001,.9,.999,Wt()),Adamax:()=>Si.adamax(.002,.9,.999,Wt(),0),RMSProp:()=>Si.rmsprop(.001,.9,0,Wt()),SGD:()=>Si.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new B(`Unknown Optimizer ${e}`)}var E6=1*1024*1024;function C6(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!yy(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>E6&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${E6}.`)}}function yy(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!yy(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!yy(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Mre(e,t,n,r=console.log){let a=Ere(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!a){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}r("_".repeat(t)),a0(s,n,r),r("=".repeat(t));let o=e.layers;for(let u=0;u1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function a0(e,t,n=console.log){let r="";for(let a=0;a0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function Cre(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];a0(i,t,n)}function Rre(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(u){a="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let h=0;hm.name),l=[],c=t.names();for(let m of o)c.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),h,d;if(by[u]==null){let m=$re(i,t);h=m.sorted,d=m.recipientCounts,by[u]=h,M6[u]=d}h=by[u],d={},a||Object.assign(d,M6[u]);let p=new Bi(t);for(let m=0;mr.maxNumTensors&&(r.maxNumTensors=C),C0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=F6(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=F6(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(c=>r[l].add(c))}}return{sorted:n,recipientCounts:Ore(r)}}function Ore(e){let t={};for(let n in e)t[n]=e[n].size;return t}function F6(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)a[c.name]==null&&(a[c.name]=new Set),a[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:r,recipientMap:a}}function Dre(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;ry.name)}`);Za(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let g=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;Kr(x===0,"input layer has >1 nodes"),Kr(v===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;yy.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,x,v,b,w)=>{(v==null||b==null||w==null)&&(v=y.sourceLayer,b=y.nodeIndex,w=y.tensorIndex);let k=v.inboundNodes[b];if(x.indexOf(k)!==-1)throw new Cr(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(g.indexOf(k)!==-1)return;this.containerNodes.add(Jr.nodeKey(v,b)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(k)===-1&&x.push(k);let N=k.inboundLayers.length;for(let C=0;C=0;)x.splice(x.indexOf(k),1);i.push(k)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],x=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,x),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let v=0;vparseInt(y,10)).sort(Op);this.layers=[];for(let y of p){let g=d[y];g.sort((x,v)=>{let b=s[x.id],w=s[v.id];return bw?1:0});for(let x of g)x instanceof Jr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(Op);let m=this.inputs.slice(),f=[];for(let y of p)for(let g of h[y]){let x=g.outboundLayer;if(x!=null){for(let v of g.inputTensors)if(m.indexOf(v)===-1)throw new Cr(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of g.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(x=>x===y).length;if(g!==1)throw new Cr(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Zp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new B("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new B(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new B(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new B(`${s.length} of ${r} weights are not set: ${s}`)}hy(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${xy}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=gy(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return P(()=>{e=At(e);let n=new Bi;for(let r=0;r{e=At(e);let n;return t==null?n=Di(null,e.length):n=At(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Xp(e);if(t.length!==this.inputLayers.length)throw new B(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;iparseInt(i,10)).sort(Op);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(c.id)!==-1)continue;let u=[];for(let m=0;mparseInt(o,10)).sort(Op);for(let o of r){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,h=c.inputTensors,d=c.outputTensors,p=new Array;for(let m of h)m.id in n&&p.push(n[m.id]);if(p.length===h.length){let m={},f,A,y,g;if(c.callArgs!=null&&(m=c.callArgs),p.length===1){let[x,v]=p[0];m.mask==null&&(m.mask=v),y=At(u.call(x,m)),g=At(u.computeMask(x,v)),f=[x],A=[v]}else f=p.map(x=>x[0]),A=p.map(x=>x[1]),m.mask==null&&(m.mask=A),y=At(u.call(f,m)),g=At(u.computeMask(f,A));if(u.activityRegularizer)throw new De("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x{let e=[];for(let t of this.layers)for(let n=0;n0){let m=[];for(let f=0;f0&&f.apply(Fn(y),g)}function l(f){let A=f.name,y=$r(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,f.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new B(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let c=t.name,u=t.layers;for(let f of u)l(f);for(;!ote(s);)for(let f of u){let A=a[f.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let f of p){let A=f[0],y=f[1],g=f[2];Kr(A in a);let x=a[A].inboundNodes[y].outputTensors;h.push(x[g])}let m=t.outputLayers;for(let f of m){let A=f[0],y=f[1],g=f[2];Kr(A in a);let x=a[A].inboundNodes[y].outputTensors;d.push(x[g])}return new e({inputs:h,outputs:d,name:c})}get stateful(){if(this._stateful)throw new B("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){P(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function zre(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function $6(e,t){return zre(e,t,"classWeight")}async function D6(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=P(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());we(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),sn(i,"float32")}else return null}function Pre(e,t){return z(e,t)}var Lre=32;function z6(e,t){let n,r,a=t;n=a.xs,r=a.ys,_.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=O6("input",e.inputNames,n),i=O6("output",e.outputNames,r),o=s[0].shape[0];_.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),_.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function O6(e,t,n){if(n instanceof Pe)return[n];if(Array.isArray(n))return _.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new B(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function Wre(e){if(e.length===3)throw new De("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Vre(e,t,n){let r=n.batchesPerEpoch!=null;if(_.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),_.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),_.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),_.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),_.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(P6(n.validationData))_.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=Wre(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;a?c=l.slice().concat(l.map(A=>"val_"+A)):c=l.slice();let u=_6(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=v6(u,h,n.epochs,null,null,Bre(t,n),null,a,c);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m=n.batchesPerEpoch:x.done){if(a){let v;P6(n.validationData)?v=At(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=At(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?Lre:n.validationBatchSize,verbose:0}));for(let b=0;b0)throw new De("Verbose mode is not implemented yet.");_.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=jre(t)?t:await t.iterator(),o=0,l=0;for(;r?l{if(c.value){let{xs:u,ys:h}=z6(e,c.value),d=u.concat(h),p=P(()=>a(d));if(we(d),l===0)for(let f=0;fse(s[f],z(m,A))),l>0&&we(y)}we(p),o+=m,++l}return s}),c.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Wc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>Li(r,t,n-t)):Li(e,t,n-t)}function _y(e,t){return P(()=>e==null?null:Array.isArray(e)?e.map(n=>_y(n,t)):n6(e,t.dtype==="int32"?t:t.toInt()))}function vy(e,t){let n=[],r=0,a=null;for(;r=e&&(a=e),n.push([r,a]),r=a;return n}async function Hre(e,t,n,r,a,s,i,o,l,c,u,h,d,p,m){a==null&&(a=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let f=!1;if(l!=null&&c!=null&&(f=!0),m!=null&&(f=!0,p==null))throw new B("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=Rr(0,A)),i==null&&(i=1);let{callbackList:g,history:x}=v6(o,i,s,d,A,p,a,f,h);g.setModel(e),e.history=x,await g.onTrainBegin(),e.stopTraining_=!1;for(let v=d;v{let F=k[N][0],O=k[N][1],L=Li(w,F,O-F);C.batch=N,C.size=O-F;let V=_y(n,L),j=t(V);for(let U=0;U0){if(m=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new De("validationData including sample weights is not supported yet."):new B(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let w=!0,k=await e.standardizeUserData(i,o,null,null,w,h);l=k[0],c=k[1],f=l.concat(c)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){m=!0;let w=Math.floor(a[0].shape[0]*(1-r.validationSplit)),k=a[0].shape[0];l=Wc(a,w,k),a=Wc(a,0,w),c=Wc(s,w,k),s=Wc(s,0,w),f=l.concat(c)}else r.validationSteps!=null&&(m=!0);let A=a.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),x,v;m?(e.makeTestFunction(),x=e.testFunction,v=g.slice().concat(g.map(w=>"val_"+w))):(x=null,f=[],v=g.slice());let b=_6(r.callbacks,r.yieldEvery);return await Hre(e,y,A,g,h,r.epochs,r.verbose,b,x,f,r.shuffle,v,r.initialEpoch,null,null)}finally{e.isTraining=!1,Vi(a,t),Vi(s,n),Vi(l,i),Vi(c,o),u!=null&&we(u)}}function L6(e){let t=[];e instanceof Pe&&(e=[e]);for(let n=0;nn.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof Pe)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function qre(e){return e instanceof Pe}function ky(e){return Array.isArray(e)}function W6(e){return!qre(e)&&!ky(e)}function B6(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(ky(e)&&e.length>0)i=!0;else if(W6(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new B(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(W6(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new B(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(ky(e)){if(e=e,e.length!==t.length)throw new B(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new B(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=L6(s),n!=null)for(let i=0;i=0&&c!==u)throw new B(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function Xre(e,t,n){let r=Za(e.map(s=>s.shape[0]));r.sort();let a=Za(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new B(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new B(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!_.arraysEqual(r,a))throw new B(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function Kre(e,t,n){let r=[Wi,e0,zc];for(let a=0;a1)throw new B(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var Yre="layers-model",xa=class extends Jr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new B("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Mre(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Nre(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof ma))throw new B("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new B(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(py(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new B(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>py(s))}else{let s=py(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s{for(let s=0;s1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=Zre(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Pi("metric",()=>{for(let s=0;s{let l="",c,u,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===e0?["accuracy","acc"].indexOf(d)!==-1?u=fy:["crossentropy","ce"].indexOf(d)!==-1&&(u=S6):this.lossFunctions[s]===Qp?["accuracy","acc"].indexOf(d)!==-1?u=N6:["crossentropy","ce"].indexOf(d)!==-1&&(u=T6):["accuracy","acc"].indexOf(d)!==-1?u=my:["crossentropy","ce"].indexOf(d)!==-1&&(u=Ay);let f;["accuracy","acc"].indexOf(d)!==-1?f="acc":["crossentropy","ce"].indexOf(d)!==-1&&(f="ce"),h=u,c=l+f}else h=Sre(d),c=l+r0(d);let p;Pi(c,()=>{p=h}),a(s,c,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;wy(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return Fn(l)}finally{Vi(s[0],e),Vi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Ure(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new B(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new B(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new B("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new Bi;if(e instanceof Pe&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new B(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;oi.name);for(let i=0;i0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new B(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return P(()=>{let r=this.checkNumSamples(e);if(n)throw new De("Verbose predictLoop() is not implemented yet.");let a=vy(r,t),s=this.outputs.map(i=>[]);for(let i=0;i{let o=a[i][0],l=a[i][1],c=Wc(e,o,l),u=[];if(Array.isArray(c))for(let d=0;ds[l].push(o));return Fn(s.map(i=>ot(i,0)))})}predict(e,t={}){let n=L6(e);V6(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return wy(r),this.predictLoop(n,r)}finally{Vi(n,e)}}predictOnBatch(e){V6(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new Cr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s0&&e[0].shape[0]%r!=0)throw new B(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let c=$6(r,this.outputNames);l=[];for(let u=0;u{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new De("Verbose mode is not implemented yet.");if(a!=null)throw new De("steps mode in testLoop() is not implemented yet");{let o=vy(s,n),l=sn(Rr(0,s));for(let c=0;c1&&(a+=`_${jv(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let p=0;p1&&p{d=se(d,p)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>P(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;lga(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=ga(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ga(r0(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ga(r0(e)));{let e={};for(let t in this.metrics)e[t]=ga(r0(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Pc(e.optimizer_config),n=$r(t),r;if(typeof e.loss=="string")r=Oi(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>Oi(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=Oi(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>Oi(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=Oi(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Nn.getSaveHandlers(e);if(i.length===0)throw new B(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new B(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new B("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Nn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:Yre,generatedBy:`TensorFlow.js tfjs-layers v${xy}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Nn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Nn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;C6(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){C6(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};xa.className="Model";re.registerClass(xa);var j6=class extends xa{};j6.className="Functional";re.registerClass(j6);async function Jre(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=Pc(n),a=$r(r,t);if(e.weightsManifest!=null){let s=await Nn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),we(s)}return a}async function eae(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Nn.getLoadHandlers(e,t);if(n.length===0)n.push(Nn.browserHTTPRequest(e,t));else if(n.length>1)throw new B(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Qre(e,void 0,t)}async function Qre(e,t,n){if(n==null&&(n={}),e.load==null)throw new B("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=$r(Pc(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new B("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=tae(r.weightData,r.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),we(c),we(u.map(h=>h.tensor))}return o}function tae(e,t){let n=Nn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Zl=class extends xa{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:qp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new B(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Zl||e instanceof xa,n;if(t){if(n=e,n.outputs.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new B("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new B("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=A6({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new B(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=m6(this.outputs[0])}this.inboundNodes=[],new Zp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Di(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(at(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new xa({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Cr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Cr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Cr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Cr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new B("Legacy serialization format not supported yet.");a=t}else _.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Zl))throw new De(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=$r(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new B("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new B("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Zl.className="Sequential";re.registerClass(Zl);function nae(e){return new xa(e)}function rae(e){return new Zl(e)}function aae(e,t){return t==null&&(t={}),eae(e,t)}function o6(e){return A6(e)}function sae(e,t){gr.registerCallbackConstructor(e,t)}var Dn=class extends re.Serializable{getConfig(){return{}}},U6=class extends Dn{apply(e,t=1){return Ote(e,t)}};U6.className="elu";re.registerClass(U6);var H6=class extends Dn{apply(e){return Wd(e)}};H6.className="selu";re.registerClass(H6);var G6=class extends Dn{apply(e){return Hr(e)}};G6.className="relu";re.registerClass(G6);var q6=class extends Dn{apply(e){return P(()=>Il(6,Hr(e)))}};q6.className="relu6";re.registerClass(q6);var X6=class extends Dn{apply(e){return e}};X6.className="linear";re.registerClass(X6);var K6=class extends Dn{apply(e){return Tn(e)}};K6.className="sigmoid";re.registerClass(K6);var Z6=class extends Dn{apply(e){return Pte(e)}};Z6.className="hardSigmoid";re.registerClass(Z6);var Y6=class extends Dn{apply(e){return _i(e)}};Y6.className="softplus";re.registerClass(Y6);var J6=class extends Dn{apply(e){return zte(e)}};J6.className="softsign";re.registerClass(J6);var Q6=class extends Dn{apply(e){return gi(e)}};Q6.className="tanh";re.registerClass(Q6);var Iy=class extends Dn{apply(e,t=-1){return oc(e,t)}};Iy.className="softmax";re.registerClass(Iy);var e4=class extends Dn{apply(e,t=-1){return Fd(e,t)}};e4.className="logSoftmax";re.registerClass(e4);var t4=class extends Dn{apply(e,t=1){return P(()=>Tn(e.mul(t)).mul(e))}};t4.className="swish";re.registerClass(t4);var n4=class extends Dn{apply(e){return P(()=>z(e,gi(_i(e))))}};n4.className="mish";re.registerClass(n4);function es(e){return e.getClassName()}function Sy(e,t={}){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function ts(e){if(e==null){let t={};return t.className="linear",t.config={},Sy(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Sy(t)}else return e instanceof Dn?e:Sy(e)}function Ny(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var r4=class extends re.Serializable{},Bc=class extends r4{constructor(e){super();Ny(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return P(()=>{let t=Rt([1]);return this.hasL1&&(t=se(t,Te(z(this.l1,zt(e))))),this.hasL2&&(t=se(t,Te(z(this.l2,$c(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Bc.className="L1L2";re.registerClass(Bc);function iae(e){return Ny(e),new Bc({l1:e!=null?e.l1:null,l2:0})}function oae(e){return Ny(e),new Bc({l2:e!=null?e.l2:null,l1:0})}var a4={l1l2:"L1L2"};function ut(e){return BA(e)}function s4(e,t={}){return Ec(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function xt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in a4?a4[e]:e,config:{}};return s4(t)}else return e instanceof r4?e:s4(e)}var Ty=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=Hr(e);return this.maxValue!=null&&(n=En(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Ty.className="ReLU";re.registerClass(Ty);var Ey=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return ec(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Ey.className="LeakyReLU";re.registerClass(Ey);var Cy=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=gt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=xt(e.alphaRegularizer),this.alphaConstraint=Vt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new B(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=at(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r(Ct(t),t==="channelsFirst"?Je(e,[0,2,3,1]):e))}function i4(e,t){return P(()=>(Ct(t),t==="channelsFirst"?Je(e,[0,2,3,4,1]):e))}function lae(e,t,n,r=1,a="valid",s,i=1){return P(()=>{if(s==null&&(s=Er()),Ct(s),e.shape.length!==3)throw new B(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new B(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new B(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Je(e,[0,2,1])),a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Id(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Mr(o,n)),o})}function o4(e,t,n,r=[1,1],a="valid",s,i,o=null){return P(()=>{if(s==null&&(s=Er()),Ct(s),e.rank!==3&&e.rank!==4)throw new B(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new B(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=$y(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ha.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Je(l,[0,3,1,2])),l})}function uae(e,t,n,r=[1,1,1],a="valid",s,i){return P(()=>{if(s==null&&(s=Er()),Ct(s),e.rank!==4&&e.rank!==5)throw new B(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new B(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=i4(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=wm(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Mr(o,n)),s==="channelsFirst"&&(o=Je(o,[0,4,1,2,3])),o})}var Dy=class extends qe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Dy.verifyArgs(t),this.rank=e,qt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new De(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Yl(t.kernelSize,e,"kernelSize"),this.strides=Yl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,sr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ct(this.dataFormat),this.activation=ts(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=gt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Vt(t.biasConstraint),this.biasRegularizer=xt(t.biasRegularizer),this.activityRegularizer=xt(t.activityRegularizer),this.dilationRate=Yl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new B(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new B(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new B(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Kr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!jA(e.kernelSize,"number",1,3))throw new B(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:es(this.activation),useBias:this.useBias,biasInitializer:St(this.biasInitializer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Vc=class extends Dy{constructor(e,t){super(e,t);this.kernel=null,Vc.verifyArgs(t),this.filters=t.filters,qt(this.filters,"filters"),this.kernelInitializer=gt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Vt(t.kernelConstraint),this.kernelRegularizer=xt(t.kernelRegularizer)}build(e){e=at(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return P(()=>{e=ze(e);let n,r=this.bias==null?null:this.bias.read(),a=Hv(this.activation.getClassName());if(a!=null&&this.rank===2)n=o4(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=lae(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=o4(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=uae(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new De("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=at(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a 0 but got ${JSON.stringify(e.filters)}`)}},jc=class extends Vc{constructor(e){super(2,e);jc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!jA(e.kernelSize,"number",1,2))throw new B(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};jc.className="Conv2D";re.registerClass(jc);var Uc=class extends Vc{constructor(e){super(3,e);Uc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new B(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Uc.className="Conv3D";re.registerClass(Uc);var Oy=class extends jc{constructor(e){super(e);if(this.inputSpec=[new Ft({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==4)throw new B("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ft({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=ze(e);if(n.shape.length!==4)throw new B(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],c=this.kernelSize[0],u=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=Qr(o,h,c,this.padding),m=Qr(l,d,u,this.padding),f=[a,p,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Je(n,[0,2,3,1]));let A=Sd(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=Je(A,[0,3,1,2])),this.bias!=null&&(A=Mr(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=at(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=Qr(t[r],o,s,this.padding),t[a]=Qr(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Oy.className="Conv2DTranspose";re.registerClass(Oy);var zy=class extends Uc{constructor(e){super(e);if(this.inputSpec=[new Ft({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==5)throw new B("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ft({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=ze(e);if(n.shape.length!==5)throw new B(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=r[o],c=r[s],u=r[i],h=this.kernelSize[0],d=this.kernelSize[1],p=this.kernelSize[2],m=this.strides[0],f=this.strides[1],A=this.strides[2],y=Qr(l,m,h,this.padding),g=Qr(c,f,d,this.padding),x=Qr(u,A,p,this.padding),v=[a,y,g,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Je(n,[0,2,3,4,1]));let b=nw(n,this.kernel.read(),v,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(b=Je(b,[0,4,1,2,3])),this.bias!==null&&(b=Mr(b,this.bias.read(),this.dataFormat)),this.activation!==null&&(b=this.activation.apply(b)),b})}computeOutputShape(e){e=at(e);let t=e.slice(),n,r,a,s;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3,s=4):(n=4,r=1,a=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],h=this.strides[2];return t[n]=this.filters,t[r]=Qr(t[r],c,i,this.padding),t[a]=Qr(t[a],u,o,this.padding),t[s]=Qr(t[s],h,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};zy.className="Conv3DTranspose";re.registerClass(zy);var l4=class extends Vc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new B("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new B("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new B(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=xt(t.depthwiseRegularizer),this.depthwiseConstraint=Vt(t.depthwiseConstraint),this.pointwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=xt(t.pointwiseRegularizer),this.pointwiseConstraint=Vt(t.pointwiseConstraint)}build(e){if(e=at(e),e.length{e=ze(e);let n;if(this.rank===1)throw new De("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Je(e,[0,2,3,1])),n=Wm(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Mr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Je(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=St(this.depthwiseInitializer),e.pointwiseInitializer=St(this.pointwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.pointwiseRegularizer=ut(this.pointwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseConstraint),e.pointwiseConstraint=Bt(this.pointwiseConstraint),e}};l4.className="SeparableConv";var Py=class extends l4{constructor(e){super(2,e)}};Py.className="SeparableConv2D";re.registerClass(Py);var s0=class extends Vc{constructor(e){super(1,e);s0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!jA(e.kernelSize,"number",1,1))throw new B(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};s0.className="Conv1D";re.registerClass(s0);var Ly=class extends qe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return P(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=zp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return zp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=zp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return zp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ly.className="Cropping2D";re.registerClass(Ly);var Wy=class extends qe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,Ete(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return P(()=>{let n=ze(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=Je(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return Je(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Wy.className="UpSampling2D";re.registerClass(Wy);function cae(e,t,n=[1,1],r="valid",a,s){return P(()=>{a==null&&(a=Er()),Ct(a);let i=$y(e,a);if(e.rank!==4)throw new B(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new B(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=wl(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=Je(i,[0,3,1,2])),i})}var By=class extends Dy{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=gt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Vt(e.depthwiseConstraint),this.depthwiseRegularizer=xt(e.depthwiseRegularizer)}build(e){if(e=at(e),e.length<4)throw new B(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{e=ze(e);let n=cae(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Mr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=Dr(t,this.kernelSize[0],this.padding,this.strides[0]),s=Dr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=St(this.depthwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseRegularizer),e}};By.className="DepthwiseConv2D";re.registerClass(By);function u4(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new B("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function c4(e,t,n,r=!1,a,s,i=!1,o=!1){return P(()=>{let l=t.shape.length;if(l<3)throw new B(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(Rr(2,l));if(t=Je(t,c),s!=null)throw new De("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=Qt(a,-1)),a=Je(a,c)),r&&(t=Wn(t,0),a!=null&&(a=Wn(a,0)));let u=[],h,d=n,p=t.shape[0],m=mr(t),f;a!=null&&(f=mr(a));for(let y=0;ye(g,d));if(a==null)h=x[0],d=x[1];else{let v=P(()=>{let b=f[y],w=Ln(b).sub(b),k=x[0].mul(b).add(d[0].mul(w)),N=d.map((C,F)=>x[1][F].mul(b).add(C.mul(w)));return{output:k,newStates:N}});h=v.output,d=v.newStates}o&&u.push(h)}let A;return o&&(A=cn(u,1)),[h,A,d]})}var Yr=class extends qe{constructor(e){super(e);let t;if(e.cell==null)throw new B("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new i0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new B("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ft({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Rr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){uy(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return P(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;ni.shape[i.shape.length-1]),s))throw new B(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Ft({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new ya("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Rt([n,r])):this.states_=[Rt([n,this.cell.stateSize])];else if(e==null)we(this.states_),this.keptStates!=null&&(we(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Rt([n,r])):this.states_[0]=Rt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):we(this.states_);for(let r=0;rHt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=u4(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Ft({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof Fr){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=ze(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new B(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=c4((d,p)=>{let m=this.cell.call([d].concat(p),i);return[m[0],m.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,r);let h=this.returnSequences?c:l;return this.returnState?[h].concat(u):h})}getInitialState(e){return P(()=>{let t=Rt(e.shape);return t=Te(t,[1,2]),t=Fc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?KA(t,[1,n]):t):this.cell.stateSize>1?[KA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Yr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=$r(r,n);return new e(Object.assign(t,{cell:a}))}};Yr.className="RNN";re.registerClass(Yr);var Oc=class extends qe{},o0=class extends Oc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,qt(this.units,"units"),this.activation=ts(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Gl([1,Ja([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ja([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new B(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0Ln(e),rate:this.dropout,training:r})),0Ln(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Zr(z(e,s),this.kernel.read()):a=Zr(e,this.kernel.read()),this.bias!=null&&(a=Mr(a,this.bias.read())),i!=null&&(n=z(n,i));let o=se(a,Zr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:es(this.activation),useBias:this.useBias,kernelInitializer:St(this.kernelInitializer),recurrentInitializer:St(this.recurrentInitializer),biasInitializer:St(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),recurrentConstraint:Bt(this.recurrentConstraint),biasConstraint:Bt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};o0.className="SimpleRNNCell";re.registerClass(o0);var Vy=class extends Yr{constructor(e){e.cell=new o0(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(we(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(we(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};Vy.className="SimpleRNN";re.registerClass(Vy);var l0=class extends Oc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new B("GRUCell does not support reset_after parameter set to true.");this.units=e.units,qt(this.units,"units"),this.activation=ts(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ts(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Gl([1,Ja([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ja([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new B(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0Ln(e),rate:this.dropout,training:n,count:3})),0Ln(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0{this.cell.dropoutMask!=null&&(we(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(we(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};jy.className="GRU";re.registerClass(jy);var Hc=class extends Oc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,qt(this.units,"units"),this.activation=ts(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ts(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Gl([1,Ja([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ja([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=at(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends yr{apply(i,o){let l=a.apply([s]),c=new Lp().apply([s]),u=a.apply([s*2]);return t6(t6(l,c),u)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new B(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0Ln(e),rate:this.dropout,training:n,count:4})),0Ln(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0{this.cell.dropoutMask!=null&&(we(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(we(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Uy.className="LSTM";re.registerClass(Uy);var i0=class extends Oc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return P(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i{Pi(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push($r(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return cy(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;sr6(t(),n),i=()=>Dc(s,t,r);return!a||a<=1?Ht(i().clone()):Array(a).fill(void 0).map(i).map(o=>Ht(o.clone()))}var hae=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a{if(this.cell.dropoutMask!=null&&(we(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(we(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new B("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return P(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Rt(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new ya("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Rt(a)):this.states_=[Rt(a)];else if(e==null)we(this.states_),this.keptStates!=null&&(we(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Rt(a)):this.states_[0]=Rt(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):we(this.states_);for(let s=0;sHt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=Dr(l,r[0],a,s[0],i[0]),h=Dr(c,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,h]:[u,h,n]]}};h4.className="ConvRNN2D";var u0=class extends Hc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,qt(this.filters,"filters"),this.kernelSize=Yl(n,2,"kernelSize"),this.kernelSize.forEach(o=>qt(o,"kernelSize")),this.strides=Yl(r||1,2,"strides"),this.strides.forEach(o=>qt(o,"strides")),this.padding=a||"valid",sr(this.padding),this.dataFormat=s||"channelsLast",Ct(this.dataFormat),this.dilationRate=Yl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>qt(o,"dilationRate"))}build(e){var t;e=at(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends yr{apply(u,h){let d=l.apply([c]),p=Pn([c]),m=l.apply([c*2]);return YA([d,p,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return P(()=>{if(e.length!==3)throw new B(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0Ln(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,ae,te)=>!ae||!ae[te]?Y:z(ae[te],Y),c=l(r,o,0),u=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0Ln(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,m=l(a,p,0),f=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[x,v,b,w]=Lt(this.kernel.read(),i,g),[k,N,C,F]=this.useBias?Lt(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,x,k,this.padding),u=this.inputConv(u,v,N,this.padding),h=this.inputConv(h,b,C,this.padding),d=this.inputConv(d,w,F,this.padding);let[O,L,V,j]=Lt(this.recurrentKernel.read(),i,g);m=this.recurrentConv(m,O),f=this.recurrentConv(f,L),A=this.recurrentConv(A,V),y=this.recurrentConv(y,j);let U=this.recurrentActivation.apply(se(c,m)),X=this.recurrentActivation.apply(se(u,f)),G=se(z(X,s),z(U,this.activation.apply(se(h,A)))),ee=z(this.recurrentActivation.apply(se(d,y)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=hae(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=ha(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Mr(a,n,this.dataFormat):a}recurrentConv(e,t){return ha(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};u0.className="ConvLSTM2DCell";re.registerClass(u0);var Hy=class extends h4{constructor(e){let t=new u0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Hy.className="ConvLSTM2D";re.registerClass(Hy);var c0=class extends qe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r{this.invokeCallHook(e,t);let n=ze(e);if(0r6(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};c0.className="Dropout";re.registerClass(c0);var Gy=class extends c0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Gy.className="SpatialDropout1D";re.registerClass(Gy);var qy=class extends qe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,qt(this.units,"units"),this.activation=ts(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Vt(e.kernelConstraint),this.biasConstraint=Vt(e.biasConstraint),this.kernelRegularizer=xt(e.kernelRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=at(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=at(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e),r=Hv(this.activation.getClassName()),a;return r!=null?a=Zr(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Zr(n,this.kernel.read()),this.bias!=null&&(a=Mr(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:es(this.activation),useBias:this.useBias,kernelInitializer:St(this.kernelInitializer),biasInitializer:St(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};qy.className="Dense";re.registerClass(qy);var Xy=class extends qe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=at(e);for(let t of e.slice(1))if(t==null)throw new B(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ya(e,1)]}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:es(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Ky.className="Activation";re.registerClass(Ky);var Zy=class extends qe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return P(()=>(e=ze(e),Fte(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Zy.className="RepeatVector";re.registerClass(Zy);var Yy=class extends qe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=ze(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Yy.className="Reshape";re.registerClass(Yy);var Jy=class extends qe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Rr(1,e.dims.length+1);if(!_.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ft({ndim:this.dims.length+1})]}computeOutputShape(e){e=at(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return Je(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Jy.className="Permute";re.registerClass(Jy);var Qy=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),r=-1;return Xu(ki(n,this.maskValue),r)}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e),r=-1,a=!0,s=Xu(ki(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};Qy.className="Masking";re.registerClass(Qy);var e2=class extends qe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(At(e.inputLength))}this.inputDim=e.inputDim,qt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,qt(this.outputDim,"outputDim"),this.embeddingsInitializer=gt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=xt(e.embeddingsRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.embeddingsConstraint=Vt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return P(()=>this.maskZero?(e=ze(e),ki(e,He(e))):null)}computeOutputShape(e){if(e=at(e),this.inputLength==null)return[...e,this.outputDim];let t=At(this.inputLength);if(t.length!==e.length-1)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r{this.invokeCallHook(e,t);let n=ze(e);return n.dtype!=="int32"&&(n=Mc(n,"int32")),n6(this.embeddings.read(),n.as1D()).reshape(at(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:St(this.embeddingsInitializer),embeddingsRegularizer:ut(this.embeddingsRegularizer),activityRegularizer:ut(this.activityRegularizer),embeddingsConstraint:Bt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};e2.className="Embedding";re.registerClass(e2);var ji=class extends qe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new De}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new B(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;aa.length);e.indexOf(null)===-1&&Za(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return P(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Ja(r);for(let s of e){let i=s.rank;for(let o=0;o1){let c=Rr(1,l).concat([0]);n.push(Je(o,c)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=Je(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(Rr(0,i-1));s=Je(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r{if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an Array");if(!Array.isArray(e))throw new B("`inputs` should be an Array");if(t.length!==e.length)throw new B(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:Qt(r,0));let n=t[0];for(let r=1;r{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new B("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return P(()=>YA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new B("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new B("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new B(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return P(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s3||t.shape.length>3)throw new De("batchDot is not implemented for tensors of 4D or higher rank yet");if(_.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),_.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new De("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return P(()=>{let i;if(r>a){i=r-a;let l=[];for(let c=0;cr){i=a-r;let l=[];for(let c=0;c0){let l;r>a?l=r+a-3:l=r-1;let c=[];for(let u=l;u"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new B(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new B(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>Gc(a,e[s].shape.length)):r=[Gc(this.axes,t.shape.length),Gc(this.axes,n.shape.length)],this.normalize&&(t=Yp(t,r[0]),n=Yp(n,r[1])),dae(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Gc(this.axes,e.length),Gc(this.axes,t.length)],n}computeOutputShape(e){_.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};o2.className="Dot";re.registerClass(o2);var l2=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e);return Dc(()=>Pp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};l2.className="GaussianNoise";re.registerClass(l2);var u2=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?Dc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(Pp(n.shape,1,r))},()=>n,t.training||!1):n})}};u2.className="GaussianDropout";re.registerClass(u2);var c2=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Dc(()=>{let r=ze(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=ja(Sl(n),this.rate);o=Mc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>ze(e),t.training||!1)}return e})}};c2.className="AlphaDropout";re.registerClass(c2);function qc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=Xb(e,t,n,r,a,s);else if(e.rank===3)i=Kb(e,t,n,r,a,s);else if(e.rank===4)i=Zb(e,t,n,r,a,s);else throw new De(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function pae(e,t,n,r,a=.001){return P(()=>{let s=Dd(e,r),i=s.mean,o=s.variance;return[qc(e,i,o,n,t,a),i,o]})}function fae(e,t,n,r,a=.001){return P(()=>{let s=Dd(e,r),i=s.mean,o=s.variance,l=[];for(let p of Rr(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let c=i.reshape(l),u=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[qc(e,c,u,d,h,a),i,o]})}function mae(e,t,n,r,a=.001){return _.arraysEqual(r.slice().sort(),Rr(0,e.rank-1))?pae(e,t,n,r,a):fae(e,t,n,r,a)}var h2=class extends qe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.movingMeanInitializer=gt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=gt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Vt(e.betaConstraint),this.gammaConstraint=Vt(e.gammaConstraint),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer)}build(e){e=at(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new B(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ft({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training,r=ze(e),a=r.shape,s=a.length,i=Rr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Di(1,s);l[o]=a[o];let c=i.slice();c.sort();let u=!_.arraysEqual(c,Rr(0,s).slice(0,s-1)),h=()=>{if(u){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return qc(r,A,y,g,x,this.epsilon)}else return qc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,m]=mae(r,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(A,y,g)=>{P(()=>{let x=1-g,v=A.read(),b=v.sub(y).mul(x);A.write(v.sub(b))})};return(()=>{f(this.movingMean,p,this.momentum),f(this.movingVariance,m,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:St(this.betaInitializer),gammaInitializer:St(this.gammaInitializer),movingMeanInitializer:St(this.movingMeanInitializer),movingVarianceInitializer:St(this.movingVarianceInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer),betaConstraint:Bt(this.betaConstraint),gammaConstraint:Bt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};h2.className="BatchNormalization";re.registerClass(h2);var d2=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=at(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Za(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=ze(e),r=n.shape,a=r.length;return P(()=>{let s=!0,{mean:i,variance:o}=Dd(n,this.axis,s),l=Di(1,a);for(let m of this.axis)l[m]=r[m];let c=m=>m!=null&&m.shape.length!==a&&this.axis!==[a-1]?m.reshape(l):m,u=c(this.gamma.read()),h=c(this.beta.read()),d=[],p=[];for(let m=0;m{if(e.rank!==4)throw new B(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new B("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Er()),n!=="channelsLast"&&n!=="channelsFirst")throw new B(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],da(e,r)})}var p2=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Er():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new B(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new B(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new B(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){e=at(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return P(()=>Aae(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};p2.className="ZeroPadding2D";re.registerClass(p2);function h0(e,t,n,r,a,s){return P(()=>{Ct(a),Kv(s),sr(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=Er()),s==null&&(s="max"),e=$y(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=nc(e,t,n,o):i=Zu(e,t,n,o),a==="channelsFirst"&&(i=Je(i,[0,3,1,2])),i})}function d4(e,t,n,r,a,s){return P(()=>{Ct(a),Kv(s),sr(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=Er()),s==null&&(s="max"),e=i4(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Fm(e,t,n,o):i=gm(e,t,n,o),a==="channelsFirst"&&(i=Je(i,[0,4,1,2,3])),i})}var p4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new B(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(qt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new B(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,sr(this.padding),this.inputSpec=[new Ft({ndim:3})]}computeOutputShape(e){e=at(e);let t=Dr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return P(()=>{this.invokeCallHook(e,t),e=Fc(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Ua(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},f2=class extends p4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),h0(e,t,n,r,a,"max")}};f2.className="MaxPooling1D";re.registerClass(f2);var m2=class extends p4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),h0(e,t,n,r,a,"avg")}};m2.className="AveragePooling1D";re.registerClass(m2);var f4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new B(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];qt(this.poolSize,"poolSize"),qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),sr(this.padding),this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Dr(t,this.poolSize[0],this.padding,this.strides[0]),n=Dr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},A2=class extends f4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),h0(e,t,n,r,a,"max")}};A2.className="MaxPooling2D";re.registerClass(A2);var y2=class extends f4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),h0(e,t,n,r,a,"avg")}};y2.className="AveragePooling2D";re.registerClass(y2);var m4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new B(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];qt(this.poolSize,"poolSize"),qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),sr(this.padding),this.inputSpec=[new Ft({ndim:5})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Dr(t,this.poolSize[0],this.padding,this.strides[0]),n=Dr(n,this.poolSize[1],this.padding,this.strides[1]),r=Dr(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},g2=class extends m4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),d4(e,t,n,r,a,"max")}};g2.className="MaxPooling3D";re.registerClass(g2);var x2=class extends m4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),d4(e,t,n,r,a,"avg")}};x2.className="AveragePooling3D";re.registerClass(x2);var A4=class extends qe{constructor(e){super(e);this.inputSpec=[new Ft({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new De}},b2=class extends A4{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=ze(e);return It(n,1)})}};b2.className="GlobalAveragePooling1D";re.registerClass(b2);var w2=class extends A4{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=ze(e);return Rn(n,1)})}};w2.className="GlobalMaxPooling1D";re.registerClass(w2);var y4=class extends qe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new De}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},_2=class extends y4{call(e,t){return P(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?It(n,[1,2]):It(n,[2,3])})}};_2.className="GlobalAveragePooling2D";re.registerClass(_2);var v2=class extends y4{call(e,t){return P(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Rn(n,[1,2]):Rn(n,[2,3])})}};v2.className="GlobalMaxPooling2D";re.registerClass(v2);var g4=class extends qe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=$r(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},k2=class extends g4{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=at(e),e.length<3)throw new B(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=at(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return P(()=>(e=ze(e),c4((n,r)=>[ze(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};k2.className="TimeDistributed";re.registerClass(k2);function yae(e){zi(Tte,"BidirectionalMergeMode",e)}var gae="concat",I2=class extends g4{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=$r(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=$r(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?gae:e.mergeMode,yae(this.mergeMode),e.weights)throw new De("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):Fn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=u4(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new B("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Ft({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(r!=null)throw new De("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Fr;for(let l of s)if(l instanceof Fr!==o)throw new B("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let h=super.apply(l,t);return this.inputSpec=u,h}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Wn(a,1));let i;return this.mergeMode==="concat"?i=YA([r,a]):this.mergeMode==="sum"?i=se(r,a):this.mergeMode==="ave"?i=z(.5,se(r,a)):this.mergeMode==="mul"?i=z(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Pi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Pi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=$r(t.layer);if(delete t.layer,t.numConstants!=null)throw new De("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};I2.className="Bidirectional";re.registerClass(I2);function Ute(e){return new ql(e)}function Hte(e){return new Ry(e)}function Gte(e){return new Ty(e)}function qte(e){return new Ey(e)}function Xte(e){return new Cy(e)}function Kte(e){return new Fy(e)}function Zte(e){return new My(e)}function Yte(e){return new s0(e)}function Jte(e){return new jc(e)}function Qte(e){return new Oy(e)}function ene(e){return new Uc(e)}function tne(e){return new zy(e)}function nne(e){return new Py(e)}function rne(e){return new Ly(e)}function ane(e){return new Wy(e)}function sne(e){return new By(e)}function ine(e){return new Ky(e)}function one(e){return new qy(e)}function lne(e){return new c0(e)}function une(e){return new Gy(e)}function cne(e){return new Xy(e)}function hne(e){return new Zy(e)}function dne(e){return new Yy(e)}function pne(e){return new Jy(e)}function fne(e){return new e2(e)}function mne(e){return new t2(e)}function Ane(e){return new r2(e)}function yne(e){return new i2(e)}function gne(e){return new a2(e)}function xne(e){return new s2(e)}function bne(e){return new n2(e)}function wne(e){return new o2(e)}function _ne(e){return new h2(e)}function vne(e){return new d2(e)}function kne(e){return new p2(e)}function iy(e){return new m2(e)}function Ine(e){return iy(e)}function Sne(e){return iy(e)}function oy(e){return new y2(e)}function Nne(e){return oy(e)}function Tne(e){return oy(e)}function ly(e){return new x2(e)}function Ene(e){return ly(e)}function Cne(e){return ly(e)}function Rne(e){return new b2(e)}function Mne(e){return new _2(e)}function l6(e){return new w2(e)}function u6(e){return new v2(e)}function c6(e){return new f2(e)}function h6(e){return new A2(e)}function Fne(e){return new g2(e)}function $ne(e){return new jy(e)}function Dne(e){return new l0(e)}function One(e){return new Uy(e)}function zne(e){return new Hc(e)}function Pne(e){return new Vy(e)}function Lne(e){return new o0(e)}function Wne(e){return new Hy(e)}function Bne(e){return new u0(e)}function Vne(e){return new Yr(e)}function jne(e){return new i0(e)}function Une(e){return new I2(e)}function Hne(e){return new k2(e)}var Gne=l6,qne=u6,Xne=c6,Kne=h6;function Zne(e){return new l2(e)}function Yne(e){return new u2(e)}function Jne(e){return new c2(e)}function Qne(e){return new Qy(e)}var x4={};Me(x4,{MAPE:()=>Eae,MSE:()=>Mae,binaryAccuracy:()=>xae,binaryCrossentropy:()=>bae,categoricalAccuracy:()=>_ae,categoricalCrossentropy:()=>vae,cosineProximity:()=>Sae,mape:()=>Cae,meanAbsoluteError:()=>Nae,meanAbsolutePercentageError:()=>Tae,meanSquaredError:()=>Rae,mse:()=>Fae,precision:()=>kae,recall:()=>Iae,sparseCategoricalAccuracy:()=>wae});function xae(e,t){return fy(e,t)}function bae(e,t){return S6(e,t)}function wae(e,t){return N6(e,t)}function _ae(e,t){return my(e,t)}function vae(e,t){return Ay(e,t)}function kae(e,t){return I6(e,t)}function Iae(e,t){return gre(e,t)}function Sae(e,t){return dy(e,t)}function Nae(e,t){return Jp(e,t)}function Tae(e,t){return Kl(e,t)}function Eae(e,t){return Kl(e,t)}function Cae(e,t){return Kl(e,t)}function Rae(e,t){return Wi(e,t)}function Mae(e,t){return Wi(e,t)}function Fae(e,t){return Wi(e,t)}var b4={};Me(b4,{modelFromJSON:()=>Jre});var w4={};Me(w4,{l1:()=>Dae,l1l2:()=>$ae,l2:()=>Oae});function $ae(e){return new Bc(e)}function Dae(e){return iae(e)}function Oae(e){return oae(e)}var _4=class extends Xl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof xa))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function d0(e,t){return et}var k4=class extends _4{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new De("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=d0:this.mode==="max"?this.monitorFunc=v4:this.monitor.indexOf("acc")!==-1?this.monitorFunc=v4:this.monitorFunc=d0,this.monitorFunc===d0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===d0?Infinity:-Infinity}async onEpochEnd(e,t){await Qa(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function zae(e){return new k4(e)}var Pae={earlyStopping:zae},Or;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Or||(Or={}));var I4;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(I4||(I4={}));var S2={};function Lae(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};S2[e]=n}function S4(e){return S2[e]}function Wae(e){delete S2[e]}function I(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return yn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>yn(h,n,r,a));let c=yn(t.inputNames.slice(o)[0],n,r,a),u=c.dataSync();return s.type==="number"?u[0]:_.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function yn(e,t,n,r){let[a,s]=jn(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[p0(a,o)]);return i!==void 0?t[p0(a,i)][s]:void 0}function Bae(e,t,n){return t[p0(e,n.currentContextId)]}function ba(e,t){let[n,r]=jn(e);return[p0(n,t&&t.currentContextId),r]}function p0(e,t){return t?`${e}-${t}`:e}function jn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function f0(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function wa(e){return e.kept?e:Br(e)}var N4={};Me(N4,{json:()=>Vae});var Vae=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],T4={};Me(T4,{json:()=>jae});var jae=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],E4={};Me(E4,{json:()=>Uae});var Uae=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],C4={};Me(C4,{json:()=>Hae});var Hae=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],R4={};Me(R4,{json:()=>Gae});var Gae=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],M4={};Me(M4,{json:()=>qae});var qae=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],F4={};Me(F4,{json:()=>Xae});var Xae=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],$4={};Me($4,{json:()=>Kae});var Kae=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],D4={};Me(D4,{json:()=>Zae});var Zae=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],O4={};Me(O4,{json:()=>Yae});var Yae=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],z4={};Me(z4,{json:()=>Jae});var Jae=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],P4={};Me(P4,{json:()=>Qae});var Qae=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],L4={};Me(L4,{json:()=>ese});var ese=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],W4={};Me(W4,{json:()=>tse});var tse=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],B4={};Me(B4,{json:()=>nse});var nse=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],V4={};Me(V4,{json:()=>rse});var rse=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],j4={};Me(j4,{json:()=>ase});var ase=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],H4=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[N4,T4,E4,C4,R4,M4,F4,z4,O4,$4,P4,L4,W4,B4,V4,j4,D4],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?r.push(m[f.name]):f.op==="Const"?a.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(m=>{let f=i[m];f.inputNames.forEach(A=>{let[y]=ba(A);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(u).length===0?h.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(u).forEach(m=>{let[f]=ba(m),A=i[f];A!=null&&(A.signatureKey=u[m],l.push(A))}),Object.keys(c).length>0?Object.keys(c).forEach(m=>{let[f]=ba(m),A=i[f];A&&(A.signatureKey=c[m],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=S4(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=N2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=N2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=D2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=D2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=E2(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=E2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=$2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=$2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=T2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=T2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=z2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=z2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=F2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=F2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=O2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=O2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=R2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=R2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=M2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=M2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=U4(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=U4(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&r.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=ba(c.name),h={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:C2(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,s.push(h),a[u]=h}),Object.keys(a).forEach(c=>{let u=a[c];u.inputNames.forEach(h=>{let[d]=ba(h);u.inputs.push(a[d]),a[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,h]=ba(o[c.name]),d=a[u];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function sse(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function G4(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):sse(e);return t?n:n.toLowerCase()}function N2(e,t,n,r=!1){let a=e[t];return a!=null?G4(a.s,r):n}function T2(e,t,n){let r=e[t];return r?r.b:n}function E2(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function C2(e){switch(typeof e=="string"&&(e=Or[e]),e){case Or.DT_FLOAT:return"float32";case Or.DT_INT32:case Or.DT_INT64:case Or.DT_INT8:case Or.DT_UINT8:return"int32";case Or.DT_BOOL:return"bool";case Or.DT_DOUBLE:return"float32";case Or.DT_STRING:return"string";default:return null}}function U4(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function R2(e,t,n){let r=e[t];return r&&r.type?C2(r.type):n}function M2(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>C2(a)):n}function q4(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function F2(e,t,n){let r=e[t];return r&&r.shape?q4(r.shape):n}function $2(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function D2(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>G4(s,r)):n}function O2(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>q4(a)):n}function z2(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var ise=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return yn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return yn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return E2(this.node.rawAttrs,e,t);if(n.s!=null)return N2(this.node.rawAttrs,e,t);if(n.b!=null)return T2(this.node.rawAttrs,e,t);if(n.shape!=null)return F2(this.node.rawAttrs,e,t);if(n.type!=null)return R2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return $2(this.node.rawAttrs,e,t);if(n.list.s!=null)return D2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return O2(this.node.rawAttrs,e,t);if(n.list.b!=null)return z2(this.node.rawAttrs,e,t);if(n.list.type!=null)return M2(this.node.rawAttrs,e,t)}return t}},ose=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[La(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[Dm(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[z(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[Ae(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[km(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[_d(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ye(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Il(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Ur(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[pa(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[Gd(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},lse=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(I("x",e,t,n))];case"Acos":return[lm(I("x",e,t,n))];case"Acosh":return[um(I("x",e,t,n))];case"Asin":return[hm(I("x",e,t,n))];case"Asinh":return[dm(I("x",e,t,n))];case"Atan":return[pm(I("x",e,t,n))];case"Atan2":return[fm(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[mm(I("x",e,t,n))];case"Ceil":return[xm(I("x",e,t,n))];case"Complex":return[Da(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Ju(I("x",e,t,n))];case"Cosh":return[Nd(I("x",e,t,n))];case"Elu":return[_l(I("x",e,t,n))];case"Erf":return[Im(I("x",e,t,n))];case"Exp":return[er(I("x",e,t,n))];case"Expm1":return[Sm(I("x",e,t,n))];case"Floor":return[vl(I("x",e,t,n))];case"Log":return[zn(I("x",e,t,n))];case"Log1p":return[Rd(I("x",e,t,n))];case"Imag":return[Ed(I("x",e,t,n))];case"Neg":return[kt(I("x",e,t,n))];case"Reciprocal":return[Pm(I("x",e,t,n))];case"Real":return[sc(I("x",e,t,n))];case"Relu":return[Hr(I("x",e,t,n))];case"Round":return[Lm(I("x",e,t,n))];case"Selu":return[Wd(I("x",e,t,n))];case"Sigmoid":return[Tn(I("x",e,t,n))];case"Sin":return[Bd(I("x",e,t,n))];case"Sign":return[Bm(I("x",e,t,n))];case"Sinh":return[Vd(I("x",e,t,n))];case"Softplus":return[_i(I("x",e,t,n))];case"Sqrt":return[en(I("x",e,t,n))];case"Square":return[it(I("x",e,t,n))];case"Tanh":return[gi(I("x",e,t,n))];case"Tan":return[Um(I("x",e,t,n))];case"ClipByValue":return[En(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Pd(I("x",e,t,n))];case"Rsqrt":return[Ld(yn(e.inputNames[0],t,n))];case"Prod":return[Od(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[ec(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[ac(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[Tm(yn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function xr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){_.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;rn+` Shapes ${e} and ${t} must match`)}}}function X4(e){return!(typeof e=="number"||e.some(t=>t<0))}function Xc(e,t,n){let r=P2(e,n),a=!X4(r);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(a&&t.forEach(s=>{r=P2(s.shape,r)}),!X4(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function P2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=a>=0?a:s}return n}var use=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ve(0),Ht(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, + because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),xr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Ht(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,mr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is - ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];z(()=>{t=H(t,[1,n,a]);for(let o=0;o{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);xr(t,a.shape,"TensorList shape mismatch: "),Ht(a)}),this.idTensor=xe(0),this.maxNumElements=r,Ht(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Yc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);xr(e,this.elementShape,"TensorList shape mismatch: ");let r=Zc(this.elementShape,this.tensors,e);return z(()=>{let a=this.tensors.map(s=>H(s,r));return cn(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Zc(this.elementShape,this.tensors,e),r=this.tensors.pop();return xr(r.shape,e,"TensorList shape mismatch: "),H(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(xr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Ht(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);xr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=Zc(this.elementShape,this.tensors,t);return H(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);xr(this.elementShape,t.shape,"TensorList shape mismatch: "),Ht(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);xr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=Zc(this.elementShape,this.tensors,n);return e.length===0?Ir([],[0].concat(r)):z(()=>{let a=e.map(s=>H(this.tensors[s],r));return cn(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);xr(this.elementShape,t,"TensorList shape mismatch: ");let n=Zc(this.elementShape,this.tensors,t);return this.size()===0?Ir([],[0].concat(n)):z(()=>{let r=this.tensors.map(a=>H(a,n));return rt(r,0)})}};function xse(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);xr(a,t,"TensorList shape mismatch: ");let s=mr(e);return new Yc(s,t,r)}function wse(e,t,n){return new Yc([],e,t,n)}function bse(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Yc([],n,e.dtype,r),i=mr(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function _se(e,t,n){let r=0,a=t.map(u=>(r+=u,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to + ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];P(()=>{t=H(t,[1,n,a]);for(let o=0;o{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);xr(t,a.shape,"TensorList shape mismatch: "),Ht(a)}),this.idTensor=ve(0),this.maxNumElements=r,Ht(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Kc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);xr(e,this.elementShape,"TensorList shape mismatch: ");let r=Xc(this.elementShape,this.tensors,e);return P(()=>{let a=this.tensors.map(s=>H(s,r));return cn(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Xc(this.elementShape,this.tensors,e),r=this.tensors.pop();return xr(r.shape,e,"TensorList shape mismatch: "),H(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(xr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Ht(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);xr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=Xc(this.elementShape,this.tensors,t);return H(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);xr(this.elementShape,t.shape,"TensorList shape mismatch: "),Ht(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);xr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=Xc(this.elementShape,this.tensors,n);return e.length===0?Sr([],[0].concat(r)):P(()=>{let a=e.map(s=>H(this.tensors[s],r));return cn(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);xr(this.elementShape,t,"TensorList shape mismatch: ");let n=Xc(this.elementShape,this.tensors,t);return this.size()===0?Sr([],[0].concat(n)):P(()=>{let r=this.tensors.map(a=>H(a,n));return ot(r,0)})}};function cse(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);xr(a,t,"TensorList shape mismatch: ");let s=mr(e);return new Kc(s,t,r)}function hse(e,t,n){return new Kc([],e,t,n)}function dse(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Kc([],n,e.dtype,r),i=mr(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function pse(e,t,n){let r=0,a=t.map(u=>(r+=u,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is - ${r}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Wg(s,n),o=r===0?0:e.size/r,l=z(()=>{let u=[];e=H(e,[1,r,o]);for(let h=0;h{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),a=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),a=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let h=c.map(p=>p.id);u.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return c}case"LoopCond":{let r=I("pred",e,t,n);return[wa(r)]}case"Switch":{let r=I("pred",e,t,n),a=I("data",e,t,n);return a.kept||(a=wa(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>yn(a,t,n)!==void 0);if(r){let a=yn(r,t,n);return[wa(a)]}return}case"Enter":{let r=I("frameName",e,t,n),a=I("tensor",e,t,n);return n.enterFrame(r),[wa(a)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[wa(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[wa(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),a=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new gse(c,a,r,s,l,i,o);return n.addTensorArray(u),[u.idTensor,xe(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=I("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),a=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[xe(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),a=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=bse(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=wse(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),a=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=xse(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),a=n.getTensorList(r.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),a=I("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=_se(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function e8(e,t,n){let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),u=m0(e,t,n),h=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[p,f]=I("args",e,t,n),m=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:h,dilations:d,biasArg:p,preluArg:f,activationFunc:a,leakyreluAlpha:m}}var kse=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[Sd(I("x",e,t,n),I("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=m0(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[ca(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=e8(e,t,n);return[Ua.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=e8(e,t,n);return[Ua.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),s=m0(e,t,n);return[Nd(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=m0(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[bl(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[vm(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Ju(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[ac(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=wb(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[wm(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Dm(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dilations",e,t,n),i=r[1],o=r[2],l=s[1],c=s[2];return[Im(I("x",e,t,n),I("filter",e,t,n),[i,o],a,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ise=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),s=I("value",e,t,n);return[tc(r,s,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("num",e,t,n);return[pb(r,a,s)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),s=I("seed",e,t,n);return[bb(r,a,s)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[ml(r,a,s,i)]}case"Ones":return[Pn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Ln(I("x",e,t,n))];case"RandomUniform":return[Sl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("step",e,t,n);return[Pd(r,a,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Xd(r,a,s,I("dtype",e,t,n),i)]}case"Zeros":return[Rt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[He(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Bg(e,t,n){let r=I("boxes",e,t,n),a=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Sse=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=Bg(e,t,n),c=await Le.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Bg(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Le.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Bg(e,t,n);return[await Le.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=ge(I("condition",e,t,n),"bool"),a=[await Km(r)];return r.dispose(),a}case"ListDiff":return kb(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nse=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),s=I("sorted",e,t,n),i=qm(r,a,s);return[i.values,i.indices]}case"Unique":{let r=I("x",e,t,n),a=Kd(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),s=Kd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Tse=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[yn(e.name,t,n)||r];case"Placeholder":return[yn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[wa(c)]}case"IdentityN":return I("x",e,t,n).map(c=>wa(c));case"Snapshot":let a=I("x",e,t,n);return[wa(a)];case"Shape":return[sn(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>sn(c.shape));case"Size":return[xe(I("x",e,t,n).size,"int32")];case"Rank":return[xe(I("x",e,t,n).rank,"int32")];case"NoOp":return[xe(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;ce.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return xe(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),z(()=>{let r=mr(t),a=n.length,s=r.length;_.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i{let r=[];for(let a=0;a{switch(e.op){case"HashTable":case"HashTableV2":{let a=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new Ese(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let a=I("tableHandle",e,t,n,r);return[r.getHashTableById(a.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Rse=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Le.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Le.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Le.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Mse=(e,t,n)=>{switch(e.op){case"Equal":return[Wa(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[vi(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[pr(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[Va(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Rd(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[wi(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[fr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[rc(I("a",e,t,n))];case"LogicalOr":return[Dd(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Cn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Fse=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ve(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[cb(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Je(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[Ua.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},$se=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[gi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[gi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[Rm(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[uc(I("x",e,t,n))];case"LogSoftmax":return[$d(I("x",e,t,n))];case"SparseToDense":return[Zm(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Dse=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Rn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[It(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[kl(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Te(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[kd(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Zu(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[mi(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[dm(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[zd(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Ed(I("x",e,t,n),i,o,l)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),s=I("size",e,t,n);return[nb(r,a,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[lb(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ose=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,r),[rt(s,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[xi(r,ge(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[xi(s,ge(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i{let r=I("axis",e,t,n),a=I("tensors",e,t,n),s=a[0].shape,i=ja(a[0]).shape,o=a.map(l=>{let c=_.arraysEqual(l.shape,s);if(!c&&!_.arraysEqual(ja(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:H(l,s)});return[cn(o,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return mr(a,r)}case"Tile":{let r=I("reps",e,t,n);return[Ba(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return Lt(s,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),s=I("shape",e,t,n);return[Tb(r,a,s)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[Eb(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[Zm(r,s,a,s.dtype===i.dtype?i:ge(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},zse=(e,t,n)=>{switch(e.op){case"SparseReshape":{let{outputIndices:r,outputShape:a}=Ub.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[r,a]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Pse=(e,t,n)=>{switch(e.op){case"FFT":return[cc(I("x",e,t,n))];case"IFFT":return[Nl(I("x",e,t,n))];case"RFFT":return[hc(I("x",e,t,n))];case"IRFFT":return[Gd(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Lse=(e,t,n)=>{switch(e.op){case"Cast":return[ge(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[Qt(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[ja(I("x",e,t,n),r)]}case"Reshape":return[H(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[Om(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[ha(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[sc(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[Qu(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[km(I("x",e,t,n),r,a)]}case"BroadcastTo":return[xl(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function t8(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return z(()=>Ase(s,i,o));case"basic_math":return z(()=>yse(s,i,o));case"control":return vse(s,i,o);case"convolution":return z(()=>kse(s,i,o));case"creation":return z(()=>Ise(s,i,o));case"dynamic":return Sse(s,i,o);case"evaluation":return z(()=>Nse(s,i,o));case"image":return z(()=>Rse(s,i,o));case"graph":return z(()=>Tse(s,i,o));case"logical":return z(()=>Mse(s,i,o));case"matrices":return z(()=>Fse(s,i,o));case"normalization":return z(()=>$se(s,i,o));case"reduction":return z(()=>Dse(s,i,o));case"slice_join":return z(()=>Ose(s,i,o));case"sparse":return z(()=>zse(s,i,o));case"spectral":return z(()=>Pse(s,i,o));case"transformation":return z(()=>Lse(s,i,o));case"hash_table":return Cse(s,i,o,r);case"custom":let l=R4(s.op);if(l&&l.customExecutor)return l.customExecutor(new mse(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return _.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var n8=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function a8(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>jn(d)[0]),u=[];r!=null&&(u=r.map(d=>jn(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((r8(d)||Wse(d)||Bse(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Vse(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(u=>jn(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{r.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{r.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{r.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return c}var jse=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Use=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Hse=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function r8(e){return jse.indexOf(e.op)>=0}function Wse(e){return Use.indexOf(e.op)>=0}function Bse(e){return Hse.indexOf(e.op)>=0}var Vg=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Vg(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=a8(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return Vse(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(u=>this.graph.nodes[jn(u)[0]]),a=t.map(u=>jn(u)[0]),s=a.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return z(()=>{let u=new n8(this.weightMap,l,c,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,A]=jn(f),y=[];y[A]=e[f],h[m]=y});let d=this.getFrozenTensorIds(h),p={};for(let f=0;fyn(f,h,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Zae(o.name,n,r);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!a.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new n8(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>yn(h,i,s)),l=o.map(h=>h.id),c=Object.keys(e).map(h=>e[h].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.kept&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[jn(g)[0]]),i=n.map(g=>jn(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:h}=a8(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[x,v]=jn(g),w=[];w[v]=e[g],p[x]=w});let f={},m=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,m,i,f,l);await Promise.all(g)}u==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!r8(g)&&!yn(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw u!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${c}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let h="";if(u.node.op==="Enter"&&I("isConstant",u.node,r,n)&&([h]=xa(u.node.name,n)),r[u.node.name]==null){let d=t8(u.node,r,n,this._resourceManager);h||([h]=xa(u.node.name,n));let p=n.currentContext;_.isPromise(d)?c.push(d.then(f=>(r[h]=f,n.currentContext=p,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l),f))):(r[h]=d,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l))}else this.processChildNodes(u.node,t,n,r,a,l)}return c}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=xa(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!yn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!yn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=jn(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);_.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&_.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=jn(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=jn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Gse=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},qse="?tfjs-format=file",Xse="model.json",s8=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Gse}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Nn.browserHTTPRequest(e,this.loadOptions);else{let t=Nn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Nn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=Nn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Vg(Z4.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=Z4.Instance.transformGraph(e.modelInitializer);this.initializer=new Vg(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Nn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Pe)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function ct(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${Xse}${qse}`);let n=new s8(e,t);return await n.load(),n}var Kse="3.5.0",i8={};Me(i8,{CSVDataset:()=>l8,Dataset:()=>Jl,FileDataSource:()=>u8,TextLineDataset:()=>o8,URLDataSource:()=>c8,array:()=>Zse,csv:()=>Jse,func:()=>Qse,generator:()=>eie,microphone:()=>nie,version_data:()=>rie,webcam:()=>tie,zip:()=>Yse});var aie=so(p5()),sie=so(p5());function iie(e,t){return A0(e,t)}function A0(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Ql(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=A0(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function oie(e,t=d8){return h8(e,t)}function h8(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Ql(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(c=>c[i]),l=h8(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function d8(e){return e===null?null:Ql(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function p8(e,t){let n=new Map;A0(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(_.isPromise(a)){let s=await a;n.set(r,s)}}return A0(e,t,n)}function Ql(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Pe))}function uie(e){return e==null||lie(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Pe||_.isTypedArray(e)}function lie(e){return e===null||typeof e!="object"&&typeof e!="function"}function hie(e){return iie(e,cie)}function cie(e){return e instanceof Pe?{value:e.clone(),recurse:!1}:Ql(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var f8=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},jg=class extends f8{constructor(){super(jg.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;rt===!0)}rowMajorBatch(e,t=!0){return new wie(this,e,t)}columnMajorBatch(e,t=!0,n=d8){return this.rowMajorBatch(e,t).map(r=>oie(r,n))}concatenate(e,t){return new A8(m8([this,e]),t)}take(e){return e<0||e==null?this:new xie(this,e)}skip(e){return e<0||e==null?this:new gie(this,e)}prefetch(e){return new g8(this,e)}shuffle(e,t){return new Iie(this,e,t)}serial(){return new yie(this)}},die=class extends Xt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:hie(e),done:!1}}},pie=class extends Xt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},yie=class extends Xt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},gie=class extends Xt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},wie=class extends Xt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},bie=class extends Xt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;_e(e.value)}}},_ie=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=vr.getTensorsInContainer(e.value),n=this.transform(e.value),r=vr.getTensorsInContainer(n);for(let a of t)vr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},vie=class extends Xt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},y8=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=vr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=vr.getTensorsInContainer(n);for(let a of t)vr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Hg=class extends Xt{constructor(){super();this.outputQueue=new jg,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},kie=class extends Hg{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=vr.getTensorsInContainer(e.value),n=this.transform(e.value),r=vr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)vr.isTensorInList(a,r)||a.dispose();return!0}},A8=class extends Xt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ns;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ns||(ns={}));var mie=class extends Xt{constructor(e,t=ns.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof Xt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await p8(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ns.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ns.SHORTEST:return{value:null,done:!0};case ns.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},g8=class extends Xt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new f8(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Iie=class extends g8{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=sie.alea(n||_.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Jl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;_.assert(e>0,()=>`batchSize needs to be positive, but it is - ${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),Un(async()=>(await n.iterator()).columnMajorBatch(e,t,Sie),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Un(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Un(async()=>(await t.iterator()).filter(r=>z(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Un(async()=>(await t.iterator()).map(n=>z(()=>e(n))),this.size)}mapAsync(e){let t=this;return Un(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Un(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Un(async()=>{let r=Ug(async()=>({value:await t.iterator(),done:!1}));return fie(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=aie.alea(t||_.now().toString());return Un(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Un(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Jl.MAX_BUFFER_SIZE=1e4;function Un(e,t=null){return new class extends Jl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function Zse(e){return Un(async()=>m8(e),e.length)}function Yse(e){if(!Ql(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await p8(e,r=>{if(r instanceof Jl)return{value:r.iterator(),recurse:!1};if(Ql(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return Aie(n,ns.SHORTEST)},t)}function Sie(e){if(e===null)return null;let t=e[0];return uie(t)?{value:Nie(e),recurse:!1}:{value:null,recurse:!0}}function Nie(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Pe?cn(e):Ir(e)}var o8=class extends Jl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` -`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},y0='"',Jc=Symbol("out"),x8=Symbol("field"),g0=Symbol("quote"),Gg=Symbol("quoteafterquote"),w8=Symbol("quoteinquote"),l8=class extends Jl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new o8(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(_.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&_.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(_.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new b8(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(_.sizeFromShape(t));return n.set(e,n.length-e.length),Ir(n,t)}},_8=class extends Xt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=sn([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=tr([s,a,o,i],[1,4])}else this.cropBox=tr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new _8(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&_.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=pi.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return z(()=>{let t=Qt(ge(e,"float32"),0),n;n=Le.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return H(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},v8=class{},k8=class extends Xt{split(e){return new Tie(this,e)}},Tie=class extends k8{constructor(e,t){super();this.upstream=e,this.impl=new Eie(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Eie=class extends Hg{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Rie=class extends Xt{decodeUTF8(){return new Cie(this)}},Cie=class extends k8{constructor(e){super();this.upstream=e,this.impl=new Mie(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Mie=class extends Hg{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=P9();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},I8=class extends Rie{constructor(e,t={}){super();this.file=e,this.options=t,_.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function $ie(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=Fie(e));let a=await _.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new I8(s,t)}else throw new Error(a.statusText)}var Fie=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function S8(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var u8=class extends v8{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(S8(this.input)&&J().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new I8(this.input,this.options)}},c8=class extends v8{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return S8(this.url)?new u8(this.url,this.fileOptions).iterator():$ie(this.url,this.fileOptions)}};function Jse(e,t={}){return new l8(new c8(e),t)}function Qse(e){let t=Ug(e);return Un(async()=>t)}function eie(e){return Un(async()=>{let t=await e();return Ug(()=>t.next())})}async function tie(e,t){return _8.create(e,t)}async function nie(e){return b8.create(e)}var rie="3.5.0",Die={tfjs:(vf==null?void 0:vf.version)||void 0,"tfjs-core":(kf==null?void 0:kf.version)||void 0,"tfjs-data":(If==null?void 0:If.version)||void 0,"tfjs-layers":(Sf==null?void 0:Sf.version)||void 0,"tfjs-converter":(Nf==null?void 0:Nf.version)||void 0,"tfjs-backend-cpu":v_||void 0,"tfjs-backend-webgl":G3||void 0,"tfjs-backend-wasm":zv||void 0};var Hn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function N8(){if(!um(Hn.name)){le("backend registration:",Hn.name);try{Hn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Hn.width,Hn.height):document.createElement("canvas")}catch(e){le("error: cannot create canvas:",e);return}try{Hn.gl=Hn.canvas.getContext("webgl2",Hn.webGLattr)}catch(e){le("error: cannot get WebGL2 context:",e);return}try{yp(2,Hn.gl)}catch(e){le("error: cannot set WebGL2 context:",e);return}try{let e=new bp(Hn.gl);yl(Hn.name,()=>new Bl(e),Hn.priority)}catch(e){le("error: cannot register WebGL backend:",e);return}try{cl("webgl").forEach(t=>{let n={...t,backendName:Hn.name};ui(n)})}catch(e){le("error: cannot update WebGL backend registration:",e);return}try{_r.set("WEBGL_VERSION",2)}catch(e){le("error: cannot set WebGL backend flags:",e);return}le("backend registered:",Hn.name)}}var qg={};Yn(qg,{load:()=>Xg,predict:()=>_0});var x0={};function gn(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(i=>i.kernelTimeMs>0).reduce((i,o)=>i+=o.kernelTimeMs,0),a=t.kernels.map((i,o)=>(i.id=o,i)).filter(i=>i.kernelTimeMs>0).sort((i,o)=>o.kernelTimeMs-i.kernelTimeMs),s=t.kernels.map((i,o)=>(i.id=o,i)).filter(i=>i.totalBytesSnapshot>0).sort((i,o)=>o.totalBytesSnapshot-i.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n),x0[e]={model:e,newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s},le("profiler",e,x0[e])}var wr,w0={age:0},b0=Number.MAX_SAFE_INTEGER;async function Xg(e){return wr?e.debug&&le("cached model:",wr.modelUrl):(wr=await ct(pt(e.modelBasePath,e.face.age.modelPath)),!wr||!wr.modelUrl?le("load model failed:",e.face.age.modelPath):e.debug&&le("load model:",wr.modelUrl)),wr}async function _0(e,t){return wr?b00?(b0++,w0):(t.videoOptimized?b0=0:b0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Le.resizeBilinear(e,[wr.inputs[0].shape[2],wr.inputs[0].shape[1]],!1),a=P(r,[255]);_e(r);let s,i={age:0};if(!t.profile)t.face.age.enabled&&(s=await wr.predict(a));else{let o=t.face.age.enabled?await an(()=>wr.predict(a)):{};s=o.result.clone(),o.result.dispose(),gn("age",o)}if(a.dispose(),s){let o=s.dataSync();i.age=Math.trunc(10*o[0])/10}s.dispose(),w0=i,n(i)})):null}var Kg={};Yn(Kg,{load:()=>Qg,predict:()=>k0});var ir,Zg={gender:""},v0=Number.MAX_SAFE_INTEGER,Yg=!1,Jg=[.2989,.587,.114];async function Qg(e){return ir?e.debug&&le("cached model:",ir.modelUrl):(ir=await ct(pt(e.modelBasePath,e.face.gender.modelPath)),Yg=ir.inputs[0].shape[3]===1,!ir||!ir.modelUrl?le("load model failed:",e.face.gender.modelPath):e.debug&&le("load model:",ir.modelUrl)),ir}async function k0(e,t){return ir?v0{let r=Le.resizeBilinear(e,[ir.inputs[0].shape[2],ir.inputs[0].shape[1]],!1),a;Yg?a=z(()=>{let[o,l,c]=Lt(r,3,3),u=P(o,Jg[0]),h=P(l,Jg[1]),d=P(c,Jg[2]);return Pa([u,h,d]).sub(.5).mul(2)}):a=P(r,[255]),_e(r);let s,i={gender:"",confidence:0};if(!t.profile)t.face.gender.enabled&&(s=await ir.predict(a));else{let o=t.face.gender.enabled?await an(()=>ir.predict(a)):{};s=o.result.clone(),o.result.dispose(),gn("gender",o)}if(a.dispose(),s)if(Array.isArray(s)){let o=s[0].dataSync(),l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l)),s.forEach(c=>_e(c))}else{let o=s.dataSync();if(Yg)(o[0]>t.face.gender.minConfidence||o[1]>t.face.gender.minConfidence)&&(i.gender=o[0]>o[1]?"female":"male",i.confidence=o[0]>o[1]?Math.trunc(100*o[0])/100:Math.trunc(100*o[1])/100);else{let l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l))}s.dispose()}Zg=i,n(i)})):null}var e2={};Yn(e2,{load:()=>r2,predict:()=>S0});var Oie=["angry","disgust","fear","happy","sad","surprise","neutral"],br,t2=[],I0=Number.MAX_SAFE_INTEGER,n2=[.2989,.587,.114];async function r2(e){return br?e.debug&&le("cached model:",br.modelUrl):(br=await ct(pt(e.modelBasePath,e.face.emotion.modelPath)),!br||!br.modelUrl?le("load model failed:",e.face.emotion.modelPath):e.debug&&le("load model:",br.modelUrl)),br}async function S0(e,t){return br?I00?(I0++,t2):(t.videoOptimized?I0=0:I0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Le.resizeBilinear(e,[br.inputs[0].shape[2],br.inputs[0].shape[1]],!1),[a,s,i]=Lt(r,3,3);r.dispose();let o=P(a,n2[0]),l=P(s,n2[1]),c=P(i,n2[2]);a.dispose(),s.dispose(),i.dispose();let u=Pa([o,l,c]);o.dispose(),l.dispose(),c.dispose();let h=z(()=>u.sub(.5).mul(2));u.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let f=await an(()=>br.predict(h));p=f.result.dataSync(),f.result.dispose(),gn("emotion",f)}else{let f=await br.predict(h);p=f.dataSync(),_e(f)}for(let f=0;ft.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*p[f])/100),emotion:Oie[f]});d.sort((f,m)=>m.score-f.score)}h.dispose(),t2=d,n(d)})):null}var Gn;async function a2(e){return Gn?e.debug&&le("cached model:",Gn.modelUrl):(Gn=await ct(pt(e.modelBasePath,e.face.embedding.modelPath)),!Gn||!Gn.modelUrl?le("load model failed:",e.face.embedding.modelPath):e.debug&&le("load model:",Gn.modelUrl)),Gn}function T8(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(Math.trunc(1e3*(1-r))/1e3,0)}function zie(e){return z(()=>{let n=[[.05,.15,.85,.85]],r=e.image||e.tensor;if(!(r instanceof Pe))return null;let a=r.shape.length===3?Le.cropAndResize(Qt(r,0),n,[0],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]):Le.cropAndResize(r,n,[0],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]),s=[.2989,.587,.114],[i,o,l]=Lt(a,3,3),c=P(i,s[0]),u=P(o,s[1]),h=P(l,s[2]),d=Pa([c,u,h]),p=cn([d,d,d],3).squeeze(4),f=p.sub(p.min());return f.div(f.max())})}async function s2(e,t){return Gn?new Promise(async n=>{let r=[];if(t.face.embedding.enabled){let a=zie(e);if(!t.profile)r=z(()=>[...Gn.predict(a).reshape([128,2]).logSumExp(1).dataSync()]);else{let s=await an(()=>Gn.predict({img_inputs:a}));r=[...s.result.dataSync()],s.result.dispose(),gn("emotion",s)}_e(a)}n(r)}):[]}var i2={};Yn(i2,{enhance:()=>u2,load:()=>o2,match:()=>E8,predict:()=>E0,similarity:()=>l2});var qn,N0={age:0},T0=Number.MAX_SAFE_INTEGER;async function o2(e){return qn?e.debug&&le("cached model:",qn.modelUrl):(qn=await ct(pt(e.modelBasePath,e.face.description.modelPath)),!qn||!qn.modelUrl?le("load model failed:",e.face.description.modelPath):e.debug&&le("load model:",qn.modelUrl)),qn}function l2(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=5*e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(0,100-r)/100}function E8(e,t,n=0){let r={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return r;for(let a of t)if(a.embedding&&a.name){let s=l2(e,a.embedding);s>n&&s>r.similarity&&(r={...a,similarity:s})}return r}function u2(e){return z(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Pe))return null;let r=[[.05,.15,.85,.85]];return(n.shape.length===3?Le.cropAndResize(Qt(n,0),r,[0],[qn.inputs[0].shape[2],qn.inputs[0].shape[1]]):Le.cropAndResize(n,r,[0],[qn.inputs[0].shape[2],qn.inputs[0].shape[1]])).mul(255)})}async function E0(e,t){return qn?T00?(T0++,N0):(t.videoOptimized?T0=0:T0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=u2(e),a,s={age:0,gender:"unknown",genderConfidence:0,descriptor:[]};if(!t.profile)t.face.description.enabled&&(a=await qn.predict(r));else{let i=t.face.description.enabled?await an(()=>qn.predict(r)):{};a=i.result,gn("faceres",i)}_e(r),a&&(z(()=>{let i=a.find(h=>h.shape[1]===1).dataSync(),o=Math.trunc(200*Math.abs(i[0]-.5))/100;o>t.face.gender.minConfidence&&(s.gender=i[0]<=.5?"female":"male",s.genderConfidence=Math.min(.99,o));let l=a.find(h=>h.shape[1]===100).argMax(1).dataSync()[0],c=a.find(h=>h.shape[1]===100).dataSync();s.age=Math.round(c[l-1]>c[l+1]?10*l-100*c[l-1]:10*l+100*c[l+1])/10;let u=a.find(h=>h.shape[1]===1024);s.descriptor=[...u.dataSync()]}),a.forEach(i=>_e(i))),N0=s,n(s)})):null}var Pie=(e,t)=>{let n=A=>A*180/Math.PI,r=A=>{let y=Math.sqrt(A[0]*A[0]+A[1]*A[1]+A[2]*A[2]);return A[0]/=y,A[1]/=y,A[2]/=y,A},a=(A,y)=>{let g=A[0]-y[0],x=A[1]-y[1],v=A[2]-y[2];return[g,x,v]},s=(A,y)=>{let g=A[1]*y[2]-A[2]*y[1],x=A[2]*y[0]-A[0]*y[2],v=A[0]*y[1]-A[1]*y[0];return[g,x,v]},i=A=>{let[y,g,x,v,w,b,k,N,C]=A,F,O,L;return v<1?v>-1?(L=Math.asin(v),O=Math.atan2(-k,y),F=Math.atan2(-b,w)):(L=-Math.PI/2,O=-Math.atan2(N,C),F=0):(L=Math.PI/2,O=Math.atan2(N,C),F=0),{pitch:2*-F,yaw:2*-O,roll:2*-L}},o=A=>{let y=(x,v,w,b)=>Math.atan2(b-v,w-x);return{pitch:y(A[10][1],A[10][2],A[152][1],A[152][2]),yaw:y(A[33][0],A[33][2],A[263][0],A[263][2]),roll:y(A[33][0],A[33][1],A[263][0],A[263][1])}},l=e.meshRaw;if(!l||l.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1]};let c=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[l[10],l[152],l[234],l[454]].map(A=>[A[0]*t[0]/c,A[1]*t[1]/c,A[2]]),h=r(a(u[1],u[0])),d=r(a(u[3],u[2])),p=r(s(d,h));d=s(h,p);let f=[d[0],d[1],d[2],h[0],h[1],h[2],p[0],p[1],p[2]];return{angle:i(f),matrix:f}},c2=async(e,t)=>{var u,h,d,p,f,m,A;let n,r,a,s,i,o,l=[];e.state="run:face",n=Ye();let c=await((u=e.models.face)==null?void 0:u.estimateFaces(t,e.config));if(e.perf.face=Math.trunc(Ye()-n),!c)return[];for(let y of c){if(e.analyze("Get Face"),!y.image||y.image.isDisposedInternal){le("Face object is disposed:",y.image);continue}let g=Pie(y,[t.shape[2],t.shape[1]]);e.analyze("Start Age:"),e.config.async?r=e.config.face.age.enabled?_0(y.image,e.config):{}:(e.state="run:age",n=Ye(),r=e.config.face.age.enabled?await _0(y.image,e.config):{},e.perf.age=Math.trunc(Ye()-n)),e.analyze("Start Gender:"),e.config.async?a=e.config.face.gender.enabled?k0(y.image,e.config):{}:(e.state="run:gender",n=Ye(),a=e.config.face.gender.enabled?await k0(y.image,e.config):{},e.perf.gender=Math.trunc(Ye()-n)),e.analyze("Start Emotion:"),e.config.async?s=e.config.face.emotion.enabled?S0(y.image,e.config):{}:(e.state="run:emotion",n=Ye(),s=e.config.face.emotion.enabled?await S0(y.image,e.config):{},e.perf.emotion=Math.trunc(Ye()-n)),e.analyze("End Emotion:"),e.analyze("Start Embedding:"),e.config.async?i=e.config.face.embedding.enabled?s2(y,e.config):[]:(e.state="run:embedding",n=Ye(),i=e.config.face.embedding.enabled?await s2(y,e.config):[],e.perf.embedding=Math.trunc(Ye()-n)),e.analyze("End Embedding:"),e.analyze("Start Description:"),e.config.async?o=e.config.face.description.enabled?E0(y,e.config):[]:(e.state="run:description",n=Ye(),o=e.config.face.description.enabled?await E0(y.image,e.config):[],e.perf.embedding=Math.trunc(Ye()-n)),e.analyze("End Description:"),e.config.async&&([r,a,s,i,o]=await Promise.all([r,a,s,i,o])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((h=y==null?void 0:y.annotations)==null?void 0:h.leftEyeIris)&&((d=y==null?void 0:y.annotations)==null?void 0:d.rightEyeIris)&&(delete y.annotations.leftEyeIris,delete y.annotations.rightEyeIris);let x=((p=y.annotations)==null?void 0:p.leftEyeIris)&&((f=y.annotations)==null?void 0:f.rightEyeIris)?11.7*Math.max(Math.abs(y.annotations.leftEyeIris[3][0]-y.annotations.leftEyeIris[1][0]),Math.abs(y.annotations.rightEyeIris[4][1]-y.annotations.rightEyeIris[2][1])):0;l.push({...y,age:o.age||r.age,gender:o.gender||a.gender,genderConfidence:o.genderConfidence||a.confidence,embedding:o.descriptor||i,emotion:s,iris:x!==0?Math.trunc(x)/100:0,rotation:g,tensor:e.config.face.detector.return?(m=y.image)==null?void 0:m.squeeze():null}),(A=y.image)==null||A.dispose(),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.perf.face&&delete e.perf.face,e.perf.age&&delete e.perf.age,e.perf.gender&&delete e.perf.gender,e.perf.emotion&&delete e.perf.emotion),l};var A2={};Yn(A2,{MediaPipeFaceMesh:()=>y2,load:()=>g2,triangulation:()=>L8,uvmap:()=>W8});var C8=6;function Lie(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r({startEndTensor:e,startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});function Bie(e,t,n){let r=Re(e,[0,1],[-1,2]),a=se(r,t),s=Re(e,[0,3],[-1,2]),i=Ae(s,n),o=Ae(a,n),l=Ae(i,2),c=ye(o,l),u=se(o,l),h=P(c,n),d=P(u,n);return wl([h,d],1)}var R8=class{constructor(t,n){this.model=t,this.anchorsData=Lie(t.inputs[0].shape[1]),this.anchors=tr(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,r,a]=z(()=>{let d=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),p=this.model.predict(d),f;if(Array.isArray(p)){let g=p.sort((b,k)=>b.size-k.size),x=rt([g[0],g[2]],2),v=rt([g[1],g[3]],2);f=rt([v,x],1).squeeze(0)}else f=p.squeeze();let m=Bie(f,this.anchors,[this.inputSize,this.inputSize]),A=Re(f,[0,0],[-1,1]),y=Tn(A).squeeze();return[f,m,y]}),s=await Le.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),i=s.arraySync();s.dispose();let l=i.map(h=>Re(r,[h,0],[1,-1])).map(h=>{let d=h.arraySync();return h.dispose(),d}),c=a.dataSync(),u=[];for(let h=0;hthis.config.face.detector.minConfidence){let f=Wie(l[h]),m=this.anchorsData[d],A=z(()=>Re(n,[d,C8-1],[1,-1]).squeeze().reshape([C8,-1]));u.push({box:f,landmarks:A,anchor:m,confidence:p})}}return n.dispose(),r.dispose(),a.dispose(),{boxes:u,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function M8(e){let t=await ct(pt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new R8(t,e);return!t||!t.modelUrl?le("load model failed:",e.face.detector.modelPath):e.debug&&le("load model:",t.modelUrl),n}function F8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function Qc(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function eu(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function tu(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Le.cropAndResize(t,s,[0],n)}function C0(e,t=1.5){let n=eu(e),r=Qc(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function R0(e){let t=eu(e),n=Qc(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}var M0=[[1,0,0],[0,1,0],[0,0,1]];function Vie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function h2(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Vie(n)}function $8(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function rs(e,t){let n=0;for(let r=0;reh[e]),rle=Hie.map(e=>eh[e]),ale=Gie.map(e=>eh[e]);var p2=Qr.leftEyeLower0,f2=Qr.rightEyeLower0,nu={leftBounds:[p2[0],p2[p2.length-1]],rightBounds:[f2[0],f2[f2.length-1]]},$0={count:468,mouth:13,symmetryLine:[13,Qr.midwayBetweenEyes[0]]},P8={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},ru={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function D0(e,t,n,r){for(let a=0;a[s[0]/this.meshSize*(h[0]-this.meshSize/2),s[1]/this.meshSize*(h[1]-this.meshSize/2),h[2]]),o=r!==0?F0(r,[0,0]):M0,l=r!==0?i.map(h=>[...z8(h,o),h[2]]):i,c=r!==0?O8(a):M0,u=[...eu({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(h=>[h[0]+rs(u,c[0]),h[1]+rs(u,c[1]),h[2]])}getLeftToRightEyeDepthDifference(t){let n=t[nu.leftBounds[0]][2],r=t[nu.rightBounds[0]][2];return n-r}getEyeBox(t,n,r,a,s=!1){let i=R0(C0(this.calculateLandmarksBoundingBox([t[r],t[a]]),this.irisEnlarge)),o=Qc(i),l=Le.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&_r.flags.IS_BROWSER&&(l=Le.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,r,a=!1){let s=[];for(let i=0;i{let c=i;return l===2?c=a:l===4&&(c=s),[o[0],o[1],c]})}async predict(t,n){let r=!1,a;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(a=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,!n.videoOptimized||a&&a.boxes&&(!n.face.mesh.enabled||a.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let i of a.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(r=!0)}if(n.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),r){if(!a||!a.boxes||a.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=z(()=>this.storedBoxes.map((i,o)=>{let l=i.confidence,c,u=0,h;if(n.face.detector.rotation&&n.face.mesh.enabled&&_r.flags.IS_BROWSER){let[w,b]=i.landmarks.length>=$0.count?$0.symmetryLine:P8.symmetryLine;u=h2(i.landmarks[w],i.landmarks[b]);let k=eu({startPoint:i.startPoint,endPoint:i.endPoint}),N=[k[0]/t.shape[2],k[1]/t.shape[1]],C=Le.rotateWithOffset(t,u,0,N);h=F0(-u,k),n.face.mesh.enabled?c=tu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.meshSize,this.meshSize]).div(255):c=tu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.boxSize,this.boxSize]).div(255)}else{h=M0;let w=t.clone();n.face.mesh.enabled?c=tu({startPoint:i.startPoint,endPoint:i.endPoint},w,[this.meshSize,this.meshSize]).div(255):c=tu({startPoint:i.startPoint,endPoint:i.endPoint},w,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{coords:null,box:i,faceConfidence:null,boxConfidence:l,confidence:i.confidence,image:c};let[,d,p]=this.meshDetector.predict(c),f=d.dataSync()[0];if(f=$0.count?$0.symmetryLine:P8.symmetryLine;u=h2(i.landmarks[w],i.landmarks[b]);let k=eu({startPoint:i.startPoint,endPoint:i.endPoint}),N=[k[0]/t.shape[2],k[1]/t.shape[1]],C=Le.rotateWithOffset(t.toFloat(),u,0,N);h=F0(-u,k),c=tu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.meshSize,this.meshSize]).div(255)}let x={coords:g,box:i,faceConfidence:f,boxConfidence:l,image:c,rawCoords:A},v=R0(i);return this.storedBoxes[o]={...v,landmarks:y,confidence:i.confidence,faceConfidence:f},x}));return s=s.filter(i=>i!==null),n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.faceConfidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s,landmarks:t}}};var y2=class{constructor(t,n,r,a){this.facePipeline=new m2(t,n,r),this.config=a}async estimateFaces(t,n){let r=await this.facePipeline.predict(t,n),a=[];for(let s of r||[]){if(s.isDisposedInternal)continue;let i=s.coords?s.coords.arraySync():[],o=i.map(h=>[h[0]/t.shape[2],h[1]/t.shape[1],h[2]/this.facePipeline.meshSize]),l={};if(i&&i.length>0)for(let h of Object.keys(Qr))l[h]=Qr[h].map(d=>i[d]);let c=s.box?[Math.max(0,s.box.startPoint[0]),Math.max(0,s.box.startPoint[1]),Math.min(t.shape[2],s.box.endPoint[0])-Math.max(0,s.box.startPoint[0]),Math.min(t.shape[1],s.box.endPoint[1])-Math.max(0,s.box.startPoint[1])]:0,u=s.box?[s.box.startPoint[0]/t.shape[2],s.box.startPoint[1]/t.shape[1],(s.box.endPoint[0]-s.box.startPoint[0])/t.shape[2],(s.box.endPoint[1]-s.box.startPoint[1])/t.shape[1]]:[];a.push({confidence:Math.round(100*s.faceConfidence||100*s.boxConfidence||0)/100,boxConfidence:Math.round(100*s.boxConfidence)/100,faceConfidence:Math.round(100*s.faceConfidence)/100,box:c,boxRaw:u,mesh:i,meshRaw:o,annotations:l,image:s.image?s.image.clone():null}),s.coords&&s.coords.dispose(),s.image&&s.image.dispose()}return a}},Kt=[null,null,null];async function g2(e){return!Kt[0]&&e.face.enabled||!Kt[1]&&e.face.mesh.enabled||!Kt[2]&&e.face.iris.enabled?(Kt=await Promise.all([!Kt[0]&&e.face.enabled?M8(e):null,!Kt[1]&&e.face.mesh.enabled?ct(pt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Kt[2]&&e.face.iris.enabled?ct(pt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Kt[1]||!Kt[1].modelUrl?le("load model failed:",e.face.mesh.modelPath):e.debug&&le("load model:",Kt[1].modelUrl)),e.face.iris.enabled&&(!Kt[2]||!Kt[1].modelUrl?le("load model failed:",e.face.iris.modelPath):e.debug&&le("load model:",Kt[2].modelUrl))):e.debug&&(le("cached model:",Kt[0].model.modelUrl),le("cached model:",Kt[1].modelUrl),le("cached model:",Kt[2].modelUrl)),new y2(Kt[0],Kt[1],Kt[2],e)}var L8=ji,W8=eh;var N2={};Yn(N2,{PoseNet:()=>T2,load:()=>E2});var qie=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];function Xie(e){let[t,n,r,a]=e;return{offsets:t,heatmap:n,displacementFwd:r,displacementBwd:a}}var x2=class{constructor(t){this.model=t,this.inputSize=t.inputs[0].shape[1]}predict(t){return z(()=>{let r=t.resizeBilinear([this.inputSize,this.inputSize]).toFloat().div(127.5).sub(1),s=this.model.execute(r,qie).map(o=>o.squeeze([0])),i=Xie(s);return{heatmapScores:i.heatmap.sigmoid(),offsets:i.offsets,displacementFwd:i.displacementFwd,displacementBwd:i.displacementBwd}})}dispose(){this.model.dispose()}};var au=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],su=au.length,th=au.reduce((e,t,n)=>(e[t]=n,e),{}),Kie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Zie=Kie.map(([e,t])=>[th[e],th[t]]),B8=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function V8(e,t){let n=su,r=[];for(let a=0;a[n.get(s,i,o),n.get(s,i,o+su)],a=()=>{let s=[];for(let i=0;ie.toTensor().mul(xe(t,"int32")).toFloat().add(a()))}function U8(e){let t=(s,i)=>z(()=>{let o=s.div(xe(i,"int32"));return s.sub(o.mul(xe(i,"int32")))}),[n,r,a]=e.shape;return z(()=>{let i=e.reshape([n*r,a]).argMax(0),o=i.div(xe(r,"int32")).expandDims(1),l=t(i,r).expandDims(1);return rt([o,l],1)})}function O0(e){let t=e.reduce(({maxX:n,maxY:r,minX:a,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(n,i),maxY:Math.max(r,o),minX:Math.min(a,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function w2(e,[t,n],[r,a]){let s=(o,l,c)=>({score:o.score,box:[Math.trunc(o.box[0]*c),Math.trunc(o.box[1]*l),Math.trunc(o.box[2]*c),Math.trunc(o.box[3]*l)],keypoints:o.keypoints.map(({score:u,part:h,position:d})=>({score:u,part:h,position:{x:Math.trunc(d.x*c),y:Math.trunc(d.y*l)}}))});return e.map(o=>s(o,t/r,n/a))}var b2=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(nn?n:e}function H8(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}function k2(e,t){return{x:e.x+t.x,y:e.y+t.y}}var G8=B8.map(([e,t])=>[th[e],th[t]]),I2=G8.map(([,e])=>e),q8=G8.map(([e])=>e),Yie=16;function Jie(e,t,n){let r=n.shape[2]/2;return{y:n.get(t.y,t.x,e),x:n.get(t.y,t.x,r+e)}}function S2(e,t,n,r){return{y:v2(Math.round(e.y/t),0,n-1),x:v2(Math.round(e.x/t),0,r-1)}}function X8(e,t,n,r,a,s,i,o=2){let[l,c]=r.shape,u=S2(t.position,s,l,c),h=Jie(e,u,i),p=k2(t.position,h);for(let A=0;A=0;--d){let p=I2[d],f=q8[d];l[p]&&!l[f]&&(l[f]=X8(d,l[p],f,t,n,r,s))}for(let d=0;df>n).map((f,m)=>(h+=f,{position:{y:c[2*m+0],x:c[2*m+1]},part:au[m],score:f}));r.dispose(),l.dispose();let p=O0(d);return{keypoints:d,box:p,score:Math.round(100*h/d.length)/100}}var Qie=1,Y8=16;function eoe(e,t,n,r,a,s){let[i,o]=s.shape,l=!0,c=Math.max(n-a,0),u=Math.min(n+a+1,i);for(let h=c;ht){l=!1;break}if(!l)break}return l}function toe(e,t,n){let[r,a,s]=n.shape,i=new b2(r*a*s,({score:o})=>o);for(let o=0;o{let i=s[a].position;return H8(r,n,i.y,i.x)<=t})}function noe(e,t,n){return n.reduce((a,{position:s,score:i},o)=>(J8(e,t,s,o)||(a+=i),a),0)/n.length}function Q8(e,t,n,r,a,s,i){let o=[],l=toe(i,Qie,e),c=a^2;for(;o.lengthi&&o.push({keypoints:d,box:f,score:Math.round(100*p)/100})}return o}var Ui;async function roe(e,t,n,r){let a=s=>Promise.all(s.map(i=>i.buffer()));return new Promise(async s=>{let i=await a([t.heatmapScores,t.offsets,t.displacementFwd,t.displacementBwd]),o=i[0],l=i[1],c=i[2],u=i[3],h=await Q8(o,l,c,u,n.body.nmsRadius,n.body.maxDetections,n.body.scoreThreshold),d=w2(h,[e.shape[1],e.shape[2]],[r,r]);s(d)})}async function aoe(e,t,n,r){return new Promise(async a=>{let s=await Z8(t.heatmapScores,t.offsets,n.body.scoreThreshold),i=w2([s],[e.shape[1],e.shape[2]],[r,r]);a(i)})}var T2=class{constructor(t){this.baseModel=t,this.inputSize=t.model.inputs[0].shape[1]}async estimatePoses(t,n){let r=this.baseModel.predict(t,n),a=n.body.maxDetections<2?await aoe(t,r,n,this.inputSize):await roe(t,r,n,this.inputSize);return r.heatmapScores.dispose(),r.offsets.dispose(),r.displacementFwd.dispose(),r.displacementBwd.dispose(),a}dispose(){this.baseModel.dispose()}};async function E2(e){Ui?e.debug&&le("cached model:",Ui.modelUrl):(Ui=await ct(pt(e.modelBasePath,e.body.modelPath)),!Ui||!Ui.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",Ui.modelUrl));let t=new x2(Ui);return new T2(t)}var $2={};Yn($2,{HandPose:()=>O2,load:()=>z2});function P0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function nh(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function ek(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Le.cropAndResize(t,s,[0],n)}function tk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function L0(e,t=1.5){let n=nh(e),r=P0(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function W0(e){let t=nh(e),n=P0(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var C2=class{constructor(t,n,r){this.model=t,this.anchors=r.map(a=>[a.x_center,a.y_center]),this.anchorsTensor=tr(this.anchors),this.inputSize=n,this.inputSizeTensor=sn([n,n]),this.doubleInputSizeTensor=sn([n*2,n*2])}normalizeBoxes(t){return z(()=>{let n=Re(t,[0,0],[-1,2]),r=Re(t,[0,2],[-1,2]),a=se(Ae(n,this.inputSizeTensor),this.anchorsTensor),s=Ae(r,this.doubleInputSizeTensor),i=P(ye(a,s),this.inputSizeTensor),o=P(se(a,s),this.inputSizeTensor);return wl([i,o],1)})}normalizeLandmarks(t,n){return z(()=>{let r=se(Ae(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return P(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),a=r.squeeze();r.dispose();let s=z(()=>Tn(Re(a,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Re(a,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let c=await Le.nonMaxSuppressionAsync(l,i,n.hand.maxHands,n.hand.iouThreshold,n.hand.scoreThreshold),u=c.arraySync();s.dispose(),c.dispose();let h=[];for(let d of u)if(i[d]>=n.hand.minConfidence){let p=Re(l,[d,0],[1,-1]),f=Re(a,[d,5],[1,14]),m=z(()=>this.normalizeLandmarks(f,d).reshape([-1,2]));f.dispose(),h.push({box:p,palmLandmarks:m,confidence:i[d]})}return a.dispose(),l.dispose(),h}async estimateHandBounds(t,n){let r=t.shape[1],a=t.shape[2],s=z(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let c=l.box.dataSync(),u=c.slice(0,2),h=c.slice(2,4),d=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(tk({startPoint:u,endPoint:h,palmLandmarks:d,confidence:l.confidence},[a/this.inputSize,r/this.inputSize]))}return o}};function soe(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function nk(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return soe(n)}var rk=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function as(e,t){let n=0;for(let r=0;rM2([...s,1],n)),a=this.calculateLandmarksBoundingBox(r);return L0(W0(a),ooe)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=L0(W0(n),ik);r.palmLandmarks=[];for(let a=0;a[i[0]*(p[0]-this.inputSize/2),i[1]*(p[1]-this.inputSize/2),i[2]*p[2]]),l=R2(r,[0,0]),c=o.map(p=>[...M2(p,l),p[2]]),u=sk(a),h=[...nh(n),1],d=[as(h,u[0]),as(h,u[1])];return c.map(p=>[p[0]+d[0],p[1]+d[1],p[2]])}async estimateHands(t,n){let r=!1,a;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(a=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==n.hand.maxHands||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(r=!0));let s=[];n.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let i=0;i=n.hand.minConfidence){let x=H(y,[-1,3]),v=x.arraySync();y.dispose(),x.dispose();let w=this.transformRawCoords(v,p,l,d),b=this.getBoxForHandLandmarks(w);this.storedBoxes[i]=b;let k={landmarks:w,confidence:g,box:{topLeft:b.startPoint,bottomRight:b.endPoint}};s.push(k)}else this.storedBoxes[i]=null;y.dispose()}else{let l=L0(W0(o),ik),c={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(c)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s}}};var lk=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var D2={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},O2=class{constructor(t){this.handPipeline=t}static getAnnotations(){return D2}async estimateHands(t,n){let r=await this.handPipeline.estimateHands(t,n);if(!r)return[];let a=[];for(let s of r){let i={};if(s.landmarks)for(let c of Object.keys(D2))i[c]=D2[c].map(u=>s.landmarks[u]);let o=s.box?[Math.max(0,s.box.topLeft[0]),Math.max(0,s.box.topLeft[1]),Math.min(t.shape[2],s.box.bottomRight[0])-Math.max(0,s.box.topLeft[0]),Math.min(t.shape[1],s.box.bottomRight[1])-Math.max(0,s.box.topLeft[1])]:[],l=[s.box.topLeft[0]/t.shape[2],s.box.topLeft[1]/t.shape[1],(s.box.bottomRight[0]-s.box.topLeft[0])/t.shape[2],(s.box.bottomRight[1]-s.box.topLeft[1])/t.shape[1]];a.push({confidence:Math.round(100*s.confidence)/100,box:o,boxRaw:l,landmarks:s.landmarks,annotations:i})}return a}},ea,ta;async function z2(e){!ea||!ta?([ea,ta]=await Promise.all([e.hand.enabled?ct(pt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?ct(pt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!ea||!ea.modelUrl?le("load model failed:",e.hand.detector.modelPath):e.debug&&le("load model:",ea.modelUrl),!ta||!ta.modelUrl?le("load model failed:",e.hand.skeleton.modelPath):e.debug&&le("load model:",ta.modelUrl))):(e.debug&&le("cached model:",ea.modelUrl),e.debug&&le("cached model:",ta.modelUrl));let t=new C2(ea,ea==null?void 0:ea.inputs[0].shape[2],lk),n=new F2(t,ta,ta==null?void 0:ta.inputs[0].shape[2]);return new O2(n)}var P2={};Yn(P2,{load:()=>L2,predict:()=>W2});var uk=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],ck=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var xn;async function L2(e){return xn?e.debug&&le("cached model:",xn.modelUrl):(xn=await ct(pt(e.modelBasePath,e.body.modelPath)),xn.width=parseInt(xn.signature.inputs["input_1:0"].tensorShape.dim[2].size),xn.height=parseInt(xn.signature.inputs["input_1:0"].tensorShape.dim[1].size),!xn||!xn.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",xn.modelUrl)),xn}async function W2(e,t){if(!xn||!t.body.enabled)return null;let n={width:e.shape[2],height:e.shape[1]},r=Le.resizeBilinear(e,[xn.width,xn.height],!1),a=Ae(r,[255]);r.dispose();let s;if(t.profile){let u=await an(()=>xn.predict(a));s=u.result.find(h=>h.size===195||h.size===155).dataSync(),u.result.forEach(h=>h.dispose()),gn("blazepose",u)}else{let u=await xn.predict(a);s=u.find(h=>h.size===195||h.size===155).dataSync(),u.forEach(h=>h.dispose())}a.dispose();let i=[],o=s.length===195?uk:ck,l=5;for(let u=0;uh.score>u?h.score:u,0),keypoints:i}]}var wn,rh=[],B0=Number.MAX_SAFE_INTEGER,coe=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function B2(e){return wn?e.debug&&le("cached model:",wn.modelUrl):(wn=await ct(pt(e.modelBasePath,e.body.modelPath)),!wn||!wn.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",wn.modelUrl)),wn}function hoe(e,t){let[n,r]=e.shape;return z(()=>{let a=(o,l)=>ye(o,P(Ae(o,xe(l,"int32")),xe(l,"int32"))),s=H(e,[r*n]),i=Rn(s,0).dataSync()[0];if(i>t){let o=mi(s,0),l=a(o,n).dataSync()[0],c=Ae(o,xe(n,"int32")).dataSync()[0];return[l,c,i]}return[0,0,i]})}async function V2(e,t){return wn?B00?(B0++,rh):(t.videoOptimized?B0=0:B0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=z(()=>{let i=Le.resizeBilinear(e,[wn.inputs[0].shape[2],wn.inputs[0].shape[1]],!1);return P(i,2).sub(1)}),a;if(!t.profile)t.body.enabled&&(a=await wn.predict(r));else{let i=t.body.enabled?await an(()=>wn.predict(r)):{};a=i.result.clone(),i.result.dispose(),gn("body",i)}if(r.dispose(),a){let i=[],o=a.squeeze();_e(a);let l=o.unstack(2);_e(o);for(let c=0;ct.body.scoreThreshold&&i.push({id:c,score:Math.round(100*d)/100,part:coe[c],positionRaw:{xRaw:u/wn.inputs[0].shape[2],yRaw:h/wn.inputs[0].shape[1]},position:{x:Math.round(e.shape[2]*u/wn.inputs[0].shape[2]),y:Math.round(e.shape[1]*h/wn.inputs[0].shape[1])}})}l.forEach(c=>_e(c)),rh=i}let s=rh.reduce((i,o)=>o.score>i?o.score:i,0);n([{score:s,keypoints:rh}])})):null}var j2={};Yn(j2,{load:()=>H2,predict:()=>G2});var V0=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var bn,U2=[],j0=Number.MAX_SAFE_INTEGER,U0=2.5;async function H2(e){if(bn)e.debug&&le("cached model:",bn.modelUrl);else{bn=await ct(pt(e.modelBasePath,e.object.modelPath));let t=Object.values(bn.modelSignature.inputs);if(bn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!bn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!bn||!bn.modelUrl?le("load model failed:",e.object.modelPath):e.debug&&le("load model:",bn.modelUrl)}return bn}async function doe(e,t,n,r){let a=0,s=[];for(let c of[1,2,4])z(()=>{var A,y;let u=c*13,h=(A=e.find(g=>g.shape[1]===u**2&&g.shape[2]===V0.length))==null?void 0:A.squeeze(),d=(y=e.find(g=>g.shape[1]===u**2&&g.shape[2]r.object.minConfidence&&x!==61){let w=(.5+Math.trunc(g%u))/u,b=(.5+Math.trunc(g/u))/u,k=f[g].map(U=>U*(u/c/t)),[N,C]=[w-U0/c*k[0],b-U0/c*k[1]],[F,O]=[w+U0/c*k[2]-N,b+U0/c*k[3]-C],L=[N,C,F,O];L=L.map(U=>Math.max(0,Math.min(U,1)));let V=[L[0]*n[0],L[1]*n[1],L[2]*n[0],L[3]*n[1]],j={id:a++,strideSize:c,score:Math.round(100*v)/100,class:x+1,label:V0[x].label,center:[Math.trunc(n[0]*w),Math.trunc(n[1]*b)],centerRaw:[w,b],box:V.map(U=>Math.trunc(U)),boxRaw:L};s.push(j)}}});e.forEach(c=>_e(c));let i=s.map(c=>c.boxRaw),o=s.map(c=>c.score),l=[];if(i&&i.length>0){let c=await Le.nonMaxSuppressionAsync(i,o,r.object.maxResults,r.object.iouThreshold,r.object.minConfidence);l=c.dataSync(),_e(c)}return s=s.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),s}async function G2(e,t){return bn?j00?(j0++,U2):(t.videoOptimized?j0=0:j0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=[e.shape[2],e.shape[1]],a=Le.resizeBilinear(e,[bn.inputSize,bn.inputSize],!1),s=a.div(255),i=s.transpose([0,3,1,2]);s.dispose(),a.dispose();let o;if(!t.profile)t.object.enabled&&(o=await bn.predict(i));else{let c=t.object.enabled?await an(()=>bn.predict(i)):{};o=c.result,gn("object",c)}i.dispose();let l=await doe(o,bn.inputSize,r,t);U2=l,n(l)})):null}var hk=e=>{if(!e)return[];let t=[];for(let n=0;nl.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.yl.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},dk=e=>{if(!e)return[];let t=[];for(let n=0;n0){let r=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${r<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},pk=e=>{if(!e)return[];let t=[];for(let n=0;n.033||h>.033)&&(c=!1),d>.033&&t.push({iris:n,gesture:"looking right"}),h>.033&&t.push({iris:n,gesture:"looking left"});let p=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].annotations.rightEyeIris[0][1],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].annotations.leftEyeIris[0][1];(f<.015||p<.015||f>.03||p>.03)&&(c=!1),(f<.015||p<.015)&&t.push({iris:n,gesture:"looking down"}),(f>.03||p>.03)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},fk=e=>{if(!e)return[];let t=[];for(let n=0;n0){let a=r.reduce((i,o)=>i.position[2]i.position[1]X2});function poe(e,t,n){let r=function(o,l,c){let u=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(u,(h,d)=>(c[d]=0,h))},a=function(o,l){let c=e.createShader(l);if(e.shaderSource(c,o),e.compileShader(c),!e.getShaderParameter(c,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(c));return c};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function mk(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,c=null,u=null,h={},d=e.canvas||document.createElement("canvas"),p={},f={INTERMEDIATE:1},m=d.getContext("webgl");if(!m)throw new Error("Filter: getContext() failed");this.addFilter=function(w){let b=Array.prototype.slice.call(arguments,1),k=h[w];i.push({func:k,args:b})},this.reset=function(){i=[]};let A=function(w,b){if(!(w===o&&b===l)){if(d.width=w,o=w,d.height=b,l=b,!c){let k=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);c=m.createBuffer(),m.bindBuffer(m.ARRAY_BUFFER,c),m.bufferData(m.ARRAY_BUFFER,k,m.STATIC_DRAW),m.pixelStorei(m.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}m.viewport(0,0,o,l),s=[null,null]}},y=function(w,b){let k=m.createFramebuffer();m.bindFramebuffer(m.FRAMEBUFFER,k);let N=m.createRenderbuffer();m.bindRenderbuffer(m.RENDERBUFFER,N);let C=m.createTexture();return m.bindTexture(m.TEXTURE_2D,C),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,w,b,0,m.RGBA,m.UNSIGNED_BYTE,null),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.framebufferTexture2D(m.FRAMEBUFFER,m.COLOR_ATTACHMENT0,m.TEXTURE_2D,C,0),m.bindTexture(m.TEXTURE_2D,null),m.bindFramebuffer(m.FRAMEBUFFER,null),{fbo:k,texture:C}},g=function(w){return s[w]=s[w]||y(o,l),s[w]},x=function(w=null){var C,F;let b=null,k=null,N=!1;t===0?b=n:b=(C=g(a))==null?void 0:C.texture,t++,r&&!(w&f.INTERMEDIATE)?(k=null,N=t%2==0):(a=(a+1)%2,k=(F=g(a))==null?void 0:F.fbo),m.bindTexture(m.TEXTURE_2D,b),m.bindFramebuffer(m.FRAMEBUFFER,k),m.uniform1f(u.uniform.flipY,N?-1:1),m.drawArrays(m.TRIANGLES,0,6)};this.apply=function(w){if(A(w.width,w.height),t=0,n||(n=m.createTexture()),m.bindTexture(m.TEXTURE_2D,n),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.NEAREST),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.NEAREST),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,m.RGBA,m.UNSIGNED_BYTE,w),i.length===0)return x(),d;for(let b=0;b{let u=[];e=H(e,[1,r,o]);for(let h=0;h{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),a=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),a=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let h=c.map(p=>p.id);u.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return c}case"LoopCond":{let r=I("pred",e,t,n);return[wa(r)]}case"Switch":{let r=I("pred",e,t,n),a=I("data",e,t,n);return a.kept||(a=wa(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>yn(a,t,n)!==void 0);if(r){let a=yn(r,t,n);return[wa(a)]}return}case"Enter":{let r=I("frameName",e,t,n),a=I("tensor",e,t,n);return n.enterFrame(r),[wa(a)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[wa(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[wa(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),a=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new use(c,a,r,s,l,i,o);return n.addTensorArray(u),[u.idTensor,ve(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=I("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),a=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[ve(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),a=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=dse(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=hse(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),a=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=cse(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),a=n.getTensorList(r.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),a=I("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=pse(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function K4(e,t,n){let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),u=f0(e,t,n),h=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[p,m]=I("args",e,t,n),f=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:h,dilations:d,biasArg:p,preluArg:m,activationFunc:a,leakyreluAlpha:f}}var mse=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[Id(I("x",e,t,n),I("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=f0(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[ha(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=K4(e,t,n);return[Ha.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=K4(e,t,n);return[Ha.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),s=f0(e,t,n);return[Sd(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=f0(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[wl(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[wm(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Zu(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[nc(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=mw(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[gm(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Fm(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dilations",e,t,n),i=r[1],o=r[2],l=s[1],c=s[2];return[vm(I("x",e,t,n),I("filter",e,t,n),[i,o],a,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ase=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),s=I("value",e,t,n);return[Qu(r,s,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("num",e,t,n);return[lw(r,a,s)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),s=I("seed",e,t,n);return[Aw(r,a,s)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[ml(r,a,s,i)]}case"Ones":return[Pn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Ln(I("x",e,t,n))];case"RandomUniform":return[Sl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("step",e,t,n);return[zd(r,a,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[qd(r,a,s,I("dtype",e,t,n),i)]}case"Zeros":return[Rt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[He(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function L2(e,t,n){let r=I("boxes",e,t,n),a=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var yse=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=L2(e,t,n),c=await Le.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=L2(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Le.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=L2(e,t,n);return[await Le.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=ge(I("condition",e,t,n),"bool"),a=[await qm(r)];return r.dispose(),a}case"ListDiff":return xw(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},gse=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),s=I("sorted",e,t,n),i=Hm(r,a,s);return[i.values,i.indices]}case"Unique":{let r=I("x",e,t,n),a=Xd(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),s=Xd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},xse=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[yn(e.name,t,n)||r];case"Placeholder":return[yn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[wa(c)]}case"IdentityN":return I("x",e,t,n).map(c=>wa(c));case"Snapshot":let a=I("x",e,t,n);return[wa(a)];case"Shape":return[sn(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>sn(c.shape));case"Size":return[ve(I("x",e,t,n).size,"int32")];case"Rank":return[ve(I("x",e,t,n).rank,"int32")];case"NoOp":return[ve(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;ce.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ve(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),P(()=>{let r=mr(t),a=n.length,s=r.length;_.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i{let r=[];for(let a=0;a{switch(e.op){case"HashTable":case"HashTableV2":{let a=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new bse(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let a=I("tableHandle",e,t,n,r);return[r.getHashTableById(a.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},_se=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Le.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Le.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Le.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},vse=(e,t,n)=>{switch(e.op){case"Equal":return[Ba(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[ki(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[pr(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[ja(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Cd(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[wi(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[fr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[tc(I("a",e,t,n))];case"LogicalOr":return[$d(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Cn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kse=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ve(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[sw(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Je(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[Ha.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ise=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[xi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[xi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[Em(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[oc(I("x",e,t,n))];case"LogSoftmax":return[Fd(I("x",e,t,n))];case"SparseToDense":return[Xm(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Sse=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Rn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[It(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[kl(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Te(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[vd(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Xu(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[Ai(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[cm(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Od(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Td(I("x",e,t,n),i,o,l)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),s=I("size",e,t,n);return[Yb(r,a,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[rw(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nse=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,r),[ot(s,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[bi(r,ge(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[bi(s,ge(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i{let r=I("axis",e,t,n),a=I("tensors",e,t,n),s=a[0].shape,i=Ua(a[0]).shape,o=a.map(l=>{let c=_.arraysEqual(l.shape,s);if(!c&&!_.arraysEqual(Ua(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:H(l,s)});return[cn(o,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return mr(a,r)}case"Tile":{let r=I("reps",e,t,n);return[Va(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return Lt(s,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),s=I("shape",e,t,n);return[vw(r,a,s)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[kw(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[Xm(r,s,a,s.dtype===i.dtype?i:ge(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Tse=(e,t,n)=>{switch(e.op){case"SparseReshape":{let{outputIndices:r,outputShape:a}=Lw.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[r,a]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ese=(e,t,n)=>{switch(e.op){case"FFT":return[lc(I("x",e,t,n))];case"IFFT":return[Nl(I("x",e,t,n))];case"RFFT":return[uc(I("x",e,t,n))];case"IRFFT":return[Hd(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Cse=(e,t,n)=>{switch(e.op){case"Cast":return[ge(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[Qt(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[Ua(I("x",e,t,n),r)]}case"Reshape":return[H(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[$m(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[da(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[rc(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[Yu(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[_m(I("x",e,t,n),r,a)]}case"BroadcastTo":return[xl(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Z4(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return P(()=>ose(s,i,o));case"basic_math":return P(()=>lse(s,i,o));case"control":return fse(s,i,o);case"convolution":return P(()=>mse(s,i,o));case"creation":return P(()=>Ase(s,i,o));case"dynamic":return yse(s,i,o);case"evaluation":return P(()=>gse(s,i,o));case"image":return P(()=>_se(s,i,o));case"graph":return P(()=>xse(s,i,o));case"logical":return P(()=>vse(s,i,o));case"matrices":return P(()=>kse(s,i,o));case"normalization":return P(()=>Ise(s,i,o));case"reduction":return P(()=>Sse(s,i,o));case"slice_join":return P(()=>Nse(s,i,o));case"sparse":return P(()=>Tse(s,i,o));case"spectral":return P(()=>Ese(s,i,o));case"transformation":return P(()=>Cse(s,i,o));case"hash_table":return wse(s,i,o,r);case"custom":let l=S4(s.op);if(l&&l.customExecutor)return l.customExecutor(new ise(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return _.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var Y4=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Q4(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>jn(d)[0]),u=[];r!=null&&(u=r.map(d=>jn(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((J4(d)||Rse(d)||Mse(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Fse(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(u=>jn(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{r.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{r.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{r.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return c}var $se=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Dse=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Ose=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function J4(e){return $se.indexOf(e.op)>=0}function Rse(e){return Dse.indexOf(e.op)>=0}function Mse(e){return Ose.indexOf(e.op)>=0}var W2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new W2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=Q4(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return Fse(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(u=>this.graph.nodes[jn(u)[0]]),a=t.map(u=>jn(u)[0]),s=a.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return P(()=>{let u=new Y4(this.weightMap,l,c,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,A]=jn(m),y=[];y[A]=e[m],h[f]=y});let d=this.getFrozenTensorIds(h),p={};for(let m=0;myn(m,h,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Bae(o.name,n,r);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!a.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new Y4(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>yn(h,i,s)),l=o.map(h=>h.id),c=Object.keys(e).map(h=>e[h].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.kept&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[jn(g)[0]]),i=n.map(g=>jn(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:h}=Q4(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[x,v]=jn(g),b=[];b[v]=e[g],p[x]=b});let m={},f=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,f,i,m,l);await Promise.all(g)}u==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!J4(g)&&!yn(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw u!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${c}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let h="";if(u.node.op==="Enter"&&I("isConstant",u.node,r,n)&&([h]=ba(u.node.name,n)),r[u.node.name]==null){let d=Z4(u.node,r,n,this._resourceManager);h||([h]=ba(u.node.name,n));let p=n.currentContext;_.isPromise(d)?c.push(d.then(m=>(r[h]=m,n.currentContext=p,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l),m))):(r[h]=d,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l))}else this.processChildNodes(u.node,t,n,r,a,l)}return c}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=ba(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!yn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!yn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=jn(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);_.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&_.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=jn(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=jn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},zse=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Pse="?tfjs-format=file",Lse="model.json",e8=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new zse}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Nn.browserHTTPRequest(e,this.loadOptions);else{let t=Nn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Nn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=Nn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new W2(H4.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=H4.Instance.transformGraph(e.modelInitializer);this.initializer=new W2(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Nn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Pe)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function ct(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${Lse}${Pse}`);let n=new e8(e,t);return await n.load(),n}var Wse="3.5.0",t8={};Me(t8,{CSVDataset:()=>r8,Dataset:()=>Jl,FileDataSource:()=>a8,TextLineDataset:()=>n8,URLDataSource:()=>s8,array:()=>Bse,csv:()=>jse,func:()=>Use,generator:()=>Hse,microphone:()=>qse,version_data:()=>Xse,webcam:()=>Gse,zip:()=>Vse});var Kse=so(l5()),Zse=so(l5());function Yse(e,t){return m0(e,t)}function m0(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Ql(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=m0(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function Jse(e,t=o8){return i8(e,t)}function i8(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Ql(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(c=>c[i]),l=i8(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function o8(e){return e===null?null:Ql(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function l8(e,t){let n=new Map;m0(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(_.isPromise(a)){let s=await a;n.set(r,s)}}return m0(e,t,n)}function Ql(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Pe))}function eie(e){return e==null||Qse(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Pe||_.isTypedArray(e)}function Qse(e){return e===null||typeof e!="object"&&typeof e!="function"}function nie(e){return Yse(e,tie)}function tie(e){return e instanceof Pe?{value:e.clone(),recurse:!1}:Ql(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var u8=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},B2=class extends u8{constructor(){super(B2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;rt===!0)}rowMajorBatch(e,t=!0){return new hie(this,e,t)}columnMajorBatch(e,t=!0,n=o8){return this.rowMajorBatch(e,t).map(r=>Jse(r,n))}concatenate(e,t){return new h8(c8([this,e]),t)}take(e){return e<0||e==null?this:new cie(this,e)}skip(e){return e<0||e==null?this:new uie(this,e)}prefetch(e){return new p8(this,e)}shuffle(e,t){return new Aie(this,e,t)}serial(){return new lie(this)}},rie=class extends Xt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:nie(e),done:!1}}},aie=class extends Xt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},lie=class extends Xt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},uie=class extends Xt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},hie=class extends Xt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},die=class extends Xt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;we(e.value)}}},pie=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=kr.getTensorsInContainer(e.value),n=this.transform(e.value),r=kr.getTensorsInContainer(n);for(let a of t)kr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},fie=class extends Xt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},d8=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=kr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=kr.getTensorsInContainer(n);for(let a of t)kr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},j2=class extends Xt{constructor(){super();this.outputQueue=new B2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},mie=class extends j2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=kr.getTensorsInContainer(e.value),n=this.transform(e.value),r=kr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)kr.isTensorInList(a,r)||a.dispose();return!0}},h8=class extends Xt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},rs;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(rs||(rs={}));var iie=class extends Xt{constructor(e,t=rs.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof Xt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await l8(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case rs.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case rs.SHORTEST:return{value:null,done:!0};case rs.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},p8=class extends Xt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new u8(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Aie=class extends p8{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Zse.alea(n||_.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Jl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;_.assert(e>0,()=>`batchSize needs to be positive, but it is + ${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),Un(async()=>(await n.iterator()).columnMajorBatch(e,t,yie),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Un(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Un(async()=>(await t.iterator()).filter(r=>P(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Un(async()=>(await t.iterator()).map(n=>P(()=>e(n))),this.size)}mapAsync(e){let t=this;return Un(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Un(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Un(async()=>{let r=V2(async()=>({value:await t.iterator(),done:!1}));return sie(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=Kse.alea(t||_.now().toString());return Un(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Un(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Jl.MAX_BUFFER_SIZE=1e4;function Un(e,t=null){return new class extends Jl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function Bse(e){return Un(async()=>c8(e),e.length)}function Vse(e){if(!Ql(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await l8(e,r=>{if(r instanceof Jl)return{value:r.iterator(),recurse:!1};if(Ql(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return oie(n,rs.SHORTEST)},t)}function yie(e){if(e===null)return null;let t=e[0];return eie(t)?{value:gie(e),recurse:!1}:{value:null,recurse:!0}}function gie(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Pe?cn(e):Sr(e)}var n8=class extends Jl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` +`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},A0='"',Zc=Symbol("out"),f8=Symbol("field"),y0=Symbol("quote"),U2=Symbol("quoteafterquote"),m8=Symbol("quoteinquote"),r8=class extends Jl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new n8(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(_.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&_.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(_.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new A8(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(_.sizeFromShape(t));return n.set(e,n.length-e.length),Sr(n,t)}},y8=class extends Xt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=sn([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=tr([s,a,o,i],[1,4])}else this.cropBox=tr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new y8(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&_.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=fi.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return P(()=>{let t=Qt(ge(e,"float32"),0),n;n=Le.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return H(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},g8=class{},x8=class extends Xt{split(e){return new xie(this,e)}},xie=class extends x8{constructor(e,t){super();this.upstream=e,this.impl=new bie(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},bie=class extends j2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},_ie=class extends Xt{decodeUTF8(){return new wie(this)}},wie=class extends x8{constructor(e){super();this.upstream=e,this.impl=new vie(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},vie=class extends j2{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=E9();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},b8=class extends _ie{constructor(e,t={}){super();this.file=e,this.options=t,_.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function Iie(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=kie(e));let a=await _.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new b8(s,t)}else throw new Error(a.statusText)}var kie=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function w8(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var a8=class extends g8{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(w8(this.input)&&J().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new b8(this.input,this.options)}},s8=class extends g8{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return w8(this.url)?new a8(this.url,this.fileOptions).iterator():Iie(this.url,this.fileOptions)}};function jse(e,t={}){return new r8(new s8(e),t)}function Use(e){let t=V2(e);return Un(async()=>t)}function Hse(e){return Un(async()=>{let t=await e();return V2(()=>t.next())})}async function Gse(e,t){return y8.create(e,t)}async function qse(e){return A8.create(e)}var Xse="3.5.0",Sie={tfjs:(wf==null?void 0:wf.version)||void 0,"tfjs-core":(_f==null?void 0:_f.version)||void 0,"tfjs-data":(vf==null?void 0:vf.version)||void 0,"tfjs-layers":(kf==null?void 0:kf.version)||void 0,"tfjs-converter":(If==null?void 0:If.version)||void 0,"tfjs-backend-cpu":g_||void 0,"tfjs-backend-webgl":B3||void 0,"tfjs-backend-wasm":Mv||void 0};var Hn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function _8(){if(!om(Hn.name)){le("backend registration:",Hn.name);try{Hn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Hn.width,Hn.height):document.createElement("canvas")}catch(e){le("error: cannot create canvas:",e);return}try{Hn.gl=Hn.canvas.getContext("webgl2",Hn.webGLattr)}catch(e){le("error: cannot get WebGL2 context:",e);return}try{Ap(2,Hn.gl)}catch(e){le("error: cannot set WebGL2 context:",e);return}try{let e=new bp(Hn.gl);yl(Hn.name,()=>new Bl(e),Hn.priority)}catch(e){le("error: cannot register WebGL backend:",e);return}try{cl("webgl").forEach(t=>{let n={...t,backendName:Hn.name};ci(n)})}catch(e){le("error: cannot update WebGL backend registration:",e);return}try{vr.set("WEBGL_VERSION",2)}catch(e){le("error: cannot set WebGL backend flags:",e);return}le("backend registered:",Hn.name)}}var H2={};Yn(H2,{load:()=>G2,predict:()=>w0});var g0={};function gn(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(i=>i.kernelTimeMs>0).reduce((i,o)=>i+=o.kernelTimeMs,0),a=t.kernels.map((i,o)=>(i.id=o,i)).filter(i=>i.kernelTimeMs>0).sort((i,o)=>o.kernelTimeMs-i.kernelTimeMs),s=t.kernels.map((i,o)=>(i.id=o,i)).filter(i=>i.totalBytesSnapshot>0).sort((i,o)=>o.totalBytesSnapshot-i.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n),g0[e]={model:e,newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s},le("profiler",e,g0[e])}var br,x0={age:0},b0=Number.MAX_SAFE_INTEGER;async function G2(e){return br?e.debug&&le("cached model:",br.modelUrl):(br=await ct(pt(e.modelBasePath,e.face.age.modelPath)),!br||!br.modelUrl?le("load model failed:",e.face.age.modelPath):e.debug&&le("load model:",br.modelUrl)),br}async function w0(e,t){return br?b00?(b0++,x0):(t.videoOptimized?b0=0:b0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Le.resizeBilinear(e,[br.inputs[0].shape[2],br.inputs[0].shape[1]],!1),a=z(r,[255]);we(r);let s,i={age:0};if(!t.profile)t.face.age.enabled&&(s=await br.predict(a));else{let o=t.face.age.enabled?await an(()=>br.predict(a)):{};s=o.result.clone(),o.result.dispose(),gn("age",o)}if(a.dispose(),s){let o=s.dataSync();i.age=Math.trunc(10*o[0])/10}s.dispose(),x0=i,n(i)})):null}var q2={};Yn(q2,{load:()=>Y2,predict:()=>v0});var ir,X2={gender:""},_0=Number.MAX_SAFE_INTEGER,K2=!1,Z2=[.2989,.587,.114];async function Y2(e){return ir?e.debug&&le("cached model:",ir.modelUrl):(ir=await ct(pt(e.modelBasePath,e.face.gender.modelPath)),K2=ir.inputs[0].shape[3]===1,!ir||!ir.modelUrl?le("load model failed:",e.face.gender.modelPath):e.debug&&le("load model:",ir.modelUrl)),ir}async function v0(e,t){return ir?_0{let r=Le.resizeBilinear(e,[ir.inputs[0].shape[2],ir.inputs[0].shape[1]],!1),a;K2?a=P(()=>{let[o,l,c]=Lt(r,3,3),u=z(o,Z2[0]),h=z(l,Z2[1]),d=z(c,Z2[2]);return La([u,h,d]).sub(.5).mul(2)}):a=z(r,[255]),we(r);let s,i={gender:"",confidence:0};if(!t.profile)t.face.gender.enabled&&(s=await ir.predict(a));else{let o=t.face.gender.enabled?await an(()=>ir.predict(a)):{};s=o.result.clone(),o.result.dispose(),gn("gender",o)}if(a.dispose(),s)if(Array.isArray(s)){let o=s[0].dataSync(),l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l)),s.forEach(c=>we(c))}else{let o=s.dataSync();if(K2)(o[0]>t.face.gender.minConfidence||o[1]>t.face.gender.minConfidence)&&(i.gender=o[0]>o[1]?"female":"male",i.confidence=o[0]>o[1]?Math.trunc(100*o[0])/100:Math.trunc(100*o[1])/100);else{let l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l))}s.dispose()}X2=i,n(i)})):null}var J2={};Yn(J2,{load:()=>tg,predict:()=>I0});var Nie=["angry","disgust","fear","happy","sad","surprise","neutral"],wr,Q2=[],k0=Number.MAX_SAFE_INTEGER,eg=[.2989,.587,.114];async function tg(e){return wr?e.debug&&le("cached model:",wr.modelUrl):(wr=await ct(pt(e.modelBasePath,e.face.emotion.modelPath)),!wr||!wr.modelUrl?le("load model failed:",e.face.emotion.modelPath):e.debug&&le("load model:",wr.modelUrl)),wr}async function I0(e,t){return wr?k00?(k0++,Q2):(t.videoOptimized?k0=0:k0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Le.resizeBilinear(e,[wr.inputs[0].shape[2],wr.inputs[0].shape[1]],!1),[a,s,i]=Lt(r,3,3);r.dispose();let o=z(a,eg[0]),l=z(s,eg[1]),c=z(i,eg[2]);a.dispose(),s.dispose(),i.dispose();let u=La([o,l,c]);o.dispose(),l.dispose(),c.dispose();let h=P(()=>u.sub(.5).mul(2));u.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let m=await an(()=>wr.predict(h));p=m.result.dataSync(),m.result.dispose(),gn("emotion",m)}else{let m=await wr.predict(h);p=m.dataSync(),we(m)}for(let m=0;mt.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*p[m])/100),emotion:Nie[m]});d.sort((m,f)=>f.score-m.score)}h.dispose(),Q2=d,n(d)})):null}var Gn;async function ng(e){return Gn?e.debug&&le("cached model:",Gn.modelUrl):(Gn=await ct(pt(e.modelBasePath,e.face.embedding.modelPath)),!Gn||!Gn.modelUrl?le("load model failed:",e.face.embedding.modelPath):e.debug&&le("load model:",Gn.modelUrl)),Gn}function v8(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(Math.trunc(1e3*(1-r))/1e3,0)}function Tie(e){return P(()=>{let n=[[.05,.15,.85,.85]],r=e.image||e.tensor;if(!(r instanceof Pe))return null;let a=r.shape.length===3?Le.cropAndResize(Qt(r,0),n,[0],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]):Le.cropAndResize(r,n,[0],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]),s=[.2989,.587,.114],[i,o,l]=Lt(a,3,3),c=z(i,s[0]),u=z(o,s[1]),h=z(l,s[2]),d=La([c,u,h]),p=cn([d,d,d],3).squeeze(4),m=p.sub(p.min());return m.div(m.max())})}async function rg(e,t){return Gn?new Promise(async n=>{let r=[];if(t.face.embedding.enabled){let a=Tie(e);if(!t.profile)r=P(()=>[...Gn.predict(a).reshape([128,2]).logSumExp(1).dataSync()]);else{let s=await an(()=>Gn.predict({img_inputs:a}));r=[...s.result.dataSync()],s.result.dispose(),gn("emotion",s)}we(a)}n(r)}):[]}var ag={};Yn(ag,{enhance:()=>og,load:()=>sg,match:()=>k8,predict:()=>T0,similarity:()=>ig});var qn,S0={age:0},N0=Number.MAX_SAFE_INTEGER;async function sg(e){return qn?e.debug&&le("cached model:",qn.modelUrl):(qn=await ct(pt(e.modelBasePath,e.face.description.modelPath)),!qn||!qn.modelUrl?le("load model failed:",e.face.description.modelPath):e.debug&&le("load model:",qn.modelUrl)),qn}function ig(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=5*e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(0,100-r)/100}function k8(e,t,n=0){let r={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return r;for(let a of t)if(a.embedding&&a.name){let s=ig(e,a.embedding);s>n&&s>r.similarity&&(r={...a,similarity:s})}return r}function og(e){return P(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Pe))return null;let r=[[.05,.15,.85,.85]];return(n.shape.length===3?Le.cropAndResize(Qt(n,0),r,[0],[qn.inputs[0].shape[2],qn.inputs[0].shape[1]]):Le.cropAndResize(n,r,[0],[qn.inputs[0].shape[2],qn.inputs[0].shape[1]])).mul(255)})}async function T0(e,t){return qn?N00?(N0++,S0):(t.videoOptimized?N0=0:N0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=og(e),a,s={age:0,gender:"unknown",genderConfidence:0,descriptor:[]};if(!t.profile)t.face.description.enabled&&(a=await qn.predict(r));else{let i=t.face.description.enabled?await an(()=>qn.predict(r)):{};a=i.result,gn("faceres",i)}we(r),a&&(P(()=>{let i=a.find(h=>h.shape[1]===1).dataSync(),o=Math.trunc(200*Math.abs(i[0]-.5))/100;o>t.face.gender.minConfidence&&(s.gender=i[0]<=.5?"female":"male",s.genderConfidence=Math.min(.99,o));let l=a.find(h=>h.shape[1]===100).argMax(1).dataSync()[0],c=a.find(h=>h.shape[1]===100).dataSync();s.age=Math.round(c[l-1]>c[l+1]?10*l-100*c[l-1]:10*l+100*c[l+1])/10;let u=a.find(h=>h.shape[1]===1024);s.descriptor=[...u.dataSync()]}),a.forEach(i=>we(i))),S0=s,n(s)})):null}var Eie=(e,t)=>{let n=A=>A*180/Math.PI,r=A=>{let y=Math.sqrt(A[0]*A[0]+A[1]*A[1]+A[2]*A[2]);return A[0]/=y,A[1]/=y,A[2]/=y,A},a=(A,y)=>{let g=A[0]-y[0],x=A[1]-y[1],v=A[2]-y[2];return[g,x,v]},s=(A,y)=>{let g=A[1]*y[2]-A[2]*y[1],x=A[2]*y[0]-A[0]*y[2],v=A[0]*y[1]-A[1]*y[0];return[g,x,v]},i=A=>{let[y,g,x,v,b,w,k,N,C]=A,F,O,L;return v<1?v>-1?(L=Math.asin(v),O=Math.atan2(-k,y),F=Math.atan2(-w,b)):(L=-Math.PI/2,O=-Math.atan2(N,C),F=0):(L=Math.PI/2,O=Math.atan2(N,C),F=0),{pitch:2*-F,yaw:2*-O,roll:2*-L}},o=A=>{let y=(x,v,b,w)=>Math.atan2(w-v,b-x);return{pitch:y(A[10][1],A[10][2],A[152][1],A[152][2]),yaw:y(A[33][0],A[33][2],A[263][0],A[263][2]),roll:y(A[33][0],A[33][1],A[263][0],A[263][1])}},l=e.meshRaw;if(!l||l.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1]};let c=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[l[10],l[152],l[234],l[454]].map(A=>[A[0]*t[0]/c,A[1]*t[1]/c,A[2]]),h=r(a(u[1],u[0])),d=r(a(u[3],u[2])),p=r(s(d,h));d=s(h,p);let m=[d[0],d[1],d[2],h[0],h[1],h[2],p[0],p[1],p[2]];return{angle:i(m),matrix:m}},lg=async(e,t)=>{var u,h,d,p,m,f,A;let n,r,a,s,i,o,l=[];e.state="run:face",n=Ye();let c=await((u=e.models.face)==null?void 0:u.estimateFaces(t,e.config));if(e.perf.face=Math.trunc(Ye()-n),!c)return[];for(let y of c){if(e.analyze("Get Face"),!y.image||y.image.isDisposedInternal){le("Face object is disposed:",y.image);continue}let g=Eie(y,[t.shape[2],t.shape[1]]);e.analyze("Start Age:"),e.config.async?r=e.config.face.age.enabled?w0(y.image,e.config):{}:(e.state="run:age",n=Ye(),r=e.config.face.age.enabled?await w0(y.image,e.config):{},e.perf.age=Math.trunc(Ye()-n)),e.analyze("Start Gender:"),e.config.async?a=e.config.face.gender.enabled?v0(y.image,e.config):{}:(e.state="run:gender",n=Ye(),a=e.config.face.gender.enabled?await v0(y.image,e.config):{},e.perf.gender=Math.trunc(Ye()-n)),e.analyze("Start Emotion:"),e.config.async?s=e.config.face.emotion.enabled?I0(y.image,e.config):{}:(e.state="run:emotion",n=Ye(),s=e.config.face.emotion.enabled?await I0(y.image,e.config):{},e.perf.emotion=Math.trunc(Ye()-n)),e.analyze("End Emotion:"),e.analyze("Start Embedding:"),e.config.async?i=e.config.face.embedding.enabled?rg(y,e.config):[]:(e.state="run:embedding",n=Ye(),i=e.config.face.embedding.enabled?await rg(y,e.config):[],e.perf.embedding=Math.trunc(Ye()-n)),e.analyze("End Embedding:"),e.analyze("Start Description:"),e.config.async?o=e.config.face.description.enabled?T0(y,e.config):[]:(e.state="run:description",n=Ye(),o=e.config.face.description.enabled?await T0(y.image,e.config):[],e.perf.embedding=Math.trunc(Ye()-n)),e.analyze("End Description:"),e.config.async&&([r,a,s,i,o]=await Promise.all([r,a,s,i,o])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((h=y==null?void 0:y.annotations)==null?void 0:h.leftEyeIris)&&((d=y==null?void 0:y.annotations)==null?void 0:d.rightEyeIris)&&(delete y.annotations.leftEyeIris,delete y.annotations.rightEyeIris);let x=((p=y.annotations)==null?void 0:p.leftEyeIris)&&((m=y.annotations)==null?void 0:m.rightEyeIris)?11.7*Math.max(Math.abs(y.annotations.leftEyeIris[3][0]-y.annotations.leftEyeIris[1][0]),Math.abs(y.annotations.rightEyeIris[4][1]-y.annotations.rightEyeIris[2][1])):0;l.push({...y,age:o.age||r.age,gender:o.gender||a.gender,genderConfidence:o.genderConfidence||a.confidence,embedding:o.descriptor||i,emotion:s,iris:x!==0?Math.trunc(x)/100:0,rotation:g,tensor:e.config.face.detector.return?(f=y.image)==null?void 0:f.squeeze():null}),(A=y.image)==null||A.dispose(),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.perf.face&&delete e.perf.face,e.perf.age&&delete e.perf.age,e.perf.gender&&delete e.perf.gender,e.perf.emotion&&delete e.perf.emotion),l};var fg={};Yn(fg,{MediaPipeFaceMesh:()=>mg,load:()=>Ag,triangulation:()=>$8,uvmap:()=>D8});var I8=6;function Cie(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r({startEndTensor:e,startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});function Mie(e,t,n){let r=Re(e,[0,1],[-1,2]),a=se(r,t),s=Re(e,[0,3],[-1,2]),i=Ae(s,n),o=Ae(a,n),l=Ae(i,2),c=ye(o,l),u=se(o,l),h=z(c,n),d=z(u,n);return bl([h,d],1)}var S8=class{constructor(t,n){this.model=t,this.anchorsData=Cie(t.inputs[0].shape[1]),this.anchors=tr(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,r,a]=P(()=>{let d=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),p=this.model.predict(d),m;if(Array.isArray(p)){let g=p.sort((w,k)=>w.size-k.size),x=ot([g[0],g[2]],2),v=ot([g[1],g[3]],2);m=ot([v,x],1).squeeze(0)}else m=p.squeeze();let f=Mie(m,this.anchors,[this.inputSize,this.inputSize]),A=Re(m,[0,0],[-1,1]),y=Tn(A).squeeze();return[m,f,y]}),s=await Le.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),i=s.arraySync();s.dispose();let l=i.map(h=>Re(r,[h,0],[1,-1])).map(h=>{let d=h.arraySync();return h.dispose(),d}),c=a.dataSync(),u=[];for(let h=0;hthis.config.face.detector.minConfidence){let m=Rie(l[h]),f=this.anchorsData[d],A=P(()=>Re(n,[d,I8-1],[1,-1]).squeeze().reshape([I8,-1]));u.push({box:m,landmarks:A,anchor:f,confidence:p})}}return n.dispose(),r.dispose(),a.dispose(),{boxes:u,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function N8(e){let t=await ct(pt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new S8(t,e);return!t||!t.modelUrl?le("load model failed:",e.face.detector.modelPath):e.debug&&le("load model:",t.modelUrl),n}function T8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function Yc(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function eu(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function tu(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Le.cropAndResize(t,s,[0],n)}function E0(e,t=1.5){let n=eu(e),r=Yc(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function C0(e){let t=eu(e),n=Yc(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}var R0=[[1,0,0],[0,1,0],[0,0,1]];function Fie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function ug(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Fie(n)}function E8(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function as(e,t){let n=0;for(let r=0;rJc[e]),joe=Oie.map(e=>Jc[e]),Uoe=zie.map(e=>Jc[e]);var hg=ea.leftEyeLower0,dg=ea.rightEyeLower0,nu={leftBounds:[hg[0],hg[hg.length-1]],rightBounds:[dg[0],dg[dg.length-1]]},F0={count:468,mouth:13,symmetryLine:[13,ea.midwayBetweenEyes[0]]},F8={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},ru={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function $0(e,t,n,r){for(let a=0;a[s[0]/this.meshSize*(h[0]-this.meshSize/2),s[1]/this.meshSize*(h[1]-this.meshSize/2),h[2]]),o=r!==0?M0(r,[0,0]):R0,l=r!==0?i.map(h=>[...M8(h,o),h[2]]):i,c=r!==0?R8(a):R0,u=[...eu({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(h=>[h[0]+as(u,c[0]),h[1]+as(u,c[1]),h[2]])}getLeftToRightEyeDepthDifference(t){let n=t[nu.leftBounds[0]][2],r=t[nu.rightBounds[0]][2];return n-r}getEyeBox(t,n,r,a,s=!1){let i=C0(E0(this.calculateLandmarksBoundingBox([t[r],t[a]]),this.irisEnlarge)),o=Yc(i),l=Le.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&vr.flags.IS_BROWSER&&(l=Le.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,r,a=!1){let s=[];for(let i=0;i{let c=i;return l===2?c=a:l===4&&(c=s),[o[0],o[1],c]})}async predict(t,n){let r=!1,a;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(a=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,!n.videoOptimized||a&&a.boxes&&(!n.face.mesh.enabled||a.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let i of a.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(r=!0)}if(n.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),r){if(!a||!a.boxes||a.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=P(()=>this.storedBoxes.map((i,o)=>{let l=i.confidence,c,u=0,h;if(n.face.detector.rotation&&n.face.mesh.enabled&&vr.flags.IS_BROWSER){let[b,w]=i.landmarks.length>=F0.count?F0.symmetryLine:F8.symmetryLine;u=ug(i.landmarks[b],i.landmarks[w]);let k=eu({startPoint:i.startPoint,endPoint:i.endPoint}),N=[k[0]/t.shape[2],k[1]/t.shape[1]],C=Le.rotateWithOffset(t,u,0,N);h=M0(-u,k),n.face.mesh.enabled?c=tu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.meshSize,this.meshSize]).div(255):c=tu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.boxSize,this.boxSize]).div(255)}else{h=R0;let b=t.clone();n.face.mesh.enabled?c=tu({startPoint:i.startPoint,endPoint:i.endPoint},b,[this.meshSize,this.meshSize]).div(255):c=tu({startPoint:i.startPoint,endPoint:i.endPoint},b,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{coords:null,box:i,faceConfidence:null,boxConfidence:l,confidence:i.confidence,image:c};let[,d,p]=this.meshDetector.predict(c),m=d.dataSync()[0];if(m=F0.count?F0.symmetryLine:F8.symmetryLine;u=ug(i.landmarks[b],i.landmarks[w]);let k=eu({startPoint:i.startPoint,endPoint:i.endPoint}),N=[k[0]/t.shape[2],k[1]/t.shape[1]],C=Le.rotateWithOffset(t.toFloat(),u,0,N);h=M0(-u,k),c=tu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.meshSize,this.meshSize]).div(255)}let x={coords:g,box:i,faceConfidence:m,boxConfidence:l,image:c,rawCoords:A},v=C0(i);return this.storedBoxes[o]={...v,landmarks:y,confidence:i.confidence,faceConfidence:m},x}));return s=s.filter(i=>i!==null),n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.faceConfidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s,landmarks:t}}};var mg=class{constructor(t,n,r,a){this.facePipeline=new pg(t,n,r),this.config=a}async estimateFaces(t,n){let r=await this.facePipeline.predict(t,n),a=[];for(let s of r||[]){if(s.isDisposedInternal)continue;let i=s.coords?s.coords.arraySync():[],o=i.map(h=>[h[0]/t.shape[2],h[1]/t.shape[1],h[2]/this.facePipeline.meshSize]),l={};if(i&&i.length>0)for(let h of Object.keys(ea))l[h]=ea[h].map(d=>i[d]);let c=s.box?[Math.max(0,s.box.startPoint[0]),Math.max(0,s.box.startPoint[1]),Math.min(t.shape[2],s.box.endPoint[0])-Math.max(0,s.box.startPoint[0]),Math.min(t.shape[1],s.box.endPoint[1])-Math.max(0,s.box.startPoint[1])]:0,u=s.box?[s.box.startPoint[0]/t.shape[2],s.box.startPoint[1]/t.shape[1],(s.box.endPoint[0]-s.box.startPoint[0])/t.shape[2],(s.box.endPoint[1]-s.box.startPoint[1])/t.shape[1]]:[];a.push({confidence:Math.round(100*s.faceConfidence||100*s.boxConfidence||0)/100,boxConfidence:Math.round(100*s.boxConfidence)/100,faceConfidence:Math.round(100*s.faceConfidence)/100,box:c,boxRaw:u,mesh:i,meshRaw:o,annotations:l,image:s.image?s.image.clone():null}),s.coords&&s.coords.dispose(),s.image&&s.image.dispose()}return a}},Kt=[null,null,null];async function Ag(e){return!Kt[0]&&e.face.enabled||!Kt[1]&&e.face.mesh.enabled||!Kt[2]&&e.face.iris.enabled?(Kt=await Promise.all([!Kt[0]&&e.face.enabled?N8(e):null,!Kt[1]&&e.face.mesh.enabled?ct(pt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Kt[2]&&e.face.iris.enabled?ct(pt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Kt[1]||!Kt[1].modelUrl?le("load model failed:",e.face.mesh.modelPath):e.debug&&le("load model:",Kt[1].modelUrl)),e.face.iris.enabled&&(!Kt[2]||!Kt[1].modelUrl?le("load model failed:",e.face.iris.modelPath):e.debug&&le("load model:",Kt[2].modelUrl))):e.debug&&(le("cached model:",Kt[0].model.modelUrl),le("cached model:",Kt[1].modelUrl),le("cached model:",Kt[2].modelUrl)),new mg(Kt[0],Kt[1],Kt[2],e)}var $8=Ui,D8=Jc;var _g={};Yn(_g,{load:()=>kg,predict:()=>vg});var Qc=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],O8=Qc.length,eh=Qc.reduce((e,t,n)=>(e[t]=n,e),{}),Pie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Lie=Pie.map(([e,t])=>[eh[e],eh[t]]),z8=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function P8(e){let t=e.reduce(({maxX:n,maxY:r,minX:a,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(n,i),maxY:Math.max(r,o),minX:Math.min(a,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function L8(e,[t,n],[r,a]){let s=(o,l,c)=>({score:o.score,box:[Math.trunc(o.box[0]*c),Math.trunc(o.box[1]*l),Math.trunc(o.box[2]*c),Math.trunc(o.box[3]*l)],keypoints:o.keypoints.map(({score:u,part:h,position:d})=>({score:u,part:h,position:{x:Math.trunc(d.x*c),y:Math.trunc(d.y*l)}}))});return e.map(o=>s(o,t/r,n/a))}var yg=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(nn?n:e}function W8(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}function wg(e,t){return{x:e.x+t.x,y:e.y+t.y}}var D0=1,B8=16;function V8(e,t,n,r,a,s,i,o=2){let l=g=>({y:i.get(g.y,g.x,e),x:i.get(g.y,g.x,i.shape[2]/2+e)}),c=(g,x,v)=>({y:bg(Math.round(g.y/s),0,x-1),x:bg(Math.round(g.x/s),0,v-1)}),[u,h]=r.shape,d=c(t.position,u,h),p=l(d),f=wg(t.position,p);for(let g=0;g[eh[f],eh[A]]),o=i.map(([,f])=>f),l=i.map(([f])=>f),c=t.shape[2],u=o.length,h=new Array(c),{part:d,score:p}=e,m=xg(d,r,n);h[d.id]={score:p,part:Qc[d.id],position:m};for(let f=u-1;f>=0;--f){let A=o[f],y=l[f];h[A]&&!h[y]&&(h[y]=V8(f,h[A],y,t,n,r,s))}for(let f=0;ft){o=!1;break}if(!o)break}return o}function Vie(e,t){let[n,r,a]=t.shape,s=new yg(n*r*a,({score:i})=>i);for(let i=0;i{let i=s[a].position;return W8(r,n,i.y,i.x)<=t})}function jie(e,t,n){return n.reduce((a,{position:s,score:i},o)=>(j8(e,t,s,o)||(a+=i),a),0)/n.length}function U8(e,t,n,r,a,s,i){let o=[],l=Vie(i,t),c=a**2;for(;o.lengthA.score>i),m=jie(o,c,p),f=P8(p);m>i&&o.push({keypoints:p,box:f,score:Math.round(100*m)/100})}return o}var _r,Uie=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function vg(e,t){let n=P(()=>{let o=e.resizeBilinear([_r.inputs[0].shape[2],_r.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),c=_r.execute(o,Uie).map(u=>u.squeeze([0]));return c[1]=c[1].sigmoid(),c}),r=await Promise.all(n.map(i=>i.buffer()));for(let i of n)i.dispose();let a=await U8(r[0],r[1],r[2],r[3],t.body.nmsRadius,t.body.maxDetections,t.body.scoreThreshold);return L8(a,[e.shape[1],e.shape[2]],[_r.inputs[0].shape[2],_r.inputs[0].shape[1]])}async function kg(e){return _r?e.debug&&le("cached model:",_r.modelUrl):(_r=await ct(pt(e.modelBasePath,e.body.modelPath)),!_r||!_r.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",_r.modelUrl)),_r}var Eg={};Yn(Eg,{HandPose:()=>Rg,load:()=>Mg});function O0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function th(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function H8(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Le.cropAndResize(t,s,[0],n)}function G8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function z0(e,t=1.5){let n=th(e),r=O0(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function P0(e){let t=th(e),n=O0(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var Ig=class{constructor(t,n,r){this.model=t,this.anchors=r.map(a=>[a.x_center,a.y_center]),this.anchorsTensor=tr(this.anchors),this.inputSize=n,this.inputSizeTensor=sn([n,n]),this.doubleInputSizeTensor=sn([n*2,n*2])}normalizeBoxes(t){return P(()=>{let n=Re(t,[0,0],[-1,2]),r=Re(t,[0,2],[-1,2]),a=se(Ae(n,this.inputSizeTensor),this.anchorsTensor),s=Ae(r,this.doubleInputSizeTensor),i=z(ye(a,s),this.inputSizeTensor),o=z(se(a,s),this.inputSizeTensor);return bl([i,o],1)})}normalizeLandmarks(t,n){return P(()=>{let r=se(Ae(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return z(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),a=r.squeeze();r.dispose();let s=P(()=>Tn(Re(a,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Re(a,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let c=await Le.nonMaxSuppressionAsync(l,i,n.hand.maxHands,n.hand.iouThreshold,n.hand.scoreThreshold),u=c.arraySync();s.dispose(),c.dispose();let h=[];for(let d of u)if(i[d]>=n.hand.minConfidence){let p=Re(l,[d,0],[1,-1]),m=Re(a,[d,5],[1,14]),f=P(()=>this.normalizeLandmarks(m,d).reshape([-1,2]));m.dispose(),h.push({box:p,palmLandmarks:f,confidence:i[d]})}return a.dispose(),l.dispose(),h}async estimateHandBounds(t,n){let r=t.shape[1],a=t.shape[2],s=P(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let c=l.box.dataSync(),u=c.slice(0,2),h=c.slice(2,4),d=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(G8({startPoint:u,endPoint:h,palmLandmarks:d,confidence:l.confidence},[a/this.inputSize,r/this.inputSize]))}return o}};function Hie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function q8(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Hie(n)}var X8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ss(e,t){let n=0;for(let r=0;rNg([...s,1],n)),a=this.calculateLandmarksBoundingBox(r);return z0(P0(a),qie)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=z0(P0(n),Y8);r.palmLandmarks=[];for(let a=0;a[i[0]*(p[0]-this.inputSize/2),i[1]*(p[1]-this.inputSize/2),i[2]*p[2]]),l=Sg(r,[0,0]),c=o.map(p=>[...Ng(p,l),p[2]]),u=Z8(a),h=[...th(n),1],d=[ss(h,u[0]),ss(h,u[1])];return c.map(p=>[p[0]+d[0],p[1]+d[1],p[2]])}async estimateHands(t,n){let r=!1,a;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(a=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==n.hand.maxHands||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(r=!0));let s=[];n.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let i=0;i=n.hand.minConfidence){let x=H(y,[-1,3]),v=x.arraySync();y.dispose(),x.dispose();let b=this.transformRawCoords(v,p,l,d),w=this.getBoxForHandLandmarks(b);this.storedBoxes[i]=w;let k={landmarks:b,confidence:g,box:{topLeft:w.startPoint,bottomRight:w.endPoint}};s.push(k)}else this.storedBoxes[i]=null;y.dispose()}else{let l=z0(P0(o),Y8),c={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(c)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s}}};var Q8=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var Cg={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},Rg=class{constructor(t){this.handPipeline=t}static getAnnotations(){return Cg}async estimateHands(t,n){let r=await this.handPipeline.estimateHands(t,n);if(!r)return[];let a=[];for(let s of r){let i={};if(s.landmarks)for(let c of Object.keys(Cg))i[c]=Cg[c].map(u=>s.landmarks[u]);let o=s.box?[Math.max(0,s.box.topLeft[0]),Math.max(0,s.box.topLeft[1]),Math.min(t.shape[2],s.box.bottomRight[0])-Math.max(0,s.box.topLeft[0]),Math.min(t.shape[1],s.box.bottomRight[1])-Math.max(0,s.box.topLeft[1])]:[],l=[s.box.topLeft[0]/t.shape[2],s.box.topLeft[1]/t.shape[1],(s.box.bottomRight[0]-s.box.topLeft[0])/t.shape[2],(s.box.bottomRight[1]-s.box.topLeft[1])/t.shape[1]];a.push({confidence:Math.round(100*s.confidence)/100,box:o,boxRaw:l,landmarks:s.landmarks,annotations:i})}return a}},ta,na;async function Mg(e){!ta||!na?([ta,na]=await Promise.all([e.hand.enabled?ct(pt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?ct(pt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!ta||!ta.modelUrl?le("load model failed:",e.hand.detector.modelPath):e.debug&&le("load model:",ta.modelUrl),!na||!na.modelUrl?le("load model failed:",e.hand.skeleton.modelPath):e.debug&&le("load model:",na.modelUrl))):(e.debug&&le("cached model:",ta.modelUrl),e.debug&&le("cached model:",na.modelUrl));let t=new Ig(ta,ta==null?void 0:ta.inputs[0].shape[2],Q8),n=new Tg(t,na,na==null?void 0:na.inputs[0].shape[2]);return new Rg(n)}var Fg={};Yn(Fg,{load:()=>$g,predict:()=>Dg});var ek=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],tk=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var xn;async function $g(e){return xn?e.debug&&le("cached model:",xn.modelUrl):(xn=await ct(pt(e.modelBasePath,e.body.modelPath)),xn.width=parseInt(xn.signature.inputs["input_1:0"].tensorShape.dim[2].size),xn.height=parseInt(xn.signature.inputs["input_1:0"].tensorShape.dim[1].size),!xn||!xn.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",xn.modelUrl)),xn}async function Dg(e,t){if(!xn||!t.body.enabled)return null;let n={width:e.shape[2],height:e.shape[1]},r=Le.resizeBilinear(e,[xn.width,xn.height],!1),a=Ae(r,[255]);r.dispose();let s;if(t.profile){let u=await an(()=>xn.predict(a));s=u.result.find(h=>h.size===195||h.size===155).dataSync(),u.result.forEach(h=>h.dispose()),gn("blazepose",u)}else{let u=await xn.predict(a);s=u.find(h=>h.size===195||h.size===155).dataSync(),u.forEach(h=>h.dispose())}a.dispose();let i=[],o=s.length===195?ek:tk,l=5;for(let u=0;uh.score>u?h.score:u,0),keypoints:i}]}var bn,nh=[],L0=Number.MAX_SAFE_INTEGER,Zie=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function Og(e){return bn?e.debug&&le("cached model:",bn.modelUrl):(bn=await ct(pt(e.modelBasePath,e.body.modelPath)),!bn||!bn.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",bn.modelUrl)),bn}function Yie(e,t){let[n,r]=e.shape;return P(()=>{let a=(o,l)=>ye(o,z(Ae(o,ve(l,"int32")),ve(l,"int32"))),s=H(e,[r*n]),i=Rn(s,0).dataSync()[0];if(i>t){let o=Ai(s,0),l=a(o,n).dataSync()[0],c=Ae(o,ve(n,"int32")).dataSync()[0];return[l,c,i]}return[0,0,i]})}async function zg(e,t){return bn?L00?(L0++,nh):(t.videoOptimized?L0=0:L0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=P(()=>{let i=Le.resizeBilinear(e,[bn.inputs[0].shape[2],bn.inputs[0].shape[1]],!1);return z(i,2).sub(1)}),a;if(!t.profile)t.body.enabled&&(a=await bn.predict(r));else{let i=t.body.enabled?await an(()=>bn.predict(r)):{};a=i.result.clone(),i.result.dispose(),gn("body",i)}if(r.dispose(),a){let i=[],o=a.squeeze();we(a);let l=o.unstack(2);we(o);for(let c=0;ct.body.scoreThreshold&&i.push({id:c,score:Math.round(100*d)/100,part:Zie[c],positionRaw:{xRaw:u/bn.inputs[0].shape[2],yRaw:h/bn.inputs[0].shape[1]},position:{x:Math.round(e.shape[2]*u/bn.inputs[0].shape[2]),y:Math.round(e.shape[1]*h/bn.inputs[0].shape[1])}})}l.forEach(c=>we(c)),nh=i}let s=nh.reduce((i,o)=>o.score>i?o.score:i,0);n([{score:s,keypoints:nh}])})):null}var Pg={};Yn(Pg,{load:()=>Wg,predict:()=>Bg});var W0=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var wn,Lg=[],B0=Number.MAX_SAFE_INTEGER,V0=2.5;async function Wg(e){if(wn)e.debug&&le("cached model:",wn.modelUrl);else{wn=await ct(pt(e.modelBasePath,e.object.modelPath));let t=Object.values(wn.modelSignature.inputs);if(wn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!wn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!wn||!wn.modelUrl?le("load model failed:",e.object.modelPath):e.debug&&le("load model:",wn.modelUrl)}return wn}async function Jie(e,t,n,r){let a=0,s=[];for(let c of[1,2,4])P(()=>{var A,y;let u=c*13,h=(A=e.find(g=>g.shape[1]===u**2&&g.shape[2]===W0.length))==null?void 0:A.squeeze(),d=(y=e.find(g=>g.shape[1]===u**2&&g.shape[2]r.object.minConfidence&&x!==61){let b=(.5+Math.trunc(g%u))/u,w=(.5+Math.trunc(g/u))/u,k=m[g].map(U=>U*(u/c/t)),[N,C]=[b-V0/c*k[0],w-V0/c*k[1]],[F,O]=[b+V0/c*k[2]-N,w+V0/c*k[3]-C],L=[N,C,F,O];L=L.map(U=>Math.max(0,Math.min(U,1)));let V=[L[0]*n[0],L[1]*n[1],L[2]*n[0],L[3]*n[1]],j={id:a++,strideSize:c,score:Math.round(100*v)/100,class:x+1,label:W0[x].label,center:[Math.trunc(n[0]*b),Math.trunc(n[1]*w)],centerRaw:[b,w],box:V.map(U=>Math.trunc(U)),boxRaw:L};s.push(j)}}});e.forEach(c=>we(c));let i=s.map(c=>c.boxRaw),o=s.map(c=>c.score),l=[];if(i&&i.length>0){let c=await Le.nonMaxSuppressionAsync(i,o,r.object.maxResults,r.object.iouThreshold,r.object.minConfidence);l=c.dataSync(),we(c)}return s=s.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),s}async function Bg(e,t){return wn?B00?(B0++,Lg):(t.videoOptimized?B0=0:B0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=[e.shape[2],e.shape[1]],a=Le.resizeBilinear(e,[wn.inputSize,wn.inputSize],!1),s=a.div(255),i=s.transpose([0,3,1,2]);s.dispose(),a.dispose();let o;if(!t.profile)t.object.enabled&&(o=await wn.predict(i));else{let c=t.object.enabled?await an(()=>wn.predict(i)):{};o=c.result,gn("object",c)}i.dispose();let l=await Jie(o,wn.inputSize,r,t);Lg=l,n(l)})):null}var nk=e=>{if(!e)return[];let t=[];for(let n=0;nl.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.yl.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},rk=e=>{if(!e)return[];let t=[];for(let n=0;n0){let r=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${r<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},ak=e=>{if(!e)return[];let t=[];for(let n=0;n.033||h>.033)&&(c=!1),d>.033&&t.push({iris:n,gesture:"looking right"}),h>.033&&t.push({iris:n,gesture:"looking left"});let p=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].annotations.rightEyeIris[0][1],m=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].annotations.leftEyeIris[0][1];(m<.015||p<.015||m>.03||p>.03)&&(c=!1),(m<.015||p<.015)&&t.push({iris:n,gesture:"looking down"}),(m>.03||p>.03)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},sk=e=>{if(!e)return[];let t=[];for(let n=0;n0){let a=r.reduce((i,o)=>i.position[2]i.position[1]jg});function Qie(e,t,n){let r=function(o,l,c){let u=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(u,(h,d)=>(c[d]=0,h))},a=function(o,l){let c=e.createShader(l);if(e.shaderSource(c,o),e.compileShader(c),!e.getShaderParameter(c,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(c));return c};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function ik(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,c=null,u=null,h={},d=e.canvas||document.createElement("canvas"),p={},m={INTERMEDIATE:1},f=d.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(b){let w=Array.prototype.slice.call(arguments,1),k=h[b];i.push({func:k,args:w})},this.reset=function(){i=[]};let A=function(b,w){if(!(b===o&&w===l)){if(d.width=b,o=b,d.height=w,l=w,!c){let k=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);c=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,c),f.bufferData(f.ARRAY_BUFFER,k,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,o,l),s=[null,null]}},y=function(b,w){let k=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,k);let N=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,N);let C=f.createTexture();return f.bindTexture(f.TEXTURE_2D,C),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,b,w,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,C,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:k,texture:C}},g=function(b){return s[b]=s[b]||y(o,l),s[b]},x=function(b=null){var C,F;let w=null,k=null,N=!1;t===0?w=n:w=(C=g(a))==null?void 0:C.texture,t++,r&&!(b&m.INTERMEDIATE)?(k=null,N=t%2==0):(a=(a+1)%2,k=(F=g(a))==null?void 0:F.fbo),f.bindTexture(f.TEXTURE_2D,w),f.bindFramebuffer(f.FRAMEBUFFER,k),f.uniform1f(u.uniform.flipY,N?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(b){if(A(b.width,b.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,b),i.length===0)return x(),d;for(let w=0;w0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,i=a,o=s;if(i>H0&&(i=H0,o=i*s/a),o>H0&&(o=H0,i=o*a/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=a*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/a)),!i||!o)throw new Error("Human: Input cannot determine dimension");(!Ee||(Ee==null?void 0:Ee.width)!==i||(Ee==null?void 0:Ee.height)!==o)&&(Ee=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),(Ee==null?void 0:Ee.width)!==i&&(Ee.width=i),(Ee==null?void 0:Ee.height)!==o&&(Ee.height=o));let l=Ee.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(a,0),l.scale(-1,1),l.drawImage(e,0,0,a,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,a,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),t.filter.enabled){if((!$t||!wt||Ee.width!==wt.width||(Ee==null?void 0:Ee.height)!==(wt==null?void 0:wt.height))&&(wt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height):document.createElement("canvas"),(wt==null?void 0:wt.width)!==(Ee==null?void 0:Ee.width)&&(wt.width=Ee==null?void 0:Ee.width),(wt==null?void 0:wt.height)!==(Ee==null?void 0:Ee.height)&&(wt.height=Ee==null?void 0:Ee.height),$t=_r.flags.IS_BROWSER?new mk({canvas:wt}):null),!$t)return{tensor:null,canvas:Ee};$t.reset(),$t.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&$t.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&$t.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&$t.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&$t.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&$t.addFilter("hue",t.filter.hue),t.filter.negative&&$t.addFilter("negative"),t.filter.sepia&&$t.addFilter("sepia"),t.filter.vintage&&$t.addFilter("brownie"),t.filter.sepia&&$t.addFilter("sepia"),t.filter.kodachrome&&$t.addFilter("kodachrome"),t.filter.technicolor&&$t.addFilter("technicolor"),t.filter.polaroid&&$t.addFilter("polaroid"),t.filter.pixelate!==0&&$t.addFilter("pixelate",t.filter.pixelate),$t.apply(Ee)}else wt=Ee,$t&&($t=null);let c;if(wt.data){let h=[wt.height,wt.width,3];c=wd(wt.data,h,"int32")}else if(wt instanceof ImageData)c=pi.fromPixels(wt);else if(t.backend==="webgl"||t.backend==="humangl"){let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(wt,0,0),c=pi.fromPixels(h)}else{let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(wt,0,0);let p=d==null?void 0:d.getImageData(0,0,i,o);c=pi.fromPixels(p)}let u=c.toFloat();n=u.expandDims(0),c.dispose(),u.dispose()}let r=t.filter.return?wt:null;return{tensor:n,canvas:r}}var K2={};Yn(K2,{all:()=>moe,body:()=>gk,canvas:()=>foe,face:()=>yk,gesture:()=>Ak,hand:()=>xk,object:()=>wk,options:()=>Hi});var ht={backend:"webgl",modelBasePath:"../models/",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface-back.json",rotation:!1,maxFaces:10,skipFrames:21,skipInitial:!1,minConfidence:.2,iouThreshold:.1,scoreThreshold:.2,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:31},emotion:{enabled:!0,minConfidence:.1,skipFrames:32,modelPath:"emotion.json"},age:{enabled:!1,modelPath:"age.json",skipFrames:33},gender:{enabled:!1,minConfidence:.1,modelPath:"gender.json",skipFrames:34},embedding:{enabled:!1,modelPath:"mobileface.json"}},body:{enabled:!0,modelPath:"posenet.json",maxDetections:1,scoreThreshold:.3,nmsRadius:20},hand:{enabled:!0,rotation:!1,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"nanodet.json",minConfidence:.2,iouThreshold:.4,maxResults:10,skipFrames:41}};var Hi={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!1,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1,calculateHandBox:!0};function G0(e,t,n,r=0,a){e.fillStyle=a.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:a.color,e.beginPath(),e.arc(t,n,a.pointSize,0,2*Math.PI),e.fill()}function Gi(e,t,n,r,a,s){if(e.beginPath(),s.useCurves){let i=(t+t+r)/2,o=(n+n+a)/2;e.ellipse(i,o,r/2,a/2,0,0,2*Math.PI)}else e.lineWidth=s.lineWidth,e.moveTo(t+s.roundRect,n),e.lineTo(t+r-s.roundRect,n),e.quadraticCurveTo(t+r,n,t+r,n+s.roundRect),e.lineTo(t+r,n+a-s.roundRect),e.quadraticCurveTo(t+r,n+a,t+r-s.roundRect,n+a),e.lineTo(t+s.roundRect,n+a),e.quadraticCurveTo(t,n+a,t,n+a-s.roundRect),e.lineTo(t,n+s.roundRect),e.quadraticCurveTo(t,n,t+s.roundRect,n),e.closePath();e.stroke()}function Z2(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let r of t)e.strokeStyle=n.useDepth&&r[2]?`rgba(${127.5+2*r[2]}, ${127.5-2*r[2]}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r[2]?`rgba(${127.5+2*r[2]}, ${127.5-2*r[2]}, 255, 0.3)`:n.color,e.lineTo(r[0],parseInt(r[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function ah(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Z2(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let r=0;r1&&l[1].length>0){let c=o[1]>0?`#${o[1]}`:"",u=`${o[0]} ${c}: ${l[1]}`;r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(u,8,2+s*r.lineHeight)),a.fillStyle=r.labelColor,a.fillText(u,6,0+s*r.lineHeight),s+=1}}}async function yk(e,t,n){let r=Jn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a)for(let s of t){a.font=r.font,a.strokeStyle=r.color,a.fillStyle=r.color,r.drawBoxes&&(r.useRawBoxes?Gi(a,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],r):Gi(a,s.box[0],s.box[1],s.box[2],s.box[3],r));let i=[];if(i.push(`face confidence: ${Math.trunc(100*s.confidence)}%`),s.genderConfidence&&i.push(`${s.gender||""} ${Math.trunc(100*s.genderConfidence)}% confident`),s.age&&i.push(`age: ${s.age||""}`),s.iris&&i.push(`iris distance: ${s.iris}`),s.emotion&&s.emotion.length>0){let o=s.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.push(o.join(" "))}s.rotation&&s.rotation.angle&&s.rotation.angle.roll&&i.push(`roll: ${Math.trunc(100*s.rotation.angle.roll)/100} yaw:${Math.trunc(100*s.rotation.angle.yaw)/100} pitch:${Math.trunc(100*s.rotation.angle.pitch)/100}`),i.length===0&&i.push("face"),a.fillStyle=r.color;for(let o=i.length-1;o>=0;o--){let l=Math.max(s.box[0],0),c=o*r.lineHeight+s.box[1];r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(i[o],l+5,c+16)),a.fillStyle=r.labelColor,a.fillText(i[o],l+4,c+15)}if(a.lineWidth=1,s.mesh&&s.mesh.length>0){if(r.drawPoints)for(let o of s.mesh)G0(a,o[0],o[1],o[2],r);if(r.drawPolygons){a.lineWidth=1;for(let o=0;os.mesh[c]);Z2(a,l,r)}if(s.annotations&&s.annotations.leftEyeIris){a.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,a.beginPath();let o=Math.abs(s.annotations.leftEyeIris[3][0]-s.annotations.leftEyeIris[1][0])/2,l=Math.abs(s.annotations.leftEyeIris[4][1]-s.annotations.leftEyeIris[2][1])/2;a.ellipse(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),r.fillPolygons&&(a.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,a.fill())}if(s.annotations&&s.annotations.rightEyeIris){a.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,a.beginPath();let o=Math.abs(s.annotations.rightEyeIris[3][0]-s.annotations.rightEyeIris[1][0])/2,l=Math.abs(s.annotations.rightEyeIris[4][1]-s.annotations.rightEyeIris[2][1])/2;a.ellipse(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),r.fillPolygons&&(a.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,a.fill())}}}}}var ss=[];async function gk(e,t,n){let r=Jn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round";for(let s=0;sl.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),ah(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),o.length===4&&Z2(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftKnee"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftAnkle"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHeel"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftFoot"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),ah(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightKnee"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightAnkle"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHeel"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightFoot"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),ah(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftElbow"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftWrist"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftPalm"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),ah(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightElbow"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightWrist"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightPalm"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),ah(a,o,r)}}}}async function xk(e,t,n){let r=Jn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round",a.font=r.font;for(let s of t){if(r.drawBoxes){a.strokeStyle=r.color,a.fillStyle=r.color;let i;if(!r.calculateHandBox)i=r.useRawBoxes?s.boxRaw:s.box;else if(i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],s.landmarks&&s.landmarks.length>0){for(let o of s.landmarks)o[0]i[2]&&(i[2]=o[0]),o[1]>i[3]&&(i[3]=o[1]);i[2]-=i[0],i[3]-=i[1]}r.useRawBoxes?Gi(a,e.width*i[0],e.height*i[1],e.width*i[2],e.height*i[3],r):Gi(a,i[0],i[1],i[2],i[3],r),r.drawLabels&&(r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText("hand",i[0]+3,1+i[1]+r.lineHeight,i[2])),a.fillStyle=r.labelColor,a.fillText("hand",i[0]+2,0+i[1]+r.lineHeight,i[2])),a.stroke()}if(r.drawPoints&&s.landmarks&&s.landmarks.length>0)for(let i of s.landmarks)a.fillStyle=r.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:r.color,G0(a,i[0],i[1],0,r);if(r.drawPolygons){let i=o=>{if(!!o)for(let l=0;l0?l-1:0][0],o[l>0?l-1:0][1]),a.lineTo(o[l][0],o[l][1]),a.stroke()};i(s.annotations.indexFinger),i(s.annotations.middleFinger),i(s.annotations.ringFinger),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function wk(e,t,n){let r=Jn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round",a.font=r.font;for(let s of t)if(r.drawBoxes){if(a.strokeStyle=r.color,a.fillStyle=r.color,r.useRawBoxes?Gi(a,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],r):Gi(a,s.box[0],s.box[1],s.box[2],s.box[3],r),r.drawLabels){let i=`${Math.round(100*s.score)}% ${s.label}`;r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(i,s.box[0]+3,1+s.box[1]+r.lineHeight,s.box[2])),a.fillStyle=r.labelColor,a.fillText(i,s.box[0]+2,0+s.box[1]+r.lineHeight,s.box[2])}a.stroke()}}}async function foe(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function moe(e,t,n){let r=Jn(Hi,n);!t||!e||e instanceof HTMLCanvasElement&&(yk(e,t.face,r),gk(e,t.body,r),xk(e,t.hand,r),Ak(e,t.gesture,r),wk(e,t.object,r))}var q0=` +`),h.brightness=function(b){let w=(b||0)+1;h.colorMatrix([w,0,0,0,0,0,w,0,0,0,0,0,w,0,0,0,0,0,1,0])},h.saturation=function(b){let w=(b||0)*2/3+1,k=(w-1)*-.5;h.colorMatrix([w,k,k,0,0,k,w,k,0,0,k,k,w,0,0,0,0,0,1,0])},h.desaturate=function(){h.saturation(-1)},h.contrast=function(b){let w=(b||0)+1,k=-128*(w-1);h.colorMatrix([w,0,0,0,k,0,w,0,0,k,0,0,w,0,k,0,0,0,1,0])},h.negative=function(){h.contrast(-2)},h.hue=function(b){b=(b||0)/180*Math.PI;let w=Math.cos(b),k=Math.sin(b),N=.213,C=.715,F=.072;h.colorMatrix([N+w*(1-N)+k*-N,C+w*-C+k*-C,F+w*-F+k*(1-F),0,0,N+w*-N+k*.143,C+w*(1-C)+k*.14,F+w*-F+k*-.283,0,0,N+w*-N+k*-(1-N),C+w*-C+k*C,F+w*(1-F)+k*F,0,0,0,0,0,1,0])},h.desaturateLuminance=function(){h.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},h.sepia=function(){h.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},h.brownie=function(){h.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},h.vintagePinhole=function(){h.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},h.kodachrome=function(){h.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},h.technicolor=function(){h.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},h.polaroid=function(){h.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},h.shiftToBGR=function(){h.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},h.convolution=function(b){let w=new Float32Array(b),k=1/o,N=1/l,C=v(h.convolution.SHADER);f.uniform1fv(C.uniform.m,w),f.uniform2f(C.uniform.px,k,N),x()},h.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(` +`),h.detectEdges=function(){h.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},h.sobelX=function(){h.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},h.sobelY=function(){h.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},h.sharpen=function(b){let w=b||1;h.convolution.call(this,[0,-1*w,0,-1*w,1+4*w,-1*w,0,-1*w,0])},h.emboss=function(b){let w=b||1;h.convolution.call(this,[-2*w,-1*w,0,-1*w,1,1*w,0,1*w,2*w])},h.blur=function(b){let w=b/7/o,k=b/7/l,N=v(h.blur.SHADER);f.uniform2f(N.uniform.px,0,k),x(m.INTERMEDIATE),f.uniform2f(N.uniform.px,w,0),x()},h.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(` +`),h.pixelate=function(b){let w=b/o,k=b/l,N=v(h.pixelate.SHADER);f.uniform2f(N.uniform.size,w,k),x()},h.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(` +`)}var j0=2048,Ee,bt,$t;function jg(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof Pe)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof Pe)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Br(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let a=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,i=a,o=s;if(i>j0&&(i=j0,o=i*s/a),o>j0&&(o=j0,i=o*a/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=a*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/a)),!i||!o)throw new Error("Human: Input cannot determine dimension");(!Ee||(Ee==null?void 0:Ee.width)!==i||(Ee==null?void 0:Ee.height)!==o)&&(Ee=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),(Ee==null?void 0:Ee.width)!==i&&(Ee.width=i),(Ee==null?void 0:Ee.height)!==o&&(Ee.height=o));let l=Ee.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(a,0),l.scale(-1,1),l.drawImage(e,0,0,a,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,a,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),t.filter.enabled){if((!$t||!bt||Ee.width!==bt.width||(Ee==null?void 0:Ee.height)!==(bt==null?void 0:bt.height))&&(bt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height):document.createElement("canvas"),(bt==null?void 0:bt.width)!==(Ee==null?void 0:Ee.width)&&(bt.width=Ee==null?void 0:Ee.width),(bt==null?void 0:bt.height)!==(Ee==null?void 0:Ee.height)&&(bt.height=Ee==null?void 0:Ee.height),$t=vr.flags.IS_BROWSER?new ik({canvas:bt}):null),!$t)return{tensor:null,canvas:Ee};$t.reset(),$t.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&$t.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&$t.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&$t.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&$t.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&$t.addFilter("hue",t.filter.hue),t.filter.negative&&$t.addFilter("negative"),t.filter.sepia&&$t.addFilter("sepia"),t.filter.vintage&&$t.addFilter("brownie"),t.filter.sepia&&$t.addFilter("sepia"),t.filter.kodachrome&&$t.addFilter("kodachrome"),t.filter.technicolor&&$t.addFilter("technicolor"),t.filter.polaroid&&$t.addFilter("polaroid"),t.filter.pixelate!==0&&$t.addFilter("pixelate",t.filter.pixelate),$t.apply(Ee)}else bt=Ee,$t&&($t=null);let c;if(bt.data){let h=[bt.height,bt.width,3];c=xd(bt.data,h,"int32")}else if(bt instanceof ImageData)c=fi.fromPixels(bt);else if(t.backend==="webgl"||t.backend==="humangl"){let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(bt,0,0),c=fi.fromPixels(h)}else{let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(bt,0,0);let p=d==null?void 0:d.getImageData(0,0,i,o);c=fi.fromPixels(p)}let u=c.toFloat();n=u.expandDims(0),c.dispose(),u.dispose()}let r=t.filter.return?bt:null;return{tensor:n,canvas:r}}var Ug={};Yn(Ug,{all:()=>toe,body:()=>uk,canvas:()=>eoe,face:()=>lk,gesture:()=>ok,hand:()=>ck,object:()=>hk,options:()=>Hi});var ht={backend:"webgl",modelBasePath:"../models/",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface-back.json",rotation:!1,maxFaces:10,skipFrames:21,skipInitial:!1,minConfidence:.2,iouThreshold:.1,scoreThreshold:.2,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:31},emotion:{enabled:!0,minConfidence:.1,skipFrames:32,modelPath:"emotion.json"},age:{enabled:!1,modelPath:"age.json",skipFrames:33},gender:{enabled:!1,minConfidence:.1,modelPath:"gender.json",skipFrames:34},embedding:{enabled:!1,modelPath:"mobileface.json"}},body:{enabled:!0,modelPath:"posenet.json",maxDetections:1,scoreThreshold:.2,nmsRadius:20},hand:{enabled:!0,rotation:!1,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"nanodet.json",minConfidence:.2,iouThreshold:.4,maxResults:10,skipFrames:41}};var Hi={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!1,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1,calculateHandBox:!0};function U0(e,t,n,r=0,a){e.fillStyle=a.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:a.color,e.beginPath(),e.arc(t,n,a.pointSize,0,2*Math.PI),e.fill()}function Gi(e,t,n,r,a,s){if(e.beginPath(),s.useCurves){let i=(t+t+r)/2,o=(n+n+a)/2;e.ellipse(i,o,r/2,a/2,0,0,2*Math.PI)}else e.lineWidth=s.lineWidth,e.moveTo(t+s.roundRect,n),e.lineTo(t+r-s.roundRect,n),e.quadraticCurveTo(t+r,n,t+r,n+s.roundRect),e.lineTo(t+r,n+a-s.roundRect),e.quadraticCurveTo(t+r,n+a,t+r-s.roundRect,n+a),e.lineTo(t+s.roundRect,n+a),e.quadraticCurveTo(t,n+a,t,n+a-s.roundRect),e.lineTo(t,n+s.roundRect),e.quadraticCurveTo(t,n,t+s.roundRect,n),e.closePath();e.stroke()}function Hg(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let r of t)e.strokeStyle=n.useDepth&&r[2]?`rgba(${127.5+2*r[2]}, ${127.5-2*r[2]}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r[2]?`rgba(${127.5+2*r[2]}, ${127.5-2*r[2]}, 255, 0.3)`:n.color,e.lineTo(r[0],parseInt(r[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function rh(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Hg(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let r=0;r1&&l[1].length>0){let c=o[1]>0?`#${o[1]}`:"",u=`${o[0]} ${c}: ${l[1]}`;r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(u,8,2+s*r.lineHeight)),a.fillStyle=r.labelColor,a.fillText(u,6,0+s*r.lineHeight),s+=1}}}async function lk(e,t,n){let r=Jn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a)for(let s of t){a.font=r.font,a.strokeStyle=r.color,a.fillStyle=r.color,r.drawBoxes&&(r.useRawBoxes?Gi(a,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],r):Gi(a,s.box[0],s.box[1],s.box[2],s.box[3],r));let i=[];if(i.push(`face confidence: ${Math.trunc(100*s.confidence)}%`),s.genderConfidence&&i.push(`${s.gender||""} ${Math.trunc(100*s.genderConfidence)}% confident`),s.age&&i.push(`age: ${s.age||""}`),s.iris&&i.push(`iris distance: ${s.iris}`),s.emotion&&s.emotion.length>0){let o=s.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.push(o.join(" "))}s.rotation&&s.rotation.angle&&s.rotation.angle.roll&&i.push(`roll: ${Math.trunc(100*s.rotation.angle.roll)/100} yaw:${Math.trunc(100*s.rotation.angle.yaw)/100} pitch:${Math.trunc(100*s.rotation.angle.pitch)/100}`),i.length===0&&i.push("face"),a.fillStyle=r.color;for(let o=i.length-1;o>=0;o--){let l=Math.max(s.box[0],0),c=o*r.lineHeight+s.box[1];r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(i[o],l+5,c+16)),a.fillStyle=r.labelColor,a.fillText(i[o],l+4,c+15)}if(a.lineWidth=1,s.mesh&&s.mesh.length>0){if(r.drawPoints)for(let o of s.mesh)U0(a,o[0],o[1],o[2],r);if(r.drawPolygons){a.lineWidth=1;for(let o=0;os.mesh[c]);Hg(a,l,r)}if(s.annotations&&s.annotations.leftEyeIris){a.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,a.beginPath();let o=Math.abs(s.annotations.leftEyeIris[3][0]-s.annotations.leftEyeIris[1][0])/2,l=Math.abs(s.annotations.leftEyeIris[4][1]-s.annotations.leftEyeIris[2][1])/2;a.ellipse(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),r.fillPolygons&&(a.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,a.fill())}if(s.annotations&&s.annotations.rightEyeIris){a.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,a.beginPath();let o=Math.abs(s.annotations.rightEyeIris[3][0]-s.annotations.rightEyeIris[1][0])/2,l=Math.abs(s.annotations.rightEyeIris[4][1]-s.annotations.rightEyeIris[2][1])/2;a.ellipse(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),r.fillPolygons&&(a.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,a.fill())}}}}}var is=[];async function uk(e,t,n){let r=Jn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round";for(let s=0;sl.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),o.length===4&&Hg(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftKnee"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftAnkle"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHeel"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftFoot"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightKnee"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightAnkle"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHeel"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightFoot"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftElbow"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftWrist"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftPalm"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightElbow"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightWrist"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightPalm"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),rh(a,o,r)}}}}async function ck(e,t,n){let r=Jn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round",a.font=r.font;for(let s of t){if(r.drawBoxes){a.strokeStyle=r.color,a.fillStyle=r.color;let i;if(!r.calculateHandBox)i=r.useRawBoxes?s.boxRaw:s.box;else if(i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],s.landmarks&&s.landmarks.length>0){for(let o of s.landmarks)o[0]i[2]&&(i[2]=o[0]),o[1]>i[3]&&(i[3]=o[1]);i[2]-=i[0],i[3]-=i[1]}r.useRawBoxes?Gi(a,e.width*i[0],e.height*i[1],e.width*i[2],e.height*i[3],r):Gi(a,i[0],i[1],i[2],i[3],r),r.drawLabels&&(r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText("hand",i[0]+3,1+i[1]+r.lineHeight,i[2])),a.fillStyle=r.labelColor,a.fillText("hand",i[0]+2,0+i[1]+r.lineHeight,i[2])),a.stroke()}if(r.drawPoints&&s.landmarks&&s.landmarks.length>0)for(let i of s.landmarks)a.fillStyle=r.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:r.color,U0(a,i[0],i[1],0,r);if(r.drawPolygons){let i=o=>{if(!!o)for(let l=0;l0?l-1:0][0],o[l>0?l-1:0][1]),a.lineTo(o[l][0],o[l][1]),a.stroke()};i(s.annotations.indexFinger),i(s.annotations.middleFinger),i(s.annotations.ringFinger),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function hk(e,t,n){let r=Jn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round",a.font=r.font;for(let s of t)if(r.drawBoxes){if(a.strokeStyle=r.color,a.fillStyle=r.color,r.useRawBoxes?Gi(a,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],r):Gi(a,s.box[0],s.box[1],s.box[2],s.box[3],r),r.drawLabels){let i=`${Math.round(100*s.score)}% ${s.label}`;r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(i,s.box[0]+3,1+s.box[1]+r.lineHeight,s.box[2])),a.fillStyle=r.labelColor,a.fillText(i,s.box[0]+2,0+s.box[1]+r.lineHeight,s.box[2])}a.stroke()}}}async function eoe(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function toe(e,t,n){let r=Jn(Hi,n);!t||!e||e instanceof HTMLCanvasElement&&(lk(e,t.face,r),uk(e,t.body,r),ck(e,t.hand,r),ok(e,t.gesture,r),hk(e,t.object,r))}var H0=` /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob @@ -4344,7 +4344,7 @@ PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1 8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3 ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY -euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,X0=` +euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,G0=` /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA @@ -4912,7 +4912,7 @@ AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ -2Q==`;var bk="1.6.1";var iu,sh,ih,qi,K0,oh,Z0,Y0,J0,_k=class{constructor(t={}){iu.set(this,void 0);sh.set(this,void 0);ih.set(this,void 0);qi.set(this,void 0);this.analyze=(...t)=>{if(!ur(this,sh))return;let n=this.tf.engine().state.numTensors,r=ur(this,iu);us(this,iu,n);let a=n-r;a!==0&&le(...t,a)};K0.set(this,t=>{if(!ur(this,ih))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Pe))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});oh.set(this,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let r=Ye();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&le("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&le("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let a=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&le(`wasm execution: ${a?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),this.config.debug&&!a&&le("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&N8();try{await this.tf.setBackend(this.config.backend)}catch(a){le("error: cannot set backend:",this.config.backend,a)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),this.config.deallocate&&(le("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let a=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&le(`gl version:${a.getParameter(a.VERSION)} renderer:${a.getParameter(a.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(Ye()-r)}});Z0.set(this,async()=>{let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),n,r;switch(this.config.warmup){case"face":n=await t(q0);break;case"full":n=await t(X0);break;default:n=null}if(n){let a=await createImageBitmap(n);r=await this.detect(a,this.config),a.close()}return r});Y0.set(this,async()=>new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+q0;break;case"full":case"body":r=1200,n="data:image/jpeg;base64,"+X0;break;default:n=null}let a=new Image;a.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");s.width=a.naturalWidth,s.height=a.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(a,0,0);let o=await this.detect(s,this.config);t(o)},n?a.src=n:t(null)}));J0.set(this,async()=>{let t=a=>Buffer.from(a,"base64"),n;if(this.config.warmup==="face"&&(n=t(q0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(X0)),!n)return null;let r;if(typeof void 0!="undefined"){let a=(void 0).decodeJpeg(n),s=a.expandDims(0);this.tf.dispose(a),r=await this.detect(s,this.config),this.tf.dispose(s)}else this.config.debug&&le("Warmup tfjs-node not loaded");return r});this.tf=gu,this.draw=K2,this.version=bk,this.config=Jn(ht,t),this.state="idle",us(this,iu,0),us(this,sh,!1),us(this,ih,!1),us(this,qi,!0),this.perf={},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,faceres:null},this.image=n=>X2(n,this.config),this.classes={facemesh:A2,age:qg,gender:Kg,emotion:e2,faceres:i2,body:this.config.body.modelPath.includes("posenet")?N2:P2,hand:$2,nanodet:j2},this.faceTriangulation=L8,this.faceUVMap=W8,this.sysinfo=c5()}profileData(){return this.config.profile?x0:{}}similarity(t,n){return this.config.face.description.enabled?l2(t,n):this.config.face.embedding.enabled?T8(t,n):0}enhance(t){return u2(t)}match(t,n,r=0){return E8(t,n,r)}async load(t={}){this.state="load";let n=Ye();t&&(this.config=Jn(this.config,t)),ur(this,qi)&&(this.config.debug&&le(`version: ${this.version}`),this.config.debug&&le(`tfjs version: ${this.tf.version_core}`),this.config.debug&&le("platform:",this.sysinfo.platform),this.config.debug&&le("agent:",this.sysinfo.agent),await ur(this,oh).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&le("configuration:",this.config),this.config.debug&&le("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.efficientpose,this.models.nanodet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?g2(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?Xg(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?Qg(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?r2(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?a2(this.config):null),this.models.handpose||(this.config.hand.enabled?z2(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?E2(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?L2(this.config):null),this.models.efficientpose||(this.config.body.enabled&&this.config.body.modelPath.includes("efficientpose")?B2(this.config):null),this.models.nanodet||(this.config.object.enabled?H2(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?o2(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await g2(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await Xg(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await Qg(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await r2(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await a2(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await z2(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await E2(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await L2(this.config)),this.config.body.enabled&&!this.models.efficientpose&&this.config.body.modelPath.includes("efficientpose")&&(this.models.efficientpose=await B2(this.config)),this.config.object.enabled&&!this.models.nanodet&&(this.models.nanodet=await H2(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await o2(this.config))),ur(this,qi)&&(this.config.debug&&le("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),us(this,qi,!1));let r=Math.trunc(Ye()-n);r>(this.perf.load||0)&&(this.perf.load=r)}async detect(t,n={}){return new Promise(async r=>{var A,y,g,x;this.state="config";let a;this.config=Jn(this.config,n),this.state="check";let s=ur(this,K0).call(this,t);s&&(le(s,t),r({error:s}));let i=Ye();await ur(this,oh).call(this),await this.load(),this.config.scoped&&this.tf.engine().startScope(),this.analyze("Start Scope:");let o;t&&this.config.videoOptimized&&(typeof HTMLImageElement!="undefined"&&t instanceof HTMLImageElement||typeof Image!="undefined"&&t instanceof Image||typeof ImageData!="undefined"&&t instanceof ImageData||typeof ImageBitmap!="undefined"&&q2 instanceof ImageBitmap)&&(le("disabling video optimization"),o=this.config.videoOptimized,this.config.videoOptimized=!1),a=Ye();let l=X2(t,this.config);if(!l||!l.tensor){le("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(Ye()-a),this.analyze("Get Image:");let c,u,h,d,p;this.config.async?(h=this.config.face.enabled?c2(this,l.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",a=Ye(),h=this.config.face.enabled?await c2(this,l.tensor):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.face=p)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?(A=this.models.posenet)==null?void 0:A.estimatePoses(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?W2(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(c=this.config.body.enabled?V2(l.tensor,this.config):[]),this.perf.body&&delete this.perf.body):(this.state="run:body",a=Ye(),this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?await((y=this.models.posenet)==null?void 0:y.estimatePoses(l.tensor,this.config)):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?await W2(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(c=this.config.body.enabled?await V2(l.tensor,this.config):[]),p=Math.trunc(Ye()-a),p>0&&(this.perf.body=p)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(u=this.config.hand.enabled?(g=this.models.handpose)==null?void 0:g.estimateHands(l.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",a=Ye(),u=this.config.hand.enabled?await((x=this.models.handpose)==null?void 0:x.estimateHands(l.tensor,this.config)):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.hand=p)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(d=this.config.object.enabled?G2(l.tensor,this.config):[],this.perf.object&&delete this.perf.object):(this.state="run:object",a=Ye(),d=this.config.object.enabled?await G2(l.tensor,this.config):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.object=p)),this.analyze("End Object:"),this.config.async&&([h,c,u,d]=await Promise.all([h,c,u,d])),_e(l.tensor),this.config.scoped&&this.tf.engine().endScope(),this.analyze("End Scope:");let f=[];this.config.gesture.enabled&&(a=Ye(),f=[...dk(h),...hk(c),...fk(u),...pk(h)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(Ye()-a)),o&&(this.config.videoOptimized=o),this.perf.total=Math.trunc(Ye()-i),this.state="idle";let m={face:h,body:c,hand:u,gesture:f,object:d,performance:this.perf,canvas:l.canvas};r(m)})}async warmup(t={}){let n=Ye();if(t&&(this.config=Jn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let r=this.config.videoOptimized;this.config.videoOptimized=!1;let a;typeof createImageBitmap=="function"?a=await ur(this,Z0).call(this):typeof Image!="undefined"?a=await ur(this,Y0).call(this):a=await ur(this,J0).call(this),this.config.videoOptimized=r;let s=Ye();return this.config.debug&&le("Warmup",this.config.warmup,Math.round(s-n),"ms",a),a}};iu=new WeakMap,sh=new WeakMap,ih=new WeakMap,qi=new WeakMap,K0=new WeakMap,oh=new WeakMap,Z0=new WeakMap,Y0=new WeakMap,J0=new WeakMap;return yoe;})(); +2Q==`;var dk="1.6.1";var au,ah,sh,qi,q0,ih,X0,K0,Z0,pk=class{constructor(t={}){au.set(this,void 0);ah.set(this,void 0);sh.set(this,void 0);qi.set(this,void 0);this.analyze=(...t)=>{if(!ur(this,ah))return;let n=this.tf.engine().state.numTensors,r=ur(this,au);cs(this,au,n);let a=n-r;a!==0&&le(...t,a)};q0.set(this,t=>{if(!ur(this,sh))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Pe))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});ih.set(this,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let r=Ye();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&le("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&le("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let a=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&le(`wasm execution: ${a?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),this.config.debug&&!a&&le("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&_8();try{await this.tf.setBackend(this.config.backend)}catch(a){le("error: cannot set backend:",this.config.backend,a)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),this.config.deallocate&&(le("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let a=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&le(`gl version:${a.getParameter(a.VERSION)} renderer:${a.getParameter(a.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(Ye()-r)}});X0.set(this,async()=>{let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),n,r;switch(this.config.warmup){case"face":n=await t(H0);break;case"full":n=await t(G0);break;default:n=null}if(n){let a=await createImageBitmap(n);r=await this.detect(a,this.config),a.close()}return r});K0.set(this,async()=>new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+H0;break;case"full":case"body":r=1200,n="data:image/jpeg;base64,"+G0;break;default:n=null}let a=new Image;a.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");s.width=a.naturalWidth,s.height=a.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(a,0,0);let o=await this.detect(s,this.config);t(o)},n?a.src=n:t(null)}));Z0.set(this,async()=>{let t=a=>Buffer.from(a,"base64"),n;if(this.config.warmup==="face"&&(n=t(H0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(G0)),!n)return null;let r;if(typeof void 0!="undefined"){let a=(void 0).decodeJpeg(n),s=a.expandDims(0);this.tf.dispose(a),r=await this.detect(s,this.config),this.tf.dispose(s)}else this.config.debug&&le("Warmup tfjs-node not loaded");return r});this.tf=Au,this.draw=Ug,this.version=dk,this.config=Jn(ht,t),this.state="idle",cs(this,au,0),cs(this,ah,!1),cs(this,sh,!1),cs(this,qi,!0),this.perf={},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,faceres:null},this.image=n=>jg(n,this.config),this.classes={facemesh:fg,age:H2,gender:q2,emotion:J2,faceres:ag,body:this.config.body.modelPath.includes("posenet")?_g:Fg,hand:Eg,nanodet:Pg},this.faceTriangulation=$8,this.faceUVMap=D8,this.sysinfo=s5()}profileData(){return this.config.profile?g0:{}}similarity(t,n){return this.config.face.description.enabled?ig(t,n):this.config.face.embedding.enabled?v8(t,n):0}enhance(t){return og(t)}match(t,n,r=0){return k8(t,n,r)}async load(t={}){this.state="load";let n=Ye();t&&(this.config=Jn(this.config,t)),ur(this,qi)&&(this.config.debug&&le(`version: ${this.version}`),this.config.debug&&le(`tfjs version: ${this.tf.version_core}`),this.config.debug&&le("platform:",this.sysinfo.platform),this.config.debug&&le("agent:",this.sysinfo.agent),await ur(this,ih).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&le("configuration:",this.config),this.config.debug&&le("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.efficientpose,this.models.nanodet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?Ag(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?G2(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?Y2(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?tg(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?ng(this.config):null),this.models.handpose||(this.config.hand.enabled?Mg(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?kg(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?$g(this.config):null),this.models.efficientpose||(this.config.body.enabled&&this.config.body.modelPath.includes("efficientpose")?Og(this.config):null),this.models.nanodet||(this.config.object.enabled?Wg(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?sg(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await Ag(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await G2(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await Y2(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await tg(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await ng(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await Mg(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await kg(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await $g(this.config)),this.config.body.enabled&&!this.models.efficientpose&&this.config.body.modelPath.includes("efficientpose")&&(this.models.efficientpose=await Og(this.config)),this.config.object.enabled&&!this.models.nanodet&&(this.models.nanodet=await Wg(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await sg(this.config))),ur(this,qi)&&(this.config.debug&&le("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),cs(this,qi,!1));let r=Math.trunc(Ye()-n);r>(this.perf.load||0)&&(this.perf.load=r)}async detect(t,n={}){return new Promise(async r=>{var A,y;this.state="config";let a;this.config=Jn(this.config,n),this.state="check";let s=ur(this,q0).call(this,t);s&&(le(s,t),r({error:s}));let i=Ye();await ur(this,ih).call(this),await this.load(),this.config.scoped&&this.tf.engine().startScope(),this.analyze("Start Scope:");let o;t&&this.config.videoOptimized&&(typeof HTMLImageElement!="undefined"&&t instanceof HTMLImageElement||typeof Image!="undefined"&&t instanceof Image||typeof ImageData!="undefined"&&t instanceof ImageData||typeof ImageBitmap!="undefined"&&Vg instanceof ImageBitmap)&&(le("disabling video optimization"),o=this.config.videoOptimized,this.config.videoOptimized=!1),a=Ye();let l=jg(t,this.config);if(!l||!l.tensor){le("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(Ye()-a),this.analyze("Get Image:");let c,u,h,d,p;this.config.async?(h=this.config.face.enabled?lg(this,l.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",a=Ye(),h=this.config.face.enabled?await lg(this,l.tensor):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.face=p)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?vg(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?Dg(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(c=this.config.body.enabled?zg(l.tensor,this.config):[]),this.perf.body&&delete this.perf.body):(this.state="run:body",a=Ye(),this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?await vg(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?await Dg(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(c=this.config.body.enabled?await zg(l.tensor,this.config):[]),p=Math.trunc(Ye()-a),p>0&&(this.perf.body=p)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(u=this.config.hand.enabled?(A=this.models.handpose)==null?void 0:A.estimateHands(l.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",a=Ye(),u=this.config.hand.enabled?await((y=this.models.handpose)==null?void 0:y.estimateHands(l.tensor,this.config)):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.hand=p)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(d=this.config.object.enabled?Bg(l.tensor,this.config):[],this.perf.object&&delete this.perf.object):(this.state="run:object",a=Ye(),d=this.config.object.enabled?await Bg(l.tensor,this.config):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.object=p)),this.analyze("End Object:"),this.config.async&&([h,c,u,d]=await Promise.all([h,c,u,d])),we(l.tensor),this.config.scoped&&this.tf.engine().endScope(),this.analyze("End Scope:");let m=[];this.config.gesture.enabled&&(a=Ye(),m=[...rk(h),...nk(c),...sk(u),...ak(h)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(Ye()-a)),o&&(this.config.videoOptimized=o),this.perf.total=Math.trunc(Ye()-i),this.state="idle";let f={face:h,body:c,hand:u,gesture:m,object:d,performance:this.perf,canvas:l.canvas};r(f)})}async warmup(t={}){let n=Ye();if(t&&(this.config=Jn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let r=this.config.videoOptimized;this.config.videoOptimized=!1;let a;typeof createImageBitmap=="function"?a=await ur(this,X0).call(this):typeof Image!="undefined"?a=await ur(this,K0).call(this):a=await ur(this,Z0).call(this),this.config.videoOptimized=r;let s=Ye();return this.config.debug&&le("Warmup",this.config.warmup,Math.round(s-n),"ms",a),a}};au=new WeakMap,ah=new WeakMap,sh=new WeakMap,qi=new WeakMap,q0=new WeakMap,ih=new WeakMap,X0=new WeakMap,K0=new WeakMap,Z0=new WeakMap;return roe;})(); /** * @license * Copyright 2017 Google LLC. All Rights Reserved. diff --git a/dist/human.js.map b/dist/human.js.map index 7f625912..cb564d56 100644 --- a/dist/human.js.map +++ b/dist/human.js.map @@ -1,7 +1,7 @@ { "version": 3, - "sources": ["../src/human.ts", "../src/helpers.ts", "../src/sysinfo.ts", "../node_modules/.pnpm/node-fetch@2.6.1/node_modules/node-fetch/browser.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js", "(disabled):crypto", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js", "(disabled):path", "(disabled):worker_threads", "(disabled):perf_hooks", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js", "../node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/backend.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/util_base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/environment.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/global_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/kernel_names.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/kernel_registry.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/profiler.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tensor_format.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tensor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tensor_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/engine.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/device_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/flags.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/tensor_util_env.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/operation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/io_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/router_registry.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/indexed_db.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/local_storage.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/model_management.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/platforms/platform_browser.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/platforms/platform_node.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/clone.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/print.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/base_side_effects.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/io.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/browser_files.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/progress.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/weights_loader.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/http.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/io/passthrough.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/one_hot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/confusion_matrix.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/browser.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/gather_nd_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/scatter_nd_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/serialization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/test_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/globals.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/floorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/div.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/add_n.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/all.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/arg_max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/arg_min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/basic_lstm_cell.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batch_to_space_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/broadcast_to.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/clip_by_value.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dense_bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/depth_to_space.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dilation2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/broadcast_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/where.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/zeros_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/div_no_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/expand_dims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/eye.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/gather.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/greater_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/is_finite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/is_inf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/is_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/leaky_relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/less_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/linspace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/local_response_normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log_sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log_softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/axis_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/log_sum_exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_and.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_not.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_or.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_xor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_with_argmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/zeros.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/ones.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/meshgrid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mirror_pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/moments.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/multi_rnn_cell.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/not_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/ones_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/outer_product.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pad4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/space_to_batch_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/rand.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/rand_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/random_gamma.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/random_normal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/random_uniform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/scalar.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/separable_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/setdiff1d_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/slice4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/fft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/ifft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/irfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/split.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/rfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/squared_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/squeeze.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/stack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/strided_slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor5d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor6d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/topk.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/truncated_normal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/unsorted_segment_sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/unstack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/variable.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/where_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/where_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/boolean_mask.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/norm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/moving_average.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/scatter_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse_to_dense_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse_to_dense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/gather_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dropout_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/dropout.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/in_top_k.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused_ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d_native_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d_native_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/hamming_window.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/hann_window.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/frame.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/stft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/crop_and_resize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/flip_left_right.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/rotate_with_offset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/nonmax_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/non_max_suppression_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/non_max_suppression_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_with_score.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_with_score_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_padded.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_padded_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/resize_bilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/resize_nearest_neighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/image/transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/band_part.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/gram_schmidt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/qr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/loss_ops_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/compute_weighted_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/absolute_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/cosine_distance.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/hinge_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/huber_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/log_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/mean_squared_error.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/sigmoid_cross_entropy.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/softmax_cross_entropy.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse/sparse_reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adadelta_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adagrad_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adam_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adamax_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/sgd_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/momentum_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/rmsprop_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/optimizers/optimizer_constructors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/train.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/browser_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/backend_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/reduce_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/rotate_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/array_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/selu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/erf_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/complex_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/einsum_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/split_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/segment_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/backends/kernel_impls.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/cpu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/backend_cpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/binary_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/zeros_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/binary_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Bincount_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/unary_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/unary_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Concat_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherV2_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LinSpace_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Max_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transpose_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Range_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseReshape_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StridedSlice_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tile_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/TopK_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unique_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LeakyRelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/fused_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/BatchMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/_FusedMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AddN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/All.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ArgMax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ArgMin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/pool_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/BatchNorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/BatchToSpaceND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Clip.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ComplexAbs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv2DBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv3DBackpropFilterV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv3DBackpropInputV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/CropAndResize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DenseBincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthToSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthwiseConv2dNative.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthwiseConv2dNativeBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthwiseConv2dNativeBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Dilation2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Dilation2DBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Dilation2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/EluGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ExpandDims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/RealDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/fft_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FlipLeftRight.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FloorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FusedConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FusedDepthwiseConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IFFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IsFinite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IsInf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IsNaN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LinSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LogicalAnd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LogicalNot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LogicalOr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LRN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LRNGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPoolWithArgmax_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPoolWithArgmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MirrorPad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NonMaxSuppressionV3.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NonMaxSuppressionV4.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NonMaxSuppressionV5.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/OneHot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ZerosLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/OnesLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Pack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/PadV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeBilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeBilinearGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeNearestNeighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeNearestNeighborGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/RotateWithOffset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Scatter_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ScatterNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Select.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SpaceToBatchND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseReshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseToDense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SplitV.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StridedSlice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/TopK.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unpack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/UnsortedSegmentSum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/register_all_kernels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-cpu/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/webgl_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/canvas_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/tex_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/flags_webgl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/glsl_version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/shader_compiler_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/decode_matrix_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/decode_matrix_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_float_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_float_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_matrix_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_matrix_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gpgpu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gpgpu_context.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/shader_compiler.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gpgpu_math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/packing_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pack_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reshape_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/texture_manager.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/unaryop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/unaryop_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/unpack_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/backend_webgl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/webgl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/binaryop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/binaryop_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LeakyRelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/kernel_funcs_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mulmat_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/binaryop_complex_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mean_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reduce_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/reduce.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/transpose_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/transpose_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Transpose_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sum_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchMatMul_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/_FusedMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/addn_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/addn_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AddN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/All.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/argminmax_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/argminmax_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/arg_min_max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ArgMax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ArgMin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pool_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/avg_pool_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/batchnorm_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/batchnorm_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchNorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/slice_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/slice_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchToSpaceND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/int.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/clip_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/clip_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ClipByValue.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/complex_abs_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ComplexAbs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/concat_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/concat_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Concat_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/im2col_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2D_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2DBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv3DBackpropFilterV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv3DBackpropInputV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/crop_and_resize_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/CropAndResize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/cumsum_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DenseBincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/depth_to_space_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthToSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_gpu_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_packed_gpu_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthwiseConv2dNative.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_backprop_gpu_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthwiseConv2dNativeBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthwiseConv2dNativeBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/diag_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/dilation_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Dilation2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/EluGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ExpandDims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/fft_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FFT_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/fill_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/flip_left_right_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FlipLeftRight.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FloorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FromPixels_utils/from_pixels_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FromPixels_utils/from_pixels_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FromPixels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FusedConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FusedDepthwiseConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gather_nd_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/GatherNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gather_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/GatherV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IFFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IsFinite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IsInf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IsNaN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LinSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LogicalAnd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LogicalNot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LogicalOr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/lrn_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/lrn_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LRN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/lrn_grad_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LRNGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Max_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/max_pool_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPoolWithArgmax_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPoolWithArgmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Mean_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mirror_pad_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mirror_pad_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MirrorPad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/multinomial_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/RealDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NonMaxSuppressionV3.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NonMaxSuppressionV4.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NonMaxSuppressionV5.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/onehot_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/OneHot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ZerosLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/OnesLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Pack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pad_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pad_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/PadV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_bilinear_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_bilinear_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeBilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_bilinear_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeBilinearGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_nearest_neighbor_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeNearestNeighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_nearest_neighbor_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeNearestNeighborGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reverse_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reverse_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/rotate_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/RotateWithOffset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/scatter_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ScatterNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/select_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Select.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SpaceToBatchND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SparseReshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SparseToDense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SplitV.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/strided_slice_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/StridedSlice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/tile_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/TopK.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/transform_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Unpack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/segment_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/UnsortedSegmentSum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/register_all_kernels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-webgl/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/_FusedMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/unary_kernel.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/binary_kernel.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/AddN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/kernel_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/All.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ArgMax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/AvgPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/BatchMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ClipByValue.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernel_utils/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Conv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Conv2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/CropAndResize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/DepthToSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/DepthwiseConv2dNative.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ExpandDims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FlipLeftRight.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FloorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FusedBatchNorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FusedConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FusedDepthwiseConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/GatherNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/GatherV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/LeakyRelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/LogicalAnd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/MaxPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/MirrorPad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppression_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppressionV3.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppressionV4.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppressionV5.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/OneHot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/OnesLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Pack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/PadV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/RealDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ResizeBilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/RotateWithOffset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ScatterNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Select.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/SplitV.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/StridedSlice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/TopK.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Unpack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ZerosLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/register_all_kernels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/flags_wasm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/backend_wasm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.worker.js", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-backend-wasm/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/all.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/arg_max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/arg_min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as_scalar.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as_type.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as5d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/avg_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/batch_to_space_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/batchnorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/broadcast_to.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/clip_by_value.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/conv1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/conv2d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/depth_to_space.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/dilation2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/div_no_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/div.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/dot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/expand_dims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/fft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/flatten.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/floorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/gather.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/greater_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/ifft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/irfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/is_finite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/is_inf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/is_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/leaky_relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/less_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/local_response_normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log_sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log_softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log_sum_exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_and.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_not.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_or.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_xor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/max_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mirror_pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/norm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/not_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/one_hot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/ones_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reshape_as.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/resize_bilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/resize_nearest_neighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/rfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/separable_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/space_to_batch_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/split.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/squared_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/squeeze.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/stack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/strided_slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/to_bool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/to_float.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/to_int.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/topk.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/unsorted_segment_sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/unstack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/where.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/zeros_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/register_all_chained_ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Abs_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Acos_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Acosh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Add_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/AddN_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ArgMax_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ArgMin_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Asin_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Asinh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Atan2_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Atan_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Atanh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_3d_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/AvgPool3D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/AvgPool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/BatchMatMul_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/BatchToSpaceND_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/BroadcastTo_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cast_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Ceil_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ClipByValue_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ComplexAbs_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Concat_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Conv2D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Conv2DBackpropInput_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Conv3D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cos_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cosh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cumsum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/DepthwiseConv2dNative_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Dilation2D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Elu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Erf_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Exp_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ExpandDims_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Expm1_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Floor_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/FloorDiv_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/FusedBatchNorm_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/GatherV2_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/GreaterEqual_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Identity_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/IsFinite_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/IsInf_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/IsNan_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/LeakyRelu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Log1p_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Log_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/LogSoftmax_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/local_response_normalization_backprop.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/LRN_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/min_max_grad_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Max_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Maximum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_3d_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/MaxPool3D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/MaxPool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Mean_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Min_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Minimum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/MirrorPad_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Mod_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Multiply_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Neg_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/OneHot_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/OnesLike_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Pack_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/PadV2_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Pow_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Prelu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/RealDiv_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Reciprocal_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Relu6_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Relu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Reshape_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ResizeBilinear_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ResizeNearestNeighbor_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Reverse_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Round_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Rsqrt_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Select_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Selu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sigmoid_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sign_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sin_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sinh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Slice_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Softmax_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Softplus_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/SpaceToBatchND_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/SplitV_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sqrt_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Square_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/SquaredDifference_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Step_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sub_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Tan_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Tanh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Tile_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Transpose_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/Unpack_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/UnsortedSegmentSum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/gradients/ZerosLike_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-core/src/register_all_gradients.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_constraints.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/backend/common.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/errors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/generic_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/constraints.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_initializers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/keras_format/common.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/common.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/math_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/backend/tfjs_backend.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/keras_format/initializer_config.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/initializers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_layers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/backend/state.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/types_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/variable_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/variables.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/topology.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/input_layer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/logs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/base_callbacks.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/serialization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/losses.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/metrics.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/optimizers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/user_defined_metadata.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/layer_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/serialization_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/container.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/training_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/training_dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/training_tensors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/engine/training.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/models.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/activations.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/regularizers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/advanced_activations.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/utils/conv_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/convolutional.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/convolutional_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/recurrent.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/convolutional_recurrent.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/core.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/embeddings.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/merge.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/noise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/padding.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/pooling.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/layers/wrappers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_metrics.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_models.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/exports_regularizers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/callbacks.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-layers/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/data/compiled_api.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/custom_op/register.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/arithmetic.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/basic_math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/control.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/convolution.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/creation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/dynamic.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/evaluation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/graph.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/hash_table.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/image.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/logical.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/matrices.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/reduction.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/slice_join.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/spectral.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/transformation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/operation_mapper.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/custom_op/node_value_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/arithmetic_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/basic_math_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/tensor_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/tensor_array.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/tensor_list.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/control_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/convolution_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/creation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/dynamic_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/evaluation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/graph_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/hash_table.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/hash_table_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/image_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/logical_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/matrices_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/normalization_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/reduction_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/slice_join_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/sparse_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/spectral_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/transformation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/operations/operation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/execution_context.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/model_analysis.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/graph_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/resource_manager.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/executor/graph_model.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.5.0_@tensorflow+tfjs-core@3.5.0/node_modules/@tensorflow/tfjs-converter/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/lazy_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/deep_map.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/deep_clone.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/ring_buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/growing_ring_buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/datasets/text_line_dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/datasets/csv_dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/microphone_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/webcam_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/datasource.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/string_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/byte_chunk_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/file_chunk_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/iterators/url_chunk_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/util/source_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/sources/file_data_source.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/sources/url_data_source.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/readers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.5.0_772551b77c0a70c6ba27fa6944bf3b1a/node_modules/@tensorflow/tfjs-data/src/version.ts", "../src/tfjs/tf-browser.ts", "../src/tfjs/backend.ts", "../src/age/age.ts", "../src/profile.ts", "../src/gender/gender.ts", "../src/emotion/emotion.ts", "../src/embedding/embedding.ts", "../src/faceres/faceres.ts", "../src/faceall.ts", "../src/blazeface/facemesh.ts", "../src/blazeface/blazeface.ts", "../src/blazeface/box.ts", "../src/blazeface/util.ts", "../src/blazeface/coords.ts", "../src/blazeface/facepipeline.ts", "../src/posenet/posenet.ts", "../src/posenet/posenetModel.ts", "../src/posenet/keypoints.ts", "../src/posenet/decodeParts.ts", "../src/posenet/utils.ts", "../src/posenet/decodeSingle.ts", "../src/posenet/decodeMultiple.ts", "../src/handpose/handpose.ts", "../src/handpose/box.ts", "../src/handpose/handdetector.ts", "../src/handpose/util.ts", "../src/handpose/handpipeline.ts", "../src/handpose/anchors.ts", "../src/blazepose/blazepose.ts", "../src/blazepose/annotations.ts", "../src/efficientpose/efficientpose.ts", "../src/nanodet/nanodet.ts", "../src/nanodet/labels.ts", "../src/gesture/gesture.ts", "../src/image/image.ts", "../src/image/imagefx.js", "../src/draw/draw.ts", "../src/config.ts", "../src/sample.ts"], - "sourcesContent": ["import { log, now, mergeDeep } from './helpers';\nimport * as sysinfo from './sysinfo';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as backend from './tfjs/backend';\nimport * as faceall from './faceall';\nimport * as facemesh from './blazeface/facemesh';\nimport * as age from './age/age';\nimport * as gender from './gender/gender';\nimport * as faceres from './faceres/faceres';\nimport * as emotion from './emotion/emotion';\nimport * as embedding from './embedding/embedding';\nimport * as posenet from './posenet/posenet';\nimport * as handpose from './handpose/handpose';\nimport * as blazepose from './blazepose/blazepose';\nimport * as efficientpose from './efficientpose/efficientpose';\nimport * as nanodet from './nanodet/nanodet';\nimport * as gesture from './gesture/gesture';\nimport * as image from './image/image';\nimport * as draw from './draw/draw';\nimport * as profile from './profile';\nimport { Config, defaults } from './config';\nimport { Result } from './result';\nimport * as sample from './sample';\nimport * as app from '../package.json';\n\n/** Generic Tensor object type */\nexport type Tensor = typeof tf.Tensor;\n\nexport type { Config } from './config';\nexport type { Result } from './result';\nexport type { DrawOptions } from './draw/draw';\n\n/** Defines all possible input types for **Human** detection */\nexport type Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;\n\n/** Error message */\nexport type Error = { error: string };\n\n/** Instance of TensorFlow/JS */\nexport type TensorFlow = typeof tf;\n\n/** Generic Model object type, holds instance of individual models */\ntype Model = Object;\n\n/**\n * **Human** library main class\n *\n * All methods and properties are available only as members of Human class\n *\n * - Configuration object definition: {@link Config}\n * - Results object definition: {@link Result}\n * - Possible inputs: {@link Input}\n */\nexport class Human {\n /** Current version of Human library in semver format */\n version: string;\n /** Current configuration\n * - Details: {@link Config}\n */\n config: Config;\n /** Current state of Human library\n * - Can be polled to determine operations that are currently executed\n */\n state: string;\n /** Internal: Instance of current image being processed */\n image: { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement | null };\n /** Internal: Instance of TensorFlow/JS used by Human\n * - Can be embedded or externally provided\n */\n tf: TensorFlow;\n /** Draw helper classes that can draw detected objects on canvas using specified draw styles\n * - options: global settings for all draw operations, can be overriden for each draw method, for details see {@link DrawOptions}\n * - face: draw detected faces\n * - body: draw detected people and body parts\n * - hand: draw detected hands and hand parts\n * - canvas: draw processed canvas which is a processed copy of the input\n * - all: meta-function that performs: canvas, face, body, hand\n */\n draw: {\n options: draw.DrawOptions,\n gesture: typeof draw.gesture,\n face: typeof draw.face,\n body: typeof draw.body,\n hand: typeof draw.hand,\n canvas: typeof draw.canvas,\n all: typeof draw.all,\n };\n /** Internal: Currently loaded models */\n models: {\n face: facemesh.MediaPipeFaceMesh | Model | null,\n posenet: posenet.PoseNet | null,\n blazepose: Model | null,\n efficientpose: Model | null,\n handpose: handpose.HandPose | null,\n iris: Model | null,\n age: Model | null,\n gender: Model | null,\n emotion: Model | null,\n embedding: Model | null,\n nanodet: Model | null,\n faceres: Model | null,\n };\n /** Internal: Currently loaded classes */\n classes: {\n facemesh: typeof facemesh;\n age: typeof age;\n gender: typeof gender;\n emotion: typeof emotion;\n body: typeof posenet | typeof blazepose;\n hand: typeof handpose;\n nanodet: typeof nanodet;\n faceres: typeof faceres;\n };\n /** Face triangualtion array of 468 points, used for triangle references between points */\n faceTriangulation: typeof facemesh.triangulation;\n /** UV map of 468 values, used for 3D mapping of the face mesh */\n faceUVMap: typeof facemesh.uvmap;\n /** Platform and agent information detected by Human */\n sysinfo: { platform: string, agent: string };\n /** Performance object that contains values for all recently performed operations */\n perf: any;\n #numTensors: number;\n #analyzeMemoryLeaks: boolean;\n #checkSanity: boolean;\n #firstRun: boolean;\n\n // definition end\n\n /**\n * Creates instance of Human library that is futher used for all operations\n * - @param userConfig: {@link Config}\n */\n constructor(userConfig: Config | Object = {}) {\n this.tf = tf;\n this.draw = draw;\n this.version = app.version;\n this.config = mergeDeep(defaults, userConfig);\n this.state = 'idle';\n this.#numTensors = 0;\n this.#analyzeMemoryLeaks = false;\n this.#checkSanity = false;\n this.#firstRun = true;\n this.perf = {};\n // object that contains all initialized models\n this.models = {\n face: null,\n posenet: null,\n blazepose: null,\n efficientpose: null,\n handpose: null,\n iris: null,\n age: null,\n gender: null,\n emotion: null,\n embedding: null,\n nanodet: null,\n faceres: null,\n };\n // export access to image processing\n // @ts-ignore eslint-typescript cannot correctly infer type in anonymous function\n this.image = (input: Input) => image.process(input, this.config);\n // export raw access to underlying models\n this.classes = {\n facemesh,\n age,\n gender,\n emotion,\n faceres,\n body: this.config.body.modelPath.includes('posenet') ? posenet : blazepose,\n hand: handpose,\n nanodet,\n };\n this.faceTriangulation = facemesh.triangulation;\n this.faceUVMap = facemesh.uvmap;\n // include platform info\n this.sysinfo = sysinfo.info();\n }\n\n /** Internal: ProfileData method returns last known profiling information\n * - Requires human.config.profile set to true\n */\n profileData(): { newBytes, newTensors, peakBytes, numKernelOps, timeKernelOps, slowestKernelOps, largestKernelOps } | {} {\n if (this.config.profile) return profile.data;\n return {};\n }\n\n // helper function: measure tensor leak\n /** @hidden */\n analyze = (...msg) => {\n if (!this.#analyzeMemoryLeaks) return;\n const current = this.tf.engine().state.numTensors;\n const previous = this.#numTensors;\n this.#numTensors = current;\n const leaked = current - previous;\n if (leaked !== 0) log(...msg, leaked);\n }\n\n // quick sanity check on inputs\n /** @hidden */\n #sanity = (input): null | string => {\n if (!this.#checkSanity) return null;\n if (!input) return 'input is not defined';\n if (this.tf.ENV.flags.IS_NODE && !(input instanceof tf.Tensor)) return 'input must be a tensor';\n try {\n this.tf.getBackend();\n } catch {\n return 'backend not loaded';\n }\n return null;\n }\n\n /** Simmilarity method calculates simmilarity between two provided face descriptors (face embeddings)\n * - Calculation is based on normalized Minkowski distance between\n */\n similarity(embedding1: Array, embedding2: Array): number {\n if (this.config.face.description.enabled) return faceres.similarity(embedding1, embedding2);\n if (this.config.face.embedding.enabled) return embedding.similarity(embedding1, embedding2);\n return 0;\n }\n\n /** Enhance method performs additional enhacements to face image previously detected for futher processing\n * @param input Tensor as provided in human.result.face[n].tensor\n * @returns Tensor\n */\n // eslint-disable-next-line class-methods-use-this\n enhance(input: Tensor): Tensor | null {\n return faceres.enhance(input);\n }\n\n /**\n * Math method find best match between provided face descriptor and predefined database of known descriptors\n * @param faceEmbedding: face descriptor previsouly calculated on any face\n * @param db: array of mapping of face descriptors to known values\n * @param threshold: minimum score for matching to be considered in the result\n * @returns best match\n */\n // eslint-disable-next-line class-methods-use-this\n match(faceEmbedding: Array, db: Array<{ name: string, source: string, embedding: number[] }>, threshold = 0): { name: string, source: string, similarity: number, embedding: number[] } {\n return faceres.match(faceEmbedding, db, threshold);\n }\n\n /** Load method preloads all configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n */\n async load(userConfig: Config | Object = {}) {\n this.state = 'load';\n const timeStamp = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig);\n\n if (this.#firstRun) {\n if (this.config.debug) log(`version: ${this.version}`);\n if (this.config.debug) log(`tfjs version: ${this.tf.version_core}`);\n if (this.config.debug) log('platform:', this.sysinfo.platform);\n if (this.config.debug) log('agent:', this.sysinfo.agent);\n\n await this.#checkBackend(true);\n if (this.tf.ENV.flags.IS_BROWSER) {\n if (this.config.debug) log('configuration:', this.config);\n if (this.config.debug) log('tf flags:', this.tf.ENV.flags);\n }\n }\n if (this.config.async) {\n [\n this.models.face,\n this.models.age,\n this.models.gender,\n this.models.emotion,\n this.models.embedding,\n this.models.handpose,\n this.models.posenet,\n this.models.blazepose,\n this.models.efficientpose,\n this.models.nanodet,\n this.models.faceres,\n ] = await Promise.all([\n this.models.face || (this.config.face.enabled ? facemesh.load(this.config) : null),\n this.models.age || ((this.config.face.enabled && this.config.face.age.enabled) ? age.load(this.config) : null),\n this.models.gender || ((this.config.face.enabled && this.config.face.gender.enabled) ? gender.load(this.config) : null),\n this.models.emotion || ((this.config.face.enabled && this.config.face.emotion.enabled) ? emotion.load(this.config) : null),\n this.models.embedding || ((this.config.face.enabled && this.config.face.embedding.enabled) ? embedding.load(this.config) : null),\n this.models.handpose || (this.config.hand.enabled ? handpose.load(this.config) : null),\n this.models.posenet || (this.config.body.enabled && this.config.body.modelPath.includes('posenet') ? posenet.load(this.config) : null),\n this.models.blazepose || (this.config.body.enabled && this.config.body.modelPath.includes('blazepose') ? blazepose.load(this.config) : null),\n this.models.efficientpose || (this.config.body.enabled && this.config.body.modelPath.includes('efficientpose') ? efficientpose.load(this.config) : null),\n this.models.nanodet || (this.config.object.enabled ? nanodet.load(this.config) : null),\n this.models.faceres || ((this.config.face.enabled && this.config.face.description.enabled) ? faceres.load(this.config) : null),\n ]);\n } else {\n if (this.config.face.enabled && !this.models.face) this.models.face = await facemesh.load(this.config);\n if (this.config.face.enabled && this.config.face.age.enabled && !this.models.age) this.models.age = await age.load(this.config);\n if (this.config.face.enabled && this.config.face.gender.enabled && !this.models.gender) this.models.gender = await gender.load(this.config);\n if (this.config.face.enabled && this.config.face.emotion.enabled && !this.models.emotion) this.models.emotion = await emotion.load(this.config);\n if (this.config.face.enabled && this.config.face.embedding.enabled && !this.models.embedding) this.models.embedding = await embedding.load(this.config);\n if (this.config.hand.enabled && !this.models.handpose) this.models.handpose = await handpose.load(this.config);\n if (this.config.body.enabled && !this.models.posenet && this.config.body.modelPath.includes('posenet')) this.models.posenet = await posenet.load(this.config);\n if (this.config.body.enabled && !this.models.blazepose && this.config.body.modelPath.includes('blazepose')) this.models.blazepose = await blazepose.load(this.config);\n if (this.config.body.enabled && !this.models.efficientpose && this.config.body.modelPath.includes('efficientpose')) this.models.efficientpose = await efficientpose.load(this.config);\n if (this.config.object.enabled && !this.models.nanodet) this.models.nanodet = await nanodet.load(this.config);\n if (this.config.face.enabled && this.config.face.description.enabled && !this.models.faceres) this.models.faceres = await faceres.load(this.config);\n }\n\n if (this.#firstRun) {\n if (this.config.debug) log('tf engine state:', this.tf.engine().state.numBytes, 'bytes', this.tf.engine().state.numTensors, 'tensors');\n this.#firstRun = false;\n }\n\n const current = Math.trunc(now() - timeStamp);\n if (current > (this.perf.load || 0)) this.perf.load = current;\n }\n\n // check if backend needs initialization if it changed\n /** @hidden */\n #checkBackend = async (force = false) => {\n if (this.config.backend && (this.config.backend.length > 0) && force || (this.tf.getBackend() !== this.config.backend)) {\n const timeStamp = now();\n this.state = 'backend';\n /* force backend reload\n if (this.config.backend in tf.engine().registry) {\n const backendFactory = tf.findBackendFactory(this.config.backend);\n tf.removeBackend(this.config.backend);\n tf.registerBackend(this.config.backend, backendFactory);\n } else {\n log('Backend not registred:', this.config.backend);\n }\n */\n\n if (this.config.backend && this.config.backend.length > 0) {\n // force browser vs node backend\n if (this.tf.ENV.flags.IS_BROWSER && this.config.backend === 'tensorflow') this.config.backend = 'webgl';\n if (this.tf.ENV.flags.IS_NODE && (this.config.backend === 'webgl' || this.config.backend === 'humangl')) this.config.backend = 'tensorflow';\n\n if (this.config.debug) log('setting backend:', this.config.backend);\n\n if (this.config.backend === 'wasm') {\n if (this.config.debug) log('wasm path:', this.config.wasmPath);\n if (typeof this.tf?.setWasmPaths !== 'undefined') this.tf.setWasmPaths(this.config.wasmPath);\n else throw new Error('Human: WASM backend is not loaded');\n const simd = await this.tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');\n const mt = await this.tf.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT');\n if (this.config.debug) log(`wasm execution: ${simd ? 'SIMD' : 'no SIMD'} ${mt ? 'multithreaded' : 'singlethreaded'}`);\n if (this.config.debug && !simd) log('warning: wasm simd support is not enabled');\n }\n\n if (this.config.backend === 'humangl') backend.register();\n try {\n await this.tf.setBackend(this.config.backend);\n } catch (err) {\n log('error: cannot set backend:', this.config.backend, err);\n }\n }\n this.tf.enableProdMode();\n // this.tf.enableDebugMode();\n if (this.tf.getBackend() === 'webgl' || this.tf.getBackend() === 'humangl') {\n this.tf.ENV.set('CHECK_COMPUTATION_FOR_ERRORS', false);\n this.tf.ENV.set('WEBGL_PACK_DEPTHWISECONV', true);\n if (this.config.deallocate) {\n log('changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:', this.config.deallocate);\n this.tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', this.config.deallocate ? 0 : -1);\n }\n const gl = await this.tf.backend().getGPGPUContext().gl;\n if (this.config.debug) log(`gl version:${gl.getParameter(gl.VERSION)} renderer:${gl.getParameter(gl.RENDERER)}`);\n }\n await this.tf.ready();\n this.perf.backend = Math.trunc(now() - timeStamp);\n }\n }\n\n /** Main detection method\n * - Analyze configuration: {@link Config}\n * - Pre-process input: {@link Input}\n * - Run inference for all configured models\n * - Process and return result: {@link Result}\n */\n async detect(input: Input, userConfig: Config | Object = {}): Promise {\n // detection happens inside a promise\n return new Promise(async (resolve) => {\n this.state = 'config';\n let timeStamp;\n\n // update configuration\n this.config = mergeDeep(this.config, userConfig);\n\n // sanity checks\n this.state = 'check';\n const error = this.#sanity(input);\n if (error) {\n log(error, input);\n resolve({ error });\n }\n\n const timeStart = now();\n\n // configure backend\n await this.#checkBackend();\n\n // load models if enabled\n await this.load();\n\n if (this.config.scoped) this.tf.engine().startScope();\n this.analyze('Start Scope:');\n\n // disable video optimization for inputs of type image\n let previousVideoOptimized;\n if (input && this.config.videoOptimized && (\n (typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n || (typeof Image !== 'undefined' && input instanceof Image)\n || (typeof ImageData !== 'undefined' && input instanceof ImageData)\n || (typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap))\n ) {\n log('disabling video optimization');\n previousVideoOptimized = this.config.videoOptimized;\n this.config.videoOptimized = false;\n }\n\n timeStamp = now();\n const process = image.process(input, this.config);\n if (!process || !process.tensor) {\n log('could not convert input to tensor');\n resolve({ error: 'could not convert input to tensor' });\n return;\n }\n this.perf.image = Math.trunc(now() - timeStamp);\n this.analyze('Get Image:');\n\n // prepare where to store model results\n let bodyRes;\n let handRes;\n let faceRes;\n let objectRes;\n let current;\n\n // run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion\n if (this.config.async) {\n faceRes = this.config.face.enabled ? faceall.detectFace(this, process.tensor) : [];\n if (this.perf.face) delete this.perf.face;\n } else {\n this.state = 'run:face';\n timeStamp = now();\n faceRes = this.config.face.enabled ? await faceall.detectFace(this, process.tensor) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.face = current;\n }\n\n // run body: can be posenet or blazepose\n this.analyze('Start Body:');\n if (this.config.async) {\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? this.models.posenet?.estimatePoses(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? efficientpose.predict(process.tensor, this.config) : [];\n if (this.perf.body) delete this.perf.body;\n } else {\n this.state = 'run:body';\n timeStamp = now();\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? await this.models.posenet?.estimatePoses(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? await efficientpose.predict(process.tensor, this.config) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.body = current;\n }\n this.analyze('End Body:');\n\n // run handpose\n this.analyze('Start Hand:');\n if (this.config.async) {\n handRes = this.config.hand.enabled ? this.models.handpose?.estimateHands(process.tensor, this.config) : [];\n if (this.perf.hand) delete this.perf.hand;\n } else {\n this.state = 'run:hand';\n timeStamp = now();\n handRes = this.config.hand.enabled ? await this.models.handpose?.estimateHands(process.tensor, this.config) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.hand = current;\n }\n this.analyze('End Hand:');\n\n // run nanodet\n this.analyze('Start Object:');\n if (this.config.async) {\n objectRes = this.config.object.enabled ? nanodet.predict(process.tensor, this.config) : [];\n if (this.perf.object) delete this.perf.object;\n } else {\n this.state = 'run:object';\n timeStamp = now();\n objectRes = this.config.object.enabled ? await nanodet.predict(process.tensor, this.config) : [];\n current = Math.trunc(now() - timeStamp);\n if (current > 0) this.perf.object = current;\n }\n this.analyze('End Object:');\n\n // if async wait for results\n if (this.config.async) {\n [faceRes, bodyRes, handRes, objectRes] = await Promise.all([faceRes, bodyRes, handRes, objectRes]);\n }\n tf.dispose(process.tensor);\n\n if (this.config.scoped) this.tf.engine().endScope();\n this.analyze('End Scope:');\n\n // run gesture analysis last\n let gestureRes: any[] = [];\n if (this.config.gesture.enabled) {\n timeStamp = now();\n gestureRes = [...gesture.face(faceRes), ...gesture.body(bodyRes), ...gesture.hand(handRes), ...gesture.iris(faceRes)];\n if (!this.config.async) this.perf.gesture = Math.trunc(now() - timeStamp);\n else if (this.perf.gesture) delete this.perf.gesture;\n }\n\n // restore video optimizations if previously disabled\n if (previousVideoOptimized) this.config.videoOptimized = previousVideoOptimized;\n\n this.perf.total = Math.trunc(now() - timeStart);\n this.state = 'idle';\n const result = {\n face: faceRes,\n body: bodyRes,\n hand: handRes,\n gesture: gestureRes,\n object: objectRes,\n performance: this.perf,\n canvas: process.canvas,\n };\n // log('Result:', result);\n resolve(result);\n });\n }\n\n /** @hidden */\n #warmupBitmap = async () => {\n const b64toBlob = (base64, type = 'application/octet-stream') => fetch(`data:${type};base64,${base64}`).then((res) => res.blob());\n let blob;\n let res;\n switch (this.config.warmup) {\n case 'face': blob = await b64toBlob(sample.face); break;\n case 'full': blob = await b64toBlob(sample.body); break;\n default: blob = null;\n }\n if (blob) {\n const bitmap = await createImageBitmap(blob);\n res = await this.detect(bitmap, this.config);\n bitmap.close();\n }\n return res;\n }\n\n /** @hidden */\n #warmupCanvas = async () => new Promise((resolve) => {\n let src;\n let size = 0;\n switch (this.config.warmup) {\n case 'face':\n size = 256;\n src = 'data:image/jpeg;base64,' + sample.face;\n break;\n case 'full':\n case 'body':\n size = 1200;\n src = 'data:image/jpeg;base64,' + sample.body;\n break;\n default:\n src = null;\n }\n // src = encodeURI('../assets/human-sample-upper.jpg');\n const img = new Image();\n img.onload = async () => {\n const canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(size, size) : document.createElement('canvas');\n canvas.width = img.naturalWidth;\n canvas.height = img.naturalHeight;\n const ctx = canvas.getContext('2d');\n ctx?.drawImage(img, 0, 0);\n // const data = ctx?.getImageData(0, 0, canvas.height, canvas.width);\n const res = await this.detect(canvas, this.config);\n resolve(res);\n };\n if (src) img.src = src;\n else resolve(null);\n });\n\n /** @hidden */\n #warmupNode = async () => {\n const atob = (str) => Buffer.from(str, 'base64');\n let img;\n if (this.config.warmup === 'face') img = atob(sample.face);\n if (this.config.warmup === 'body' || this.config.warmup === 'full') img = atob(sample.body);\n if (!img) return null;\n let res;\n if (typeof tf['node'] !== 'undefined') {\n const data = tf['node'].decodeJpeg(img);\n const expanded = data.expandDims(0);\n this.tf.dispose(data);\n // log('Input:', expanded);\n res = await this.detect(expanded, this.config);\n this.tf.dispose(expanded);\n } else {\n if (this.config.debug) log('Warmup tfjs-node not loaded');\n /*\n const input = await canvasJS.loadImage(img);\n const canvas = canvasJS.createCanvas(input.width, input.height);\n const ctx = canvas.getContext('2d');\n ctx.drawImage(img, 0, 0, input.width, input.height);\n res = await this.detect(input, this.config);\n */\n }\n return res;\n }\n\n /** Warmup metho pre-initializes all models for faster inference\n * - can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n */\n async warmup(userConfig: Config | Object = {}): Promise {\n const t0 = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig);\n if (!this.config.warmup || this.config.warmup === 'none') return { error: 'null' };\n const save = this.config.videoOptimized;\n this.config.videoOptimized = false;\n let res;\n if (typeof createImageBitmap === 'function') res = await this.#warmupBitmap();\n else if (typeof Image !== 'undefined') res = await this.#warmupCanvas();\n else res = await this.#warmupNode();\n this.config.videoOptimized = save;\n const t1 = now();\n if (this.config.debug) log('Warmup', this.config.warmup, Math.round(t1 - t0), 'ms', res);\n return res;\n }\n}\n\n/**\n * Class Human is also available as default export\n */\nexport { Human as default };\n", "// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`Human: ModelPath Error: ${path} Expecting JSON file`);\n return path;\n}\n\n// helper function: wrapper around console output\nexport function log(...msg) {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n // eslint-disable-next-line no-console\n if (msg) console.log(ts, 'Human:', ...msg);\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: perform deep merge of multiple objects so it allows full inheriance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n", "export function info(): { platform: string, agent: string } {\n let platform;\n let agent;\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw && raw[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n platform = platformMatch ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n agent = navigator.userAgent.replace(raw[0], '');\n if (platform[1]) agent = agent.replace(raw[1], '');\n agent = agent.replace(/ /g, ' ');\n }\n } else if (typeof process !== 'undefined') {\n platform = `${process.platform} ${process.arch}`;\n agent = `NodeJS ${process.version}`;\n }\n return { platform, agent };\n}\n", "", "// A port of an algorithm by Johannes Baag\u00F8e , 2010\n// http://baagoe.com/en/RandomMusings/javascript/\n// https://github.com/nquinlan/better-random-numbers-for-javascript-mirror\n// Original work is under MIT license -\n\n// Copyright (C) 2010 by Johannes Baag\u00F8e \n//\n// Permission is hereby granted, free of charge, to any person obtaining a copy\n// of this software and associated documentation files (the \"Software\"), to deal\n// in the Software without restriction, including without limitation the rights\n// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n// copies of the Software, and to permit persons to whom the Software is\n// furnished to do so, subject to the following conditions:\n// \n// The above copyright notice and this permission notice shall be included in\n// all copies or substantial portions of the Software.\n// \n// THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\n// THE SOFTWARE.\n\n\n\n(function(global, module, define) {\n\nfunction Alea(seed) {\n var me = this, mash = Mash();\n\n me.next = function() {\n var t = 2091639 * me.s0 + me.c * 2.3283064365386963e-10; // 2^-32\n me.s0 = me.s1;\n me.s1 = me.s2;\n return me.s2 = t - (me.c = t | 0);\n };\n\n // Apply the seeding algorithm from Baagoe.\n me.c = 1;\n me.s0 = mash(' ');\n me.s1 = mash(' ');\n me.s2 = mash(' ');\n me.s0 -= mash(seed);\n if (me.s0 < 0) { me.s0 += 1; }\n me.s1 -= mash(seed);\n if (me.s1 < 0) { me.s1 += 1; }\n me.s2 -= mash(seed);\n if (me.s2 < 0) { me.s2 += 1; }\n mash = null;\n}\n\nfunction copy(f, t) {\n t.c = f.c;\n t.s0 = f.s0;\n t.s1 = f.s1;\n t.s2 = f.s2;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new Alea(seed),\n state = opts && opts.state,\n prng = xg.next;\n prng.int32 = function() { return (xg.next() * 0x100000000) | 0; }\n prng.double = function() {\n return prng() + (prng() * 0x200000 | 0) * 1.1102230246251565e-16; // 2^-53\n };\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nfunction Mash() {\n var n = 0xefc8249d;\n\n var mash = function(data) {\n data = data.toString();\n for (var i = 0; i < data.length; i++) {\n n += data.charCodeAt(i);\n var h = 0.02519603282416938 * n;\n n = h >>> 0;\n h -= n;\n h *= n;\n n = h >>> 0;\n h -= n;\n n += h * 0x100000000; // 2^32\n }\n return (n >>> 0) * 2.3283064365386963e-10; // 2^-32\n };\n\n return mash;\n}\n\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.alea = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xor128\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n\n // Set up generator function.\n me.next = function() {\n var t = me.x ^ (me.x << 11);\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n return me.w ^= (me.w >>> 19) ^ t ^ (t >>> 8);\n };\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor128 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorwow\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var t = (me.x ^ (me.x >>> 2));\n me.x = me.y; me.y = me.z; me.z = me.w; me.w = me.v;\n return (me.d = (me.d + 362437 | 0)) +\n (me.v = (me.v ^ (me.v << 4)) ^ (t ^ (t << 1))) | 0;\n };\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.v = 0;\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n if (k == strseed.length) {\n me.d = me.x << 10 ^ me.x >>> 4;\n }\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n t.v = f.v;\n t.d = f.d;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorwow = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorshift7\" algorithm by\n// Fran\u00E7ois Panneton and Pierre L'ecuyer:\n// \"On the Xorgshift Random Number Generators\"\n// http://saluc.engr.uconn.edu/refs/crypto/rng/panneton05onthexorshift.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n // Update xor generator.\n var X = me.x, i = me.i, t, v, w;\n t = X[i]; t ^= (t >>> 7); v = t ^ (t << 24);\n t = X[(i + 1) & 7]; v ^= t ^ (t >>> 10);\n t = X[(i + 3) & 7]; v ^= t ^ (t >>> 3);\n t = X[(i + 4) & 7]; v ^= t ^ (t << 7);\n t = X[(i + 7) & 7]; t = t ^ (t << 13); v ^= t ^ (t << 9);\n X[i] = v;\n me.i = (i + 1) & 7;\n return v;\n };\n\n function init(me, seed) {\n var j, w, X = [];\n\n if (seed === (seed | 0)) {\n // Seed state array using a 32-bit integer.\n w = X[0] = seed;\n } else {\n // Seed state using a string.\n seed = '' + seed;\n for (j = 0; j < seed.length; ++j) {\n X[j & 7] = (X[j & 7] << 15) ^\n (seed.charCodeAt(j) + X[(j + 1) & 7] << 13);\n }\n }\n // Enforce an array length of 8, not all zeroes.\n while (X.length < 8) X.push(0);\n for (j = 0; j < 8 && X[j] === 0; ++j);\n if (j == 8) w = X[7] = -1; else w = X[j];\n\n me.x = X;\n me.i = 0;\n\n // Discard an initial 256 values.\n for (j = 256; j > 0; --j) {\n me.next();\n }\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.x = f.x.slice();\n t.i = f.i;\n return t;\n}\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.x) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorshift7 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n", "// A Javascript implementaion of Richard Brent's Xorgens xor4096 algorithm.\n//\n// This fast non-cryptographic random number generator is designed for\n// use in Monte-Carlo algorithms. It combines a long-period xorshift\n// generator with a Weyl generator, and it passes all common batteries\n// of stasticial tests for randomness while consuming only a few nanoseconds\n// for each prng generated. For background on the generator, see Brent's\n// paper: \"Some long-period random number generators using shifts and xors.\"\n// http://arxiv.org/pdf/1004.3115v1.pdf\n//\n// Usage:\n//\n// var xor4096 = require('xor4096');\n// random = xor4096(1); // Seed with int32 or string.\n// assert.equal(random(), 0.1520436450538547); // (0, 1) range, 53 bits.\n// assert.equal(random.int32(), 1806534897); // signed int32, 32 bits.\n//\n// For nonzero numeric keys, this impelementation provides a sequence\n// identical to that by Brent's xorgens 3 implementaion in C. This\n// implementation also provides for initalizing the generator with\n// string seeds, or for saving and restoring the state of the generator.\n//\n// On Chrome, this prng benchmarks about 2.1 times slower than\n// Javascript's built-in Math.random().\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n var w = me.w,\n X = me.X, i = me.i, t, v;\n // Update Weyl generator.\n me.w = w = (w + 0x61c88647) | 0;\n // Update xor generator.\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n // Update Xor generator array state.\n v = X[i] = v ^ t;\n me.i = i;\n // Result is the combination.\n return (v + (w ^ (w >>> 16))) | 0;\n };\n\n function init(me, seed) {\n var t, v, i, j, w, X = [], limit = 128;\n if (seed === (seed | 0)) {\n // Numeric seeds initialize v, which is used to generates X.\n v = seed;\n seed = null;\n } else {\n // String seeds are mixed into v and X one character at a time.\n seed = seed + '\\0';\n v = 0;\n limit = Math.max(limit, seed.length);\n }\n // Initialize circular array and weyl value.\n for (i = 0, j = -32; j < limit; ++j) {\n // Put the unicode characters into the array, and shuffle them.\n if (seed) v ^= seed.charCodeAt((j + 32) % seed.length);\n // After 32 shuffles, take v as the starting w value.\n if (j === 0) w = v;\n v ^= v << 10;\n v ^= v >>> 15;\n v ^= v << 4;\n v ^= v >>> 13;\n if (j >= 0) {\n w = (w + 0x61c88647) | 0; // Weyl.\n t = (X[j & 127] ^= (v + w)); // Combine xor and weyl to init array.\n i = (0 == t) ? i + 1 : 0; // Count zeroes.\n }\n }\n // We have detected all zeroes; make the key nonzero.\n if (i >= 128) {\n X[(seed && seed.length || 0) & 127] = -1;\n }\n // Run the generator 512 times to further mix the state before using it.\n // Factoring this as a function slows the main generator, so it is just\n // unrolled here. The weyl generator is not advanced while warming up.\n i = 127;\n for (j = 4 * 128; j > 0; --j) {\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n X[i] = v ^ t;\n }\n // Storing state as object members is faster than using closure variables.\n me.w = w;\n me.X = X;\n me.i = i;\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.i = f.i;\n t.w = f.w;\n t.X = f.X.slice();\n return t;\n};\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.X) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor4096 = impl;\n}\n\n})(\n this, // window object or global\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n", "// A Javascript implementaion of the \"Tyche-i\" prng algorithm by\n// Samuel Neves and Filipe Araujo.\n// See https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var b = me.b, c = me.c, d = me.d, a = me.a;\n b = (b << 25) ^ (b >>> 7) ^ c;\n c = (c - d) | 0;\n d = (d << 24) ^ (d >>> 8) ^ a;\n a = (a - b) | 0;\n me.b = b = (b << 20) ^ (b >>> 12) ^ c;\n me.c = c = (c - d) | 0;\n me.d = (d << 16) ^ (c >>> 16) ^ a;\n return me.a = (a - b) | 0;\n };\n\n /* The following is non-inverted tyche, which has better internal\n * bit diffusion, but which is about 25% slower than tyche-i in JS.\n me.next = function() {\n var a = me.a, b = me.b, c = me.c, d = me.d;\n a = (me.a + me.b | 0) >>> 0;\n d = me.d ^ a; d = d << 16 ^ d >>> 16;\n c = me.c + d | 0;\n b = me.b ^ c; b = b << 12 ^ d >>> 20;\n me.a = a = a + b | 0;\n d = d ^ a; me.d = d = d << 8 ^ d >>> 24;\n me.c = c = c + d | 0;\n b = b ^ c;\n return me.b = (b << 7 ^ b >>> 25);\n }\n */\n\n me.a = 0;\n me.b = 0;\n me.c = 2654435769 | 0;\n me.d = 1367130551;\n\n if (seed === Math.floor(seed)) {\n // Integer seed.\n me.a = (seed / 0x100000000) | 0;\n me.b = seed | 0;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 20; k++) {\n me.b ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.a = f.a;\n t.b = f.b;\n t.c = f.c;\n t.d = f.d;\n return t;\n};\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.tychei = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "", "/*\nCopyright 2014 David Bau.\n\nPermission is hereby granted, free of charge, to any person obtaining\na copy of this software and associated documentation files (the\n\"Software\"), to deal in the Software without restriction, including\nwithout limitation the rights to use, copy, modify, merge, publish,\ndistribute, sublicense, and/or sell copies of the Software, and to\npermit persons to whom the Software is furnished to do so, subject to\nthe following conditions:\n\nThe above copyright notice and this permission notice shall be\nincluded in all copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND,\nEXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF\nMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.\nIN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY\nCLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,\nTORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE\nSOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\n\n*/\n\n(function (pool, math) {\n//\n// The following constants are related to IEEE 754 limits.\n//\nvar global = this,\n width = 256, // each RC4 output is 0 <= x < 256\n chunks = 6, // at least six RC4 outputs for each double\n digits = 52, // there are 52 significant digits in a double\n rngname = 'random', // rngname: name for Math.random and Math.seedrandom\n startdenom = math.pow(width, chunks),\n significance = math.pow(2, digits),\n overflow = significance * 2,\n mask = width - 1,\n nodecrypto; // node.js crypto module, initialized at the bottom.\n\n//\n// seedrandom()\n// This is the seedrandom function described above.\n//\nfunction seedrandom(seed, options, callback) {\n var key = [];\n options = (options == true) ? { entropy: true } : (options || {});\n\n // Flatten the seed string or build one from local entropy if needed.\n var shortseed = mixkey(flatten(\n options.entropy ? [seed, tostring(pool)] :\n (seed == null) ? autoseed() : seed, 3), key);\n\n // Use the seed to initialize an ARC4 generator.\n var arc4 = new ARC4(key);\n\n // This function returns a random double in [0, 1) that contains\n // randomness in every bit of the mantissa of the IEEE 754 value.\n var prng = function() {\n var n = arc4.g(chunks), // Start with a numerator n < 2 ^ 48\n d = startdenom, // and denominator d = 2 ^ 48.\n x = 0; // and no 'extra last byte'.\n while (n < significance) { // Fill up all significant digits by\n n = (n + x) * width; // shifting numerator and\n d *= width; // denominator and generating a\n x = arc4.g(1); // new least-significant-byte.\n }\n while (n >= overflow) { // To avoid rounding up, before adding\n n /= 2; // last byte, shift everything\n d /= 2; // right using integer math until\n x >>>= 1; // we have exactly the desired bits.\n }\n return (n + x) / d; // Form the number within [0, 1).\n };\n\n prng.int32 = function() { return arc4.g(4) | 0; }\n prng.quick = function() { return arc4.g(4) / 0x100000000; }\n prng.double = prng;\n\n // Mix the randomness into accumulated entropy.\n mixkey(tostring(arc4.S), pool);\n\n // Calling convention: what to return as a function of prng, seed, is_math.\n return (options.pass || callback ||\n function(prng, seed, is_math_call, state) {\n if (state) {\n // Load the arc4 state from the given state if it has an S array.\n if (state.S) { copy(state, arc4); }\n // Only provide the .state method if requested via options.state.\n prng.state = function() { return copy(arc4, {}); }\n }\n\n // If called as a method of Math (Math.seedrandom()), mutate\n // Math.random because that is how seedrandom.js has worked since v1.0.\n if (is_math_call) { math[rngname] = prng; return seed; }\n\n // Otherwise, it is a newer calling convention, so return the\n // prng directly.\n else return prng;\n })(\n prng,\n shortseed,\n 'global' in options ? options.global : (this == math),\n options.state);\n}\nmath['seed' + rngname] = seedrandom;\n\n//\n// ARC4\n//\n// An ARC4 implementation. The constructor takes a key in the form of\n// an array of at most (width) integers that should be 0 <= x < (width).\n//\n// The g(count) method returns a pseudorandom integer that concatenates\n// the next (count) outputs from ARC4. Its return value is a number x\n// that is in the range 0 <= x < (width ^ count).\n//\nfunction ARC4(key) {\n var t, keylen = key.length,\n me = this, i = 0, j = me.i = me.j = 0, s = me.S = [];\n\n // The empty key [] is treated as [0].\n if (!keylen) { key = [keylen++]; }\n\n // Set up S using the standard key scheduling algorithm.\n while (i < width) {\n s[i] = i++;\n }\n for (i = 0; i < width; i++) {\n s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))];\n s[j] = t;\n }\n\n // The \"g\" method returns the next (count) outputs as one number.\n (me.g = function(count) {\n // Using instance members instead of closure state nearly doubles speed.\n var t, r = 0,\n i = me.i, j = me.j, s = me.S;\n while (count--) {\n t = s[i = mask & (i + 1)];\n r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)]) + (s[j] = t))];\n }\n me.i = i; me.j = j;\n return r;\n // For robust unpredictability, the function call below automatically\n // discards an initial batch of values. This is called RC4-drop[256].\n // See http://google.com/search?q=rsa+fluhrer+response&btnI\n })(width);\n}\n\n//\n// copy()\n// Copies internal state of ARC4 to or from a plain object.\n//\nfunction copy(f, t) {\n t.i = f.i;\n t.j = f.j;\n t.S = f.S.slice();\n return t;\n};\n\n//\n// flatten()\n// Converts an object tree to nested arrays of strings.\n//\nfunction flatten(obj, depth) {\n var result = [], typ = (typeof obj), prop;\n if (depth && typ == 'object') {\n for (prop in obj) {\n try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {}\n }\n }\n return (result.length ? result : typ == 'string' ? obj : obj + '\\0');\n}\n\n//\n// mixkey()\n// Mixes a string seed into a key that is an array of integers, and\n// returns a shortened string seed that is equivalent to the result key.\n//\nfunction mixkey(seed, key) {\n var stringseed = seed + '', smear, j = 0;\n while (j < stringseed.length) {\n key[mask & j] =\n mask & ((smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++));\n }\n return tostring(key);\n}\n\n//\n// autoseed()\n// Returns an object for autoseeding, using window.crypto and Node crypto\n// module if available.\n//\nfunction autoseed() {\n try {\n var out;\n if (nodecrypto && (out = nodecrypto.randomBytes)) {\n // The use of 'out' to remember randomBytes makes tight minified code.\n out = out(width);\n } else {\n out = new Uint8Array(width);\n (global.crypto || global.msCrypto).getRandomValues(out);\n }\n return tostring(out);\n } catch (e) {\n var browser = global.navigator,\n plugins = browser && browser.plugins;\n return [+new Date, global, plugins, global.screen, tostring(pool)];\n }\n}\n\n//\n// tostring()\n// Converts an array of charcodes to a string\n//\nfunction tostring(a) {\n return String.fromCharCode.apply(0, a);\n}\n\n//\n// When seedrandom.js is loaded, we immediately mix a few bits\n// from the built-in RNG into the entropy pool. Because we do\n// not want to interfere with deterministic PRNG state later,\n// seedrandom will not call math.random on its own again after\n// initialization.\n//\nmixkey(math.random(), pool);\n\n//\n// Nodejs and AMD support: export the implementation as a module using\n// either convention.\n//\nif ((typeof module) == 'object' && module.exports) {\n module.exports = seedrandom;\n // When in node.js, try using crypto package for autoseeding.\n try {\n nodecrypto = require('crypto');\n } catch (ex) {}\n} else if ((typeof define) == 'function' && define.amd) {\n define(function() { return seedrandom; });\n}\n\n// End anonymous scope, and pass initial values.\n})(\n [], // pool: entropy pool starts empty\n Math // math: package containing random, pow, and seedrandom\n);\n", "// A library of seedable RNGs implemented in Javascript.\n//\n// Usage:\n//\n// var seedrandom = require('seedrandom');\n// var random = seedrandom(1); // or any seed.\n// var x = random(); // 0 <= x < 1. Every bit is random.\n// var x = random.quick(); // 0 <= x < 1. 32 bits of randomness.\n\n// alea, a 53-bit multiply-with-carry generator by Johannes Baag\u00F8e.\n// Period: ~2^116\n// Reported to pass all BigCrush tests.\nvar alea = require('./lib/alea');\n\n// xor128, a pure xor-shift generator by George Marsaglia.\n// Period: 2^128-1.\n// Reported to fail: MatrixRank and LinearComp.\nvar xor128 = require('./lib/xor128');\n\n// xorwow, George Marsaglia's 160-bit xor-shift combined plus weyl.\n// Period: 2^192-2^32\n// Reported to fail: CollisionOver, SimpPoker, and LinearComp.\nvar xorwow = require('./lib/xorwow');\n\n// xorshift7, by Fran\u00E7ois Panneton and Pierre L'ecuyer, takes\n// a different approach: it adds robustness by allowing more shifts\n// than Marsaglia's original three. It is a 7-shift generator\n// with 256 bits, that passes BigCrush with no systmatic failures.\n// Period 2^256-1.\n// No systematic BigCrush failures reported.\nvar xorshift7 = require('./lib/xorshift7');\n\n// xor4096, by Richard Brent, is a 4096-bit xor-shift with a\n// very long period that also adds a Weyl generator. It also passes\n// BigCrush with no systematic failures. Its long period may\n// be useful if you have many generators and need to avoid\n// collisions.\n// Period: 2^4128-2^32.\n// No systematic BigCrush failures reported.\nvar xor4096 = require('./lib/xor4096');\n\n// Tyche-i, by Samuel Neves and Filipe Araujo, is a bit-shifting random\n// number generator derived from ChaCha, a modern stream cipher.\n// https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n// Period: ~2^127\n// No systematic BigCrush failures reported.\nvar tychei = require('./lib/tychei');\n\n// The original ARC4-based prng included in this library.\n// Period: ~2^1600\nvar sr = require('./seedrandom');\n\nsr.alea = alea;\nsr.xor128 = xor128;\nsr.xorwow = xorwow;\nsr.xorshift7 = xorshift7;\nsr.xor4096 = xor4096;\nsr.tychei = tychei;\n\nmodule.exports = sr;\n", "", "", "", "\nvar WasmBackendModuleThreadedSimd = (function() {\n var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined;\n if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename;\n return (\nfunction(WasmBackendModuleThreadedSimd) {\n WasmBackendModuleThreadedSimd = WasmBackendModuleThreadedSimd || {};\n\nfunction GROWABLE_HEAP_I8(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAP8}function GROWABLE_HEAP_U8(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPU8}function GROWABLE_HEAP_I32(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAP32}function GROWABLE_HEAP_U32(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPU32}function GROWABLE_HEAP_F64(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPF64}var Module=typeof WasmBackendModuleThreadedSimd!==\"undefined\"?WasmBackendModuleThreadedSimd:{};var readyPromiseResolve,readyPromiseReject;Module[\"ready\"]=new Promise(function(resolve,reject){readyPromiseResolve=resolve;readyPromiseReject=reject});var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key]}}var arguments_=[];var thisProgram=\"./this.program\";var quit_=function(status,toThrow){throw toThrow};var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;ENVIRONMENT_IS_WEB=typeof window===\"object\";ENVIRONMENT_IS_WORKER=typeof importScripts===\"function\";ENVIRONMENT_IS_NODE=typeof process===\"object\"&&typeof process.versions===\"object\"&&typeof process.versions.node===\"string\";ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var ENVIRONMENT_IS_PTHREAD=Module[\"ENVIRONMENT_IS_PTHREAD\"]||false;if(ENVIRONMENT_IS_PTHREAD){buffer=Module[\"buffer\"]}var scriptDirectory=\"\";function locateFile(path){if(Module[\"locateFile\"]){return Module[\"locateFile\"](path,scriptDirectory)}return scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle;var nodeFS;var nodePath;if(ENVIRONMENT_IS_NODE){if(ENVIRONMENT_IS_WORKER){scriptDirectory=require(\"path\").dirname(scriptDirectory)+\"/\"}else{scriptDirectory=__dirname+\"/\"}read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require(\"fs\");if(!nodePath)nodePath=require(\"path\");filename=nodePath[\"normalize\"](filename);return nodeFS[\"readFileSync\"](filename,binary?null:\"utf8\")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret};if(process[\"argv\"].length>1){thisProgram=process[\"argv\"][1].replace(/\\\\/g,\"/\")}arguments_=process[\"argv\"].slice(2);process[\"on\"](\"uncaughtException\",function(ex){if(!(ex instanceof ExitStatus)){throw ex}});process[\"on\"](\"unhandledRejection\",abort);quit_=function(status){process[\"exit\"](status)};Module[\"inspect\"]=function(){return\"[Emscripten Module object]\"};var nodeWorkerThreads;try{nodeWorkerThreads=require(\"worker_threads\")}catch(e){console.error('The \"worker_threads\" module is not supported in this node.js build - perhaps a newer version is needed?');throw e}global.Worker=nodeWorkerThreads.Worker}else if(ENVIRONMENT_IS_SHELL){if(typeof read!=\"undefined\"){read_=function shell_read(f){return read(f)}}readBinary=function readBinary(f){var data;if(typeof readbuffer===\"function\"){return new Uint8Array(readbuffer(f))}data=read(f,\"binary\");assert(typeof data===\"object\");return data};if(typeof scriptArgs!=\"undefined\"){arguments_=scriptArgs}else if(typeof arguments!=\"undefined\"){arguments_=arguments}if(typeof quit===\"function\"){quit_=function(status){quit(status)}}if(typeof print!==\"undefined\"){if(typeof console===\"undefined\")console={};console.log=print;console.warn=console.error=typeof printErr!==\"undefined\"?printErr:print}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href}else if(typeof document!==\"undefined\"&&document.currentScript){scriptDirectory=document.currentScript.src}if(typeof _scriptDir !== \"undefined\" && _scriptDir){scriptDirectory=_scriptDir}if(scriptDirectory.indexOf(\"blob:\")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf(\"/\")+1)}else{scriptDirectory=\"\"}if(ENVIRONMENT_IS_NODE){read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require(\"fs\");if(!nodePath)nodePath=require(\"path\");filename=nodePath[\"normalize\"](filename);return nodeFS[\"readFileSync\"](filename,binary?null:\"utf8\")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret}}else{read_=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.send(null);return xhr.responseText};if(ENVIRONMENT_IS_WORKER){readBinary=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.responseType=\"arraybuffer\";xhr.send(null);return new Uint8Array(xhr.response)}}readAsync=function(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,true);xhr.responseType=\"arraybuffer\";xhr.onload=function(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}onerror()};xhr.onerror=onerror;xhr.send(null)}}setWindowTitle=function(title){document.title=title}}else{}if(ENVIRONMENT_IS_NODE){if(typeof performance===\"undefined\"){global.performance=require(\"perf_hooks\").performance}}var out=Module[\"print\"]||console.log.bind(console);var err=Module[\"printErr\"]||console.warn.bind(console);for(key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key]}}moduleOverrides=null;if(Module[\"arguments\"])arguments_=Module[\"arguments\"];if(Module[\"thisProgram\"])thisProgram=Module[\"thisProgram\"];if(Module[\"quit\"])quit_=Module[\"quit\"];var Atomics_load=Atomics.load;var Atomics_store=Atomics.store;var Atomics_compareExchange=Atomics.compareExchange;var wasmBinary;if(Module[\"wasmBinary\"])wasmBinary=Module[\"wasmBinary\"];var noExitRuntime=Module[\"noExitRuntime\"]||true;if(typeof WebAssembly!==\"object\"){abort(\"no native wasm support detected\")}var wasmMemory;var wasmModule;var ABORT=false;var EXITSTATUS;function assert(condition,text){if(!condition){abort(\"Assertion failed: \"+text)}}function getCFunc(ident){var func=Module[\"_\"+ident];assert(func,\"Cannot call unknown function \"+ident+\", make sure it is exported\");return func}function ccall(ident,returnType,argTypes,args,opts){var toC={\"string\":function(str){var ret=0;if(str!==null&&str!==undefined&&str!==0){var len=(str.length<<2)+1;ret=stackAlloc(len);stringToUTF8(str,ret,len)}return ret},\"array\":function(arr){var ret=stackAlloc(arr.length);writeArrayToMemory(arr,ret);return ret}};function convertReturnValue(ret){if(returnType===\"string\")return UTF8ToString(ret);if(returnType===\"boolean\")return Boolean(ret);return ret}var func=getCFunc(ident);var cArgs=[];var stack=0;if(args){for(var i=0;i=endIdx)){var u0=heap[idx++];if(!u0)return str;if(!(u0&128)){str+=String.fromCharCode(u0);continue}var u1=heap[idx++]&63;if((u0&224)==192){str+=String.fromCharCode((u0&31)<<6|u1);continue}var u2=heap[idx++]&63;if((u0&240)==224){u0=(u0&15)<<12|u1<<6|u2}else{u0=(u0&7)<<18|u1<<12|u2<<6|heap[idx++]&63}if(u0<65536){str+=String.fromCharCode(u0)}else{var ch=u0-65536;str+=String.fromCharCode(55296|ch>>10,56320|ch&1023)}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(GROWABLE_HEAP_U8(),ptr,maxBytesToRead):\"\"}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6;heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18;heap[outIdx++]=128|u>>12&63;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}}heap[outIdx]=0;return outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,GROWABLE_HEAP_U8(),outPtr,maxBytesToWrite)}function lengthBytesUTF8(str){var len=0;for(var i=0;i=55296&&u<=57343)u=65536+((u&1023)<<10)|str.charCodeAt(++i)&1023;if(u<=127)++len;else if(u<=2047)len+=2;else if(u<=65535)len+=3;else len+=4}return len}function writeArrayToMemory(array,buffer){GROWABLE_HEAP_I8().set(array,buffer)}function alignUp(x,multiple){if(x%multiple>0){x+=multiple-x%multiple}return x}var buffer,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBufferAndViews(buf){buffer=buf;Module[\"HEAP8\"]=HEAP8=new Int8Array(buf);Module[\"HEAP16\"]=HEAP16=new Int16Array(buf);Module[\"HEAP32\"]=HEAP32=new Int32Array(buf);Module[\"HEAPU8\"]=HEAPU8=new Uint8Array(buf);Module[\"HEAPU16\"]=HEAPU16=new Uint16Array(buf);Module[\"HEAPU32\"]=HEAPU32=new Uint32Array(buf);Module[\"HEAPF32\"]=HEAPF32=new Float32Array(buf);Module[\"HEAPF64\"]=HEAPF64=new Float64Array(buf)}var INITIAL_MEMORY=Module[\"INITIAL_MEMORY\"]||16777216;if(ENVIRONMENT_IS_PTHREAD){wasmMemory=Module[\"wasmMemory\"];buffer=Module[\"buffer\"]}else{if(Module[\"wasmMemory\"]){wasmMemory=Module[\"wasmMemory\"]}else{wasmMemory=new WebAssembly.Memory({\"initial\":INITIAL_MEMORY/65536,\"maximum\":2147483648/65536,\"shared\":true});if(!(wasmMemory.buffer instanceof SharedArrayBuffer)){err(\"requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag\");if(ENVIRONMENT_IS_NODE){console.log(\"(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)\")}throw Error(\"bad memory\")}}}if(wasmMemory){buffer=wasmMemory.buffer}INITIAL_MEMORY=buffer.byteLength;updateGlobalBufferAndViews(buffer);var wasmTable;var __ATPRERUN__=[];var __ATINIT__=[];var __ATMAIN__=[];var __ATEXIT__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;var runtimeExited=false;if(!ENVIRONMENT_IS_PTHREAD)__ATINIT__.push({func:function(){___wasm_call_ctors()}});function preRun(){if(ENVIRONMENT_IS_PTHREAD)return;if(Module[\"preRun\"]){if(typeof Module[\"preRun\"]==\"function\")Module[\"preRun\"]=[Module[\"preRun\"]];while(Module[\"preRun\"].length){addOnPreRun(Module[\"preRun\"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=true;if(ENVIRONMENT_IS_PTHREAD)return;callRuntimeCallbacks(__ATINIT__)}function preMain(){if(ENVIRONMENT_IS_PTHREAD)return;callRuntimeCallbacks(__ATMAIN__)}function exitRuntime(){if(ENVIRONMENT_IS_PTHREAD)return;runtimeExited=true}function postRun(){if(ENVIRONMENT_IS_PTHREAD)return;if(Module[\"postRun\"]){if(typeof Module[\"postRun\"]==\"function\")Module[\"postRun\"]=[Module[\"postRun\"]];while(Module[\"postRun\"].length){addOnPostRun(Module[\"postRun\"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function addRunDependency(id){assert(!ENVIRONMENT_IS_PTHREAD,\"addRunDependency cannot be used in a pthread worker\");runDependencies++;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}Module[\"preloadedImages\"]={};Module[\"preloadedAudios\"]={};function abort(what){if(Module[\"onAbort\"]){Module[\"onAbort\"](what)}if(ENVIRONMENT_IS_PTHREAD)console.error(\"Pthread aborting at \"+(new Error).stack);what+=\"\";err(what);ABORT=true;EXITSTATUS=1;what=\"abort(\"+what+\"). Build with -s ASSERTIONS=1 for more info.\";var e=new WebAssembly.RuntimeError(what);readyPromiseReject(e);throw e}function hasPrefix(str,prefix){return String.prototype.startsWith?str.startsWith(prefix):str.indexOf(prefix)===0}var dataURIPrefix=\"data:application/octet-stream;base64,\";function isDataURI(filename){return hasPrefix(filename,dataURIPrefix)}var fileURIPrefix=\"file://\";function isFileURI(filename){return hasPrefix(filename,fileURIPrefix)}var wasmBinaryFile=\"tfjs-backend-wasm-threaded-simd.wasm\";if(!isDataURI(wasmBinaryFile)){wasmBinaryFile=locateFile(wasmBinaryFile)}function getBinary(file){try{if(file==wasmBinaryFile&&wasmBinary){return new Uint8Array(wasmBinary)}if(readBinary){return readBinary(file)}else{throw\"both async and sync fetching of the wasm failed\"}}catch(err){abort(err)}}function getBinaryPromise(){if(!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)){if(typeof fetch===\"function\"&&!isFileURI(wasmBinaryFile)){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){if(!response[\"ok\"]){throw\"failed to load wasm binary file at '\"+wasmBinaryFile+\"'\"}return response[\"arrayBuffer\"]()}).catch(function(){return getBinary(wasmBinaryFile)})}else{if(readAsync){return new Promise(function(resolve,reject){readAsync(wasmBinaryFile,function(response){resolve(new Uint8Array(response))},reject)})}}}return Promise.resolve().then(function(){return getBinary(wasmBinaryFile)})}function createWasm(){var info={\"a\":asmLibraryArg};function receiveInstance(instance,module){var exports=instance.exports;Module[\"asm\"]=exports;wasmTable=Module[\"asm\"][\"F\"];wasmModule=module;if(!ENVIRONMENT_IS_PTHREAD){var numWorkersToLoad=PThread.unusedWorkers.length;PThread.unusedWorkers.forEach(function(w){PThread.loadWasmModuleToWorker(w,function(){if(!--numWorkersToLoad)removeRunDependency(\"wasm-instantiate\")})})}}if(!ENVIRONMENT_IS_PTHREAD){addRunDependency(\"wasm-instantiate\")}function receiveInstantiatedSource(output){receiveInstance(output[\"instance\"],output[\"module\"])}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){return WebAssembly.instantiate(binary,info)}).then(receiver,function(reason){err(\"failed to asynchronously prepare wasm: \"+reason);abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming===\"function\"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&typeof fetch===\"function\"){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiatedSource,function(reason){err(\"wasm streaming compile failed: \"+reason);err(\"falling back to ArrayBuffer instantiation\");return instantiateArrayBuffer(receiveInstantiatedSource)})})}else{return instantiateArrayBuffer(receiveInstantiatedSource)}}if(Module[\"instantiateWasm\"]){try{var exports=Module[\"instantiateWasm\"](info,receiveInstance);return exports}catch(e){err(\"Module.instantiateWasm callback failed with error: \"+e);return false}}instantiateAsync().catch(readyPromiseReject);return{}}var ASM_CONSTS={9816:function(){throw\"Canceled!\"},9834:function($0,$1){setTimeout(function(){__emscripten_do_dispatch_to_thread($0,$1)},0)}};function initPthreadsJS(){PThread.initRuntime()}function callRuntimeCallbacks(callbacks){while(callbacks.length>0){var callback=callbacks.shift();if(typeof callback==\"function\"){callback(Module);continue}var func=callback.func;if(typeof func===\"number\"){if(callback.arg===undefined){wasmTable.get(func)()}else{wasmTable.get(func)(callback.arg)}}else{func(callback.arg===undefined?null:callback.arg)}}}function _emscripten_futex_wake(addr,count){if(addr<=0||addr>GROWABLE_HEAP_I8().length||addr&3!=0||count<0)return-28;if(count==0)return 0;if(count>=2147483647)count=Infinity;var mainThreadWaitAddress=Atomics.load(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2);var mainThreadWoken=0;if(mainThreadWaitAddress==addr){var loadedAddr=Atomics.compareExchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,mainThreadWaitAddress,0);if(loadedAddr==mainThreadWaitAddress){--count;mainThreadWoken=1;if(count<=0)return 1}}var ret=Atomics.notify(GROWABLE_HEAP_I32(),addr>>2,count);if(ret>=0)return ret+mainThreadWoken;throw\"Atomics.notify returned an unexpected value \"+ret}Module[\"_emscripten_futex_wake\"]=_emscripten_futex_wake;function killThread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! killThread() can only ever be called from main application thread!\";if(!pthread_ptr)throw\"Internal Error! Null pthread_ptr in killThread!\";GROWABLE_HEAP_I32()[pthread_ptr+12>>2]=0;var pthread=PThread.pthreads[pthread_ptr];pthread.worker.terminate();PThread.freeThreadData(pthread);PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(pthread.worker),1);pthread.worker.pthread=undefined}function cancelThread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! cancelThread() can only ever be called from main application thread!\";if(!pthread_ptr)throw\"Internal Error! Null pthread_ptr in cancelThread!\";var pthread=PThread.pthreads[pthread_ptr];pthread.worker.postMessage({\"cmd\":\"cancel\"})}function cleanupThread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! cleanupThread() can only ever be called from main application thread!\";if(!pthread_ptr)throw\"Internal Error! Null pthread_ptr in cleanupThread!\";var pthread=PThread.pthreads[pthread_ptr];if(pthread){GROWABLE_HEAP_I32()[pthread_ptr+12>>2]=0;var worker=pthread.worker;PThread.returnWorkerToPool(worker)}}var PThread={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){var pthreadPoolSize=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2));for(var i=0;i>2]=tb;var headPtr=tb+152;GROWABLE_HEAP_I32()[headPtr>>2]=headPtr;var tlsMemory=_malloc(512);for(var i=0;i<128;++i)GROWABLE_HEAP_U32()[tlsMemory/4+i]=0;Atomics.store(GROWABLE_HEAP_U32(),tb+100>>2,tlsMemory);Atomics.store(GROWABLE_HEAP_U32(),tb+40>>2,tb);__emscripten_thread_init(tb,!ENVIRONMENT_IS_WORKER,1);_emscripten_register_main_browser_thread_id(tb)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){while(PThread.threadExitHandlers.length>0){PThread.threadExitHandlers.pop()()}if(ENVIRONMENT_IS_PTHREAD&&_pthread_self())___pthread_tsd_run_dtors()},runExitHandlersAndDeinitThread:function(tb,exitCode){Atomics.store(GROWABLE_HEAP_U32(),tb+56>>2,1);Atomics.store(GROWABLE_HEAP_U32(),tb+60>>2,0);PThread.runExitHandlers();Atomics.store(GROWABLE_HEAP_U32(),tb+4>>2,exitCode);Atomics.store(GROWABLE_HEAP_U32(),tb+0>>2,1);_emscripten_futex_wake(tb+0,2147483647);__emscripten_thread_init(0,0,0)},threadExit:function(exitCode){var tb=_pthread_self();if(tb){PThread.runExitHandlersAndDeinitThread(tb,exitCode);if(ENVIRONMENT_IS_PTHREAD){postMessage({\"cmd\":\"exit\"})}}},threadCancel:function(){PThread.runExitHandlersAndDeinitThread(_pthread_self(),-1);postMessage({\"cmd\":\"cancelDone\"})},terminateAllThreads:function(){for(var t in PThread.pthreads){var pthread=PThread.pthreads[t];if(pthread&&pthread.worker){PThread.returnWorkerToPool(pthread.worker)}}PThread.pthreads={};for(var i=0;i>2];GROWABLE_HEAP_I32()[pthread.threadInfoStruct+100>>2]=0;_free(tlsMemory);_free(pthread.threadInfoStruct)}pthread.threadInfoStruct=0;if(pthread.allocatedOwnStack&&pthread.stackBase)_free(pthread.stackBase);pthread.stackBase=0;if(pthread.worker)pthread.worker.pthread=null},returnWorkerToPool:function(worker){PThread.runWithoutMainThreadQueuedCalls(function(){delete PThread.pthreads[worker.pthread.threadInfoStruct];PThread.unusedWorkers.push(worker);PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(worker),1);PThread.freeThreadData(worker.pthread);worker.pthread=undefined})},runWithoutMainThreadQueuedCalls:function(func){GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls>>2]=0;try{func()}finally{GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls>>2]=1}},receiveObjectTransfer:function(data){},loadWasmModuleToWorker:function(worker,onFinishedLoading){worker.onmessage=function(e){var d=e[\"data\"];var cmd=d[\"cmd\"];if(worker.pthread)PThread.currentProxiedOperationCallerThread=worker.pthread.threadInfoStruct;if(d[\"targetThread\"]&&d[\"targetThread\"]!=_pthread_self()){var thread=PThread.pthreads[d.targetThread];if(thread){thread.worker.postMessage(e.data,d[\"transferList\"])}else{console.error('Internal error! Worker sent a message \"'+cmd+'\" to target pthread '+d[\"targetThread\"]+\", but that thread no longer exists!\")}PThread.currentProxiedOperationCallerThread=undefined;return}if(cmd===\"processQueuedMainThreadWork\"){_emscripten_main_thread_process_queued_calls()}else if(cmd===\"spawnThread\"){spawnThread(e.data)}else if(cmd===\"cleanupThread\"){cleanupThread(d[\"thread\"])}else if(cmd===\"killThread\"){killThread(d[\"thread\"])}else if(cmd===\"cancelThread\"){cancelThread(d[\"thread\"])}else if(cmd===\"loaded\"){worker.loaded=true;if(onFinishedLoading)onFinishedLoading(worker);if(worker.runPthread){worker.runPthread();delete worker.runPthread}}else if(cmd===\"print\"){out(\"Thread \"+d[\"threadId\"]+\": \"+d[\"text\"])}else if(cmd===\"printErr\"){err(\"Thread \"+d[\"threadId\"]+\": \"+d[\"text\"])}else if(cmd===\"alert\"){alert(\"Thread \"+d[\"threadId\"]+\": \"+d[\"text\"])}else if(cmd===\"exit\"){var detached=worker.pthread&&Atomics.load(GROWABLE_HEAP_U32(),worker.pthread.threadInfoStruct+64>>2);if(detached){PThread.returnWorkerToPool(worker)}}else if(cmd===\"exitProcess\"){try{exit(d[\"returnCode\"])}catch(e){if(e instanceof ExitStatus)return;throw e}}else if(cmd===\"cancelDone\"){PThread.returnWorkerToPool(worker)}else if(cmd===\"objectTransfer\"){PThread.receiveObjectTransfer(e.data)}else if(e.data.target===\"setimmediate\"){worker.postMessage(e.data)}else{err(\"worker sent an unknown command \"+cmd)}PThread.currentProxiedOperationCallerThread=undefined};worker.onerror=function(e){err(\"pthread sent an error! \"+e.filename+\":\"+e.lineno+\": \"+e.message)};if(ENVIRONMENT_IS_NODE){worker.on(\"message\",function(data){worker.onmessage({data:data})});worker.on(\"error\",function(data){worker.onerror(data)});worker.on(\"exit\",function(data){})}worker.postMessage({\"cmd\":\"load\",\"urlOrBlob\":Module[\"mainScriptUrlOrBlob\"]||_scriptDir,\"wasmMemory\":wasmMemory,\"wasmModule\":wasmModule})},allocateUnusedWorker:function(){var pthreadMainJs=locateFile(\"tfjs-backend-wasm-threaded-simd.worker.js\");PThread.unusedWorkers.push(new Worker(pthreadMainJs))},getNewWorker:function(){if(PThread.unusedWorkers.length==0){PThread.allocateUnusedWorker();PThread.loadWasmModuleToWorker(PThread.unusedWorkers[0])}if(PThread.unusedWorkers.length>0)return PThread.unusedWorkers.pop();else return null},busySpinWait:function(msecs){var t=performance.now()+msecs;while(performance.now()>2]=value;return value}function _atexit(func,arg){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(1,1,func,arg)}function __emscripten_notify_thread_queue(targetThreadId,mainThreadId){if(targetThreadId==mainThreadId){postMessage({\"cmd\":\"processQueuedMainThreadWork\"})}else if(ENVIRONMENT_IS_PTHREAD){postMessage({\"targetThread\":targetThreadId,\"cmd\":\"processThreadQueue\"})}else{var pthread=PThread.pthreads[targetThreadId];var worker=pthread&&pthread.worker;if(!worker){return}worker.postMessage({\"cmd\":\"processThreadQueue\"})}return 1}function _abort(){abort()}function _emscripten_asm_const_int(code,sigPtr,argbuf){var args=readAsmConstArgs(sigPtr,argbuf);return ASM_CONSTS[code].apply(null,args)}function _emscripten_conditional_set_current_thread_status(expectedStatus,newStatus){}function _emscripten_futex_wait(addr,val,timeout){if(addr<=0||addr>GROWABLE_HEAP_I8().length||addr&3!=0)return-28;if(!ENVIRONMENT_IS_WEB){var ret=Atomics.wait(GROWABLE_HEAP_I32(),addr>>2,val,timeout);if(ret===\"timed-out\")return-73;if(ret===\"not-equal\")return-6;if(ret===\"ok\")return 0;throw\"Atomics.wait returned an unexpected value \"+ret}else{if(Atomics.load(GROWABLE_HEAP_I32(),addr>>2)!=val){return-6}var tNow=performance.now();var tEnd=tNow+timeout;var lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,addr);while(1){tNow=performance.now();if(tNow>tEnd){lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,0);return-73}lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,0);if(lastAddr==0){break}_emscripten_main_thread_process_queued_calls();if(Atomics.load(GROWABLE_HEAP_I32(),addr>>2)!=val){return-6}lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,addr)}return 0}}function _emscripten_memcpy_big(dest,src,num){GROWABLE_HEAP_U8().copyWithin(dest,src,src+num)}function _emscripten_num_logical_cores(){if(ENVIRONMENT_IS_NODE)return require(\"os\").cpus().length;return navigator[\"hardwareConcurrency\"]}function _emscripten_proxy_to_main_thread_js(index,sync){var numCallArgs=arguments.length-2;var stack=stackSave();var serializedNumCallArgs=numCallArgs;var args=stackAlloc(serializedNumCallArgs*8);var b=args>>3;for(var i=0;i>=2;while(ch=GROWABLE_HEAP_U8()[sigPtr++]){var double=ch<105;if(double&&buf&1)buf++;readAsmConstArgsArray.push(double?GROWABLE_HEAP_F64()[buf++>>1]:GROWABLE_HEAP_I32()[buf]);++buf}return readAsmConstArgsArray}function _emscripten_receive_on_main_thread_js(index,numCallArgs,args){_emscripten_receive_on_main_thread_js_callArgs.length=numCallArgs;var b=args>>3;for(var i=0;i>>16);updateGlobalBufferAndViews(wasmMemory.buffer);return 1}catch(e){}}function _emscripten_resize_heap(requestedSize){var oldSize=_emscripten_get_heap_size();if(requestedSize<=oldSize){return false}var maxHeapSize=2147483648;if(requestedSize>maxHeapSize){return false}for(var cutDown=1;cutDown<=4;cutDown*=2){var overGrownHeapSize=oldSize*(1+.2/cutDown);overGrownHeapSize=Math.min(overGrownHeapSize,requestedSize+100663296);var newSize=Math.min(maxHeapSize,alignUp(Math.max(requestedSize,overGrownHeapSize),65536));var replacement=emscripten_realloc_buffer(newSize);if(replacement){return true}}return false}var JSEvents={inEventHandler:0,removeAllEventListeners:function(){for(var i=JSEvents.eventHandlers.length-1;i>=0;--i){JSEvents._removeHandler(i)}JSEvents.eventHandlers=[];JSEvents.deferredCalls=[]},registerRemoveEventListeners:function(){if(!JSEvents.removeEventListenersRegistered){__ATEXIT__.push(JSEvents.removeAllEventListeners);JSEvents.removeEventListenersRegistered=true}},deferredCalls:[],deferCall:function(targetFunction,precedence,argsList){function arraysHaveEqualContent(arrA,arrB){if(arrA.length!=arrB.length)return false;for(var i in arrA){if(arrA[i]!=arrB[i])return false}return true}for(var i in JSEvents.deferredCalls){var call=JSEvents.deferredCalls[i];if(call.targetFunction==targetFunction&&arraysHaveEqualContent(call.argsList,argsList)){return}}JSEvents.deferredCalls.push({targetFunction:targetFunction,precedence:precedence,argsList:argsList});JSEvents.deferredCalls.sort(function(x,y){return x.precedence>2]=eventTypeId;GROWABLE_HEAP_I32()[varargs+4>>2]=eventData;GROWABLE_HEAP_I32()[varargs+8>>2]=userData;__emscripten_call_on_thread(0,targetThread,637534208,eventHandlerFunc,eventData,varargs);stackRestore(stackTop)},getTargetThreadForEventCallback:function(targetThread){switch(targetThread){case 1:return 0;case 2:return PThread.currentProxiedOperationCallerThread;default:return targetThread}},getNodeNameForTarget:function(target){if(!target)return\"\";if(target==window)return\"#window\";if(target==screen)return\"#screen\";return target&&target.nodeName?target.nodeName:\"\"},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function stringToNewUTF8(jsString){var length=lengthBytesUTF8(jsString)+1;var cString=_malloc(length);stringToUTF8(jsString,cString,length);return cString}function _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread,targetCanvas,width,height){var stackTop=stackSave();var varargs=stackAlloc(12);var targetCanvasPtr=0;if(targetCanvas){targetCanvasPtr=stringToNewUTF8(targetCanvas)}GROWABLE_HEAP_I32()[varargs>>2]=targetCanvasPtr;GROWABLE_HEAP_I32()[varargs+4>>2]=width;GROWABLE_HEAP_I32()[varargs+8>>2]=height;__emscripten_call_on_thread(0,targetThread,657457152,0,targetCanvasPtr,varargs);stackRestore(stackTop)}function _emscripten_set_offscreencanvas_size_on_target_thread(targetThread,targetCanvas,width,height){targetCanvas=targetCanvas?UTF8ToString(targetCanvas):\"\";_emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread,targetCanvas,width,height)}function maybeCStringToJsString(cString){return cString>2?UTF8ToString(cString):cString}var specialHTMLTargets=[0,typeof document!==\"undefined\"?document:0,typeof window!==\"undefined\"?window:0];function findEventTarget(target){target=maybeCStringToJsString(target);var domElement=specialHTMLTargets[target]||(typeof document!==\"undefined\"?document.querySelector(target):undefined);return domElement}function findCanvasEventTarget(target){return findEventTarget(target)}function _emscripten_set_canvas_element_size_calling_thread(target,width,height){var canvas=findCanvasEventTarget(target);if(!canvas)return-4;if(canvas.canvasSharedPtr){GROWABLE_HEAP_I32()[canvas.canvasSharedPtr>>2]=width;GROWABLE_HEAP_I32()[canvas.canvasSharedPtr+4>>2]=height}if(canvas.offscreenCanvas||!canvas.controlTransferredOffscreen){if(canvas.offscreenCanvas)canvas=canvas.offscreenCanvas;var autoResizeViewport=false;if(canvas.GLctxObject&&canvas.GLctxObject.GLctx){var prevViewport=canvas.GLctxObject.GLctx.getParameter(2978);autoResizeViewport=prevViewport[0]===0&&prevViewport[1]===0&&prevViewport[2]===canvas.width&&prevViewport[3]===canvas.height}canvas.width=width;canvas.height=height;if(autoResizeViewport){canvas.GLctxObject.GLctx.viewport(0,0,width,height)}}else if(canvas.canvasSharedPtr){var targetThread=GROWABLE_HEAP_I32()[canvas.canvasSharedPtr+8>>2];_emscripten_set_offscreencanvas_size_on_target_thread(targetThread,target,width,height);return 1}else{return-4}return 0}function _emscripten_set_canvas_element_size_main_thread(target,width,height){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(2,1,target,width,height);return _emscripten_set_canvas_element_size_calling_thread(target,width,height)}function _emscripten_set_canvas_element_size(target,width,height){var canvas=findCanvasEventTarget(target);if(canvas){return _emscripten_set_canvas_element_size_calling_thread(target,width,height)}else{return _emscripten_set_canvas_element_size_main_thread(target,width,height)}}function _emscripten_set_current_thread_status(newStatus){}function _emscripten_set_thread_name(threadId,name){}function __webgl_enable_ANGLE_instanced_arrays(ctx){var ext=ctx.getExtension(\"ANGLE_instanced_arrays\");if(ext){ctx[\"vertexAttribDivisor\"]=function(index,divisor){ext[\"vertexAttribDivisorANGLE\"](index,divisor)};ctx[\"drawArraysInstanced\"]=function(mode,first,count,primcount){ext[\"drawArraysInstancedANGLE\"](mode,first,count,primcount)};ctx[\"drawElementsInstanced\"]=function(mode,count,type,indices,primcount){ext[\"drawElementsInstancedANGLE\"](mode,count,type,indices,primcount)};return 1}}function __webgl_enable_OES_vertex_array_object(ctx){var ext=ctx.getExtension(\"OES_vertex_array_object\");if(ext){ctx[\"createVertexArray\"]=function(){return ext[\"createVertexArrayOES\"]()};ctx[\"deleteVertexArray\"]=function(vao){ext[\"deleteVertexArrayOES\"](vao)};ctx[\"bindVertexArray\"]=function(vao){ext[\"bindVertexArrayOES\"](vao)};ctx[\"isVertexArray\"]=function(vao){return ext[\"isVertexArrayOES\"](vao)};return 1}}function __webgl_enable_WEBGL_draw_buffers(ctx){var ext=ctx.getExtension(\"WEBGL_draw_buffers\");if(ext){ctx[\"drawBuffers\"]=function(n,bufs){ext[\"drawBuffersWEBGL\"](n,bufs)};return 1}}function __webgl_enable_WEBGL_multi_draw(ctx){return!!(ctx.multiDrawWebgl=ctx.getExtension(\"WEBGL_multi_draw\"))}var GL={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function recordError(errorCode){if(!GL.lastError){GL.lastError=errorCode}},getNewId:function(table){var ret=GL.counter++;for(var i=table.length;i>2]:-1;source+=UTF8ToString(GROWABLE_HEAP_I32()[string+i*4>>2],len<0?undefined:len)}return source},createContext:function(canvas,webGLContextAttributes){var ctx=canvas.getContext(\"webgl\",webGLContextAttributes);if(!ctx)return 0;var handle=GL.registerContext(ctx,webGLContextAttributes);return handle},registerContext:function(ctx,webGLContextAttributes){var handle=_malloc(8);GROWABLE_HEAP_I32()[handle+4>>2]=_pthread_self();var context={handle:handle,attributes:webGLContextAttributes,version:webGLContextAttributes.majorVersion,GLctx:ctx};if(ctx.canvas)ctx.canvas.GLctxObject=context;GL.contexts[handle]=context;if(typeof webGLContextAttributes.enableExtensionsByDefault===\"undefined\"||webGLContextAttributes.enableExtensionsByDefault){GL.initExtensions(context)}return handle},makeContextCurrent:function(contextHandle){GL.currentContext=GL.contexts[contextHandle];Module.ctx=GLctx=GL.currentContext&&GL.currentContext.GLctx;return!(contextHandle&&!GLctx)},getContext:function(contextHandle){return GL.contexts[contextHandle]},deleteContext:function(contextHandle){if(GL.currentContext===GL.contexts[contextHandle])GL.currentContext=null;if(typeof JSEvents===\"object\")JSEvents.removeAllHandlersOnTarget(GL.contexts[contextHandle].GLctx.canvas);if(GL.contexts[contextHandle]&&GL.contexts[contextHandle].GLctx.canvas)GL.contexts[contextHandle].GLctx.canvas.GLctxObject=undefined;_free(GL.contexts[contextHandle].handle);GL.contexts[contextHandle]=null},initExtensions:function(context){if(!context)context=GL.currentContext;if(context.initExtensionsDone)return;context.initExtensionsDone=true;var GLctx=context.GLctx;__webgl_enable_ANGLE_instanced_arrays(GLctx);__webgl_enable_OES_vertex_array_object(GLctx);__webgl_enable_WEBGL_draw_buffers(GLctx);GLctx.disjointTimerQueryExt=GLctx.getExtension(\"EXT_disjoint_timer_query\");__webgl_enable_WEBGL_multi_draw(GLctx);var exts=GLctx.getSupportedExtensions()||[];exts.forEach(function(ext){if(ext.indexOf(\"lose_context\")<0&&ext.indexOf(\"debug\")<0){GLctx.getExtension(ext)}})},populateUniformTable:function(program){var p=GL.programs[program];var ptable=GL.programInfos[program]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1};var utable=ptable.uniforms;var numUniforms=GLctx.getProgramParameter(p,35718);for(var i=0;i>2;var powerPreference=GROWABLE_HEAP_I32()[a+(24>>2)];var contextAttributes={\"alpha\":!!GROWABLE_HEAP_I32()[a+(0>>2)],\"depth\":!!GROWABLE_HEAP_I32()[a+(4>>2)],\"stencil\":!!GROWABLE_HEAP_I32()[a+(8>>2)],\"antialias\":!!GROWABLE_HEAP_I32()[a+(12>>2)],\"premultipliedAlpha\":!!GROWABLE_HEAP_I32()[a+(16>>2)],\"preserveDrawingBuffer\":!!GROWABLE_HEAP_I32()[a+(20>>2)],\"powerPreference\":__emscripten_webgl_power_preferences[powerPreference],\"failIfMajorPerformanceCaveat\":!!GROWABLE_HEAP_I32()[a+(28>>2)],majorVersion:GROWABLE_HEAP_I32()[a+(32>>2)],minorVersion:GROWABLE_HEAP_I32()[a+(36>>2)],enableExtensionsByDefault:GROWABLE_HEAP_I32()[a+(40>>2)],explicitSwapControl:GROWABLE_HEAP_I32()[a+(44>>2)],proxyContextToMainThread:GROWABLE_HEAP_I32()[a+(48>>2)],renderViaOffscreenBackBuffer:GROWABLE_HEAP_I32()[a+(52>>2)]};var canvas=findCanvasEventTarget(target);if(!canvas){return 0}if(contextAttributes.explicitSwapControl){return 0}var contextHandle=GL.createContext(canvas,contextAttributes);return contextHandle}function _emscripten_webgl_create_context(a0,a1){return _emscripten_webgl_do_create_context(a0,a1)}var SYSCALLS={mappings:{},buffers:[null,[],[]],printChar:function(stream,curr){var buffer=SYSCALLS.buffers[stream];if(curr===0||curr===10){(stream===1?out:err)(UTF8ArrayToString(buffer,0));buffer.length=0}else{buffer.push(curr)}},varargs:undefined,get:function(){SYSCALLS.varargs+=4;var ret=GROWABLE_HEAP_I32()[SYSCALLS.varargs-4>>2];return ret},getStr:function(ptr){var ret=UTF8ToString(ptr);return ret},get64:function(low,high){return low}};function _fd_close(fd){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(3,1,fd);return 0}function _fd_seek(fd,offset_low,offset_high,whence,newOffset){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(4,1,fd,offset_low,offset_high,whence,newOffset)}function _fd_write(fd,iov,iovcnt,pnum){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(5,1,fd,iov,iovcnt,pnum);var num=0;for(var i=0;i>2];var len=GROWABLE_HEAP_I32()[iov+(i*8+4)>>2];for(var j=0;j>2]=num;return 0}function _pthread_cleanup_pop(execute){var routine=PThread.threadExitHandlers.pop();if(execute)routine()}function _pthread_cleanup_push(routine,arg){PThread.threadExitHandlers.push(function(){wasmTable.get(routine)(arg)})}function spawnThread(threadParams){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! spawnThread() can only ever be called from main application thread!\";var worker=PThread.getNewWorker();if(worker.pthread!==undefined)throw\"Internal error!\";if(!threadParams.pthread_ptr)throw\"Internal error, no pthread ptr!\";PThread.runningWorkers.push(worker);var tlsMemory=_malloc(128*4);for(var i=0;i<128;++i){GROWABLE_HEAP_I32()[tlsMemory+i*4>>2]=0}var stackHigh=threadParams.stackBase+threadParams.stackSize;var pthread=PThread.pthreads[threadParams.pthread_ptr]={worker:worker,stackBase:threadParams.stackBase,stackSize:threadParams.stackSize,allocatedOwnStack:threadParams.allocatedOwnStack,threadInfoStruct:threadParams.pthread_ptr};var tis=pthread.threadInfoStruct>>2;Atomics.store(GROWABLE_HEAP_U32(),tis+(64>>2),threadParams.detached);Atomics.store(GROWABLE_HEAP_U32(),tis+(100>>2),tlsMemory);Atomics.store(GROWABLE_HEAP_U32(),tis+(40>>2),pthread.threadInfoStruct);Atomics.store(GROWABLE_HEAP_U32(),tis+(80>>2),threadParams.stackSize);Atomics.store(GROWABLE_HEAP_U32(),tis+(76>>2),stackHigh);Atomics.store(GROWABLE_HEAP_U32(),tis+(104>>2),threadParams.stackSize);Atomics.store(GROWABLE_HEAP_U32(),tis+(104+8>>2),stackHigh);Atomics.store(GROWABLE_HEAP_U32(),tis+(104+12>>2),threadParams.detached);var global_libc=_emscripten_get_global_libc();var global_locale=global_libc+40;Atomics.store(GROWABLE_HEAP_U32(),tis+(172>>2),global_locale);worker.pthread=pthread;var msg={\"cmd\":\"run\",\"start_routine\":threadParams.startRoutine,\"arg\":threadParams.arg,\"threadInfoStruct\":threadParams.pthread_ptr,\"stackBase\":threadParams.stackBase,\"stackSize\":threadParams.stackSize};worker.runPthread=function(){msg.time=performance.now();worker.postMessage(msg,threadParams.transferList)};if(worker.loaded){worker.runPthread();delete worker.runPthread}}function _pthread_create(pthread_ptr,attr,start_routine,arg){if(typeof SharedArrayBuffer===\"undefined\"){err(\"Current environment does not support SharedArrayBuffer, pthreads are not available!\");return 6}if(!pthread_ptr){err(\"pthread_create called with a null thread pointer!\");return 28}var transferList=[];var error=0;if(ENVIRONMENT_IS_PTHREAD&&(transferList.length===0||error)){return _emscripten_sync_run_in_main_thread_4(687865856,pthread_ptr,attr,start_routine,arg)}if(error)return error;var stackSize=0;var stackBase=0;var detached=0;if(attr&&attr!=-1){stackSize=GROWABLE_HEAP_I32()[attr>>2];stackSize+=81920;stackBase=GROWABLE_HEAP_I32()[attr+8>>2];detached=GROWABLE_HEAP_I32()[attr+12>>2]!==0}else{stackSize=2097152}var allocatedOwnStack=stackBase==0;if(allocatedOwnStack){stackBase=_memalign(16,stackSize)}else{stackBase-=stackSize;assert(stackBase>0)}var threadInfoStruct=_malloc(228);for(var i=0;i<228>>2;++i)GROWABLE_HEAP_U32()[(threadInfoStruct>>2)+i]=0;GROWABLE_HEAP_I32()[pthread_ptr>>2]=threadInfoStruct;GROWABLE_HEAP_I32()[threadInfoStruct+12>>2]=threadInfoStruct;var headPtr=threadInfoStruct+152;GROWABLE_HEAP_I32()[headPtr>>2]=headPtr;var threadParams={stackBase:stackBase,stackSize:stackSize,allocatedOwnStack:allocatedOwnStack,detached:detached,startRoutine:start_routine,pthread_ptr:threadInfoStruct,arg:arg,transferList:transferList};if(ENVIRONMENT_IS_PTHREAD){threadParams.cmd=\"spawnThread\";postMessage(threadParams,transferList)}else{spawnThread(threadParams)}return 0}function _sysconf(name){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(6,1,name);switch(name){case 30:return 16384;case 85:var maxHeapSize=2147483648;return maxHeapSize/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:{if(typeof navigator===\"object\")return navigator[\"hardwareConcurrency\"]||1;return 1}}setErrNo(28);return-1}if(!ENVIRONMENT_IS_PTHREAD)PThread.initMainThreadBlock();var GLctx;var proxiedFunctionTable=[null,_atexit,_emscripten_set_canvas_element_size_main_thread,_fd_close,_fd_seek,_fd_write,_sysconf];var asmLibraryArg={\"e\":___assert_fail,\"r\":___call_main,\"x\":__emscripten_notify_thread_queue,\"b\":_abort,\"y\":_emscripten_asm_const_int,\"j\":_emscripten_conditional_set_current_thread_status,\"c\":_emscripten_futex_wait,\"d\":_emscripten_futex_wake,\"f\":_emscripten_get_now,\"p\":_emscripten_memcpy_big,\"z\":_emscripten_num_logical_cores,\"u\":_emscripten_receive_on_main_thread_js,\"q\":_emscripten_resize_heap,\"v\":_emscripten_set_canvas_element_size,\"i\":_emscripten_set_current_thread_status,\"t\":_emscripten_set_thread_name,\"w\":_emscripten_webgl_create_context,\"m\":_fd_close,\"n\":_fd_seek,\"g\":_fd_write,\"o\":initPthreadsJS,\"a\":wasmMemory||Module[\"wasmMemory\"],\"k\":_pthread_cleanup_pop,\"l\":_pthread_cleanup_push,\"h\":_pthread_create,\"s\":_sysconf};var asm=createWasm();var ___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=function(){return(___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=Module[\"asm\"][\"A\"]).apply(null,arguments)};var _init=Module[\"_init\"]=function(){return(_init=Module[\"_init\"]=Module[\"asm\"][\"B\"]).apply(null,arguments)};var _register_tensor=Module[\"_register_tensor\"]=function(){return(_register_tensor=Module[\"_register_tensor\"]=Module[\"asm\"][\"C\"]).apply(null,arguments)};var _dispose_data=Module[\"_dispose_data\"]=function(){return(_dispose_data=Module[\"_dispose_data\"]=Module[\"asm\"][\"D\"]).apply(null,arguments)};var _dispose=Module[\"_dispose\"]=function(){return(_dispose=Module[\"_dispose\"]=Module[\"asm\"][\"E\"]).apply(null,arguments)};var _Abs=Module[\"_Abs\"]=function(){return(_Abs=Module[\"_Abs\"]=Module[\"asm\"][\"G\"]).apply(null,arguments)};var _Add=Module[\"_Add\"]=function(){return(_Add=Module[\"_Add\"]=Module[\"asm\"][\"H\"]).apply(null,arguments)};var _AddN=Module[\"_AddN\"]=function(){return(_AddN=Module[\"_AddN\"]=Module[\"asm\"][\"I\"]).apply(null,arguments)};var _All=Module[\"_All\"]=function(){return(_All=Module[\"_All\"]=Module[\"asm\"][\"J\"]).apply(null,arguments)};var _Any=Module[\"_Any\"]=function(){return(_Any=Module[\"_Any\"]=Module[\"asm\"][\"K\"]).apply(null,arguments)};var _ArgMax=Module[\"_ArgMax\"]=function(){return(_ArgMax=Module[\"_ArgMax\"]=Module[\"asm\"][\"L\"]).apply(null,arguments)};var _AvgPool=Module[\"_AvgPool\"]=function(){return(_AvgPool=Module[\"_AvgPool\"]=Module[\"asm\"][\"M\"]).apply(null,arguments)};var _BatchMatMul=Module[\"_BatchMatMul\"]=function(){return(_BatchMatMul=Module[\"_BatchMatMul\"]=Module[\"asm\"][\"N\"]).apply(null,arguments)};var _Ceil=Module[\"_Ceil\"]=function(){return(_Ceil=Module[\"_Ceil\"]=Module[\"asm\"][\"O\"]).apply(null,arguments)};var _ClipByValue=Module[\"_ClipByValue\"]=function(){return(_ClipByValue=Module[\"_ClipByValue\"]=Module[\"asm\"][\"P\"]).apply(null,arguments)};var _Conv2D=Module[\"_Conv2D\"]=function(){return(_Conv2D=Module[\"_Conv2D\"]=Module[\"asm\"][\"Q\"]).apply(null,arguments)};var _Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=function(){return(_Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=Module[\"asm\"][\"R\"]).apply(null,arguments)};var _Cos=Module[\"_Cos\"]=function(){return(_Cos=Module[\"_Cos\"]=Module[\"asm\"][\"S\"]).apply(null,arguments)};var _CropAndResize=Module[\"_CropAndResize\"]=function(){return(_CropAndResize=Module[\"_CropAndResize\"]=Module[\"asm\"][\"T\"]).apply(null,arguments)};var _Cumsum=Module[\"_Cumsum\"]=function(){return(_Cumsum=Module[\"_Cumsum\"]=Module[\"asm\"][\"U\"]).apply(null,arguments)};var _DepthToSpace=Module[\"_DepthToSpace\"]=function(){return(_DepthToSpace=Module[\"_DepthToSpace\"]=Module[\"asm\"][\"V\"]).apply(null,arguments)};var _DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=function(){return(_DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=Module[\"asm\"][\"W\"]).apply(null,arguments)};var _Equal=Module[\"_Equal\"]=function(){return(_Equal=Module[\"_Equal\"]=Module[\"asm\"][\"X\"]).apply(null,arguments)};var _Exp=Module[\"_Exp\"]=function(){return(_Exp=Module[\"_Exp\"]=Module[\"asm\"][\"Y\"]).apply(null,arguments)};var _FlipLeftRight=Module[\"_FlipLeftRight\"]=function(){return(_FlipLeftRight=Module[\"_FlipLeftRight\"]=Module[\"asm\"][\"Z\"]).apply(null,arguments)};var _Floor=Module[\"_Floor\"]=function(){return(_Floor=Module[\"_Floor\"]=Module[\"asm\"][\"_\"]).apply(null,arguments)};var _FloorDiv=Module[\"_FloorDiv\"]=function(){return(_FloorDiv=Module[\"_FloorDiv\"]=Module[\"asm\"][\"$\"]).apply(null,arguments)};var _FusedBatchNorm=Module[\"_FusedBatchNorm\"]=function(){return(_FusedBatchNorm=Module[\"_FusedBatchNorm\"]=Module[\"asm\"][\"aa\"]).apply(null,arguments)};var _FusedConv2D=Module[\"_FusedConv2D\"]=function(){return(_FusedConv2D=Module[\"_FusedConv2D\"]=Module[\"asm\"][\"ba\"]).apply(null,arguments)};var _FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=function(){return(_FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=Module[\"asm\"][\"ca\"]).apply(null,arguments)};var _Gather=Module[\"_Gather\"]=function(){return(_Gather=Module[\"_Gather\"]=Module[\"asm\"][\"da\"]).apply(null,arguments)};var _GatherNd=Module[\"_GatherNd\"]=function(){return(_GatherNd=Module[\"_GatherNd\"]=Module[\"asm\"][\"ea\"]).apply(null,arguments)};var _Greater=Module[\"_Greater\"]=function(){return(_Greater=Module[\"_Greater\"]=Module[\"asm\"][\"fa\"]).apply(null,arguments)};var _GreaterEqual=Module[\"_GreaterEqual\"]=function(){return(_GreaterEqual=Module[\"_GreaterEqual\"]=Module[\"asm\"][\"ga\"]).apply(null,arguments)};var _LeakyRelu=Module[\"_LeakyRelu\"]=function(){return(_LeakyRelu=Module[\"_LeakyRelu\"]=Module[\"asm\"][\"ha\"]).apply(null,arguments)};var _Less=Module[\"_Less\"]=function(){return(_Less=Module[\"_Less\"]=Module[\"asm\"][\"ia\"]).apply(null,arguments)};var _LessEqual=Module[\"_LessEqual\"]=function(){return(_LessEqual=Module[\"_LessEqual\"]=Module[\"asm\"][\"ja\"]).apply(null,arguments)};var _Log=Module[\"_Log\"]=function(){return(_Log=Module[\"_Log\"]=Module[\"asm\"][\"ka\"]).apply(null,arguments)};var _LogicalAnd=Module[\"_LogicalAnd\"]=function(){return(_LogicalAnd=Module[\"_LogicalAnd\"]=Module[\"asm\"][\"la\"]).apply(null,arguments)};var _Max=Module[\"_Max\"]=function(){return(_Max=Module[\"_Max\"]=Module[\"asm\"][\"ma\"]).apply(null,arguments)};var _MaxPool=Module[\"_MaxPool\"]=function(){return(_MaxPool=Module[\"_MaxPool\"]=Module[\"asm\"][\"na\"]).apply(null,arguments)};var _Maximum=Module[\"_Maximum\"]=function(){return(_Maximum=Module[\"_Maximum\"]=Module[\"asm\"][\"oa\"]).apply(null,arguments)};var _Mean=Module[\"_Mean\"]=function(){return(_Mean=Module[\"_Mean\"]=Module[\"asm\"][\"pa\"]).apply(null,arguments)};var _Min=Module[\"_Min\"]=function(){return(_Min=Module[\"_Min\"]=Module[\"asm\"][\"qa\"]).apply(null,arguments)};var _Minimum=Module[\"_Minimum\"]=function(){return(_Minimum=Module[\"_Minimum\"]=Module[\"asm\"][\"ra\"]).apply(null,arguments)};var _MirrorPad=Module[\"_MirrorPad\"]=function(){return(_MirrorPad=Module[\"_MirrorPad\"]=Module[\"asm\"][\"sa\"]).apply(null,arguments)};var _Multiply=Module[\"_Multiply\"]=function(){return(_Multiply=Module[\"_Multiply\"]=Module[\"asm\"][\"ta\"]).apply(null,arguments)};var _Neg=Module[\"_Neg\"]=function(){return(_Neg=Module[\"_Neg\"]=Module[\"asm\"][\"ua\"]).apply(null,arguments)};var _NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=function(){return(_NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=Module[\"asm\"][\"va\"]).apply(null,arguments)};var _NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=function(){return(_NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=Module[\"asm\"][\"wa\"]).apply(null,arguments)};var _NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=function(){return(_NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=Module[\"asm\"][\"xa\"]).apply(null,arguments)};var _NotEqual=Module[\"_NotEqual\"]=function(){return(_NotEqual=Module[\"_NotEqual\"]=Module[\"asm\"][\"ya\"]).apply(null,arguments)};var _OneHot=Module[\"_OneHot\"]=function(){return(_OneHot=Module[\"_OneHot\"]=Module[\"asm\"][\"za\"]).apply(null,arguments)};var _PadV2=Module[\"_PadV2\"]=function(){return(_PadV2=Module[\"_PadV2\"]=Module[\"asm\"][\"Aa\"]).apply(null,arguments)};var _Pow=Module[\"_Pow\"]=function(){return(_Pow=Module[\"_Pow\"]=Module[\"asm\"][\"Ba\"]).apply(null,arguments)};var _Prelu=Module[\"_Prelu\"]=function(){return(_Prelu=Module[\"_Prelu\"]=Module[\"asm\"][\"Ca\"]).apply(null,arguments)};var _Prod=Module[\"_Prod\"]=function(){return(_Prod=Module[\"_Prod\"]=Module[\"asm\"][\"Da\"]).apply(null,arguments)};var _RealDiv=Module[\"_RealDiv\"]=function(){return(_RealDiv=Module[\"_RealDiv\"]=Module[\"asm\"][\"Ea\"]).apply(null,arguments)};var _Relu=Module[\"_Relu\"]=function(){return(_Relu=Module[\"_Relu\"]=Module[\"asm\"][\"Fa\"]).apply(null,arguments)};var _Relu6=Module[\"_Relu6\"]=function(){return(_Relu6=Module[\"_Relu6\"]=Module[\"asm\"][\"Ga\"]).apply(null,arguments)};var _ResizeBilinear=Module[\"_ResizeBilinear\"]=function(){return(_ResizeBilinear=Module[\"_ResizeBilinear\"]=Module[\"asm\"][\"Ha\"]).apply(null,arguments)};var _Reverse=Module[\"_Reverse\"]=function(){return(_Reverse=Module[\"_Reverse\"]=Module[\"asm\"][\"Ia\"]).apply(null,arguments)};var _RotateWithOffset=Module[\"_RotateWithOffset\"]=function(){return(_RotateWithOffset=Module[\"_RotateWithOffset\"]=Module[\"asm\"][\"Ja\"]).apply(null,arguments)};var _Round=Module[\"_Round\"]=function(){return(_Round=Module[\"_Round\"]=Module[\"asm\"][\"Ka\"]).apply(null,arguments)};var _Rsqrt=Module[\"_Rsqrt\"]=function(){return(_Rsqrt=Module[\"_Rsqrt\"]=Module[\"asm\"][\"La\"]).apply(null,arguments)};var _ScatterNd=Module[\"_ScatterNd\"]=function(){return(_ScatterNd=Module[\"_ScatterNd\"]=Module[\"asm\"][\"Ma\"]).apply(null,arguments)};var _SelectV2=Module[\"_SelectV2\"]=function(){return(_SelectV2=Module[\"_SelectV2\"]=Module[\"asm\"][\"Na\"]).apply(null,arguments)};var _Sigmoid=Module[\"_Sigmoid\"]=function(){return(_Sigmoid=Module[\"_Sigmoid\"]=Module[\"asm\"][\"Oa\"]).apply(null,arguments)};var _Sin=Module[\"_Sin\"]=function(){return(_Sin=Module[\"_Sin\"]=Module[\"asm\"][\"Pa\"]).apply(null,arguments)};var _Softmax=Module[\"_Softmax\"]=function(){return(_Softmax=Module[\"_Softmax\"]=Module[\"asm\"][\"Qa\"]).apply(null,arguments)};var _Sqrt=Module[\"_Sqrt\"]=function(){return(_Sqrt=Module[\"_Sqrt\"]=Module[\"asm\"][\"Ra\"]).apply(null,arguments)};var _Square=Module[\"_Square\"]=function(){return(_Square=Module[\"_Square\"]=Module[\"asm\"][\"Sa\"]).apply(null,arguments)};var _SquaredDifference=Module[\"_SquaredDifference\"]=function(){return(_SquaredDifference=Module[\"_SquaredDifference\"]=Module[\"asm\"][\"Ta\"]).apply(null,arguments)};var _Step=Module[\"_Step\"]=function(){return(_Step=Module[\"_Step\"]=Module[\"asm\"][\"Ua\"]).apply(null,arguments)};var _StridedSlice=Module[\"_StridedSlice\"]=function(){return(_StridedSlice=Module[\"_StridedSlice\"]=Module[\"asm\"][\"Va\"]).apply(null,arguments)};var _Sub=Module[\"_Sub\"]=function(){return(_Sub=Module[\"_Sub\"]=Module[\"asm\"][\"Wa\"]).apply(null,arguments)};var _Sum=Module[\"_Sum\"]=function(){return(_Sum=Module[\"_Sum\"]=Module[\"asm\"][\"Xa\"]).apply(null,arguments)};var _Tan=Module[\"_Tan\"]=function(){return(_Tan=Module[\"_Tan\"]=Module[\"asm\"][\"Ya\"]).apply(null,arguments)};var _Tanh=Module[\"_Tanh\"]=function(){return(_Tanh=Module[\"_Tanh\"]=Module[\"asm\"][\"Za\"]).apply(null,arguments)};var _Tile=Module[\"_Tile\"]=function(){return(_Tile=Module[\"_Tile\"]=Module[\"asm\"][\"_a\"]).apply(null,arguments)};var _TopK=Module[\"_TopK\"]=function(){return(_TopK=Module[\"_TopK\"]=Module[\"asm\"][\"$a\"]).apply(null,arguments)};var _Transpose=Module[\"_Transpose\"]=function(){return(_Transpose=Module[\"_Transpose\"]=Module[\"asm\"][\"ab\"]).apply(null,arguments)};var __FusedMatMul=Module[\"__FusedMatMul\"]=function(){return(__FusedMatMul=Module[\"__FusedMatMul\"]=Module[\"asm\"][\"bb\"]).apply(null,arguments)};var _malloc=Module[\"_malloc\"]=function(){return(_malloc=Module[\"_malloc\"]=Module[\"asm\"][\"cb\"]).apply(null,arguments)};var _free=Module[\"_free\"]=function(){return(_free=Module[\"_free\"]=Module[\"asm\"][\"db\"]).apply(null,arguments)};var ___errno_location=Module[\"___errno_location\"]=function(){return(___errno_location=Module[\"___errno_location\"]=Module[\"asm\"][\"eb\"]).apply(null,arguments)};var _emscripten_get_global_libc=Module[\"_emscripten_get_global_libc\"]=function(){return(_emscripten_get_global_libc=Module[\"_emscripten_get_global_libc\"]=Module[\"asm\"][\"fb\"]).apply(null,arguments)};var _pthread_self=Module[\"_pthread_self\"]=function(){return(_pthread_self=Module[\"_pthread_self\"]=Module[\"asm\"][\"gb\"]).apply(null,arguments)};var ___pthread_tsd_run_dtors=Module[\"___pthread_tsd_run_dtors\"]=function(){return(___pthread_tsd_run_dtors=Module[\"___pthread_tsd_run_dtors\"]=Module[\"asm\"][\"hb\"]).apply(null,arguments)};var _emscripten_main_thread_process_queued_calls=Module[\"_emscripten_main_thread_process_queued_calls\"]=function(){return(_emscripten_main_thread_process_queued_calls=Module[\"_emscripten_main_thread_process_queued_calls\"]=Module[\"asm\"][\"ib\"]).apply(null,arguments)};var _emscripten_current_thread_process_queued_calls=Module[\"_emscripten_current_thread_process_queued_calls\"]=function(){return(_emscripten_current_thread_process_queued_calls=Module[\"_emscripten_current_thread_process_queued_calls\"]=Module[\"asm\"][\"jb\"]).apply(null,arguments)};var _emscripten_register_main_browser_thread_id=Module[\"_emscripten_register_main_browser_thread_id\"]=function(){return(_emscripten_register_main_browser_thread_id=Module[\"_emscripten_register_main_browser_thread_id\"]=Module[\"asm\"][\"kb\"]).apply(null,arguments)};var __emscripten_do_dispatch_to_thread=Module[\"__emscripten_do_dispatch_to_thread\"]=function(){return(__emscripten_do_dispatch_to_thread=Module[\"__emscripten_do_dispatch_to_thread\"]=Module[\"asm\"][\"lb\"]).apply(null,arguments)};var _emscripten_sync_run_in_main_thread_4=Module[\"_emscripten_sync_run_in_main_thread_4\"]=function(){return(_emscripten_sync_run_in_main_thread_4=Module[\"_emscripten_sync_run_in_main_thread_4\"]=Module[\"asm\"][\"mb\"]).apply(null,arguments)};var _emscripten_run_in_main_runtime_thread_js=Module[\"_emscripten_run_in_main_runtime_thread_js\"]=function(){return(_emscripten_run_in_main_runtime_thread_js=Module[\"_emscripten_run_in_main_runtime_thread_js\"]=Module[\"asm\"][\"nb\"]).apply(null,arguments)};var __emscripten_call_on_thread=Module[\"__emscripten_call_on_thread\"]=function(){return(__emscripten_call_on_thread=Module[\"__emscripten_call_on_thread\"]=Module[\"asm\"][\"ob\"]).apply(null,arguments)};var _emscripten_tls_init=Module[\"_emscripten_tls_init\"]=function(){return(_emscripten_tls_init=Module[\"_emscripten_tls_init\"]=Module[\"asm\"][\"pb\"]).apply(null,arguments)};var __emscripten_thread_init=Module[\"__emscripten_thread_init\"]=function(){return(__emscripten_thread_init=Module[\"__emscripten_thread_init\"]=Module[\"asm\"][\"qb\"]).apply(null,arguments)};var stackSave=Module[\"stackSave\"]=function(){return(stackSave=Module[\"stackSave\"]=Module[\"asm\"][\"rb\"]).apply(null,arguments)};var stackRestore=Module[\"stackRestore\"]=function(){return(stackRestore=Module[\"stackRestore\"]=Module[\"asm\"][\"sb\"]).apply(null,arguments)};var stackAlloc=Module[\"stackAlloc\"]=function(){return(stackAlloc=Module[\"stackAlloc\"]=Module[\"asm\"][\"tb\"]).apply(null,arguments)};var _emscripten_stack_set_limits=Module[\"_emscripten_stack_set_limits\"]=function(){return(_emscripten_stack_set_limits=Module[\"_emscripten_stack_set_limits\"]=Module[\"asm\"][\"ub\"]).apply(null,arguments)};var _memalign=Module[\"_memalign\"]=function(){return(_memalign=Module[\"_memalign\"]=Module[\"asm\"][\"vb\"]).apply(null,arguments)};var __emscripten_allow_main_runtime_queued_calls=Module[\"__emscripten_allow_main_runtime_queued_calls\"]=9808;var __emscripten_main_thread_futex=Module[\"__emscripten_main_thread_futex\"]=11432;Module[\"cwrap\"]=cwrap;Module[\"PThread\"]=PThread;Module[\"PThread\"]=PThread;Module[\"wasmMemory\"]=wasmMemory;Module[\"ExitStatus\"]=ExitStatus;var calledRun;function ExitStatus(status){this.name=\"ExitStatus\";this.message=\"Program terminated with exit(\"+status+\")\";this.status=status}dependenciesFulfilled=function runCaller(){if(!calledRun)run();if(!calledRun)dependenciesFulfilled=runCaller};function run(args){args=args||arguments_;if(runDependencies>0){return}if(ENVIRONMENT_IS_PTHREAD){readyPromiseResolve(Module);initRuntime();postMessage({\"cmd\":\"loaded\"});return}preRun();if(runDependencies>0){return}function doRun(){if(calledRun)return;calledRun=true;Module[\"calledRun\"]=true;if(ABORT)return;initRuntime();preMain();readyPromiseResolve(Module);if(Module[\"onRuntimeInitialized\"])Module[\"onRuntimeInitialized\"]();postRun()}if(Module[\"setStatus\"]){Module[\"setStatus\"](\"Running...\");setTimeout(function(){setTimeout(function(){Module[\"setStatus\"](\"\")},1);doRun()},1)}else{doRun()}}Module[\"run\"]=run;function exit(status,implicit){if(implicit&&noExitRuntime&&status===0){return}if(!implicit){if(ENVIRONMENT_IS_PTHREAD){postMessage({\"cmd\":\"exitProcess\",\"returnCode\":status});throw new ExitStatus(status)}else{}}if(noExitRuntime){}else{PThread.terminateAllThreads();EXITSTATUS=status;exitRuntime();if(Module[\"onExit\"])Module[\"onExit\"](status);ABORT=true}quit_(status,new ExitStatus(status))}if(Module[\"preInit\"]){if(typeof Module[\"preInit\"]==\"function\")Module[\"preInit\"]=[Module[\"preInit\"]];while(Module[\"preInit\"].length>0){Module[\"preInit\"].pop()()}}if(ENVIRONMENT_IS_PTHREAD){noExitRuntime=false;PThread.initWorker()}run();\n\n\n return WasmBackendModuleThreadedSimd.ready\n}\n);\n})();\nif (typeof exports === 'object' && typeof module === 'object')\n module.exports = WasmBackendModuleThreadedSimd;\nelse if (typeof define === 'function' && define['amd'])\n define([], function() { return WasmBackendModuleThreadedSimd; });\nelse if (typeof exports === 'object')\n exports[\"WasmBackendModuleThreadedSimd\"] = WasmBackendModuleThreadedSimd;\n", "\nvar WasmBackendModule = (function() {\n var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined;\n if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename;\n return (\nfunction(WasmBackendModule) {\n WasmBackendModule = WasmBackendModule || {};\n\nvar Module=typeof WasmBackendModule!==\"undefined\"?WasmBackendModule:{};var readyPromiseResolve,readyPromiseReject;Module[\"ready\"]=new Promise(function(resolve,reject){readyPromiseResolve=resolve;readyPromiseReject=reject});var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key]}}var arguments_=[];var thisProgram=\"./this.program\";var quit_=function(status,toThrow){throw toThrow};var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;ENVIRONMENT_IS_WEB=typeof window===\"object\";ENVIRONMENT_IS_WORKER=typeof importScripts===\"function\";ENVIRONMENT_IS_NODE=typeof process===\"object\"&&typeof process.versions===\"object\"&&typeof process.versions.node===\"string\";ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var scriptDirectory=\"\";function locateFile(path){if(Module[\"locateFile\"]){return Module[\"locateFile\"](path,scriptDirectory)}return scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle;var nodeFS;var nodePath;if(ENVIRONMENT_IS_NODE){if(ENVIRONMENT_IS_WORKER){scriptDirectory=require(\"path\").dirname(scriptDirectory)+\"/\"}else{scriptDirectory=__dirname+\"/\"}read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require(\"fs\");if(!nodePath)nodePath=require(\"path\");filename=nodePath[\"normalize\"](filename);return nodeFS[\"readFileSync\"](filename,binary?null:\"utf8\")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret};if(process[\"argv\"].length>1){thisProgram=process[\"argv\"][1].replace(/\\\\/g,\"/\")}arguments_=process[\"argv\"].slice(2);process[\"on\"](\"uncaughtException\",function(ex){if(!(ex instanceof ExitStatus)){throw ex}});process[\"on\"](\"unhandledRejection\",abort);quit_=function(status){process[\"exit\"](status)};Module[\"inspect\"]=function(){return\"[Emscripten Module object]\"}}else if(ENVIRONMENT_IS_SHELL){if(typeof read!=\"undefined\"){read_=function shell_read(f){return read(f)}}readBinary=function readBinary(f){var data;if(typeof readbuffer===\"function\"){return new Uint8Array(readbuffer(f))}data=read(f,\"binary\");assert(typeof data===\"object\");return data};if(typeof scriptArgs!=\"undefined\"){arguments_=scriptArgs}else if(typeof arguments!=\"undefined\"){arguments_=arguments}if(typeof quit===\"function\"){quit_=function(status){quit(status)}}if(typeof print!==\"undefined\"){if(typeof console===\"undefined\")console={};console.log=print;console.warn=console.error=typeof printErr!==\"undefined\"?printErr:print}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href}else if(typeof document!==\"undefined\"&&document.currentScript){scriptDirectory=document.currentScript.src}if(_scriptDir){scriptDirectory=_scriptDir}if(scriptDirectory.indexOf(\"blob:\")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf(\"/\")+1)}else{scriptDirectory=\"\"}{read_=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.send(null);return xhr.responseText};if(ENVIRONMENT_IS_WORKER){readBinary=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.responseType=\"arraybuffer\";xhr.send(null);return new Uint8Array(xhr.response)}}readAsync=function(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,true);xhr.responseType=\"arraybuffer\";xhr.onload=function(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}onerror()};xhr.onerror=onerror;xhr.send(null)}}setWindowTitle=function(title){document.title=title}}else{}var out=Module[\"print\"]||console.log.bind(console);var err=Module[\"printErr\"]||console.warn.bind(console);for(key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key]}}moduleOverrides=null;if(Module[\"arguments\"])arguments_=Module[\"arguments\"];if(Module[\"thisProgram\"])thisProgram=Module[\"thisProgram\"];if(Module[\"quit\"])quit_=Module[\"quit\"];var wasmBinary;if(Module[\"wasmBinary\"])wasmBinary=Module[\"wasmBinary\"];var noExitRuntime=Module[\"noExitRuntime\"]||true;if(typeof WebAssembly!==\"object\"){abort(\"no native wasm support detected\")}var wasmMemory;var ABORT=false;var EXITSTATUS;function assert(condition,text){if(!condition){abort(\"Assertion failed: \"+text)}}function getCFunc(ident){var func=Module[\"_\"+ident];assert(func,\"Cannot call unknown function \"+ident+\", make sure it is exported\");return func}function ccall(ident,returnType,argTypes,args,opts){var toC={\"string\":function(str){var ret=0;if(str!==null&&str!==undefined&&str!==0){var len=(str.length<<2)+1;ret=stackAlloc(len);stringToUTF8(str,ret,len)}return ret},\"array\":function(arr){var ret=stackAlloc(arr.length);writeArrayToMemory(arr,ret);return ret}};function convertReturnValue(ret){if(returnType===\"string\")return UTF8ToString(ret);if(returnType===\"boolean\")return Boolean(ret);return ret}var func=getCFunc(ident);var cArgs=[];var stack=0;if(args){for(var i=0;i=endIdx))++endPtr;if(endPtr-idx>16&&heap.subarray&&UTF8Decoder){return UTF8Decoder.decode(heap.subarray(idx,endPtr))}else{var str=\"\";while(idx>10,56320|ch&1023)}}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(HEAPU8,ptr,maxBytesToRead):\"\"}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6;heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18;heap[outIdx++]=128|u>>12&63;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}}heap[outIdx]=0;return outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,HEAPU8,outPtr,maxBytesToWrite)}function writeArrayToMemory(array,buffer){HEAP8.set(array,buffer)}function alignUp(x,multiple){if(x%multiple>0){x+=multiple-x%multiple}return x}var buffer,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBufferAndViews(buf){buffer=buf;Module[\"HEAP8\"]=HEAP8=new Int8Array(buf);Module[\"HEAP16\"]=HEAP16=new Int16Array(buf);Module[\"HEAP32\"]=HEAP32=new Int32Array(buf);Module[\"HEAPU8\"]=HEAPU8=new Uint8Array(buf);Module[\"HEAPU16\"]=HEAPU16=new Uint16Array(buf);Module[\"HEAPU32\"]=HEAPU32=new Uint32Array(buf);Module[\"HEAPF32\"]=HEAPF32=new Float32Array(buf);Module[\"HEAPF64\"]=HEAPF64=new Float64Array(buf)}var INITIAL_MEMORY=Module[\"INITIAL_MEMORY\"]||16777216;var wasmTable;var __ATPRERUN__=[];var __ATINIT__=[];var __ATMAIN__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;__ATINIT__.push({func:function(){___wasm_call_ctors()}});function preRun(){if(Module[\"preRun\"]){if(typeof Module[\"preRun\"]==\"function\")Module[\"preRun\"]=[Module[\"preRun\"]];while(Module[\"preRun\"].length){addOnPreRun(Module[\"preRun\"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=true;callRuntimeCallbacks(__ATINIT__)}function preMain(){callRuntimeCallbacks(__ATMAIN__)}function postRun(){if(Module[\"postRun\"]){if(typeof Module[\"postRun\"]==\"function\")Module[\"postRun\"]=[Module[\"postRun\"]];while(Module[\"postRun\"].length){addOnPostRun(Module[\"postRun\"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function addRunDependency(id){runDependencies++;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}Module[\"preloadedImages\"]={};Module[\"preloadedAudios\"]={};function abort(what){if(Module[\"onAbort\"]){Module[\"onAbort\"](what)}what+=\"\";err(what);ABORT=true;EXITSTATUS=1;what=\"abort(\"+what+\"). Build with -s ASSERTIONS=1 for more info.\";var e=new WebAssembly.RuntimeError(what);readyPromiseReject(e);throw e}function hasPrefix(str,prefix){return String.prototype.startsWith?str.startsWith(prefix):str.indexOf(prefix)===0}var dataURIPrefix=\"data:application/octet-stream;base64,\";function isDataURI(filename){return hasPrefix(filename,dataURIPrefix)}var fileURIPrefix=\"file://\";function isFileURI(filename){return hasPrefix(filename,fileURIPrefix)}var wasmBinaryFile=\"tfjs-backend-wasm.wasm\";if(!isDataURI(wasmBinaryFile)){wasmBinaryFile=locateFile(wasmBinaryFile)}function getBinary(file){try{if(file==wasmBinaryFile&&wasmBinary){return new Uint8Array(wasmBinary)}if(readBinary){return readBinary(file)}else{throw\"both async and sync fetching of the wasm failed\"}}catch(err){abort(err)}}function getBinaryPromise(){if(!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)){if(typeof fetch===\"function\"&&!isFileURI(wasmBinaryFile)){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){if(!response[\"ok\"]){throw\"failed to load wasm binary file at '\"+wasmBinaryFile+\"'\"}return response[\"arrayBuffer\"]()}).catch(function(){return getBinary(wasmBinaryFile)})}else{if(readAsync){return new Promise(function(resolve,reject){readAsync(wasmBinaryFile,function(response){resolve(new Uint8Array(response))},reject)})}}}return Promise.resolve().then(function(){return getBinary(wasmBinaryFile)})}function createWasm(){var info={\"a\":asmLibraryArg};function receiveInstance(instance,module){var exports=instance.exports;Module[\"asm\"]=exports;wasmMemory=Module[\"asm\"][\"i\"];updateGlobalBufferAndViews(wasmMemory.buffer);wasmTable=Module[\"asm\"][\"o\"];removeRunDependency(\"wasm-instantiate\")}addRunDependency(\"wasm-instantiate\");function receiveInstantiatedSource(output){receiveInstance(output[\"instance\"])}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){return WebAssembly.instantiate(binary,info)}).then(receiver,function(reason){err(\"failed to asynchronously prepare wasm: \"+reason);abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming===\"function\"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&typeof fetch===\"function\"){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiatedSource,function(reason){err(\"wasm streaming compile failed: \"+reason);err(\"falling back to ArrayBuffer instantiation\");return instantiateArrayBuffer(receiveInstantiatedSource)})})}else{return instantiateArrayBuffer(receiveInstantiatedSource)}}if(Module[\"instantiateWasm\"]){try{var exports=Module[\"instantiateWasm\"](info,receiveInstance);return exports}catch(e){err(\"Module.instantiateWasm callback failed with error: \"+e);return false}}instantiateAsync().catch(readyPromiseReject);return{}}function callRuntimeCallbacks(callbacks){while(callbacks.length>0){var callback=callbacks.shift();if(typeof callback==\"function\"){callback(Module);continue}var func=callback.func;if(typeof func===\"number\"){if(callback.arg===undefined){wasmTable.get(func)()}else{wasmTable.get(func)(callback.arg)}}else{func(callback.arg===undefined?null:callback.arg)}}}function _abort(){abort()}function _emscripten_memcpy_big(dest,src,num){HEAPU8.copyWithin(dest,src,src+num)}function _emscripten_get_heap_size(){return HEAPU8.length}function emscripten_realloc_buffer(size){try{wasmMemory.grow(size-buffer.byteLength+65535>>>16);updateGlobalBufferAndViews(wasmMemory.buffer);return 1}catch(e){}}function _emscripten_resize_heap(requestedSize){var oldSize=_emscripten_get_heap_size();var maxHeapSize=2147483648;if(requestedSize>maxHeapSize){return false}for(var cutDown=1;cutDown<=4;cutDown*=2){var overGrownHeapSize=oldSize*(1+.2/cutDown);overGrownHeapSize=Math.min(overGrownHeapSize,requestedSize+100663296);var newSize=Math.min(maxHeapSize,alignUp(Math.max(requestedSize,overGrownHeapSize),65536));var replacement=emscripten_realloc_buffer(newSize);if(replacement){return true}}return false}var SYSCALLS={mappings:{},buffers:[null,[],[]],printChar:function(stream,curr){var buffer=SYSCALLS.buffers[stream];if(curr===0||curr===10){(stream===1?out:err)(UTF8ArrayToString(buffer,0));buffer.length=0}else{buffer.push(curr)}},varargs:undefined,get:function(){SYSCALLS.varargs+=4;var ret=HEAP32[SYSCALLS.varargs-4>>2];return ret},getStr:function(ptr){var ret=UTF8ToString(ptr);return ret},get64:function(low,high){return low}};function _fd_close(fd){return 0}function _fd_seek(fd,offset_low,offset_high,whence,newOffset){}function _fd_write(fd,iov,iovcnt,pnum){var num=0;for(var i=0;i>2];var len=HEAP32[iov+(i*8+4)>>2];for(var j=0;j>2]=num;return 0}function _pthread_create(){return 6}function setErrNo(value){HEAP32[___errno_location()>>2]=value;return value}function _sysconf(name){switch(name){case 30:return 16384;case 85:var maxHeapSize=2147483648;return maxHeapSize/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:{if(typeof navigator===\"object\")return navigator[\"hardwareConcurrency\"]||1;return 1}}setErrNo(28);return-1}var asmLibraryArg={\"a\":_abort,\"d\":_emscripten_memcpy_big,\"e\":_emscripten_resize_heap,\"f\":_fd_close,\"c\":_fd_seek,\"b\":_fd_write,\"g\":_pthread_create,\"h\":_sysconf};var asm=createWasm();var ___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=function(){return(___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=Module[\"asm\"][\"j\"]).apply(null,arguments)};var _init=Module[\"_init\"]=function(){return(_init=Module[\"_init\"]=Module[\"asm\"][\"k\"]).apply(null,arguments)};var _register_tensor=Module[\"_register_tensor\"]=function(){return(_register_tensor=Module[\"_register_tensor\"]=Module[\"asm\"][\"l\"]).apply(null,arguments)};var _dispose_data=Module[\"_dispose_data\"]=function(){return(_dispose_data=Module[\"_dispose_data\"]=Module[\"asm\"][\"m\"]).apply(null,arguments)};var _dispose=Module[\"_dispose\"]=function(){return(_dispose=Module[\"_dispose\"]=Module[\"asm\"][\"n\"]).apply(null,arguments)};var _Abs=Module[\"_Abs\"]=function(){return(_Abs=Module[\"_Abs\"]=Module[\"asm\"][\"p\"]).apply(null,arguments)};var _Add=Module[\"_Add\"]=function(){return(_Add=Module[\"_Add\"]=Module[\"asm\"][\"q\"]).apply(null,arguments)};var _AddN=Module[\"_AddN\"]=function(){return(_AddN=Module[\"_AddN\"]=Module[\"asm\"][\"r\"]).apply(null,arguments)};var _All=Module[\"_All\"]=function(){return(_All=Module[\"_All\"]=Module[\"asm\"][\"s\"]).apply(null,arguments)};var _Any=Module[\"_Any\"]=function(){return(_Any=Module[\"_Any\"]=Module[\"asm\"][\"t\"]).apply(null,arguments)};var _ArgMax=Module[\"_ArgMax\"]=function(){return(_ArgMax=Module[\"_ArgMax\"]=Module[\"asm\"][\"u\"]).apply(null,arguments)};var _AvgPool=Module[\"_AvgPool\"]=function(){return(_AvgPool=Module[\"_AvgPool\"]=Module[\"asm\"][\"v\"]).apply(null,arguments)};var _BatchMatMul=Module[\"_BatchMatMul\"]=function(){return(_BatchMatMul=Module[\"_BatchMatMul\"]=Module[\"asm\"][\"w\"]).apply(null,arguments)};var _Ceil=Module[\"_Ceil\"]=function(){return(_Ceil=Module[\"_Ceil\"]=Module[\"asm\"][\"x\"]).apply(null,arguments)};var _ClipByValue=Module[\"_ClipByValue\"]=function(){return(_ClipByValue=Module[\"_ClipByValue\"]=Module[\"asm\"][\"y\"]).apply(null,arguments)};var _Conv2D=Module[\"_Conv2D\"]=function(){return(_Conv2D=Module[\"_Conv2D\"]=Module[\"asm\"][\"z\"]).apply(null,arguments)};var _Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=function(){return(_Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=Module[\"asm\"][\"A\"]).apply(null,arguments)};var _Cos=Module[\"_Cos\"]=function(){return(_Cos=Module[\"_Cos\"]=Module[\"asm\"][\"B\"]).apply(null,arguments)};var _CropAndResize=Module[\"_CropAndResize\"]=function(){return(_CropAndResize=Module[\"_CropAndResize\"]=Module[\"asm\"][\"C\"]).apply(null,arguments)};var _Cumsum=Module[\"_Cumsum\"]=function(){return(_Cumsum=Module[\"_Cumsum\"]=Module[\"asm\"][\"D\"]).apply(null,arguments)};var _DepthToSpace=Module[\"_DepthToSpace\"]=function(){return(_DepthToSpace=Module[\"_DepthToSpace\"]=Module[\"asm\"][\"E\"]).apply(null,arguments)};var _DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=function(){return(_DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=Module[\"asm\"][\"F\"]).apply(null,arguments)};var _Equal=Module[\"_Equal\"]=function(){return(_Equal=Module[\"_Equal\"]=Module[\"asm\"][\"G\"]).apply(null,arguments)};var _Exp=Module[\"_Exp\"]=function(){return(_Exp=Module[\"_Exp\"]=Module[\"asm\"][\"H\"]).apply(null,arguments)};var _FlipLeftRight=Module[\"_FlipLeftRight\"]=function(){return(_FlipLeftRight=Module[\"_FlipLeftRight\"]=Module[\"asm\"][\"I\"]).apply(null,arguments)};var _Floor=Module[\"_Floor\"]=function(){return(_Floor=Module[\"_Floor\"]=Module[\"asm\"][\"J\"]).apply(null,arguments)};var _FloorDiv=Module[\"_FloorDiv\"]=function(){return(_FloorDiv=Module[\"_FloorDiv\"]=Module[\"asm\"][\"K\"]).apply(null,arguments)};var _FusedBatchNorm=Module[\"_FusedBatchNorm\"]=function(){return(_FusedBatchNorm=Module[\"_FusedBatchNorm\"]=Module[\"asm\"][\"L\"]).apply(null,arguments)};var _FusedConv2D=Module[\"_FusedConv2D\"]=function(){return(_FusedConv2D=Module[\"_FusedConv2D\"]=Module[\"asm\"][\"M\"]).apply(null,arguments)};var _FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=function(){return(_FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=Module[\"asm\"][\"N\"]).apply(null,arguments)};var _Gather=Module[\"_Gather\"]=function(){return(_Gather=Module[\"_Gather\"]=Module[\"asm\"][\"O\"]).apply(null,arguments)};var _GatherNd=Module[\"_GatherNd\"]=function(){return(_GatherNd=Module[\"_GatherNd\"]=Module[\"asm\"][\"P\"]).apply(null,arguments)};var _Greater=Module[\"_Greater\"]=function(){return(_Greater=Module[\"_Greater\"]=Module[\"asm\"][\"Q\"]).apply(null,arguments)};var _GreaterEqual=Module[\"_GreaterEqual\"]=function(){return(_GreaterEqual=Module[\"_GreaterEqual\"]=Module[\"asm\"][\"R\"]).apply(null,arguments)};var _LeakyRelu=Module[\"_LeakyRelu\"]=function(){return(_LeakyRelu=Module[\"_LeakyRelu\"]=Module[\"asm\"][\"S\"]).apply(null,arguments)};var _Less=Module[\"_Less\"]=function(){return(_Less=Module[\"_Less\"]=Module[\"asm\"][\"T\"]).apply(null,arguments)};var _LessEqual=Module[\"_LessEqual\"]=function(){return(_LessEqual=Module[\"_LessEqual\"]=Module[\"asm\"][\"U\"]).apply(null,arguments)};var _Log=Module[\"_Log\"]=function(){return(_Log=Module[\"_Log\"]=Module[\"asm\"][\"V\"]).apply(null,arguments)};var _LogicalAnd=Module[\"_LogicalAnd\"]=function(){return(_LogicalAnd=Module[\"_LogicalAnd\"]=Module[\"asm\"][\"W\"]).apply(null,arguments)};var _Max=Module[\"_Max\"]=function(){return(_Max=Module[\"_Max\"]=Module[\"asm\"][\"X\"]).apply(null,arguments)};var _MaxPool=Module[\"_MaxPool\"]=function(){return(_MaxPool=Module[\"_MaxPool\"]=Module[\"asm\"][\"Y\"]).apply(null,arguments)};var _Maximum=Module[\"_Maximum\"]=function(){return(_Maximum=Module[\"_Maximum\"]=Module[\"asm\"][\"Z\"]).apply(null,arguments)};var _Mean=Module[\"_Mean\"]=function(){return(_Mean=Module[\"_Mean\"]=Module[\"asm\"][\"_\"]).apply(null,arguments)};var _Min=Module[\"_Min\"]=function(){return(_Min=Module[\"_Min\"]=Module[\"asm\"][\"$\"]).apply(null,arguments)};var _Minimum=Module[\"_Minimum\"]=function(){return(_Minimum=Module[\"_Minimum\"]=Module[\"asm\"][\"aa\"]).apply(null,arguments)};var _MirrorPad=Module[\"_MirrorPad\"]=function(){return(_MirrorPad=Module[\"_MirrorPad\"]=Module[\"asm\"][\"ba\"]).apply(null,arguments)};var _Multiply=Module[\"_Multiply\"]=function(){return(_Multiply=Module[\"_Multiply\"]=Module[\"asm\"][\"ca\"]).apply(null,arguments)};var _Neg=Module[\"_Neg\"]=function(){return(_Neg=Module[\"_Neg\"]=Module[\"asm\"][\"da\"]).apply(null,arguments)};var _NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=function(){return(_NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=Module[\"asm\"][\"ea\"]).apply(null,arguments)};var _NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=function(){return(_NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=Module[\"asm\"][\"fa\"]).apply(null,arguments)};var _NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=function(){return(_NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=Module[\"asm\"][\"ga\"]).apply(null,arguments)};var _NotEqual=Module[\"_NotEqual\"]=function(){return(_NotEqual=Module[\"_NotEqual\"]=Module[\"asm\"][\"ha\"]).apply(null,arguments)};var _OneHot=Module[\"_OneHot\"]=function(){return(_OneHot=Module[\"_OneHot\"]=Module[\"asm\"][\"ia\"]).apply(null,arguments)};var _PadV2=Module[\"_PadV2\"]=function(){return(_PadV2=Module[\"_PadV2\"]=Module[\"asm\"][\"ja\"]).apply(null,arguments)};var _Pow=Module[\"_Pow\"]=function(){return(_Pow=Module[\"_Pow\"]=Module[\"asm\"][\"ka\"]).apply(null,arguments)};var _Prelu=Module[\"_Prelu\"]=function(){return(_Prelu=Module[\"_Prelu\"]=Module[\"asm\"][\"la\"]).apply(null,arguments)};var _Prod=Module[\"_Prod\"]=function(){return(_Prod=Module[\"_Prod\"]=Module[\"asm\"][\"ma\"]).apply(null,arguments)};var _RealDiv=Module[\"_RealDiv\"]=function(){return(_RealDiv=Module[\"_RealDiv\"]=Module[\"asm\"][\"na\"]).apply(null,arguments)};var _Relu=Module[\"_Relu\"]=function(){return(_Relu=Module[\"_Relu\"]=Module[\"asm\"][\"oa\"]).apply(null,arguments)};var _Relu6=Module[\"_Relu6\"]=function(){return(_Relu6=Module[\"_Relu6\"]=Module[\"asm\"][\"pa\"]).apply(null,arguments)};var _ResizeBilinear=Module[\"_ResizeBilinear\"]=function(){return(_ResizeBilinear=Module[\"_ResizeBilinear\"]=Module[\"asm\"][\"qa\"]).apply(null,arguments)};var _Reverse=Module[\"_Reverse\"]=function(){return(_Reverse=Module[\"_Reverse\"]=Module[\"asm\"][\"ra\"]).apply(null,arguments)};var _RotateWithOffset=Module[\"_RotateWithOffset\"]=function(){return(_RotateWithOffset=Module[\"_RotateWithOffset\"]=Module[\"asm\"][\"sa\"]).apply(null,arguments)};var _Round=Module[\"_Round\"]=function(){return(_Round=Module[\"_Round\"]=Module[\"asm\"][\"ta\"]).apply(null,arguments)};var _Rsqrt=Module[\"_Rsqrt\"]=function(){return(_Rsqrt=Module[\"_Rsqrt\"]=Module[\"asm\"][\"ua\"]).apply(null,arguments)};var _ScatterNd=Module[\"_ScatterNd\"]=function(){return(_ScatterNd=Module[\"_ScatterNd\"]=Module[\"asm\"][\"va\"]).apply(null,arguments)};var _SelectV2=Module[\"_SelectV2\"]=function(){return(_SelectV2=Module[\"_SelectV2\"]=Module[\"asm\"][\"wa\"]).apply(null,arguments)};var _Sigmoid=Module[\"_Sigmoid\"]=function(){return(_Sigmoid=Module[\"_Sigmoid\"]=Module[\"asm\"][\"xa\"]).apply(null,arguments)};var _Sin=Module[\"_Sin\"]=function(){return(_Sin=Module[\"_Sin\"]=Module[\"asm\"][\"ya\"]).apply(null,arguments)};var _Softmax=Module[\"_Softmax\"]=function(){return(_Softmax=Module[\"_Softmax\"]=Module[\"asm\"][\"za\"]).apply(null,arguments)};var _Sqrt=Module[\"_Sqrt\"]=function(){return(_Sqrt=Module[\"_Sqrt\"]=Module[\"asm\"][\"Aa\"]).apply(null,arguments)};var _Square=Module[\"_Square\"]=function(){return(_Square=Module[\"_Square\"]=Module[\"asm\"][\"Ba\"]).apply(null,arguments)};var _SquaredDifference=Module[\"_SquaredDifference\"]=function(){return(_SquaredDifference=Module[\"_SquaredDifference\"]=Module[\"asm\"][\"Ca\"]).apply(null,arguments)};var _Step=Module[\"_Step\"]=function(){return(_Step=Module[\"_Step\"]=Module[\"asm\"][\"Da\"]).apply(null,arguments)};var _StridedSlice=Module[\"_StridedSlice\"]=function(){return(_StridedSlice=Module[\"_StridedSlice\"]=Module[\"asm\"][\"Ea\"]).apply(null,arguments)};var _Sub=Module[\"_Sub\"]=function(){return(_Sub=Module[\"_Sub\"]=Module[\"asm\"][\"Fa\"]).apply(null,arguments)};var _Sum=Module[\"_Sum\"]=function(){return(_Sum=Module[\"_Sum\"]=Module[\"asm\"][\"Ga\"]).apply(null,arguments)};var _Tan=Module[\"_Tan\"]=function(){return(_Tan=Module[\"_Tan\"]=Module[\"asm\"][\"Ha\"]).apply(null,arguments)};var _Tanh=Module[\"_Tanh\"]=function(){return(_Tanh=Module[\"_Tanh\"]=Module[\"asm\"][\"Ia\"]).apply(null,arguments)};var _Tile=Module[\"_Tile\"]=function(){return(_Tile=Module[\"_Tile\"]=Module[\"asm\"][\"Ja\"]).apply(null,arguments)};var _TopK=Module[\"_TopK\"]=function(){return(_TopK=Module[\"_TopK\"]=Module[\"asm\"][\"Ka\"]).apply(null,arguments)};var _Transpose=Module[\"_Transpose\"]=function(){return(_Transpose=Module[\"_Transpose\"]=Module[\"asm\"][\"La\"]).apply(null,arguments)};var __FusedMatMul=Module[\"__FusedMatMul\"]=function(){return(__FusedMatMul=Module[\"__FusedMatMul\"]=Module[\"asm\"][\"Ma\"]).apply(null,arguments)};var _malloc=Module[\"_malloc\"]=function(){return(_malloc=Module[\"_malloc\"]=Module[\"asm\"][\"Na\"]).apply(null,arguments)};var _free=Module[\"_free\"]=function(){return(_free=Module[\"_free\"]=Module[\"asm\"][\"Oa\"]).apply(null,arguments)};var ___errno_location=Module[\"___errno_location\"]=function(){return(___errno_location=Module[\"___errno_location\"]=Module[\"asm\"][\"Pa\"]).apply(null,arguments)};var stackSave=Module[\"stackSave\"]=function(){return(stackSave=Module[\"stackSave\"]=Module[\"asm\"][\"Qa\"]).apply(null,arguments)};var stackRestore=Module[\"stackRestore\"]=function(){return(stackRestore=Module[\"stackRestore\"]=Module[\"asm\"][\"Ra\"]).apply(null,arguments)};var stackAlloc=Module[\"stackAlloc\"]=function(){return(stackAlloc=Module[\"stackAlloc\"]=Module[\"asm\"][\"Sa\"]).apply(null,arguments)};Module[\"cwrap\"]=cwrap;var calledRun;function ExitStatus(status){this.name=\"ExitStatus\";this.message=\"Program terminated with exit(\"+status+\")\";this.status=status}dependenciesFulfilled=function runCaller(){if(!calledRun)run();if(!calledRun)dependenciesFulfilled=runCaller};function run(args){args=args||arguments_;if(runDependencies>0){return}preRun();if(runDependencies>0){return}function doRun(){if(calledRun)return;calledRun=true;Module[\"calledRun\"]=true;if(ABORT)return;initRuntime();preMain();readyPromiseResolve(Module);if(Module[\"onRuntimeInitialized\"])Module[\"onRuntimeInitialized\"]();postRun()}if(Module[\"setStatus\"]){Module[\"setStatus\"](\"Running...\");setTimeout(function(){setTimeout(function(){Module[\"setStatus\"](\"\")},1);doRun()},1)}else{doRun()}}Module[\"run\"]=run;if(Module[\"preInit\"]){if(typeof Module[\"preInit\"]==\"function\")Module[\"preInit\"]=[Module[\"preInit\"]];while(Module[\"preInit\"].length>0){Module[\"preInit\"].pop()()}}run();\n\n\n return WasmBackendModule.ready\n}\n);\n})();\nif (typeof exports === 'object' && typeof module === 'object')\n module.exports = WasmBackendModule;\nelse if (typeof define === 'function' && define['amd'])\n define([], function() { return WasmBackendModule; });\nelse if (typeof exports === 'object')\n exports[\"WasmBackendModule\"] = WasmBackendModule;\n", "// A port of an algorithm by Johannes Baag\u00F8e , 2010\n// http://baagoe.com/en/RandomMusings/javascript/\n// https://github.com/nquinlan/better-random-numbers-for-javascript-mirror\n// Original work is under MIT license -\n\n// Copyright (C) 2010 by Johannes Baag\u00F8e \n//\n// Permission is hereby granted, free of charge, to any person obtaining a copy\n// of this software and associated documentation files (the \"Software\"), to deal\n// in the Software without restriction, including without limitation the rights\n// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n// copies of the Software, and to permit persons to whom the Software is\n// furnished to do so, subject to the following conditions:\n//\n// The above copyright notice and this permission notice shall be included in\n// all copies or substantial portions of the Software.\n//\n// THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\n// THE SOFTWARE.\n\n\n\n(function(global, module, define) {\n\nfunction Alea(seed) {\n var me = this, mash = Mash();\n\n me.next = function() {\n var t = 2091639 * me.s0 + me.c * 2.3283064365386963e-10; // 2^-32\n me.s0 = me.s1;\n me.s1 = me.s2;\n return me.s2 = t - (me.c = t | 0);\n };\n\n // Apply the seeding algorithm from Baagoe.\n me.c = 1;\n me.s0 = mash(' ');\n me.s1 = mash(' ');\n me.s2 = mash(' ');\n me.s0 -= mash(seed);\n if (me.s0 < 0) { me.s0 += 1; }\n me.s1 -= mash(seed);\n if (me.s1 < 0) { me.s1 += 1; }\n me.s2 -= mash(seed);\n if (me.s2 < 0) { me.s2 += 1; }\n mash = null;\n}\n\nfunction copy(f, t) {\n t.c = f.c;\n t.s0 = f.s0;\n t.s1 = f.s1;\n t.s2 = f.s2;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new Alea(seed),\n state = opts && opts.state,\n prng = xg.next;\n prng.int32 = function() { return (xg.next() * 0x100000000) | 0; }\n prng.double = function() {\n return prng() + (prng() * 0x200000 | 0) * 1.1102230246251565e-16; // 2^-53\n };\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nfunction Mash() {\n var n = 0xefc8249d;\n\n var mash = function(data) {\n data = String(data);\n for (var i = 0; i < data.length; i++) {\n n += data.charCodeAt(i);\n var h = 0.02519603282416938 * n;\n n = h >>> 0;\n h -= n;\n h *= n;\n n = h >>> 0;\n h -= n;\n n += h * 0x100000000; // 2^32\n }\n return (n >>> 0) * 2.3283064365386963e-10; // 2^-32\n };\n\n return mash;\n}\n\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.alea = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xor128\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n\n // Set up generator function.\n me.next = function() {\n var t = me.x ^ (me.x << 11);\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n return me.w ^= (me.w >>> 19) ^ t ^ (t >>> 8);\n };\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor128 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorwow\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var t = (me.x ^ (me.x >>> 2));\n me.x = me.y; me.y = me.z; me.z = me.w; me.w = me.v;\n return (me.d = (me.d + 362437 | 0)) +\n (me.v = (me.v ^ (me.v << 4)) ^ (t ^ (t << 1))) | 0;\n };\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.v = 0;\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n if (k == strseed.length) {\n me.d = me.x << 10 ^ me.x >>> 4;\n }\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n t.v = f.v;\n t.d = f.d;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorwow = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorshift7\" algorithm by\n// Fran\u00E7ois Panneton and Pierre L'ecuyer:\n// \"On the Xorgshift Random Number Generators\"\n// http://saluc.engr.uconn.edu/refs/crypto/rng/panneton05onthexorshift.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n // Update xor generator.\n var X = me.x, i = me.i, t, v, w;\n t = X[i]; t ^= (t >>> 7); v = t ^ (t << 24);\n t = X[(i + 1) & 7]; v ^= t ^ (t >>> 10);\n t = X[(i + 3) & 7]; v ^= t ^ (t >>> 3);\n t = X[(i + 4) & 7]; v ^= t ^ (t << 7);\n t = X[(i + 7) & 7]; t = t ^ (t << 13); v ^= t ^ (t << 9);\n X[i] = v;\n me.i = (i + 1) & 7;\n return v;\n };\n\n function init(me, seed) {\n var j, w, X = [];\n\n if (seed === (seed | 0)) {\n // Seed state array using a 32-bit integer.\n w = X[0] = seed;\n } else {\n // Seed state using a string.\n seed = '' + seed;\n for (j = 0; j < seed.length; ++j) {\n X[j & 7] = (X[j & 7] << 15) ^\n (seed.charCodeAt(j) + X[(j + 1) & 7] << 13);\n }\n }\n // Enforce an array length of 8, not all zeroes.\n while (X.length < 8) X.push(0);\n for (j = 0; j < 8 && X[j] === 0; ++j);\n if (j == 8) w = X[7] = -1; else w = X[j];\n\n me.x = X;\n me.i = 0;\n\n // Discard an initial 256 values.\n for (j = 256; j > 0; --j) {\n me.next();\n }\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.x = f.x.slice();\n t.i = f.i;\n return t;\n}\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.x) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorshift7 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n", "// A Javascript implementaion of Richard Brent's Xorgens xor4096 algorithm.\n//\n// This fast non-cryptographic random number generator is designed for\n// use in Monte-Carlo algorithms. It combines a long-period xorshift\n// generator with a Weyl generator, and it passes all common batteries\n// of stasticial tests for randomness while consuming only a few nanoseconds\n// for each prng generated. For background on the generator, see Brent's\n// paper: \"Some long-period random number generators using shifts and xors.\"\n// http://arxiv.org/pdf/1004.3115v1.pdf\n//\n// Usage:\n//\n// var xor4096 = require('xor4096');\n// random = xor4096(1); // Seed with int32 or string.\n// assert.equal(random(), 0.1520436450538547); // (0, 1) range, 53 bits.\n// assert.equal(random.int32(), 1806534897); // signed int32, 32 bits.\n//\n// For nonzero numeric keys, this impelementation provides a sequence\n// identical to that by Brent's xorgens 3 implementaion in C. This\n// implementation also provides for initalizing the generator with\n// string seeds, or for saving and restoring the state of the generator.\n//\n// On Chrome, this prng benchmarks about 2.1 times slower than\n// Javascript's built-in Math.random().\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n var w = me.w,\n X = me.X, i = me.i, t, v;\n // Update Weyl generator.\n me.w = w = (w + 0x61c88647) | 0;\n // Update xor generator.\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n // Update Xor generator array state.\n v = X[i] = v ^ t;\n me.i = i;\n // Result is the combination.\n return (v + (w ^ (w >>> 16))) | 0;\n };\n\n function init(me, seed) {\n var t, v, i, j, w, X = [], limit = 128;\n if (seed === (seed | 0)) {\n // Numeric seeds initialize v, which is used to generates X.\n v = seed;\n seed = null;\n } else {\n // String seeds are mixed into v and X one character at a time.\n seed = seed + '\\0';\n v = 0;\n limit = Math.max(limit, seed.length);\n }\n // Initialize circular array and weyl value.\n for (i = 0, j = -32; j < limit; ++j) {\n // Put the unicode characters into the array, and shuffle them.\n if (seed) v ^= seed.charCodeAt((j + 32) % seed.length);\n // After 32 shuffles, take v as the starting w value.\n if (j === 0) w = v;\n v ^= v << 10;\n v ^= v >>> 15;\n v ^= v << 4;\n v ^= v >>> 13;\n if (j >= 0) {\n w = (w + 0x61c88647) | 0; // Weyl.\n t = (X[j & 127] ^= (v + w)); // Combine xor and weyl to init array.\n i = (0 == t) ? i + 1 : 0; // Count zeroes.\n }\n }\n // We have detected all zeroes; make the key nonzero.\n if (i >= 128) {\n X[(seed && seed.length || 0) & 127] = -1;\n }\n // Run the generator 512 times to further mix the state before using it.\n // Factoring this as a function slows the main generator, so it is just\n // unrolled here. The weyl generator is not advanced while warming up.\n i = 127;\n for (j = 4 * 128; j > 0; --j) {\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n X[i] = v ^ t;\n }\n // Storing state as object members is faster than using closure variables.\n me.w = w;\n me.X = X;\n me.i = i;\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.i = f.i;\n t.w = f.w;\n t.X = f.X.slice();\n return t;\n};\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.X) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor4096 = impl;\n}\n\n})(\n this, // window object or global\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n", "// A Javascript implementaion of the \"Tyche-i\" prng algorithm by\n// Samuel Neves and Filipe Araujo.\n// See https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var b = me.b, c = me.c, d = me.d, a = me.a;\n b = (b << 25) ^ (b >>> 7) ^ c;\n c = (c - d) | 0;\n d = (d << 24) ^ (d >>> 8) ^ a;\n a = (a - b) | 0;\n me.b = b = (b << 20) ^ (b >>> 12) ^ c;\n me.c = c = (c - d) | 0;\n me.d = (d << 16) ^ (c >>> 16) ^ a;\n return me.a = (a - b) | 0;\n };\n\n /* The following is non-inverted tyche, which has better internal\n * bit diffusion, but which is about 25% slower than tyche-i in JS.\n me.next = function() {\n var a = me.a, b = me.b, c = me.c, d = me.d;\n a = (me.a + me.b | 0) >>> 0;\n d = me.d ^ a; d = d << 16 ^ d >>> 16;\n c = me.c + d | 0;\n b = me.b ^ c; b = b << 12 ^ d >>> 20;\n me.a = a = a + b | 0;\n d = d ^ a; me.d = d = d << 8 ^ d >>> 24;\n me.c = c = c + d | 0;\n b = b ^ c;\n return me.b = (b << 7 ^ b >>> 25);\n }\n */\n\n me.a = 0;\n me.b = 0;\n me.c = 2654435769 | 0;\n me.d = 1367130551;\n\n if (seed === Math.floor(seed)) {\n // Integer seed.\n me.a = (seed / 0x100000000) | 0;\n me.b = seed | 0;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 20; k++) {\n me.b ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.a = f.a;\n t.b = f.b;\n t.c = f.c;\n t.d = f.d;\n return t;\n};\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.tychei = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "/*\nCopyright 2019 David Bau.\n\nPermission is hereby granted, free of charge, to any person obtaining\na copy of this software and associated documentation files (the\n\"Software\"), to deal in the Software without restriction, including\nwithout limitation the rights to use, copy, modify, merge, publish,\ndistribute, sublicense, and/or sell copies of the Software, and to\npermit persons to whom the Software is furnished to do so, subject to\nthe following conditions:\n\nThe above copyright notice and this permission notice shall be\nincluded in all copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND,\nEXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF\nMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.\nIN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY\nCLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,\nTORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE\nSOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\n\n*/\n\n(function (global, pool, math) {\n//\n// The following constants are related to IEEE 754 limits.\n//\n\nvar width = 256, // each RC4 output is 0 <= x < 256\n chunks = 6, // at least six RC4 outputs for each double\n digits = 52, // there are 52 significant digits in a double\n rngname = 'random', // rngname: name for Math.random and Math.seedrandom\n startdenom = math.pow(width, chunks),\n significance = math.pow(2, digits),\n overflow = significance * 2,\n mask = width - 1,\n nodecrypto; // node.js crypto module, initialized at the bottom.\n\n//\n// seedrandom()\n// This is the seedrandom function described above.\n//\nfunction seedrandom(seed, options, callback) {\n var key = [];\n options = (options == true) ? { entropy: true } : (options || {});\n\n // Flatten the seed string or build one from local entropy if needed.\n var shortseed = mixkey(flatten(\n options.entropy ? [seed, tostring(pool)] :\n (seed == null) ? autoseed() : seed, 3), key);\n\n // Use the seed to initialize an ARC4 generator.\n var arc4 = new ARC4(key);\n\n // This function returns a random double in [0, 1) that contains\n // randomness in every bit of the mantissa of the IEEE 754 value.\n var prng = function() {\n var n = arc4.g(chunks), // Start with a numerator n < 2 ^ 48\n d = startdenom, // and denominator d = 2 ^ 48.\n x = 0; // and no 'extra last byte'.\n while (n < significance) { // Fill up all significant digits by\n n = (n + x) * width; // shifting numerator and\n d *= width; // denominator and generating a\n x = arc4.g(1); // new least-significant-byte.\n }\n while (n >= overflow) { // To avoid rounding up, before adding\n n /= 2; // last byte, shift everything\n d /= 2; // right using integer math until\n x >>>= 1; // we have exactly the desired bits.\n }\n return (n + x) / d; // Form the number within [0, 1).\n };\n\n prng.int32 = function() { return arc4.g(4) | 0; }\n prng.quick = function() { return arc4.g(4) / 0x100000000; }\n prng.double = prng;\n\n // Mix the randomness into accumulated entropy.\n mixkey(tostring(arc4.S), pool);\n\n // Calling convention: what to return as a function of prng, seed, is_math.\n return (options.pass || callback ||\n function(prng, seed, is_math_call, state) {\n if (state) {\n // Load the arc4 state from the given state if it has an S array.\n if (state.S) { copy(state, arc4); }\n // Only provide the .state method if requested via options.state.\n prng.state = function() { return copy(arc4, {}); }\n }\n\n // If called as a method of Math (Math.seedrandom()), mutate\n // Math.random because that is how seedrandom.js has worked since v1.0.\n if (is_math_call) { math[rngname] = prng; return seed; }\n\n // Otherwise, it is a newer calling convention, so return the\n // prng directly.\n else return prng;\n })(\n prng,\n shortseed,\n 'global' in options ? options.global : (this == math),\n options.state);\n}\n\n//\n// ARC4\n//\n// An ARC4 implementation. The constructor takes a key in the form of\n// an array of at most (width) integers that should be 0 <= x < (width).\n//\n// The g(count) method returns a pseudorandom integer that concatenates\n// the next (count) outputs from ARC4. Its return value is a number x\n// that is in the range 0 <= x < (width ^ count).\n//\nfunction ARC4(key) {\n var t, keylen = key.length,\n me = this, i = 0, j = me.i = me.j = 0, s = me.S = [];\n\n // The empty key [] is treated as [0].\n if (!keylen) { key = [keylen++]; }\n\n // Set up S using the standard key scheduling algorithm.\n while (i < width) {\n s[i] = i++;\n }\n for (i = 0; i < width; i++) {\n s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))];\n s[j] = t;\n }\n\n // The \"g\" method returns the next (count) outputs as one number.\n (me.g = function(count) {\n // Using instance members instead of closure state nearly doubles speed.\n var t, r = 0,\n i = me.i, j = me.j, s = me.S;\n while (count--) {\n t = s[i = mask & (i + 1)];\n r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)]) + (s[j] = t))];\n }\n me.i = i; me.j = j;\n return r;\n // For robust unpredictability, the function call below automatically\n // discards an initial batch of values. This is called RC4-drop[256].\n // See http://google.com/search?q=rsa+fluhrer+response&btnI\n })(width);\n}\n\n//\n// copy()\n// Copies internal state of ARC4 to or from a plain object.\n//\nfunction copy(f, t) {\n t.i = f.i;\n t.j = f.j;\n t.S = f.S.slice();\n return t;\n};\n\n//\n// flatten()\n// Converts an object tree to nested arrays of strings.\n//\nfunction flatten(obj, depth) {\n var result = [], typ = (typeof obj), prop;\n if (depth && typ == 'object') {\n for (prop in obj) {\n try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {}\n }\n }\n return (result.length ? result : typ == 'string' ? obj : obj + '\\0');\n}\n\n//\n// mixkey()\n// Mixes a string seed into a key that is an array of integers, and\n// returns a shortened string seed that is equivalent to the result key.\n//\nfunction mixkey(seed, key) {\n var stringseed = seed + '', smear, j = 0;\n while (j < stringseed.length) {\n key[mask & j] =\n mask & ((smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++));\n }\n return tostring(key);\n}\n\n//\n// autoseed()\n// Returns an object for autoseeding, using window.crypto and Node crypto\n// module if available.\n//\nfunction autoseed() {\n try {\n var out;\n if (nodecrypto && (out = nodecrypto.randomBytes)) {\n // The use of 'out' to remember randomBytes makes tight minified code.\n out = out(width);\n } else {\n out = new Uint8Array(width);\n (global.crypto || global.msCrypto).getRandomValues(out);\n }\n return tostring(out);\n } catch (e) {\n var browser = global.navigator,\n plugins = browser && browser.plugins;\n return [+new Date, global, plugins, global.screen, tostring(pool)];\n }\n}\n\n//\n// tostring()\n// Converts an array of charcodes to a string\n//\nfunction tostring(a) {\n return String.fromCharCode.apply(0, a);\n}\n\n//\n// When seedrandom.js is loaded, we immediately mix a few bits\n// from the built-in RNG into the entropy pool. Because we do\n// not want to interfere with deterministic PRNG state later,\n// seedrandom will not call math.random on its own again after\n// initialization.\n//\nmixkey(math.random(), pool);\n\n//\n// Nodejs and AMD support: export the implementation as a module using\n// either convention.\n//\nif ((typeof module) == 'object' && module.exports) {\n module.exports = seedrandom;\n // When in node.js, try using crypto package for autoseeding.\n try {\n nodecrypto = require('crypto');\n } catch (ex) {}\n} else if ((typeof define) == 'function' && define.amd) {\n define(function() { return seedrandom; });\n} else {\n // When included as a plain script, set up Math.seedrandom global.\n math['seed' + rngname] = seedrandom;\n}\n\n\n// End anonymous scope, and pass initial values.\n})(\n // global: `self` in browsers (including strict mode and web workers),\n // otherwise `this` in Node and other environments\n (typeof self !== 'undefined') ? self : this,\n [], // pool: entropy pool starts empty\n Math // math: package containing random, pow, and seedrandom\n);\n", "// A library of seedable RNGs implemented in Javascript.\n//\n// Usage:\n//\n// var seedrandom = require('seedrandom');\n// var random = seedrandom(1); // or any seed.\n// var x = random(); // 0 <= x < 1. Every bit is random.\n// var x = random.quick(); // 0 <= x < 1. 32 bits of randomness.\n\n// alea, a 53-bit multiply-with-carry generator by Johannes Baag\u00F8e.\n// Period: ~2^116\n// Reported to pass all BigCrush tests.\nvar alea = require('./lib/alea');\n\n// xor128, a pure xor-shift generator by George Marsaglia.\n// Period: 2^128-1.\n// Reported to fail: MatrixRank and LinearComp.\nvar xor128 = require('./lib/xor128');\n\n// xorwow, George Marsaglia's 160-bit xor-shift combined plus weyl.\n// Period: 2^192-2^32\n// Reported to fail: CollisionOver, SimpPoker, and LinearComp.\nvar xorwow = require('./lib/xorwow');\n\n// xorshift7, by Fran\u00E7ois Panneton and Pierre L'ecuyer, takes\n// a different approach: it adds robustness by allowing more shifts\n// than Marsaglia's original three. It is a 7-shift generator\n// with 256 bits, that passes BigCrush with no systmatic failures.\n// Period 2^256-1.\n// No systematic BigCrush failures reported.\nvar xorshift7 = require('./lib/xorshift7');\n\n// xor4096, by Richard Brent, is a 4096-bit xor-shift with a\n// very long period that also adds a Weyl generator. It also passes\n// BigCrush with no systematic failures. Its long period may\n// be useful if you have many generators and need to avoid\n// collisions.\n// Period: 2^4128-2^32.\n// No systematic BigCrush failures reported.\nvar xor4096 = require('./lib/xor4096');\n\n// Tyche-i, by Samuel Neves and Filipe Araujo, is a bit-shifting random\n// number generator derived from ChaCha, a modern stream cipher.\n// https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n// Period: ~2^127\n// No systematic BigCrush failures reported.\nvar tychei = require('./lib/tychei');\n\n// The original ARC4-based prng included in this library.\n// Period: ~2^1600\nvar sr = require('./seedrandom');\n\nsr.alea = alea;\nsr.xor128 = xor128;\nsr.xorwow = xorwow;\nsr.xorshift7 = xorshift7;\nsr.xor4096 = xor4096;\nsr.tychei = tychei;\n\nmodule.exports = sr;\n", "", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Backend, DataId} from '../tensor';\nimport {BackendValues, DataType} from '../types';\n\nexport const EPSILON_FLOAT32 = 1e-7;\nexport const EPSILON_FLOAT16 = 1e-4;\n\n// Required information for all backends.\nexport interface BackendTimingInfo {\n kernelMs: number|{error: string};\n getExtraProfileInfo?(): string; // a field for additional timing information\n // e.g. packing / unpacking for WebGL backend\n}\n\nexport interface TensorStorage {\n read(dataId: DataId): Promise;\n readSync(dataId: DataId): BackendValues;\n disposeData(dataId: DataId, force?: boolean): boolean;\n write(values: BackendValues, shape: number[], dtype: DataType): DataId;\n move(\n dataId: DataId, values: BackendValues, shape: number[], dtype: DataType,\n refCount: number): void;\n memory(): {unreliable: boolean;}; // Backend-specific information.\n /** Returns number of data ids currently in the storage. */\n numDataIds(): number;\n refCount(dataId: DataId): number;\n}\n\n/** Convenient class for storing tensor-related data. */\nexport class DataStorage {\n private data = new WeakMap();\n private dataIdsCount = 0;\n\n constructor(private backend: KernelBackend, private dataMover: DataMover) {}\n\n get(dataId: DataId) {\n if (!this.data.has(dataId)) {\n this.dataMover.moveData(this.backend, dataId);\n }\n return this.data.get(dataId);\n }\n\n set(dataId: DataId, value: T): void {\n this.dataIdsCount++;\n this.data.set(dataId, value);\n }\n\n has(dataId: DataId): boolean {\n return this.data.has(dataId);\n }\n\n delete(dataId: DataId): boolean {\n this.dataIdsCount--;\n return this.data.delete(dataId);\n }\n\n numDataIds(): number {\n return this.dataIdsCount;\n }\n}\n\nexport interface DataMover {\n /**\n * To be called by backends whenever they see a dataId that they don't own.\n * Upon calling this method, the mover will fetch the tensor from another\n * backend and register it with the current active backend.\n */\n moveData(backend: KernelBackend, dataId: DataId): void;\n}\n\nexport interface BackendTimer {\n // check if backend timer is available\n timerAvailable(): boolean;\n time(f: () => void): Promise;\n}\n\n/**\n * The interface that defines the kernels that should be implemented when\n * adding a new backend. New backends don't need to implement every one of the\n * methods, this can be done gradually (throw an error for unimplemented\n * methods).\n */\nexport class KernelBackend implements TensorStorage, Backend, BackendTimer {\n refCount(dataId: DataId): number {\n return notYetImplemented('refCount');\n }\n incRef(dataId: DataId): void {\n return notYetImplemented('incRef');\n }\n timerAvailable(): boolean {\n return true;\n }\n time(f: () => void): Promise {\n return notYetImplemented('time');\n }\n read(dataId: object): Promise {\n return notYetImplemented('read');\n }\n readSync(dataId: object): BackendValues {\n return notYetImplemented('readSync');\n }\n numDataIds(): number {\n return notYetImplemented('numDataIds');\n }\n disposeData(dataId: object, force?: boolean): boolean {\n return notYetImplemented('disposeData');\n }\n write(values: BackendValues, shape: number[], dtype: DataType): DataId {\n return notYetImplemented('write');\n }\n move(\n dataId: DataId, values: BackendValues, shape: number[], dtype: DataType,\n refCount: number): void {\n return notYetImplemented('move');\n }\n memory(): {unreliable: boolean; reasons?: string[]} {\n return notYetImplemented('memory');\n }\n /** Returns the highest precision for floats in bits (e.g. 16 or 32) */\n floatPrecision(): 16|32 {\n return notYetImplemented('floatPrecision');\n }\n /** Returns the smallest representable number. */\n epsilon(): number {\n return this.floatPrecision() === 32 ? EPSILON_FLOAT32 : EPSILON_FLOAT16;\n }\n dispose(): void {\n return notYetImplemented('dispose');\n }\n}\n\nfunction notYetImplemented(kernelName: string): never {\n throw new Error(\n `'${kernelName}' not yet implemented or not found in the registry. ` +\n `This kernel may not be supported by the tfjs backend you have chosen`);\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {DataType, DataTypeMap, FlatVector, NumericDataType, RecursiveArray, TensorLike, TypedArray} from './types';\n\n/**\n * Shuffles the array in-place using Fisher-Yates algorithm.\n *\n * ```js\n * const a = [1, 2, 3, 4, 5];\n * tf.util.shuffle(a);\n * console.log(a);\n * ```\n *\n * @param array The array to shuffle in-place.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\n// tslint:disable-next-line:no-any\nexport function shuffle(array: any[]|Uint32Array|Int32Array|\n Float32Array): void {\n let counter = array.length;\n let temp = 0;\n let index = 0;\n // While there are elements in the array\n while (counter > 0) {\n // Pick a random index\n index = (Math.random() * counter) | 0;\n // Decrease counter by 1\n counter--;\n // And swap the last element with it\n temp = array[counter];\n array[counter] = array[index];\n array[index] = temp;\n }\n}\n\n/**\n * Shuffles two arrays in-place the same way using Fisher-Yates algorithm.\n *\n * ```js\n * const a = [1,2,3,4,5];\n * const b = [11,22,33,44,55];\n * tf.util.shuffleCombo(a, b);\n * console.log(a, b);\n * ```\n *\n * @param array The first array to shuffle in-place.\n * @param array2 The second array to shuffle in-place with the same permutation\n * as the first array.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function shuffleCombo(\n // tslint:disable-next-line:no-any\n array: any[]|Uint32Array|Int32Array|Float32Array,\n // tslint:disable-next-line:no-any\n array2: any[]|Uint32Array|Int32Array|Float32Array): void {\n if (array.length !== array2.length) {\n throw new Error(\n `Array sizes must match to be shuffled together ` +\n `First array length was ${array.length}` +\n `Second array length was ${array2.length}`);\n }\n let counter = array.length;\n let temp, temp2;\n let index = 0;\n // While there are elements in the array\n while (counter > 0) {\n // Pick a random index\n index = (Math.random() * counter) | 0;\n // Decrease counter by 1\n counter--;\n // And swap the last element of each array with it\n temp = array[counter];\n temp2 = array2[counter];\n array[counter] = array[index];\n array2[counter] = array2[index];\n array[index] = temp;\n array2[index] = temp2;\n }\n}\n\n/** Clamps a value to a specified range. */\nexport function clamp(min: number, x: number, max: number): number {\n return Math.max(min, Math.min(x, max));\n}\n\nexport function nearestLargerEven(val: number): number {\n return val % 2 === 0 ? val : val + 1;\n}\n\nexport function sum(arr: number[]): number {\n let sum = 0;\n for (let i = 0; i < arr.length; i++) {\n sum += arr[i];\n }\n return sum;\n}\n\n/**\n * Returns a sample from a uniform [a, b) distribution.\n *\n * @param a The minimum support (inclusive).\n * @param b The maximum support (exclusive).\n * @return A pseudorandom number on the half-open interval [a,b).\n */\nexport function randUniform(a: number, b: number) {\n const r = Math.random();\n return (b * r) + (1 - r) * a;\n}\n\n/** Returns the squared Euclidean distance between two vectors. */\nexport function distSquared(a: FlatVector, b: FlatVector): number {\n let result = 0;\n for (let i = 0; i < a.length; i++) {\n const diff = Number(a[i]) - Number(b[i]);\n result += diff * diff;\n }\n return result;\n}\n\n/**\n * Asserts that the expression is true. Otherwise throws an error with the\n * provided message.\n *\n * ```js\n * const x = 2;\n * tf.util.assert(x === 2, 'x is not 2');\n * ```\n *\n * @param expr The expression to assert (as a boolean).\n * @param msg A function that returns the message to report when throwing an\n * error. We use a function for performance reasons.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function assert(expr: boolean, msg: () => string) {\n if (!expr) {\n throw new Error(typeof msg === 'string' ? msg : msg());\n }\n}\n\nexport function assertShapesMatch(\n shapeA: number[], shapeB: number[], errorMessagePrefix = ''): void {\n assert(\n arraysEqual(shapeA, shapeB),\n () => errorMessagePrefix + ` Shapes ${shapeA} and ${shapeB} must match`);\n}\n\nexport function assertNonNull(a: TensorLike): void {\n assert(\n a != null,\n () => `The input to the tensor constructor must be a non-null value.`);\n}\n\n// NOTE: We explicitly type out what T extends instead of any so that\n// util.flatten on a nested array of number doesn't try to infer T as a\n// number[][], causing us to explicitly type util.flatten().\n/**\n * Flattens an arbitrarily nested array.\n *\n * ```js\n * const a = [[1, 2], [3, 4], [5, [6, [7]]]];\n * const flat = tf.util.flatten(a);\n * console.log(flat);\n * ```\n *\n * @param arr The nested array to flatten.\n * @param result The destination array which holds the elements.\n * @param skipTypedArray If true, avoids flattening the typed arrays. Defaults\n * to false.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function\nflatten|TypedArray>(\n arr: T|RecursiveArray, result: T[] = [], skipTypedArray = false): T[] {\n if (result == null) {\n result = [];\n }\n if (Array.isArray(arr) || isTypedArray(arr) && !skipTypedArray) {\n for (let i = 0; i < arr.length; ++i) {\n flatten(arr[i], result, skipTypedArray);\n }\n } else {\n result.push(arr as T);\n }\n return result;\n}\n\n/**\n * Returns the size (number of elements) of the tensor given its shape.\n *\n * ```js\n * const shape = [3, 4, 2];\n * const size = tf.util.sizeFromShape(shape);\n * console.log(size);\n * ```\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function sizeFromShape(shape: number[]): number {\n if (shape.length === 0) {\n // Scalar.\n return 1;\n }\n let size = shape[0];\n for (let i = 1; i < shape.length; i++) {\n size *= shape[i];\n }\n return size;\n}\n\nexport function isScalarShape(shape: number[]): boolean {\n return shape.length === 0;\n}\n\nexport function arraysEqual(n1: FlatVector, n2: FlatVector) {\n if (n1 === n2) {\n return true;\n }\n if (n1 == null || n2 == null) {\n return false;\n }\n\n if (n1.length !== n2.length) {\n return false;\n }\n for (let i = 0; i < n1.length; i++) {\n if (n1[i] !== n2[i]) {\n return false;\n }\n }\n return true;\n}\n\nexport function isInt(a: number): boolean {\n return a % 1 === 0;\n}\n\nexport function tanh(x: number): number {\n // tslint:disable-next-line:no-any\n if ((Math as any).tanh != null) {\n // tslint:disable-next-line:no-any\n return (Math as any).tanh(x);\n }\n if (x === Infinity) {\n return 1;\n } else if (x === -Infinity) {\n return -1;\n } else {\n const e2x = Math.exp(2 * x);\n return (e2x - 1) / (e2x + 1);\n }\n}\n\nexport function sizeToSquarishShape(size: number): [number, number] {\n const width = Math.ceil(Math.sqrt(size));\n return [width, Math.ceil(size / width)];\n}\n\n/**\n * Creates a new array with randomized indicies to a given quantity.\n *\n * ```js\n * const randomTen = tf.util.createShuffledIndices(10);\n * console.log(randomTen);\n * ```\n *\n * @param number Quantity of how many shuffled indicies to create.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function createShuffledIndices(n: number): Uint32Array {\n const shuffledIndices = new Uint32Array(n);\n for (let i = 0; i < n; ++i) {\n shuffledIndices[i] = i;\n }\n shuffle(shuffledIndices);\n return shuffledIndices;\n}\n\nexport function rightPad(a: string, size: number): string {\n if (size <= a.length) {\n return a;\n }\n return a + ' '.repeat(size - a.length);\n}\n\nexport function repeatedTry(\n checkFn: () => boolean, delayFn = (counter: number) => 0,\n maxCounter?: number): Promise {\n return new Promise((resolve, reject) => {\n let tryCount = 0;\n\n const tryFn = () => {\n if (checkFn()) {\n resolve();\n return;\n }\n\n tryCount++;\n\n const nextBackoff = delayFn(tryCount);\n\n if (maxCounter != null && tryCount >= maxCounter) {\n reject();\n return;\n }\n setTimeout(tryFn, nextBackoff);\n };\n\n tryFn();\n });\n}\n\n/**\n * Given the full size of the array and a shape that may contain -1 as the\n * implicit dimension, returns the inferred shape where -1 is replaced.\n * E.g. For shape=[2, -1, 3] and size=24, it will return [2, 4, 3].\n *\n * @param shape The shape, which may contain -1 in some dimension.\n * @param size The full size (number of elements) of the array.\n * @return The inferred shape where -1 is replaced with the inferred size.\n */\nexport function inferFromImplicitShape(\n shape: number[], size: number): number[] {\n let shapeProd = 1;\n let implicitIdx = -1;\n\n for (let i = 0; i < shape.length; ++i) {\n if (shape[i] >= 0) {\n shapeProd *= shape[i];\n } else if (shape[i] === -1) {\n if (implicitIdx !== -1) {\n throw Error(\n `Shapes can only have 1 implicit size. ` +\n `Found -1 at dim ${implicitIdx} and dim ${i}`);\n }\n implicitIdx = i;\n } else if (shape[i] < 0) {\n throw Error(`Shapes can not be < 0. Found ${shape[i]} at dim ${i}`);\n }\n }\n\n if (implicitIdx === -1) {\n if (size > 0 && size !== shapeProd) {\n throw Error(`Size(${size}) must match the product of shape ${shape}`);\n }\n return shape;\n }\n\n if (shapeProd === 0) {\n throw Error(\n `Cannot infer the missing size in [${shape}] when ` +\n `there are 0 elements`);\n }\n if (size % shapeProd !== 0) {\n throw Error(\n `The implicit shape can't be a fractional number. ` +\n `Got ${size} / ${shapeProd}`);\n }\n\n const newShape = shape.slice();\n newShape[implicitIdx] = size / shapeProd;\n return newShape;\n}\n\nexport function parseAxisParam(\n axis: number|number[], shape: number[]): number[] {\n const rank = shape.length;\n\n // Normalize input\n axis = axis == null ? shape.map((s, i) => i) : [].concat(axis);\n\n // Check for valid range\n assert(\n axis.every(ax => ax >= -rank && ax < rank),\n () =>\n `All values in axis param must be in range [-${rank}, ${rank}) but ` +\n `got axis ${axis}`);\n\n // Check for only integers\n assert(\n axis.every(ax => isInt(ax)),\n () => `All values in axis param must be integers but ` +\n `got axis ${axis}`);\n\n // Handle negative axis.\n return axis.map(a => a < 0 ? rank + a : a);\n}\n\n/** Reduces the shape by removing all dimensions of shape 1. */\nexport function squeezeShape(shape: number[], axis?: number[]):\n {newShape: number[], keptDims: number[]} {\n const newShape: number[] = [];\n const keptDims: number[] = [];\n const isEmptyArray = axis != null && Array.isArray(axis) && axis.length === 0;\n const axes = (axis == null || isEmptyArray) ?\n null :\n parseAxisParam(axis, shape).sort();\n let j = 0;\n for (let i = 0; i < shape.length; ++i) {\n if (axes != null) {\n if (axes[j] === i && shape[i] !== 1) {\n throw new Error(\n `Can't squeeze axis ${i} since its dim '${shape[i]}' is not 1`);\n }\n if ((axes[j] == null || axes[j] > i) && shape[i] === 1) {\n newShape.push(shape[i]);\n keptDims.push(i);\n }\n if (axes[j] <= i) {\n j++;\n }\n }\n if (shape[i] !== 1) {\n newShape.push(shape[i]);\n keptDims.push(i);\n }\n }\n return {newShape, keptDims};\n}\n\nexport function getTypedArrayFromDType(\n dtype: D, size: number): DataTypeMap[D] {\n let values = null;\n if (dtype == null || dtype === 'float32') {\n values = new Float32Array(size);\n } else if (dtype === 'int32') {\n values = new Int32Array(size);\n } else if (dtype === 'bool') {\n values = new Uint8Array(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n return values as DataTypeMap[D];\n}\n\nexport function getArrayFromDType(\n dtype: D, size: number): DataTypeMap[D] {\n let values = null;\n if (dtype == null || dtype === 'float32') {\n values = new Float32Array(size);\n } else if (dtype === 'int32') {\n values = new Int32Array(size);\n } else if (dtype === 'bool') {\n values = new Uint8Array(size);\n } else if (dtype === 'string') {\n values = new Array<'string'>(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n return values as DataTypeMap[D];\n}\n\nexport function checkConversionForErrors(\n vals: DataTypeMap[D]|number[], dtype: D): void {\n for (let i = 0; i < vals.length; i++) {\n const num = vals[i] as number;\n if (isNaN(num) || !isFinite(num)) {\n throw Error(`A tensor of type ${dtype} being uploaded contains ${num}.`);\n }\n }\n}\n\n/** Returns true if the dtype is valid. */\nexport function isValidDtype(dtype: DataType): boolean {\n return dtype === 'bool' || dtype === 'complex64' || dtype === 'float32' ||\n dtype === 'int32' || dtype === 'string';\n}\n\n/**\n * Returns true if the new type can't encode the old type without loss of\n * precision.\n */\nexport function hasEncodingLoss(oldType: DataType, newType: DataType): boolean {\n if (newType === 'complex64') {\n return false;\n }\n if (newType === 'float32' && oldType !== 'complex64') {\n return false;\n }\n if (newType === 'int32' && oldType !== 'float32' && oldType !== 'complex64') {\n return false;\n }\n if (newType === 'bool' && oldType === 'bool') {\n return false;\n }\n return true;\n}\n\nexport function isTypedArray(a: {}): a is Float32Array|Int32Array|Uint8Array {\n return a instanceof Float32Array || a instanceof Int32Array ||\n a instanceof Uint8Array;\n}\n\nexport function bytesPerElement(dtype: DataType): number {\n if (dtype === 'float32' || dtype === 'int32') {\n return 4;\n } else if (dtype === 'complex64') {\n return 8;\n } else if (dtype === 'bool') {\n return 1;\n } else {\n throw new Error(`Unknown dtype ${dtype}`);\n }\n}\n\n/**\n * Returns the approximate number of bytes allocated in the string array - 2\n * bytes per character. Computing the exact bytes for a native string in JS is\n * not possible since it depends on the encoding of the html page that serves\n * the website.\n */\nexport function bytesFromStringArray(arr: Uint8Array[]): number {\n if (arr == null) {\n return 0;\n }\n let bytes = 0;\n arr.forEach(x => bytes += x.length);\n return bytes;\n}\n\n/** Returns true if the value is a string. */\nexport function isString(value: {}): value is string {\n return typeof value === 'string' || value instanceof String;\n}\n\nexport function isBoolean(value: {}): boolean {\n return typeof value === 'boolean';\n}\n\nexport function isNumber(value: {}): boolean {\n return typeof value === 'number';\n}\n\nexport function inferDtype(values: TensorLike): DataType {\n if (Array.isArray(values)) {\n return inferDtype(values[0]);\n }\n if (values instanceof Float32Array) {\n return 'float32';\n } else if (values instanceof Int32Array || values instanceof Uint8Array) {\n return 'int32';\n } else if (isNumber(values)) {\n return 'float32';\n } else if (isString(values)) {\n return 'string';\n } else if (isBoolean(values)) {\n return 'bool';\n }\n return 'float32';\n}\n\nexport function isFunction(f: Function) {\n return !!(f && f.constructor && f.call && f.apply);\n}\n\nexport function nearestDivisor(size: number, start: number): number {\n for (let i = start; i < size; ++i) {\n if (size % i === 0) {\n return i;\n }\n }\n return size;\n}\n\nexport function computeStrides(shape: number[]): number[] {\n const rank = shape.length;\n if (rank < 2) {\n return [];\n }\n\n // Last dimension has implicit stride of 1, thus having D-1 (instead of D)\n // strides.\n const strides = new Array(rank - 1);\n strides[rank - 2] = shape[rank - 1];\n for (let i = rank - 3; i >= 0; --i) {\n strides[i] = strides[i + 1] * shape[i + 1];\n }\n return strides;\n}\n\nfunction createNestedArray(\n offset: number, shape: number[], a: TypedArray, isComplex = false) {\n const ret = new Array();\n if (shape.length === 1) {\n const d = shape[0] * (isComplex ? 2 : 1);\n for (let i = 0; i < d; i++) {\n ret[i] = a[offset + i];\n }\n } else {\n const d = shape[0];\n const rest = shape.slice(1);\n const len = rest.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1);\n for (let i = 0; i < d; i++) {\n ret[i] = createNestedArray(offset + i * len, rest, a, isComplex);\n }\n }\n return ret;\n}\n\n// Provide a nested array of TypedArray in given shape.\nexport function toNestedArray(\n shape: number[], a: TypedArray, isComplex = false) {\n if (shape.length === 0) {\n // Scalar type should return a single number.\n return a[0];\n }\n const size = shape.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1);\n if (size === 0) {\n // A tensor with shape zero should be turned into empty list.\n return [];\n }\n if (size !== a.length) {\n throw new Error(`[${shape}] does not match the input size ${a.length}${\n isComplex ? ' for a complex tensor' : ''}.`);\n }\n\n return createNestedArray(0, shape, a, isComplex);\n}\n\nexport function makeOnesTypedArray(\n size: number, dtype: D): DataTypeMap[D] {\n const array = makeZerosTypedArray(size, dtype);\n for (let i = 0; i < array.length; i++) {\n array[i] = 1;\n }\n return array;\n}\n\nexport function makeZerosTypedArray(\n size: number, dtype: D): DataTypeMap[D] {\n if (dtype == null || dtype === 'float32' || dtype === 'complex64') {\n return new Float32Array(size) as DataTypeMap[D];\n } else if (dtype === 'int32') {\n return new Int32Array(size) as DataTypeMap[D];\n } else if (dtype === 'bool') {\n return new Uint8Array(size) as DataTypeMap[D];\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\n\n/**\n * Make nested `TypedArray` filled with zeros.\n * @param shape The shape information for the nested array.\n * @param dtype dtype of the array element.\n */\nexport function makeZerosNestedTypedArray(\n shape: number[], dtype: D) {\n const size = shape.reduce((prev, curr) => prev * curr, 1);\n if (dtype == null || dtype === 'float32') {\n return toNestedArray(shape, new Float32Array(size));\n } else if (dtype === 'int32') {\n return toNestedArray(shape, new Int32Array(size));\n } else if (dtype === 'bool') {\n return toNestedArray(shape, new Uint8Array(size));\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\n\nexport function assertNonNegativeIntegerDimensions(shape: number[]) {\n shape.forEach(dimSize => {\n assert(\n Number.isInteger(dimSize) && dimSize >= 0,\n () =>\n `Tensor must have a shape comprised of positive integers but got ` +\n `shape [${shape}].`);\n });\n}\n\n/**\n * Computes flat index for a given location (multidimentionsal index) in a\n * Tensor/multidimensional array.\n *\n * @param locs Location in the tensor.\n * @param rank Rank of the tensor.\n * @param strides Tensor strides.\n */\nexport function locToIndex(\n locs: number[], rank: number, strides: number[]): number {\n if (rank === 0) {\n return 0;\n } else if (rank === 1) {\n return locs[0];\n }\n let index = locs[locs.length - 1];\n for (let i = 0; i < locs.length - 1; ++i) {\n index += strides[i] * locs[i];\n }\n return index;\n}\n\n/**\n * Computes the location (multidimensional index) in a tensor/multidimentional\n * array for a given flat index.\n *\n * @param index Index in flat array.\n * @param rank Rank of tensor.\n * @param strides Strides of tensor.\n */\nexport function indexToLoc(\n index: number, rank: number, strides: number[]): number[] {\n if (rank === 0) {\n return [];\n } else if (rank === 1) {\n return [index];\n }\n const locs: number[] = new Array(rank);\n for (let i = 0; i < locs.length - 1; ++i) {\n locs[i] = Math.floor(index / strides[i]);\n index -= locs[i] * strides[i];\n }\n locs[locs.length - 1] = index;\n return locs;\n}\n\n/**\n * This method asserts whether an object is a Promise instance.\n * @param object\n */\n// tslint:disable-next-line: no-any\nexport function isPromise(object: any) {\n // We chose to not use 'obj instanceOf Promise' for two reasons:\n // 1. It only reliably works for es6 Promise, not other Promise\n // implementations.\n // 2. It doesn't work with framework that uses zone.js. zone.js monkey patch\n // the async calls, so it is possible the obj (patched) is comparing to a\n // pre-patched Promise.\n return object && object.then && typeof object.then === 'function';\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Platform} from './platforms/platform';\nimport {isPromise} from './util_base';\n\n// Expects flags from URL in the format ?tfjsflags=FLAG1:1,FLAG2:true.\nconst TENSORFLOWJS_FLAGS_PREFIX = 'tfjsflags';\n\ntype FlagValue = number|boolean;\ntype FlagEvaluationFn = (() => FlagValue)|(() => Promise);\nexport type Flags = {\n [featureName: string]: FlagValue\n};\nexport type FlagRegistryEntry = {\n evaluationFn: FlagEvaluationFn;\n setHook?: (value: FlagValue) => void;\n};\n\n/**\n * The environment contains evaluated flags as well as the registered platform.\n * This is always used as a global singleton and can be retrieved with\n * `tf.env()`.\n *\n * @doc {heading: 'Environment'}\n */\nexport class Environment {\n private flags: Flags = {};\n private flagRegistry: {[flagName: string]: FlagRegistryEntry} = {};\n\n private urlFlags: Flags = {};\n\n platformName: string;\n platform: Platform;\n\n // Jasmine spies on this in 'environment_test.ts'\n getQueryParams = getQueryParams;\n\n // tslint:disable-next-line: no-any\n constructor(public global: any) {\n this.populateURLFlags();\n }\n\n setPlatform(platformName: string, platform: Platform) {\n if (this.platform != null) {\n console.warn(\n `Platform ${this.platformName} has already been set. ` +\n `Overwriting the platform with ${platform}.`);\n }\n this.platformName = platformName;\n this.platform = platform;\n }\n\n registerFlag(\n flagName: string, evaluationFn: FlagEvaluationFn,\n setHook?: (value: FlagValue) => void) {\n this.flagRegistry[flagName] = {evaluationFn, setHook};\n\n // Override the flag value from the URL. This has to happen here because the\n // environment is initialized before flags get registered.\n if (this.urlFlags[flagName] != null) {\n const flagValue = this.urlFlags[flagName];\n console.warn(\n `Setting feature override from URL ${flagName}: ${flagValue}.`);\n this.set(flagName, flagValue);\n }\n }\n\n async getAsync(flagName: string): Promise {\n if (flagName in this.flags) {\n return this.flags[flagName];\n }\n\n this.flags[flagName] = await this.evaluateFlag(flagName);\n return this.flags[flagName];\n }\n\n get(flagName: string): FlagValue {\n if (flagName in this.flags) {\n return this.flags[flagName];\n }\n\n const flagValue = this.evaluateFlag(flagName);\n if (isPromise(flagValue)) {\n throw new Error(\n `Flag ${flagName} cannot be synchronously evaluated. ` +\n `Please use getAsync() instead.`);\n }\n\n this.flags[flagName] = flagValue as number | boolean;\n\n return this.flags[flagName];\n }\n\n getNumber(flagName: string): number {\n return this.get(flagName) as number;\n }\n\n getBool(flagName: string): boolean {\n return this.get(flagName) as boolean;\n }\n\n getFlags(): Flags {\n return this.flags;\n }\n // For backwards compatibility.\n get features(): Flags {\n return this.flags;\n }\n\n set(flagName: string, value: FlagValue): void {\n if (this.flagRegistry[flagName] == null) {\n throw new Error(\n `Cannot set flag ${flagName} as it has not been registered.`);\n }\n this.flags[flagName] = value;\n if (this.flagRegistry[flagName].setHook != null) {\n this.flagRegistry[flagName].setHook(value);\n }\n }\n\n private evaluateFlag(flagName: string): FlagValue|Promise {\n if (this.flagRegistry[flagName] == null) {\n throw new Error(\n `Cannot evaluate flag '${flagName}': no evaluation function found.`);\n }\n return this.flagRegistry[flagName].evaluationFn();\n }\n\n setFlags(flags: Flags) {\n this.flags = Object.assign({}, flags);\n }\n\n reset() {\n this.flags = {};\n this.urlFlags = {};\n this.populateURLFlags();\n }\n\n private populateURLFlags(): void {\n if (typeof this.global === 'undefined' ||\n typeof this.global.location === 'undefined' ||\n typeof this.global.location.search === 'undefined') {\n return;\n }\n\n const urlParams = this.getQueryParams(this.global.location.search);\n if (TENSORFLOWJS_FLAGS_PREFIX in urlParams) {\n const keyValues = urlParams[TENSORFLOWJS_FLAGS_PREFIX].split(',');\n keyValues.forEach(keyValue => {\n const [key, value] = keyValue.split(':') as [string, string];\n this.urlFlags[key] = parseValue(key, value);\n });\n }\n }\n}\n\nexport function getQueryParams(queryString: string): {[key: string]: string} {\n const params = {};\n queryString.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g, (s, ...t) => {\n decodeParam(params, t[0], t[1]);\n return t.join('=');\n });\n return params;\n}\n\nfunction decodeParam(\n params: {[key: string]: string}, name: string, value?: string) {\n params[decodeURIComponent(name)] = decodeURIComponent(value || '');\n}\n\nfunction parseValue(flagName: string, value: string): FlagValue {\n value = value.toLowerCase();\n if (value === 'true' || value === 'false') {\n return value === 'true';\n } else if (`${+ value}` === value) {\n return +value;\n }\n throw new Error(\n `Could not parse value flag value ${value} for flag ${flagName}.`);\n}\n\n/**\n * Returns the current environment (a global singleton).\n *\n * The environment object contains the evaluated feature values as well as the\n * active platform.\n *\n * @doc {heading: 'Environment'}\n */\nexport function env() {\n return ENV;\n}\n\nexport let ENV: Environment = null;\nexport function setEnvironmentGlobal(environment: Environment) {\n ENV = environment;\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// Note that the identifier globalNameSpace is scoped to this module, but will\n// always resolve to the same global object regardless of how the module is\n// resolved.\n// tslint:disable-next-line:no-any\nlet globalNameSpace: {_tfGlobals: Map};\n// tslint:disable-next-line:no-any\nexport function getGlobalNamespace(): {_tfGlobals: Map} {\n if (globalNameSpace == null) {\n // tslint:disable-next-line:no-any\n let ns: any;\n if (typeof (window) !== 'undefined') {\n ns = window;\n } else if (typeof (global) !== 'undefined') {\n ns = global;\n } else if (typeof (process) !== 'undefined') {\n ns = process;\n } else if (typeof (self) !== 'undefined') {\n ns = self;\n } else {\n throw new Error('Could not find a global object');\n }\n globalNameSpace = ns;\n }\n return globalNameSpace;\n}\n\n// tslint:disable-next-line:no-any\nfunction getGlobalMap(): Map {\n const ns = getGlobalNamespace();\n if (ns._tfGlobals == null) {\n ns._tfGlobals = new Map();\n }\n return ns._tfGlobals;\n}\n\n/**\n * Returns a globally accessible 'singleton' object.\n *\n * @param key the name of the object\n * @param init a function to initialize to initialize this object\n * the first time it is fetched.\n */\nexport function getGlobal(key: string, init: () => T): T {\n const globalMap = getGlobalMap();\n if (globalMap.has(key)) {\n return globalMap.get(key);\n } else {\n const singleton = init();\n globalMap.set(key, singleton);\n return globalMap.get(key);\n }\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n// Allow UpperCamelCase variable names\n// tslint:disable: variable-name\n// Unfortunately just enabling PascalCase per file (tslint:enable:\n// allow-pascal-case) doesn't work.\nimport {NamedTensorInfoMap, TensorInfo} from './kernel_registry';\nimport {ExplicitPadding} from './ops/conv_util';\nimport {Activation} from './ops/fused_types';\nimport {DataType, PixelData} from './types';\n\nexport const Abs = 'Abs';\nexport type AbsInputs = UnaryInputs;\n\nexport const Acos = 'Acos';\nexport type AcosInputs = UnaryInputs;\n\nexport const Acosh = 'Acosh';\nexport type AcoshInputs = UnaryInputs;\n\nexport const Add = 'Add';\nexport type AddInputs = BinaryInputs;\n\nexport const AddN = 'AddN';\nexport type AddNInputs = TensorInfo[];\n\nexport const All = 'All';\nexport type AllInputs = Pick;\nexport interface AllAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Any = 'Any';\nexport type AnyInputs = Pick;\nexport interface AnyAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const ArgMax = 'ArgMax';\nexport type ArgMaxInputs = Pick;\nexport interface ArgMaxAttrs {\n axis: number;\n}\n\nexport const ArgMin = 'ArgMin';\nexport type ArgMinInputs = Pick;\nexport interface ArgMinAttrs {\n axis: number;\n}\n\nexport const Asin = 'Asin';\nexport type AsinInputs = UnaryInputs;\n\nexport const Asinh = 'Asinh';\nexport type AsinhInputs = UnaryInputs;\n\nexport const Atan = 'Atan';\nexport type AtanInputs = UnaryInputs;\n\nexport const Atanh = 'Atanh';\nexport type AtanhInputs = UnaryInputs;\n\nexport const Atan2 = 'Atan2';\nexport type Atan2Inputs = BinaryInputs;\n\nexport const AvgPool = 'AvgPool';\nexport type AvgPoolInputs = Pick;\nexport interface AvgPoolAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const AvgPoolGrad = 'AvgPoolGrad';\nexport type AvgPoolGradInputs = Pick;\nexport interface AvgPoolGradAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n}\n\nexport const AvgPool3D = 'AvgPool3D';\nexport type AvgPool3DInputs = Pick;\nexport interface AvgPool3DAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n dataFormat: 'NDHWC'|'NCDHW';\n}\n\nexport const AvgPool3DGrad = 'AvgPool3DGrad';\nexport type AvgPool3DGradInputs = Pick;\nexport interface AvgPool3DGradAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const BatchMatMul = 'BatchMatMul';\nexport type BatchMatMulInputs = Pick;\nexport interface BatchMatMulAttrs {\n transposeA: boolean;\n transposeB: boolean;\n}\n\nexport const BatchToSpaceND = 'BatchToSpaceND';\nexport type BatchToSpaceNDInputs = Pick;\nexport interface BatchToSpaceNDAttrs {\n blockShape: number[];\n crops: number[][];\n}\n\nexport type BinaryInputs = Pick;\n\nexport const Bincount = 'Bincount';\nexport type BincountInputs = Pick;\nexport interface BincountAttrs {\n size: number;\n}\n\nexport const BroadcastTo = 'BroadcastTo';\nexport type BroadcastToInputs = Pick;\nexport interface BroadCastToAttrs {\n shape: number[];\n inputShape: number[]; // for gradient\n}\n\nexport const Cast = 'Cast';\nexport type CastInputs = UnaryInputs;\nexport interface CastAttrs {\n dtype: DataType;\n}\n\nexport const Ceil = 'Ceil';\nexport type CeilInputs = UnaryInputs;\n\nexport const ClipByValue = 'ClipByValue';\nexport type ClipByValueInputs = UnaryInputs;\nexport interface ClipByValueAttrs {\n clipValueMin: number;\n clipValueMax: number;\n}\n\nexport const Complex = 'Complex';\nexport type ComplexInputs = Pick;\n\nexport const ComplexAbs = 'ComplexAbs';\nexport type ComplexAbsInputs = UnaryInputs;\n\nexport const Concat = 'Concat';\nexport type ConcatInputs = TensorInfo[];\nexport interface ConcatAttrs {\n axis: number;\n}\n\nexport const Conv2D = 'Conv2D';\nexport type Conv2DInputs = Pick;\nexport interface Conv2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const Conv2DBackpropFilter = 'Conv2DBackpropFilter';\nexport type Conv2DBackpropFilterInputs = Pick;\nexport interface Conv2DBackpropFilterAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dimRoundingMode?: 'floor'|'round'|'ceil';\n filterShape: [number, number, number, number];\n}\n\nexport const Conv2DBackpropInput = 'Conv2DBackpropInput';\nexport type Conv2DBackpropInputInputs = Pick;\nexport interface Conv2DBackpropInputAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dimRoundingMode?: 'floor'|'round'|'ceil';\n inputShape: [number, number, number, number];\n}\n\nexport const Conv3D = 'Conv3D';\nexport type Conv3DInputs = Pick;\nexport interface Conv3DAttrs {\n strides: [number, number, number]|number;\n pad: 'valid'|'same';\n dataFormat: 'NDHWC'|'NCDHW';\n dilations: [number, number, number]|number;\n}\n\nexport const Conv3DBackpropFilterV2 = 'Conv3DBackpropFilterV2';\nexport type Conv3DBackpropFilterV2Inputs = Pick;\n\nexport interface Conv3DBackpropFilterV2Attrs {\n strides: [number, number, number]|number;\n pad: 'valid'|'same';\n filterShape: [number, number, number, number, number];\n}\n\nexport const Conv3DBackpropInputV2 = 'Conv3DBackpropInputV2';\nexport type Conv3DBackpropInputV2Inputs =\n Pick;\nexport interface Conv3DBackpropInputV2Attrs {\n strides: [number, number, number]|number;\n pad: 'valid'|'same';\n inputShape: [number, number, number, number, number];\n}\n\nexport const Cos = 'Cos';\nexport type CosInputs = UnaryInputs;\n\nexport const Cosh = 'Cosh';\nexport type CoshInputs = UnaryInputs;\n\nexport const Cumsum = 'Cumsum';\nexport type CumsumInputs = Pick;\nexport interface CumsumAttrs {\n axis: number;\n exclusive: boolean;\n reverse: boolean;\n}\n\nexport const CropAndResize = 'CropAndResize';\nexport type CropAndResizeInputs =\n Pick;\nexport interface CropAndResizeAttrs {\n cropSize: [number, number];\n method: 'bilinear'|'nearest';\n extrapolationValue: number;\n}\n\nexport const DenseBincount = 'DenseBincount';\nexport type DenseBincountInputs = Pick;\nexport interface DenseBincountAttrs {\n size: number;\n binaryOutput?: boolean;\n}\n\nexport const DepthToSpace = 'DepthToSpace';\nexport type DepthToSpaceInputs = Pick;\nexport interface DepthToSpaceAttrs {\n blockSize: number;\n dataFormat: 'NHWC'|'NCHW';\n}\n\nexport const DepthwiseConv2dNative = 'DepthwiseConv2dNative';\nexport type DepthwiseConv2dNativeInputs =\n Pick;\nexport interface DepthwiseConv2dNativeAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const DepthwiseConv2dNativeBackpropFilter =\n 'DepthwiseConv2dNativeBackpropFilter';\nexport type DepthwiseConv2dNativeBackpropFilterInputs =\n Pick;\nexport interface DepthwiseConv2dNativeBackpropFilterAttrs {\n strides: [number, number]|number;\n dilations: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n filterShape: [number, number, number, number];\n}\n\nexport const DepthwiseConv2dNativeBackpropInput =\n 'DepthwiseConv2dNativeBackpropInput';\nexport type DepthwiseConv2dNativeBackpropInputInputs =\n Pick;\nexport interface DepthwiseConv2dNativeBackpropInputAttrs {\n strides: [number, number]|number;\n dilations: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n inputShape: [number, number, number, number];\n}\n\nexport const Diag = 'Diag';\nexport type DiagInputs = Pick;\n\nexport const Dilation2D = 'Dilation2D';\nexport type Dilation2DInputs = Pick;\nexport interface Dilation2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dilations: [number, number]|number;\n}\n\nexport const Dilation2DBackpropInput = 'Dilation2DBackpropInput';\nexport type Dilation2DBackpropInputInputs =\n Pick;\n\nexport const Dilation2DBackpropFilter = 'Dilation2DBackpropFilter';\nexport type Dilation2DBackpropFilterInputs =\n Pick;\n\nexport const RealDiv = 'RealDiv';\nexport type RealDivInputs = BinaryInputs;\n\nexport const Einsum = 'Einsum';\nexport type EinsumInputs = TensorInfo[];\nexport interface EinsumAttrs {\n equation: string;\n}\n\nexport const Elu = 'Elu';\nexport type EluInputs = Pick;\n\nexport const EluGrad = 'EluGrad';\nexport type EluGradInputs = Pick;\n\nexport const Erf = 'Erf';\nexport type ErfInputs = UnaryInputs;\n\nexport const Equal = 'Equal';\nexport type EqualInputs = BinaryInputs;\n\nexport const Exp = 'Exp';\nexport type ExpInputs = UnaryInputs;\n\nexport const ExpandDims = 'ExpandDims';\nexport type ExpandDimsInputs = Pick;\nexport interface ExpandDimsAttrs {\n dim: number;\n}\n\nexport const Expm1 = 'Expm1';\nexport type Expm1Inputs = UnaryInputs;\n\nexport const FFT = 'FFT';\nexport type FFTInputs = Pick;\n\nexport const Fill = 'Fill';\nexport interface FillAttrs {\n shape: number[];\n value: number|string;\n dtype: DataType;\n}\n\nexport const FlipLeftRight = 'FlipLeftRight';\nexport type FlipLeftRightInputs = Pick;\n\nexport const Floor = 'Floor';\nexport type FloorInputs = UnaryInputs;\n\nexport const FloorDiv = 'FloorDiv';\nexport type FloorDivInputs = BinaryInputs;\n\nexport const FusedBatchNorm = 'FusedBatchNorm';\nexport type FusedBatchNormInputs =\n Pick;\nexport interface FusedBatchNormAttrs {\n varianceEpsilon: number;\n}\n\nexport const GatherV2 = 'GatherV2';\nexport type GatherV2Inputs = Pick;\nexport interface GatherV2Attrs {\n axis: number;\n batchDims: number;\n}\n\nexport const GatherNd = 'GatherNd';\nexport type GatherNdInputs = Pick;\n\nexport const Greater = 'Greater';\nexport type GreaterInputs = BinaryInputs;\n\nexport const GreaterEqual = 'GreaterEqual';\nexport type GreaterEqualInputs = BinaryInputs;\n\nexport const Identity = 'Identity';\nexport type IdentityInputs = Pick;\n\nexport const IFFT = 'IFFT';\nexport type IFFTInputs = Pick;\n\nexport const Imag = 'Imag';\nexport type ImagInputs = Pick;\n\nexport const IsFinite = 'IsFinite';\nexport type IsFiniteInputs = UnaryInputs;\n\nexport const IsInf = 'IsInf';\nexport type IsInfInputs = UnaryInputs;\n\nexport const IsNan = 'IsNan';\nexport type IsNanInputs = UnaryInputs;\n\nexport const LeakyRelu = 'LeakyRelu';\nexport type LeakyReluInputs = Pick;\nexport interface LeakyReluAttrs {\n alpha: number;\n}\n\nexport const Less = 'Less';\nexport type LessInputs = BinaryInputs;\n\nexport const LessEqual = 'LessEqual';\nexport type LessEqualInputs = BinaryInputs;\n\nexport const LinSpace = 'LinSpace';\nexport interface LinSpaceAttrs {\n start: number;\n stop: number;\n num: number;\n}\nexport const Log = 'Log';\nexport type LogInputs = UnaryInputs;\n\nexport const Log1p = 'Log1p';\nexport type Log1pInputs = UnaryInputs;\n\nexport const LogicalAnd = 'LogicalAnd';\nexport type LogicalAndInputs = BinaryInputs;\n\nexport const LogicalNot = 'LogicalNot';\nexport type LogicalNotInputs = Pick;\n\nexport const LogicalOr = 'LogicalOr';\nexport type LogicalOrInputs = BinaryInputs;\n\nexport const LogSoftmax = 'LogSoftmax';\nexport type LogSoftmaxInputs = Pick;\nexport interface LogSoftmaxAttrs {\n axis: number;\n}\n\nexport const LRN = 'LRN';\nexport type LRNInputs = Pick;\nexport interface LRNAttrs {\n depthRadius: number;\n bias: number;\n alpha: number;\n beta: number;\n}\n\nexport const LRNGrad = 'LRNGrad';\nexport type LRNGradInputs = Pick;\nexport interface LRNGradAttrs {\n depthRadius: number;\n bias: number;\n alpha: number;\n beta: number;\n}\n\nexport const Max = 'Max';\nexport type MaxInputs = Pick;\nexport interface MaxAttrs {\n reductionIndices: number|number[];\n keepDims: boolean;\n}\n\nexport const Maximum = 'Maximum';\nexport type MaximumInputs = BinaryInputs;\n\nexport const MaxPool = 'MaxPool';\nexport type MaxPoolInputs = Pick;\nexport interface MaxPoolAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPoolGrad = 'MaxPoolGrad';\nexport type MaxPoolGradInputs = Pick;\nexport interface MaxPoolGradAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPool3D = 'MaxPool3D';\nexport type MaxPool3DInputs = Pick;\nexport interface MaxPool3DAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dataFormat: 'NDHWC'|'NCDHW';\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPool3DGrad = 'MaxPool3DGrad';\nexport type MaxPool3DGradInputs =\n Pick;\nexport interface MaxPool3DGradAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPoolWithArgmax = 'MaxPoolWithArgmax';\nexport type MaxPoolWithArgmaxInputs = Pick;\nexport interface MaxPoolWithArgmaxAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n includeBatchInIndex: boolean;\n}\n\nexport const Mean = 'Mean';\nexport type MeanInputs = Pick;\nexport interface MeanAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Min = 'Min';\nexport type MinInputs = Pick;\nexport interface MinAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Minimum = 'Minimum';\nexport type MinimumInputs = BinaryInputs;\n\nexport const MirrorPad = 'MirrorPad';\nexport type MirrorPadInputs = Pick;\nexport interface MirrorPadAttrs {\n paddings: Array<[number, number]>;\n mode: 'reflect'|'symmetric';\n}\n\nexport const Mod = 'Mod';\nexport type ModInputs = BinaryInputs;\n\nexport const Multinomial = 'Multinomial';\nexport type MultinomialInputs = Pick;\nexport interface MultinomialAttrs {\n numSamples: number;\n seed: number;\n normalized: boolean;\n}\n\nexport const Multiply = 'Multiply';\nexport type MultiplyInputs = BinaryInputs;\n\nexport const Neg = 'Neg';\nexport type NegInputs = UnaryInputs;\n\nexport const NotEqual = 'NotEqual';\nexport type NotEqualInputs = BinaryInputs;\n\nexport const NonMaxSuppressionV3 = 'NonMaxSuppressionV3';\nexport type NonMaxSuppressionV3Inputs =\n Pick;\nexport interface NonMaxSuppressionV3Attrs {\n maxOutputSize: number;\n iouThreshold: number;\n scoreThreshold: number;\n}\n\nexport const NonMaxSuppressionV4 = 'NonMaxSuppressionV4';\nexport type NonMaxSuppressionV4Inputs =\n Pick;\nexport interface NonMaxSuppressionV4Attrs {\n maxOutputSize: number;\n iouThreshold: number;\n scoreThreshold: number;\n padToMaxOutputSize: boolean;\n}\n\nexport const NonMaxSuppressionV5 = 'NonMaxSuppressionV5';\nexport type NonMaxSuppressionV5Inputs =\n Pick;\nexport interface NonMaxSuppressionV5Attrs {\n maxOutputSize: number;\n iouThreshold: number;\n scoreThreshold: number;\n softNmsSigma: number;\n}\n\nexport const OnesLike = 'OnesLike';\nexport type OnesLikeInputs = UnaryInputs;\n\nexport const OneHot = 'OneHot';\nexport type OneHotInputs = Pick;\nexport interface OneHotAttrs {\n depth: number;\n onValue: number;\n offValue: number;\n}\n\nexport const Pack = 'Pack';\nexport type PackInputs = TensorInfo[];\nexport interface PackAttrs {\n axis: number;\n}\n\nexport const PadV2 = 'PadV2';\nexport type PadV2Inputs = Pick;\nexport interface PadV2Attrs {\n paddings: Array<[number, number]>;\n constantValue: number;\n}\n\nexport const Pool = 'Pool';\nexport type PoolInputs = Pick;\n\nexport const Pow = 'Pow';\nexport type PowInputs = BinaryInputs;\n\nexport const Prelu = 'Prelu';\nexport type PreluInputs = Pick;\n\nexport const Prod = 'Prod';\nexport type ProdInputs = Pick;\nexport interface ProdAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Range = 'Range';\nexport interface RangeAttrs {\n start: number;\n stop: number;\n step: number;\n dtype: 'float32'|'int32';\n}\n\nexport const Real = 'Real';\nexport type RealInputs = Pick;\n\nexport const Reciprocal = 'Reciprocal';\nexport type ReciprocalInputs = UnaryInputs;\n\nexport const Relu = 'Relu';\nexport type ReluInputs = Pick;\n\nexport const Reshape = 'Reshape';\nexport type ReshapeInputs = Pick;\nexport interface ReshapeAttrs {\n shape: number[];\n}\n\nexport const ResizeNearestNeighbor = 'ResizeNearestNeighbor';\nexport type ResizeNearestNeighborInputs = Pick;\nexport interface ResizeNearestNeighborAttrs {\n alignCorners: boolean;\n halfPixelCenters: boolean;\n size: [number, number];\n}\n\nexport const ResizeNearestNeighborGrad = 'ResizeNearestNeighborGrad';\nexport type ResizeNearestNeighborGradInputs =\n Pick;\nexport type ResizeNearestNeighborGradAttrs = ResizeNearestNeighborAttrs;\n\nexport const ResizeBilinear = 'ResizeBilinear';\nexport type ResizeBilinearInputs = Pick;\nexport interface ResizeBilinearAttrs {\n alignCorners: boolean;\n halfPixelCenters: boolean;\n size: [number, number];\n}\n\nexport const ResizeBilinearGrad = 'ResizeBilinearGrad';\nexport type ResizeBilinearGradInputs = Pick;\nexport type ResizeBilinearGradAttrs = ResizeBilinearAttrs;\n\nexport const Relu6 = 'Relu6';\nexport type Relu6Inputs = Pick;\n\nexport const Reverse = 'Reverse';\nexport type ReverseInputs = Pick;\nexport interface ReverseAttrs {\n dims: number|number[];\n}\n\nexport const Round = 'Round';\nexport type RoundInputs = UnaryInputs;\n\nexport const Rsqrt = 'Rsqrt';\nexport type RsqrtInputs = UnaryInputs;\n\nexport const ScatterNd = 'ScatterNd';\nexport type ScatterNdInputs = Pick;\nexport interface ScatterNdAttrs {\n shape: number[];\n}\n\nexport const Select = 'Select';\nexport type SelectInputs = Pick;\n\nexport const Selu = 'Selu';\nexport type SeluInputs = Pick;\n\nexport const Slice = 'Slice';\nexport type SliceInputs = Pick;\nexport interface SliceAttrs {\n begin: number|number[];\n size: number|number[];\n}\nexport const Sin = 'Sin';\nexport type SinInputs = UnaryInputs;\n\nexport const Sinh = 'Sinh';\nexport type SinhInputs = UnaryInputs;\n\nexport const Sign = 'Sign';\nexport type SignInputs = UnaryInputs;\n\nexport const Sigmoid = 'Sigmoid';\nexport type SigmoidInputs = UnaryInputs;\n\nexport const Softplus = 'Softplus';\nexport type SoftplusInputs = UnaryInputs;\n\nexport const Sqrt = 'Sqrt';\nexport type SqrtInputs = UnaryInputs;\n\nexport const Sum = 'Sum';\nexport type SumInputs = Pick;\nexport interface SumAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const SpaceToBatchND = 'SpaceToBatchND';\nexport type SpaceToBatchNDInputs = Pick;\nexport interface SpaceToBatchNDAttrs {\n blockShape: number[];\n paddings: number[][];\n}\n\nexport const SplitV = 'SplitV';\nexport type SplitVInputs = Pick;\nexport interface SplitVAttrs {\n numOrSizeSplits: number[]|number;\n axis: number;\n}\n\nexport const Softmax = 'Softmax';\nexport type SoftmaxInputs = Pick;\nexport interface SoftmaxAttrs {\n dim: number;\n}\n\nexport const SparseReshape = 'SparseReshape';\nexport type SparseReshapeInputs =\n Pick;\n\nexport const SparseToDense = 'SparseToDense';\nexport type SparseToDenseInputs =\n Pick;\nexport interface SparseToDenseAttrs {\n outputShape: number[];\n}\n\nexport const SquaredDifference = 'SquaredDifference';\nexport type SquaredDifferenceInputs = BinaryInputs;\n\nexport const Square = 'Square';\nexport type SquareInputs = Pick;\n\nexport const StridedSlice = 'StridedSlice';\nexport type StridedSliceInputs = Pick;\nexport interface StridedSliceAttrs {\n begin: number[];\n end: number[];\n strides: number[];\n beginMask: number;\n endMask: number;\n ellipsisMask: number;\n newAxisMask: number;\n shrinkAxisMask: number;\n}\n\nexport const Sub = 'Sub';\nexport type SubInputs = BinaryInputs;\n\nexport const Tan = 'Tan';\nexport type TanInputs = UnaryInputs;\n\nexport const Tanh = 'Tanh';\nexport type TanhInputs = UnaryInputs;\n\nexport const Tile = 'Tile';\nexport type TileInputs = Pick;\nexport interface TileAttrs {\n reps: number[];\n}\n\nexport const TopK = 'TopK';\nexport type TopKInputs = Pick;\nexport interface TopKAttrs {\n k: number;\n sorted: boolean;\n}\n\nexport const Transform = 'Transform';\nexport type TransformInputs = Pick;\nexport interface TransformAttrs {\n interpolation: 'nearest'|'bilinear';\n fillMode: 'constant'|'reflect'|'wrap'|'nearest';\n fillValue: number;\n outputShape?: [number, number];\n}\n\nexport const Transpose = 'Transpose';\nexport type TransposeInputs = Pick;\nexport interface TransposeAttrs {\n perm: number[];\n}\n\nexport const Unique = 'Unique';\nexport type UniqueInputs = Pick;\nexport interface UniqueAttrs {\n axis: number;\n}\n\nexport type UnaryInputs = Pick;\n\nexport const Unpack = 'Unpack';\nexport type UnpackInputs = Pick;\nexport interface UnpackAttrs {\n axis: number;\n}\n\nexport const UnsortedSegmentSum = 'UnsortedSegmentSum';\nexport type UnsortedSegmentSumInputs =\n Pick;\nexport interface UnsortedSegmentSumAttrs {\n numSegments: number;\n}\n\nexport const ZerosLike = 'ZerosLike';\nexport type ZerosLikeInputs = UnaryInputs;\n\n/**\n * TensorFlow.js-only kernels\n */\nexport const Step = 'Step';\nexport type StepInputs = UnaryInputs;\nexport interface StepAttrs {\n alpha: number;\n}\n\nexport const FromPixels = 'FromPixels';\nexport interface FromPixelsInputs {\n pixels: PixelData|ImageData|HTMLImageElement|HTMLCanvasElement|\n HTMLVideoElement|ImageBitmap;\n}\nexport interface FromPixelsAttrs {\n numChannels: number;\n}\n\nexport const RotateWithOffset = 'RotateWithOffset';\nexport type RotateWithOffsetInputs = Pick;\nexport interface RotateWithOffsetAttrs {\n radians: number;\n fillValue: number|[number, number, number];\n center: number|[number, number];\n}\n\nexport const _FusedMatMul = '_FusedMatMul';\n// tslint:disable-next-line: class-name\nexport interface _FusedMatMulInputs extends NamedTensorInfoMap {\n a: TensorInfo;\n b: TensorInfo;\n bias?: TensorInfo;\n preluActivationWeights?: TensorInfo;\n}\n// tslint:disable-next-line: class-name\nexport interface _FusedMatMulAttrs {\n transposeA: boolean;\n transposeB: boolean;\n activation: Activation;\n leakyreluAlpha?: number;\n}\n\nexport const FusedConv2D = 'FusedConv2D';\nexport interface FusedConv2DInputs extends NamedTensorInfoMap {\n x: TensorInfo;\n filter: TensorInfo;\n bias?: TensorInfo;\n preluActivationWeights?: TensorInfo;\n}\nexport interface FusedConv2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode: 'floor'|'round'|'ceil';\n activation: Activation;\n leakyreluAlpha?: number;\n}\n\nexport const FusedDepthwiseConv2D = 'FusedDepthwiseConv2D';\nexport interface FusedDepthwiseConv2DInputs extends NamedTensorInfoMap {\n x: TensorInfo;\n filter: TensorInfo;\n bias?: TensorInfo;\n preluActivationWeights?: TensorInfo;\n}\nexport interface FusedDepthwiseConv2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode: 'floor'|'round'|'ceil';\n activation: Activation;\n leakyreluAlpha?: number;\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {env} from './environment';\n\nimport {getGlobal} from './global_util';\nimport {NamedGradientMap} from './tape';\nimport {Tensor} from './tensor';\nimport {DataType, RecursiveArray} from './types';\n\nconst kernelRegistry =\n getGlobal('kernelRegistry', () => new Map());\nconst gradRegistry =\n getGlobal('gradRegistry', () => new Map());\n\nexport type DataId = object;\n\ntype AttributeValue =\n number|number[]|boolean|boolean[]|string|string[]|NamedAttrMap;\n\n/** These are extra non-tensor/primitive params passed to kernel functions. */\nexport type Attribute = AttributeValue|RecursiveArray;\n\n/** Specifies the code to run when executing a kernel. */\nexport type KernelFunc = (params: {\n inputs: NamedTensorInfoMap,\n backend: {},\n attrs?: NamedAttrMap,\n}) => TensorInfo|TensorInfo[];\n\n/** The function to run when computing a gradient during backprop. */\nexport type GradFunc =\n (dy: Tensor|Tensor[], saved: Tensor[], attrs: NamedAttrMap) =>\n NamedGradientMap;\n\n/** Function that gets called after the backend initializes. */\nexport type KernelSetupFunc = (backend: {}) => void;\n/** Function that gets called right before the backend is disposed. */\nexport type KernelDisposeFunc = KernelSetupFunc;\n\n/** Config object for registering a kernel in the global registry. */\nexport interface KernelConfig {\n kernelName: string;\n backendName: string;\n kernelFunc: KernelFunc;\n setupFunc?: KernelSetupFunc;\n disposeFunc?: KernelDisposeFunc;\n}\n\n/** Config object for registering a gradient in the global registry. */\nexport interface GradConfig {\n kernelName: string;\n inputsToSave?: string[];\n // When saveAllInputs is true, all inputs will be saved. Only use this flag\n // if inputs is an array of Tensors.\n saveAllInputs?: boolean;\n outputsToSave?: boolean[];\n gradFunc: GradFunc;\n}\n\n/** Holds metadata for a given tensor. */\nexport interface TensorInfo {\n dataId: DataId;\n shape: number[];\n dtype: DataType;\n}\n\nexport interface NamedTensorInfoMap {\n [name: string]: TensorInfo;\n}\n\nexport interface NamedAttrMap {\n [name: string]: Attribute;\n}\n\n/**\n * Returns the kernel function (code) associated with the provided names.\n *\n * @param kernelName The official name of the kernel.\n * @param backendName The official name of the backend.\n */\nexport function getKernel(\n kernelName: string, backendName: string): KernelConfig {\n const key = makeKey(kernelName, backendName);\n return kernelRegistry.get(key);\n}\n\n/**\n * Returns the registered gradient info associated with the provided kernel.\n * @param kernelName The official TF kernel name.\n */\nexport function getGradient(kernelName: string): GradConfig {\n return gradRegistry.get(kernelName);\n}\n\nexport function getKernelsForBackend(backendName: string): KernelConfig[] {\n const it = kernelRegistry.entries();\n const result: KernelConfig[] = [];\n\n while (true) {\n const {done, value} = it.next();\n if (done) {\n break;\n }\n const [key, config] = value;\n const [backend, ] = key.split('_');\n if (backend === backendName) {\n result.push(config);\n }\n }\n return result;\n}\n\n/**\n * Registers the function (forward pass) for the kernel in a global registry.\n *\n * @param config A config object with the following properties:\n * - `kernelName` The official name of the kernel.\n * - `backendName` The official name of the backend.\n * - `kernelFunc` The function to run during the forward pass of the kernel.\n * - `setupFunc` Optional. Gets called once, after the backend initializes.\n * - `disposeFunc` Optional. Gets called once, right before the backend is\n * disposed.\n */\nexport function registerKernel(config: KernelConfig) {\n const {kernelName, backendName} = config;\n const key = makeKey(kernelName, backendName);\n if (kernelRegistry.has(key)) {\n console.warn(\n `The kernel '${kernelName}' for backend ` +\n `'${backendName}' is already registered`);\n }\n kernelRegistry.set(key, config);\n}\n\n/**\n * Registers a gradient function for a given kernel in the global registry,\n * to be used during the back-propagation of that kernel.\n *\n * @param config An object with the following properties:\n * - `kernelName` The name of the kernel that the gradient function is for.\n * - `gradFunc` The function to run during back-propagation.\n */\nexport function registerGradient(config: GradConfig) {\n const {kernelName} = config;\n\n if (gradRegistry.has(kernelName)) {\n // TODO (yassogba) after 3.0 assess whether we need to keep this gated\n // to debug mode.\n if (env().getBool('DEBUG')) {\n console.warn(`Overriding the gradient for '${kernelName}'`);\n }\n }\n gradRegistry.set(kernelName, config);\n}\n\n/**\n * Removes the kernel function from the registry.\n *\n * @param kernelName The official name of the kernel.\n * @param backendName The official name of the backend.\n *\n */\nexport function unregisterKernel(\n kernelName: string, backendName: string): void {\n const key = makeKey(kernelName, backendName);\n if (!kernelRegistry.has(key)) {\n throw new Error(\n `The kernel '${kernelName}' for backend ` +\n `'${backendName}' is not registered`);\n }\n kernelRegistry.delete(key);\n}\n\n/** Removes the registered gradient from the global registry. */\nexport function unregisterGradient(kernelName: string): void {\n if (!gradRegistry.has(kernelName)) {\n throw new Error(\n `The gradient '${kernelName}' for backend is not registered`);\n }\n gradRegistry.delete(kernelName);\n}\n\n/**\n * Finds kernels that have already been registered to a backend and re-registers\n * them for a new backend. Useful for registering custom backends.\n * @param registeredBackendName Already registered backend.\n * @param newBackendName New backend.\n */\nexport function copyRegisteredKernels(\n registeredBackendName: string, newBackendName: string): void {\n const kernels = getKernelsForBackend(registeredBackendName);\n kernels.forEach(kernelConfig => {\n const newKernelConfig =\n Object.assign({}, kernelConfig, {backendName: newBackendName});\n registerKernel(newKernelConfig);\n });\n}\n\nfunction makeKey(kernelName: string, backendName: string) {\n return `${backendName}_${kernelName}`;\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {env} from './environment';\nimport {BackendValues, DataType, TensorLike, TypedArray} from './types';\nimport * as base from './util_base';\nexport * from './util_base';\n\n/**\n * Create typed array for scalar value. Used for storing in `DataStorage`.\n */\nexport function createScalarValue(\n value: DataType, dtype: DataType): BackendValues {\n if (dtype === 'string') {\n return encodeString(value);\n }\n\n return toTypedArray([value], dtype);\n}\n\nfunction noConversionNeeded(a: TensorLike, dtype: DataType): boolean {\n return (a instanceof Float32Array && dtype === 'float32') ||\n (a instanceof Int32Array && dtype === 'int32') ||\n (a instanceof Uint8Array && dtype === 'bool');\n}\n\nexport function toTypedArray(a: TensorLike, dtype: DataType): TypedArray {\n if (dtype === 'string') {\n throw new Error('Cannot convert a string[] to a TypedArray');\n }\n if (Array.isArray(a)) {\n a = base.flatten(a);\n }\n\n if (env().getBool('DEBUG')) {\n base.checkConversionForErrors(a as number[], dtype);\n }\n if (noConversionNeeded(a, dtype)) {\n return a as TypedArray;\n }\n if (dtype == null || dtype === 'float32' || dtype === 'complex64') {\n return new Float32Array(a as number[]);\n } else if (dtype === 'int32') {\n return new Int32Array(a as number[]);\n } else if (dtype === 'bool') {\n const bool = new Uint8Array((a as number[]).length);\n for (let i = 0; i < bool.length; ++i) {\n if (Math.round((a as number[])[i]) !== 0) {\n bool[i] = 1;\n }\n }\n return bool;\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\n\n/**\n * Returns the current high-resolution time in milliseconds relative to an\n * arbitrary time in the past. It works across different platforms (node.js,\n * browsers).\n *\n * ```js\n * console.log(tf.util.now());\n * ```\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function now(): number {\n return env().platform.now();\n}\n\n/**\n * Returns a platform-specific implementation of\n * [`fetch`](https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API).\n *\n * If `fetch` is defined on the global object (`window`, `process`, etc.),\n * `tf.util.fetch` returns that function.\n *\n * If not, `tf.util.fetch` returns a platform-specific solution.\n *\n * ```js\n * const resource = await tf.util.fetch('https://unpkg.com/@tensorflow/tfjs');\n * // handle response\n * ```\n *\n * @doc {heading: 'Util'}\n */\nexport function fetch(\n path: string, requestInits?: RequestInit): Promise {\n return env().platform.fetch(path, requestInits);\n}\n\n/**\n * Encodes the provided string into bytes using the provided encoding scheme.\n *\n * @param s The string to encode.\n * @param encoding The encoding scheme. Defaults to utf-8.\n *\n * @doc {heading: 'Util'}\n */\nexport function encodeString(s: string, encoding = 'utf-8'): Uint8Array {\n encoding = encoding || 'utf-8';\n return env().platform.encode(s, encoding);\n}\n\n/**\n * Decodes the provided bytes into a string using the provided encoding scheme.\n * @param bytes The bytes to decode.\n *\n * @param encoding The encoding scheme. Defaults to utf-8.\n *\n * @doc {heading: 'Util'}\n */\nexport function decodeString(bytes: Uint8Array, encoding = 'utf-8'): string {\n encoding = encoding || 'utf-8';\n return env().platform.decode(bytes, encoding);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {BackendTimer, BackendTimingInfo} from './backends/backend';\nimport {env} from './environment';\nimport {Tensor} from './tensor';\nimport {NamedTensorMap} from './tensor_types';\nimport {DataType, DataTypeMap, TypedArray} from './types';\nimport * as util from './util';\n\nexport type KernelProfile = {\n kernelName: string,\n outputs: Tensor[],\n inputs: NamedTensorMap,\n timeMs: Promise,\n extraInfo: Promise\n};\n\nexport class Profiler {\n constructor(private backendTimer: BackendTimer, private logger?: Logger) {\n if (logger == null) {\n this.logger = new Logger();\n }\n }\n\n profileKernel(kernelName: string, inputs: NamedTensorMap, f: () => Tensor[]):\n KernelProfile {\n let outputs: Tensor[];\n const holdResultWrapperFn = () => {\n outputs = f();\n };\n let timer: Promise;\n const start = util.now();\n if (this.backendTimer.timerAvailable()) {\n timer = this.backendTimer.time(holdResultWrapperFn);\n } else {\n holdResultWrapperFn();\n for (const output of outputs) {\n output.dataSync();\n }\n timer = Promise.resolve({kernelMs: util.now() - start});\n }\n if (env().getBool('CHECK_COMPUTATION_FOR_ERRORS')) {\n for (let i = 0; i < outputs.length; i++) {\n const output = outputs[i];\n // Dangling promise here because we don't want to propagate up\n // asynchronicity.\n output.data().then(tensorVals => {\n checkComputationForErrors(tensorVals, output.dtype, kernelName);\n });\n }\n }\n\n const kernelProfile = {\n kernelName,\n outputs,\n inputs,\n timeMs: timer.then(timing => timing.kernelMs),\n extraInfo: timer.then(\n timing => timing.getExtraProfileInfo != null ?\n timing.getExtraProfileInfo() :\n '')\n };\n return kernelProfile;\n }\n\n logKernelProfile(kernelProfile: KernelProfile): void {\n const {kernelName, outputs, timeMs, inputs, extraInfo} = kernelProfile;\n\n outputs.forEach(result => {\n Promise.all([result.data(), timeMs, extraInfo]).then(valueContainer => {\n this.logger.logKernelProfile(\n kernelName, result, valueContainer[0], valueContainer[1], inputs,\n valueContainer[2]);\n });\n });\n }\n}\n\nexport function checkComputationForErrors(\n vals: DataTypeMap[D], dtype: D, kernelName: string): boolean {\n if (dtype !== 'float32') {\n // Only floating point computations will generate NaN values\n return false;\n }\n for (let i = 0; i < vals.length; i++) {\n const num = vals[i] as number;\n if (isNaN(num) || !isFinite(num)) {\n // Throwing custom exception so behavior is testable.\n console.warn(`Found ${num} in the result of '${kernelName}'`);\n return true;\n }\n }\n return false;\n}\n\nexport class Logger {\n logKernelProfile(\n name: string, result: Tensor, vals: TypedArray,\n timeMs: number|{error: string}, inputs: NamedTensorMap,\n extraInfo?: string) {\n const time = typeof timeMs === 'number' ? util.rightPad(`${timeMs}ms`, 9) :\n timeMs['error'];\n const paddedName = util.rightPad(name, 25);\n const rank = result.rank;\n const size = result.size;\n const shape = util.rightPad(result.shape.toString(), 14);\n let inputShapesDescription = '';\n\n for (const name in inputs) {\n const input = inputs[name];\n if (input != null) {\n // The input might be a non-tensor (e.g HTMLImageElement), in which case\n // we claim the output shape as input shape.\n const inputShape = input.shape || result.shape;\n const inputRank = inputShape.length;\n inputShapesDescription +=\n `${name}: ${inputRank}D ${inputRank > 0 ? inputShape : ''} `;\n }\n }\n\n console.log(\n `%c${paddedName}\\t%c${time}\\t%c${rank}D ${shape}\\t%c${size}\\t%c${\n inputShapesDescription}\\t%c${extraInfo}`,\n 'font-weight:bold', 'color:red', 'color:blue', 'color: orange',\n 'color: green', 'color: steelblue');\n }\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from './tensor';\nimport {NamedTensorMap} from './tensor_types';\nimport * as util from './util';\n\nexport interface TapeNode {\n id: number;\n kernelName: string;\n outputs: Tensor[];\n inputs: NamedTensorMap;\n // Optional params, defined only for ops with gradient impl.\n gradient?: (dys: Tensor[]) => NamedGradientMap;\n saved?: Tensor[];\n}\n\nexport type NamedGradientMap = {\n [inputName: string]: () => Tensor;\n};\n\n/**\n * Computes a list of TapeNodes that connect x to y, filtering everything else\n * out and preserving the order of the original tape elements.\n *\n * @param tape The tape elements to filter.\n * @param xs The input Tensors.\n * @param y The output Tensor.\n */\nexport function getFilteredNodesXToY(\n tape: TapeNode[], xs: Tensor[], y: Tensor): TapeNode[] {\n // Forward pass to compute all the nodes and Tensors that are transitively a\n // function of x.\n const tensorsFromX: {[tensorId: number]: boolean} = {};\n const nodesFromX: {[nodeId: number]: boolean} = {};\n for (let i = 0; i < xs.length; i++) {\n tensorsFromX[xs[i].id] = true;\n }\n\n for (let i = 0; i < tape.length; i++) {\n const node = tape[i];\n const nodeInputs = node.inputs;\n for (const inputName in nodeInputs) {\n const input = nodeInputs[inputName];\n\n let anyInputFromX = false;\n for (let j = 0; j < xs.length; j++) {\n if (tensorsFromX[input.id]) {\n node.outputs.forEach(output => tensorsFromX[output.id] = true);\n anyInputFromX = true;\n nodesFromX[node.id] = true;\n break;\n }\n }\n\n if (anyInputFromX) {\n break;\n }\n }\n }\n\n // Backward pass to find all of the nodes and Tensors that lead to y.\n const tensorsLeadToY: {[tensorId: number]: boolean} = {};\n tensorsLeadToY[y.id] = true;\n const nodesToY: {[nodeId: number]: boolean} = {};\n\n for (let i = tape.length - 1; i >= 0; i--) {\n const node = tape[i];\n const nodeInputs = node.inputs;\n\n // If any of the outputs lead to y, mark all of the inputs as leading to y.\n for (let j = 0; j < node.outputs.length; j++) {\n if (tensorsLeadToY[node.outputs[j].id]) {\n for (const inputName in nodeInputs) {\n tensorsLeadToY[nodeInputs[inputName].id] = true;\n nodesToY[node.id] = true;\n }\n break;\n }\n }\n }\n\n // Return the paths that come from x and lead to y.\n const filteredTape: TapeNode[] = [];\n for (let i = 0; i < tape.length; i++) {\n const node = tape[i];\n\n if (nodesFromX[node.id] && nodesToY[node.id]) {\n // Prune the inputs from the node that aren't a function of x.\n const prunedInputs: {[inputName: string]: Tensor} = {};\n for (const inputName in node.inputs) {\n const nodeInput = node.inputs[inputName];\n if (tensorsFromX[nodeInput.id]) {\n prunedInputs[inputName] = nodeInput;\n }\n }\n\n // Copy the node and overwrite inputsAndArgs to the pruned version.\n const prunedNode = Object.assign({}, node);\n prunedNode.inputs = prunedInputs;\n prunedNode.outputs = node.outputs;\n\n filteredTape.push(prunedNode);\n }\n }\n\n return filteredTape;\n}\n\n/**\n * Backpropagate gradients through the filtered TapeNodes.\n *\n * @param tensorAccumulatedGradientMap A map of Tensor to its gradient. This map\n * is mutated by this method.\n * @param filteredTape The filtered TapeNodes to backprop through.\n */\nexport function backpropagateGradients(\n tensorAccumulatedGradientMap: {[tensorId: number]: Tensor},\n filteredTape: TapeNode[], tidy: (f: Function) => Tensor,\n add: (a: Tensor, b: Tensor) => Tensor) {\n // Walk the tape backward and keep a map of Tensor to its gradient.\n for (let i = filteredTape.length - 1; i >= 0; i--) {\n const node = filteredTape[i];\n\n const dys: Tensor[] = [];\n node.outputs.forEach(o => {\n const gradTensor = tensorAccumulatedGradientMap[o.id];\n if (gradTensor != null) {\n dys.push(gradTensor);\n } else {\n // This particular output is not in the back-propagation subgraph, so it\n // does not affect the final output, thus we put null for its dy.\n dys.push(null);\n }\n });\n\n if (node.gradient == null) {\n throw new Error(\n `Cannot compute gradient: gradient function not found ` +\n `for ${node.kernelName}.`);\n }\n\n // Backprop dy through this node and accumulate gradients over the inputs.\n const inputGradients = node.gradient(dys);\n\n for (const inputName in node.inputs) {\n if (!(inputName in inputGradients)) {\n throw new Error(\n `Cannot backprop through input ${inputName}. ` +\n `Available gradients found: ${Object.keys(inputGradients)}.`);\n }\n\n // Call the gradient function.\n const dx = tidy(() => inputGradients[inputName]());\n if (dx.dtype !== 'float32') {\n throw new Error(\n `Error in gradient for op ${\n node.kernelName}. The gradient of input ` +\n `${inputName} must have 'float32' dtype, but has '${dx.dtype}'`);\n }\n const x = node.inputs[inputName];\n if (!util.arraysEqual(dx.shape, x.shape)) {\n throw new Error(\n `Error in gradient for op ${\n node.kernelName}. The gradient of input ` +\n `'${inputName}' has shape '${dx.shape}', which does not match ` +\n `the shape of the input '${x.shape}'`);\n }\n\n if (tensorAccumulatedGradientMap[x.id] == null) {\n tensorAccumulatedGradientMap[x.id] = dx;\n } else {\n const curGradient = tensorAccumulatedGradientMap[x.id];\n tensorAccumulatedGradientMap[x.id] = add(curGradient, dx);\n curGradient.dispose();\n }\n }\n }\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {DataType, TypedArray} from './types';\nimport {computeStrides, isString, rightPad, sizeFromShape} from './util';\n\n// Maximum number of values before we decide to show ellipsis.\nconst FORMAT_LIMIT_NUM_VALS = 20;\n// Number of first and last values to show when displaying a, b,...,y, z.\nconst FORMAT_NUM_FIRST_LAST_VALS = 3;\n// Number of significant digits to show.\nconst FORMAT_NUM_SIG_DIGITS = 7;\n\nexport function tensorToString(\n vals: TypedArray|string[], shape: number[], dtype: DataType,\n verbose: boolean) {\n const strides = computeStrides(shape);\n const padPerCol = computeMaxSizePerColumn(vals, shape, dtype, strides);\n const rank = shape.length;\n const valsLines = subTensorToString(vals, shape, dtype, strides, padPerCol);\n const lines = ['Tensor'];\n if (verbose) {\n lines.push(` dtype: ${dtype}`);\n lines.push(` rank: ${rank}`);\n lines.push(` shape: [${shape}]`);\n lines.push(` values:`);\n }\n lines.push(valsLines.map(l => ' ' + l).join('\\n'));\n return lines.join('\\n');\n}\n\nfunction computeMaxSizePerColumn(\n vals: TypedArray|string[], shape: number[], dtype: DataType,\n strides: number[]): number[] {\n const n = sizeFromShape(shape);\n const numCols = strides[strides.length - 1];\n const padPerCol = new Array(numCols).fill(0);\n const rank = shape.length;\n const valuesOrTuples =\n dtype === 'complex64' ? createComplexTuples(vals) : vals;\n\n if (rank > 1) {\n for (let row = 0; row < n / numCols; row++) {\n const offset = row * numCols;\n for (let j = 0; j < numCols; j++) {\n padPerCol[j] = Math.max(\n padPerCol[j],\n valToString(valuesOrTuples[offset + j], 0, dtype).length);\n }\n }\n }\n return padPerCol;\n}\n\nfunction valToString(\n val: number|string|[number, number], pad: number, dtype: DataType) {\n let valStr: string;\n if (Array.isArray(val)) {\n valStr = `${parseFloat(val[0].toFixed(FORMAT_NUM_SIG_DIGITS))} + ` +\n `${parseFloat(val[1].toFixed(FORMAT_NUM_SIG_DIGITS))}j`;\n } else if (isString(val)) {\n valStr = `'${val}'`;\n } else if (dtype === 'bool') {\n valStr = boolNumToString(val);\n } else {\n valStr = parseFloat(val.toFixed(FORMAT_NUM_SIG_DIGITS)).toString();\n }\n\n return rightPad(valStr, pad);\n}\n\nfunction boolNumToString(v: number): string {\n return v === 0 ? 'false' : 'true';\n}\n\nfunction subTensorToString(\n vals: TypedArray|string[], shape: number[], dtype: DataType,\n strides: number[], padPerCol: number[], isLast = true): string[] {\n const storagePerElement = dtype === 'complex64' ? 2 : 1;\n\n const size = shape[0];\n const rank = shape.length;\n if (rank === 0) {\n if (dtype === 'complex64') {\n const complexTuple = createComplexTuples(vals);\n return [valToString(complexTuple[0], 0, dtype)];\n }\n if (dtype === 'bool') {\n return [boolNumToString(vals[0] as number)];\n }\n return [vals[0].toString()];\n }\n\n if (rank === 1) {\n if (size > FORMAT_LIMIT_NUM_VALS) {\n const firstValsSize = FORMAT_NUM_FIRST_LAST_VALS * storagePerElement;\n\n let firstVals = Array.from(\n vals.slice(0, firstValsSize));\n let lastVals = Array.from(vals.slice(\n (size - FORMAT_NUM_FIRST_LAST_VALS) * storagePerElement,\n size * storagePerElement));\n if (dtype === 'complex64') {\n firstVals = createComplexTuples(firstVals);\n lastVals = createComplexTuples(lastVals);\n }\n return [\n '[' +\n firstVals.map((x, i) => valToString(x, padPerCol[i], dtype))\n .join(', ') +\n ', ..., ' +\n lastVals\n .map(\n (x, i) => valToString(\n x, padPerCol[size - FORMAT_NUM_FIRST_LAST_VALS + i], dtype))\n .join(', ') +\n ']'\n ];\n }\n const displayVals: Array =\n dtype === 'complex64' ? createComplexTuples(vals) :\n Array.from(vals);\n\n return [\n '[' +\n displayVals.map((x, i) => valToString(x, padPerCol[i], dtype))\n .join(', ') +\n ']'\n ];\n }\n\n // The array is rank 2 or more.\n const subshape = shape.slice(1);\n const substrides = strides.slice(1);\n const stride = strides[0] * storagePerElement;\n const lines: string[] = [];\n if (size > FORMAT_LIMIT_NUM_VALS) {\n for (let i = 0; i < FORMAT_NUM_FIRST_LAST_VALS; i++) {\n const start = i * stride;\n const end = start + stride;\n lines.push(...subTensorToString(\n vals.slice(start, end), subshape, dtype, substrides, padPerCol,\n false /* isLast */));\n }\n lines.push('...');\n for (let i = size - FORMAT_NUM_FIRST_LAST_VALS; i < size; i++) {\n const start = i * stride;\n const end = start + stride;\n lines.push(...subTensorToString(\n vals.slice(start, end), subshape, dtype, substrides, padPerCol,\n i === size - 1 /* isLast */));\n }\n } else {\n for (let i = 0; i < size; i++) {\n const start = i * stride;\n const end = start + stride;\n lines.push(...subTensorToString(\n vals.slice(start, end), subshape, dtype, substrides, padPerCol,\n i === size - 1 /* isLast */));\n }\n }\n const sep = rank === 2 ? ',' : '';\n lines[0] = '[' + lines[0] + sep;\n for (let i = 1; i < lines.length - 1; i++) {\n lines[i] = ' ' + lines[i] + sep;\n }\n let newLineSep = ',\\n';\n for (let i = 2; i < rank; i++) {\n newLineSep += '\\n';\n }\n lines[lines.length - 1] =\n ' ' + lines[lines.length - 1] + ']' + (isLast ? '' : newLineSep);\n return lines;\n}\n\nfunction createComplexTuples(vals: Array<{}>|\n TypedArray): Array<[number, number]> {\n const complexTuples: Array<[number, number]> = [];\n for (let i = 0; i < vals.length; i += 2) {\n complexTuples.push([vals[i], vals[i + 1]] as [number, number]);\n }\n return complexTuples;\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {getGlobal} from './global_util';\nimport {tensorToString} from './tensor_format';\nimport {ArrayMap, BackendValues, DataType, DataTypeMap, DataValues, NumericDataType, Rank, ShapeMap, SingleValueMap, TypedArray} from './types';\nimport * as util from './util';\nimport {computeStrides, toNestedArray} from './util';\n\nexport interface TensorData {\n dataId?: DataId;\n values?: DataTypeMap[D];\n}\n\n// This interface mimics KernelBackend (in backend.ts), which would create a\n// circular dependency if imported.\nexport interface Backend {}\n\n/**\n * A mutable object, similar to `tf.Tensor`, that allows users to set values\n * at locations before converting to an immutable `tf.Tensor`.\n *\n * See `tf.buffer` for creating a tensor buffer.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\nexport class TensorBuffer {\n size: number;\n shape: ShapeMap[R];\n strides: number[];\n values: DataTypeMap[D];\n\n constructor(shape: ShapeMap[R], public dtype: D, values?: DataTypeMap[D]) {\n this.shape = shape.slice() as ShapeMap[R];\n this.size = util.sizeFromShape(shape);\n\n if (values != null) {\n const n = values.length;\n util.assert(\n n === this.size,\n () => `Length of values '${n}' does not match the size ` +\n `inferred by the shape '${this.size}'.`);\n }\n if (dtype === 'complex64') {\n throw new Error(\n `complex64 dtype TensorBuffers are not supported. Please create ` +\n `a TensorBuffer for the real and imaginary parts separately and ` +\n `call tf.complex(real, imag).`);\n }\n this.values = values || util.getArrayFromDType(dtype, this.size);\n this.strides = computeStrides(shape);\n }\n\n /**\n * Sets a value in the buffer at a given location.\n *\n * @param value The value to set.\n * @param locs The location indices.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\n set(value: SingleValueMap[D], ...locs: number[]): void {\n if (locs.length === 0) {\n locs = [0];\n }\n util.assert(\n locs.length === this.rank,\n () => `The number of provided coordinates (${locs.length}) must ` +\n `match the rank (${this.rank})`);\n\n const index = this.locToIndex(locs);\n this.values[index] = value as number;\n }\n\n /**\n * Returns the value in the buffer at the provided location.\n *\n * @param locs The location indices.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\n get(...locs: number[]): SingleValueMap[D] {\n if (locs.length === 0) {\n locs = [0];\n }\n let i = 0;\n for (const loc of locs) {\n if (loc < 0 || loc >= this.shape[i]) {\n const msg = `Requested out of range element at ${locs}. ` +\n ` Buffer shape=${this.shape}`;\n throw new Error(msg);\n }\n i++;\n }\n let index = locs[locs.length - 1];\n for (let i = 0; i < locs.length - 1; ++i) {\n index += this.strides[i] * locs[i];\n }\n return this.values[index] as SingleValueMap[D];\n }\n\n locToIndex(locs: number[]): number {\n if (this.rank === 0) {\n return 0;\n } else if (this.rank === 1) {\n return locs[0];\n }\n let index = locs[locs.length - 1];\n for (let i = 0; i < locs.length - 1; ++i) {\n index += this.strides[i] * locs[i];\n }\n return index;\n }\n\n indexToLoc(index: number): number[] {\n if (this.rank === 0) {\n return [];\n } else if (this.rank === 1) {\n return [index];\n }\n const locs: number[] = new Array(this.shape.length);\n for (let i = 0; i < locs.length - 1; ++i) {\n locs[i] = Math.floor(index / this.strides[i]);\n index -= locs[i] * this.strides[i];\n }\n locs[locs.length - 1] = index;\n return locs;\n }\n\n get rank() {\n return this.shape.length;\n }\n\n /**\n * Creates an immutable `tf.Tensor` object from the buffer.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\n toTensor(): Tensor {\n return trackerFn().makeTensor(this.values, this.shape, this.dtype) as\n Tensor;\n }\n}\n\nexport interface TensorTracker {\n makeTensor(\n values: DataValues, shape: number[], dtype: DataType,\n backend?: Backend): Tensor;\n makeVariable(\n initialValue: Tensor, trainable?: boolean, name?: string,\n dtype?: DataType): Variable;\n incRef(a: Tensor, backend: Backend): void;\n disposeTensor(t: Tensor): void;\n disposeVariable(v: Variable): void;\n read(dataId: DataId): Promise;\n readSync(dataId: DataId): BackendValues;\n}\n\n/**\n * The Tensor class calls into this handler to delegate chaining operations.\n */\nexport interface OpHandler {\n cast(x: T, dtype: DataType): T;\n buffer(\n shape: ShapeMap[R], dtype: D,\n values?: DataTypeMap[D]): TensorBuffer;\n print(x: T, verbose: boolean): void;\n clone(x: T): T;\n // TODO(yassogba) bring reshape back?\n}\n\n// For tracking tensor creation and disposal.\nlet trackerFn: () => TensorTracker = null;\n// Used by chaining methods to call into ops.\nlet opHandler: OpHandler = null;\n// Used to warn about deprecated methods.\nlet deprecationWarningFn: (msg: string) => void = null;\n// This here so that we can use this method on dev branches and keep the\n// functionality at master.\n// tslint:disable-next-line:no-unused-expression\n[deprecationWarningFn];\n\n/**\n * An external consumer can register itself as the tensor tracker. This way\n * the Tensor class can notify the tracker for every tensor created and\n * disposed.\n */\nexport function setTensorTracker(fn: () => TensorTracker) {\n trackerFn = fn;\n}\n\n/**\n * An external consumer can register itself as the op handler. This way the\n * Tensor class can have chaining methods that call into ops via the op\n * handler.\n */\nexport function setOpHandler(handler: OpHandler) {\n opHandler = handler;\n}\n\n/**\n * Sets the deprecation warning function to be used by this file. This way the\n * Tensor class can be a leaf but still use the environment.\n */\nexport function setDeprecationWarningFn(fn: (msg: string) => void) {\n deprecationWarningFn = fn;\n}\n\n/**\n * We wrap data id since we use weak map to avoid memory leaks.\n * Since we have our own memory management, we have a reference counter\n * mapping a tensor to its data, so there is always a pointer (even if that\n * data is otherwise garbage collectable).\n * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/\n * Global_Objects/WeakMap\n */\nexport type DataId = object; // object instead of {} to force non-primitive.\n\n// Declare this namespace to make Tensor class augmentation work in google3.\nexport declare namespace Tensor {}\n/**\n * A `tf.Tensor` object represents an immutable, multidimensional array of\n * numbers that has a shape and a data type.\n *\n * For performance reasons, functions that create tensors do not necessarily\n * perform a copy of the data passed to them (e.g. if the data is passed as a\n * `Float32Array`), and changes to the data will change the tensor. This is not\n * a feature and is not supported. To avoid this behavior, use the tensor before\n * changing the input data or create a copy with `copy = tf.add(yourTensor, 0)`.\n *\n * See `tf.tensor` for details on how to create a `tf.Tensor`.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\nexport class Tensor {\n /** Unique id of this tensor. */\n readonly id: number;\n /**\n * Id of the bucket holding the data for this tensor. Multiple arrays can\n * point to the same bucket (e.g. when calling array.reshape()).\n */\n dataId: DataId;\n /** The shape of the tensor. */\n readonly shape: ShapeMap[R];\n /** Number of elements in the tensor. */\n readonly size: number;\n /** The data type for the array. */\n readonly dtype: DataType;\n /** The rank type for the array (see `Rank` enum). */\n readonly rankType: R;\n\n /** Whether this tensor has been globally kept. */\n kept = false;\n /** The id of the scope this tensor is being tracked in. */\n scopeId: number;\n\n /**\n * Number of elements to skip in each dimension when indexing. See\n * https://docs.scipy.org/doc/numpy/reference/generated/\\\n * numpy.ndarray.strides.html\n */\n readonly strides: number[];\n\n constructor(shape: ShapeMap[R], dtype: DataType, dataId: DataId, id: number) {\n this.shape = shape.slice() as ShapeMap[R];\n this.dtype = dtype || 'float32';\n this.size = util.sizeFromShape(shape);\n this.strides = computeStrides(shape);\n this.dataId = dataId;\n this.id = id;\n this.rankType = (this.rank < 5 ? this.rank.toString() : 'higher') as R;\n }\n\n get rank(): number {\n return this.shape.length;\n }\n\n /**\n * Returns a promise of `tf.TensorBuffer` that holds the underlying data.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n async buffer(): Promise> {\n const vals = await this.data();\n return opHandler.buffer(this.shape, this.dtype as D, vals);\n }\n\n /**\n * Returns a `tf.TensorBuffer` that holds the underlying data.\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n bufferSync(): TensorBuffer {\n return opHandler.buffer(this.shape, this.dtype as D, this.dataSync());\n }\n\n /**\n * Returns the tensor data as a nested array. The transfer of data is done\n * asynchronously.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n async array(): Promise {\n const vals = await this.data();\n return toNestedArray(this.shape, vals, this.dtype === 'complex64') as\n ArrayMap[R];\n }\n\n /**\n * Returns the tensor data as a nested array. The transfer of data is done\n * synchronously.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n arraySync(): ArrayMap[R] {\n return toNestedArray(\n this.shape, this.dataSync(), this.dtype === 'complex64') as\n ArrayMap[R];\n }\n\n /**\n * Asynchronously downloads the values from the `tf.Tensor`. Returns a\n * promise of `TypedArray` that resolves when the computation has finished.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n async data(): Promise {\n this.throwIfDisposed();\n const data = trackerFn().read(this.dataId);\n if (this.dtype === 'string') {\n const bytes = await data as Uint8Array[];\n try {\n return bytes.map(b => util.decodeString(b)) as DataTypeMap[D];\n } catch {\n throw new Error(\n 'Failed to decode the string bytes into utf-8. ' +\n 'To get the original bytes, call tensor.bytes().');\n }\n }\n return data as Promise;\n }\n\n /**\n * Synchronously downloads the values from the `tf.Tensor`. This blocks the\n * UI thread until the values are ready, which can cause performance issues.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n dataSync(): DataTypeMap[D] {\n this.throwIfDisposed();\n const data = trackerFn().readSync(this.dataId);\n if (this.dtype === 'string') {\n try {\n return (data as Uint8Array[]).map(b => util.decodeString(b)) as\n DataTypeMap[D];\n } catch {\n throw new Error(\n 'Failed to decode the string bytes into utf-8. ' +\n 'To get the original bytes, call tensor.bytes().');\n }\n }\n return data as DataTypeMap[D];\n }\n\n /** Returns the underlying bytes of the tensor's data. */\n async bytes(): Promise {\n this.throwIfDisposed();\n const data = await trackerFn().read(this.dataId);\n if (this.dtype === 'string') {\n return data as Uint8Array[];\n } else {\n return new Uint8Array((data as TypedArray).buffer);\n }\n }\n\n /**\n * Disposes `tf.Tensor` from memory.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n dispose(): void {\n if (this.isDisposed) {\n return;\n }\n trackerFn().disposeTensor(this);\n this.isDisposedInternal = true;\n }\n\n protected isDisposedInternal = false;\n get isDisposed(): boolean {\n return this.isDisposedInternal;\n }\n\n throwIfDisposed() {\n if (this.isDisposed) {\n throw new Error(`Tensor is disposed.`);\n }\n }\n\n /**\n * Prints the `tf.Tensor`. See `tf.print` for details.\n *\n * @param verbose Whether to print verbose information about the tensor,\n * including dtype and size.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n print(verbose = false): void {\n return opHandler.print(this, verbose);\n }\n\n /**\n * Returns a copy of the tensor. See `tf.clone` for details.\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n clone(this: T): T {\n this.throwIfDisposed();\n return opHandler.clone(this);\n }\n\n /**\n * Returns a human-readable description of the tensor. Useful for logging.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n toString(verbose = false): string {\n const vals = this.dataSync();\n return tensorToString(vals, this.shape, this.dtype, verbose);\n }\n\n cast(dtype: DataType): T {\n this.throwIfDisposed();\n return opHandler.cast(this as T, dtype);\n }\n variable(trainable = true, name?: string, dtype?: DataType): Variable {\n this.throwIfDisposed();\n return trackerFn().makeVariable(this, trainable, name, dtype) as\n Variable;\n }\n}\nObject.defineProperty(Tensor, Symbol.hasInstance, {\n value: (instance: Tensor) => {\n // Implementation note: we should use properties of the object that will be\n // defined before the constructor body has finished executing (methods).\n // This is because when this code is transpiled by babel, babel will call\n // classCallCheck before the constructor body is run.\n // See https://github.com/tensorflow/tfjs/issues/3384 for backstory.\n return !!instance && instance.data != null && instance.dataSync != null &&\n instance.throwIfDisposed != null;\n }\n});\n\nexport function getGlobalTensorClass() {\n // Use getGlobal so that we can augment the Tensor class across package\n // boundaries becase the node resolution alg may result in different modules\n // being returned for this file depending on the path they are loaded from.\n return getGlobal('Tensor', () => {\n return Tensor;\n });\n}\n\n// Global side effect. Cache global reference to Tensor class\ngetGlobalTensorClass();\n\nexport interface NumericTensor extends Tensor {\n dtype: NumericDataType;\n dataSync(): DataTypeMap[D];\n data(): Promise;\n}\n\nexport interface StringTensor extends Tensor {\n dtype: 'string';\n dataSync(): DataTypeMap[D];\n data(): Promise;\n}\n\n/** @doclink Tensor */\nexport type Scalar = Tensor;\n/** @doclink Tensor */\nexport type Tensor1D = Tensor;\n/** @doclink Tensor */\nexport type Tensor2D = Tensor;\n/** @doclink Tensor */\nexport type Tensor3D = Tensor;\n/** @doclink Tensor */\nexport type Tensor4D = Tensor;\n/** @doclink Tensor */\nexport type Tensor5D = Tensor;\n/** @doclink Tensor */\nexport type Tensor6D = Tensor;\n\n/**\n * A mutable `tf.Tensor`, useful for persisting state, e.g. for training.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\nexport class Variable extends Tensor {\n name: string;\n\n constructor(\n initialValue: Tensor, public trainable: boolean, name: string,\n tensorId: number) {\n super(\n initialValue.shape, initialValue.dtype, initialValue.dataId, tensorId);\n this.name = name;\n }\n\n /**\n * Assign a new `tf.Tensor` to this variable. The new `tf.Tensor` must have\n * the same shape and dtype as the old `tf.Tensor`.\n *\n * @param newValue New tensor to be assigned to this variable.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n assign(newValue: Tensor): void {\n if (newValue.dtype !== this.dtype) {\n throw new Error(\n `dtype of the new value (${newValue.dtype}) and ` +\n `previous value (${this.dtype}) must match`);\n }\n if (!util.arraysEqual(newValue.shape, this.shape)) {\n throw new Error(\n `shape of the new value (${newValue.shape}) and ` +\n `previous value (${this.shape}) must match`);\n }\n trackerFn().disposeTensor(this);\n this.dataId = newValue.dataId;\n trackerFn().incRef(this, null /* backend */);\n }\n\n dispose(): void {\n trackerFn().disposeVariable(this);\n this.isDisposedInternal = true;\n }\n}\n\nObject.defineProperty(Variable, Symbol.hasInstance, {\n value: (instance: Variable) => {\n return instance instanceof Tensor && instance.assign != null &&\n instance.assign instanceof Function;\n }\n});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from './tensor';\nimport {TensorContainer, TensorContainerArray} from './tensor_types';\nimport {upcastType} from './types';\nimport {assert} from './util';\n\nexport function makeTypesMatch(a: T, b: T): [T, T] {\n if (a.dtype === b.dtype) {\n return [a, b];\n }\n const dtype = upcastType(a.dtype, b.dtype);\n return [a.cast(dtype), b.cast(dtype)];\n}\n\nexport function assertTypesMatch(a: Tensor, b: Tensor): void {\n assert(\n a.dtype === b.dtype,\n () => `The dtypes of the first(${a.dtype}) and` +\n ` second(${b.dtype}) input must match`);\n}\n\nexport function isTensorInList(tensor: Tensor, tensorList: Tensor[]): boolean {\n return tensorList.some(x => x.id === tensor.id);\n}\n\n/**\n * Extracts any `Tensor`s found within the provided object.\n *\n * @param container an object that may be a `Tensor` or may directly contain\n * `Tensor`s, such as a `Tensor[]` or `{key: Tensor, ...}`. In general it\n * is safe to pass any object here, except that `Promise`s are not\n * supported.\n * @returns An array of `Tensors` found within the passed object. If the\n * argument is simply a `Tensor', a list containing that `Tensor` is\n * returned. If the object is not a `Tensor` or does not\n * contain `Tensors`, an empty list is returned.\n */\nexport function getTensorsInContainer(result: TensorContainer): Tensor[] {\n const list: Tensor[] = [];\n const seen = new Set<{}|void>();\n walkTensorContainer(result, list, seen);\n return list;\n}\n\nfunction walkTensorContainer(\n container: TensorContainer, list: Tensor[], seen: Set<{}|void>): void {\n if (container == null) {\n return;\n }\n if (container instanceof Tensor) {\n list.push(container);\n return;\n }\n if (!isIterable(container)) {\n return;\n }\n // Iteration over keys works also for arrays.\n const iterable = container as TensorContainerArray;\n for (const k in iterable) {\n const val = iterable[k];\n if (!seen.has(val)) {\n seen.add(val);\n walkTensorContainer(val, list, seen);\n }\n }\n}\n\n// tslint:disable-next-line:no-any\nfunction isIterable(obj: any): boolean {\n return Array.isArray(obj) || typeof obj === 'object';\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/** @docalias number[] */\nexport interface ShapeMap {\n R0: number[];\n R1: [number];\n R2: [number, number];\n R3: [number, number, number];\n R4: [number, number, number, number];\n R5: [number, number, number, number, number];\n R6: [number, number, number, number, number, number];\n}\n\n/** @docalias number[] */\nexport interface ArrayMap {\n R0: number;\n R1: number[];\n R2: number[][];\n R3: number[][][];\n R4: number[][][][];\n R5: number[][][][][];\n R6: number[][][][][][];\n}\n\nexport interface DataTypeMap {\n float32: Float32Array;\n int32: Int32Array;\n bool: Uint8Array;\n complex64: Float32Array;\n string: string[];\n}\n\nexport interface SingleValueMap {\n bool: boolean;\n int32: number;\n float32: number;\n complex64: number;\n string: string;\n}\n\n/** @docalias 'float32'|'int32'|'bool'|'complex64'|'string' */\nexport type DataType = keyof DataTypeMap;\nexport type NumericDataType = 'float32'|'int32'|'bool'|'complex64';\nexport type TypedArray = Float32Array|Int32Array|Uint8Array;\n/** Tensor data used in tensor creation and user-facing API. */\nexport type DataValues = DataTypeMap[DataType];\n/** The underlying tensor data that gets stored in a backend. */\nexport type BackendValues = Float32Array|Int32Array|Uint8Array|Uint8Array[];\n\nexport enum Rank {\n R0 = 'R0',\n R1 = 'R1',\n R2 = 'R2',\n R3 = 'R3',\n R4 = 'R4',\n R5 = 'R5',\n R6 = 'R6'\n}\n\nexport type FlatVector = boolean[]|number[]|TypedArray;\nexport type RegularArray =\n T[]|T[][]|T[][][]|T[][][][]|T[][][][][]|T[][][][][][];\n\n// tslint:disable-next-line:no-any\nexport interface RecursiveArray {\n [index: number]: T|RecursiveArray;\n}\n\n// Looks for upcasting types. Used, for example, in operations with mixed dtype\n// inputs.\nenum UpcastInt32AndMap {\n 'float32' = 'float32',\n 'int32' = 'int32',\n 'bool' = 'int32',\n 'complex64' = 'complex64'\n}\n\nenum UpcastBoolAndMap {\n 'float32' = 'float32',\n 'int32' = 'int32',\n 'bool' = 'bool',\n 'complex64' = 'complex64'\n}\n\nenum UpcastFloat32AndMap {\n 'float32' = 'float32',\n 'int32' = 'float32',\n 'bool' = 'float32',\n 'complex64' = 'complex64'\n}\n\nenum UpcastComplex64AndMap {\n 'float32' = 'complex64',\n 'int32' = 'complex64',\n 'bool' = 'complex64',\n 'complex64' = 'complex64'\n}\n\nconst upcastTypeMap = {\n 'float32': UpcastFloat32AndMap,\n 'int32': UpcastInt32AndMap,\n 'bool': UpcastBoolAndMap,\n 'complex64': UpcastComplex64AndMap\n};\n\nexport function upcastType(typeA: DataType, typeB: DataType): DataType {\n if (typeA === 'string' || typeB === 'string') {\n if (typeA === 'string' && typeB === 'string') {\n return 'string';\n }\n throw new Error(`Can not upcast ${typeA} with ${typeB}`);\n }\n return upcastTypeMap[typeA][typeB];\n}\n\n/** Returns the output type after summation. */\nexport function sumOutType(type: DataType): DataType {\n return upcastType(type, 'int32');\n}\n\n/** @docalias TypedArray|Array */\nexport type TensorLike =\n TypedArray|number|boolean|string|RecursiveArray|\n RecursiveArray|RecursiveArray|Uint8Array[];\nexport type ScalarLike = number|boolean|string|Uint8Array;\n/** @docalias TypedArray|Array */\nexport type TensorLike1D = TypedArray|number[]|boolean[]|string[]|Uint8Array[];\n/** @docalias TypedArray|Array */\nexport type TensorLike2D = TypedArray|number[]|number[][]|boolean[]|boolean[][]|\n string[]|string[][]|Uint8Array[]|Uint8Array[][];\n/** @docalias TypedArray|Array */\nexport type TensorLike3D = TypedArray|number[]|number[][][]|boolean[]|\n boolean[][][]|string[]|string[][][]|Uint8Array[]|Uint8Array[][][];\n/** @docalias TypedArray|Array */\nexport type TensorLike4D = TypedArray|number[]|number[][][][]|boolean[]|\n boolean[][][][]|string[]|string[][][][]|Uint8Array[]|Uint8Array[][][][];\n/** @docalias TypedArray|Array */\nexport type TensorLike5D =\n TypedArray|number[]|number[][][][][]|boolean[]|boolean[][][][][]|string[]|\n string[][][][][]|Uint8Array[]|Uint8Array[][][][][];\n/** @docalias TypedArray|Array */\nexport type TensorLike6D =\n TypedArray|number[]|number[][][][][][]|boolean[]|boolean[][][][][][]|\n string[]|string[][][][][][]|Uint8Array[]|Uint8Array[][][][][];\n\n/** Type for representing image data in Uint8Array type. */\nexport interface PixelData {\n width: number;\n height: number;\n data: Uint8Array;\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {BackendTimingInfo, DataMover, KernelBackend} from './backends/backend';\nimport {Environment, setEnvironmentGlobal} from './environment';\nimport {getGlobalNamespace} from './global_util';\nimport {Add, Cast, Identity} from './kernel_names';\nimport {getGradient, getKernel, getKernelsForBackend, GradFunc, NamedAttrMap, TensorInfo} from './kernel_registry';\nimport {KernelProfile, Profiler} from './profiler';\nimport {backpropagateGradients, getFilteredNodesXToY, TapeNode} from './tape';\nimport {DataId, setTensorTracker, Tensor, TensorTracker, Variable} from './tensor';\nimport {GradSaveFunc, NamedTensorMap, NamedVariableMap, TensorContainer} from './tensor_types';\nimport {getTensorsInContainer} from './tensor_util';\nimport {BackendValues, DataType, DataValues} from './types';\nimport * as util from './util';\nimport {bytesFromStringArray, makeOnesTypedArray, now, sizeFromShape} from './util';\n\n/**\n * A function that computes an output. The save function is for saving tensors\n * computed in the forward pass, that we need in the backward pass.\n */\nexport type ForwardFunc = (backend: KernelBackend, save?: GradSaveFunc) => T;\n\n/**\n * @docalias (a: Tensor, b: Tensor,..., save?: Function) => {\n * value: Tensor,\n * gradFunc: (dy: Tensor, saved?: NamedTensorMap) => Tensor | Tensor[]\n * }\n */\nexport type CustomGradientFunc =\n (...inputs: Array) => {\n value: T;\n gradFunc: (dy: T, saved: Tensor[]) => Tensor | Tensor[];\n };\n\nexport type MemoryInfo = {\n numTensors: number; numDataBuffers: number; numBytes: number;\n unreliable?: boolean; reasons: string[];\n};\n\ntype KernelInfo = {\n name: string; bytesAdded: number; totalBytesSnapshot: number;\n tensorsAdded: number;\n totalTensorsSnapshot: number;\n inputShapes: number[][];\n outputShapes: number[][];\n kernelTimeMs: number | {error: string} | Promise;\n extraInfo: string | Promise;\n};\n\nexport type ProfileInfo = {\n newBytes: number; newTensors: number; peakBytes: number;\n kernels: KernelInfo[];\n result: TensorContainer;\n kernelNames: string[];\n};\n\nexport interface TimingInfo extends BackendTimingInfo {\n wallMs: number;\n}\n\n/** @docalias Function */\nexport type ScopeFn = () => T;\n\ninterface ScopeState {\n track: Tensor[];\n name: string;\n id: number;\n}\n\ninterface RegisteredKernelInvocation {\n kernelName: string;\n inputs: I;\n attrs?: NamedAttrMap;\n}\n\ninterface CustomGradKernelInvocation {\n forwardFunc: ForwardFunc;\n backwardsFunc: (dy: T, saved: Tensor[]) => {\n [P in keyof I]: () => I[P]\n };\n inputs: I;\n attrs?: NamedAttrMap;\n}\n\nfunction isRegisteredKernelInvocation(\n kernelInvocation: RegisteredKernelInvocation|\n CustomGradKernelInvocation):\n kernelInvocation is RegisteredKernelInvocation {\n return (kernelInvocation as RegisteredKernelInvocation).kernelName != null;\n}\n\nclass EngineState {\n // Public since optimizers will use it.\n registeredVariables: NamedVariableMap = {};\n\n nextTapeNodeId = 0;\n numBytes = 0;\n numTensors = 0;\n numStringTensors = 0;\n numDataBuffers = 0;\n\n activeTape: TapeNode[];\n // Number of nested tf.grad() statements when computing higher-order\n // gradients. E.g. `1` for first-order gradients and `2` for second-order\n // gradients. Used to track if the tape should be removed after a backprop.\n gradientDepth = 0;\n // Number of nested kernel calls. When kernel depth is greater than 1, we turn\n // off the tape.\n kernelDepth = 0;\n\n // Keep Tensors that parallel the tapes.\n activeScope: ScopeState;\n scopeStack: ScopeState[] = [];\n /**\n * Keeps track of the number of data moves during a kernel execution. We\n * maintain a stack since kernels can call other kernels, recursively.\n */\n numDataMovesStack: number[] = [];\n nextScopeId = 0;\n\n tensorInfo = new WeakMap();\n\n profiling = false;\n activeProfile: ProfileInfo = {\n newBytes: 0,\n newTensors: 0,\n peakBytes: 0,\n kernels: [],\n result: null,\n get kernelNames():\n string[] {\n return Array.from(new Set(this.kernels.map(k => k.name)));\n }\n };\n\n dispose() {\n for (const variableName in this.registeredVariables) {\n this.registeredVariables[variableName].dispose();\n }\n }\n}\n\nexport class Engine implements TensorTracker, DataMover {\n state: EngineState;\n backendName: string;\n registry: {[id: string]: KernelBackend} = {};\n registryFactory: {\n [id: string]: {\n factory: () => KernelBackend | Promise,\n priority: number\n }\n } = {};\n\n private profiler: Profiler;\n private backendInstance: KernelBackend;\n private pendingBackendInit: Promise;\n private pendingBackendInitId = 0;\n\n constructor(public ENV: Environment) {\n this.state = new EngineState();\n }\n\n async ready(): Promise {\n if (this.pendingBackendInit != null) {\n return this.pendingBackendInit.then(() => {});\n }\n if (this.backendInstance != null) {\n return;\n }\n const sortedBackends = this.getSortedBackends();\n\n for (let i = 0; i < sortedBackends.length; i++) {\n const backendName = sortedBackends[i];\n const success = await this.initializeBackend(backendName).success;\n if (success) {\n await this.setBackend(backendName);\n return;\n }\n }\n\n throw new Error(\n `Could not initialize any backends, all backend initializations ` +\n `failed.`);\n }\n\n get backend(): KernelBackend {\n if (this.pendingBackendInit != null) {\n throw new Error(\n `Backend '${this.backendName}' has not yet been initialized. Make ` +\n `sure to await tf.ready() or await tf.setBackend() before calling ` +\n `other methods`);\n }\n if (this.backendInstance == null) {\n const {name, asyncInit} = this.initializeBackendsAndReturnBest();\n if (asyncInit) {\n throw new Error(\n `The highest priority backend '${name}' has not yet been ` +\n `initialized. Make sure to await tf.ready() or ` +\n `await tf.setBackend() before calling other methods`);\n }\n this.setBackend(name);\n }\n return this.backendInstance;\n }\n\n backendNames(): string[] {\n return Object.keys(this.registryFactory);\n }\n\n findBackend(backendName: string): KernelBackend {\n if (!(backendName in this.registry)) {\n // If the backend hasn't been initialized but we have a registry entry for\n // it, initialize it and return it.\n if (backendName in this.registryFactory) {\n const {asyncInit} = this.initializeBackend(backendName);\n if (asyncInit) {\n // Backend is not ready yet.\n return null;\n }\n } else {\n return null;\n }\n }\n return this.registry[backendName];\n }\n\n findBackendFactory(backendName: string):\n () => KernelBackend | Promise {\n if (!(backendName in this.registryFactory)) {\n return null;\n }\n return this.registryFactory[backendName].factory;\n }\n\n registerBackend(\n backendName: string,\n factory: () => KernelBackend | Promise,\n priority = 1): boolean {\n if (backendName in this.registryFactory) {\n console.warn(\n `${backendName} backend was already registered. ` +\n `Reusing existing backend factory.`);\n return false;\n }\n this.registryFactory[backendName] = {factory, priority};\n return true;\n }\n\n async setBackend(backendName: string): Promise {\n if (this.registryFactory[backendName] == null) {\n throw new Error(`Backend name '${backendName}' not found in registry`);\n }\n this.backendName = backendName;\n if (this.registry[backendName] == null) {\n this.backendInstance = null;\n const {success, asyncInit} = this.initializeBackend(backendName);\n const result = asyncInit ? await success : success;\n if (!result) {\n return false;\n }\n }\n this.backendInstance = this.registry[backendName];\n this.setupRegisteredKernels();\n // Reset the profiler.\n this.profiler = new Profiler(this.backendInstance);\n\n return true;\n }\n\n private setupRegisteredKernels(): void {\n const kernels = getKernelsForBackend(this.backendName);\n kernels.forEach(kernel => {\n if (kernel.setupFunc != null) {\n kernel.setupFunc(this.backendInstance);\n }\n });\n }\n\n private disposeRegisteredKernels(backendName: string): void {\n const kernels = getKernelsForBackend(backendName);\n kernels.forEach(kernel => {\n if (kernel.disposeFunc != null) {\n kernel.disposeFunc(this.registry[backendName]);\n }\n });\n }\n\n /**\n * Initializes a backend by looking up the backend name in the factory\n * registry and calling the factory method. Returns a boolean representing\n * whether the initialization of the backend suceeded. Throws an error if\n * there is no backend in the factory registry.\n */\n private initializeBackend(backendName: string):\n {success: boolean|Promise, asyncInit: boolean} {\n const registryFactoryEntry = this.registryFactory[backendName];\n if (registryFactoryEntry == null) {\n throw new Error(\n `Cannot initialize backend ${backendName}, no registration found.`);\n }\n\n try {\n const backend = registryFactoryEntry.factory();\n /* Test if the factory returns a promise.\n Done in a more liberal way than\n previous 'Promise.resolve(backend)===backend'\n as we needed to account for custom Promise\n implementations (e.g. Angular) */\n if (backend && !(backend instanceof KernelBackend) &&\n typeof backend.then === 'function') {\n const promiseId = ++this.pendingBackendInitId;\n const success =\n backend\n .then(backendInstance => {\n // Outdated promise. Another backend was set in the meantime.\n if (promiseId < this.pendingBackendInitId) {\n return false;\n }\n this.registry[backendName] = backendInstance;\n this.pendingBackendInit = null;\n return true;\n })\n .catch(err => {\n // Outdated promise. Another backend was set in the meantime.\n if (promiseId < this.pendingBackendInitId) {\n return false;\n }\n this.pendingBackendInit = null;\n console.warn(\n `Initialization of backend ${backendName} failed`);\n console.warn(err.stack || err.message);\n return false;\n });\n this.pendingBackendInit = success;\n return {success, asyncInit: true};\n } else {\n this.registry[backendName] = backend as KernelBackend;\n return {success: true, asyncInit: false};\n }\n } catch (err) {\n console.warn(`Initialization of backend ${backendName} failed`);\n console.warn(err.stack || err.message);\n return {success: false, asyncInit: false};\n }\n }\n\n removeBackend(backendName: string): void {\n if (!(backendName in this.registryFactory)) {\n throw new Error(`${backendName} backend not found in registry`);\n }\n if (this.backendName === backendName && this.pendingBackendInit != null) {\n // There is a pending promise of the backend we want to remove. Make it\n // obsolete.\n this.pendingBackendInitId++;\n }\n\n if (backendName in this.registry) {\n this.disposeRegisteredKernels(backendName);\n this.registry[backendName].dispose();\n delete this.registry[backendName];\n }\n\n delete this.registryFactory[backendName];\n\n // Unset the backend if it is active.\n if (this.backendName === backendName) {\n this.pendingBackendInit = null;\n this.backendName = null;\n this.backendInstance = null;\n }\n }\n\n private getSortedBackends(): string[] {\n if (Object.keys(this.registryFactory).length === 0) {\n throw new Error('No backend found in registry.');\n }\n return Object.keys(this.registryFactory).sort((a: string, b: string) => {\n // Highest priority comes first.\n return this.registryFactory[b].priority -\n this.registryFactory[a].priority;\n });\n }\n\n private initializeBackendsAndReturnBest():\n {name: string, asyncInit: boolean} {\n const sortedBackends = this.getSortedBackends();\n\n for (let i = 0; i < sortedBackends.length; i++) {\n const backendName = sortedBackends[i];\n const {success, asyncInit} = this.initializeBackend(backendName);\n if (asyncInit || success) {\n return {name: backendName, asyncInit};\n }\n }\n throw new Error(\n `Could not initialize any backends, all backend initializations ` +\n `failed.`);\n }\n\n moveData(backend: KernelBackend, dataId: DataId) {\n const info = this.state.tensorInfo.get(dataId);\n const srcBackend = info.backend;\n const values = this.readSync(dataId);\n const refCount = srcBackend.refCount(dataId);\n // Delete the tensor from the old backend and move it to the new\n // backend.\n srcBackend.disposeData(dataId, true);\n info.backend = backend;\n backend.move(dataId, values, info.shape, info.dtype, refCount);\n if (this.shouldCheckForMemLeaks()) {\n // Track the number of moves during a kernel execution to correctly\n // detect memory leaks.\n this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1]++;\n }\n }\n\n tidy(nameOrFn: string|ScopeFn, fn?: ScopeFn):\n T {\n let name: string = null;\n if (fn == null) {\n // Called with only 1 argument.\n if (typeof nameOrFn !== 'function') {\n throw new Error('Please provide a function to tidy()');\n }\n fn = nameOrFn;\n } else {\n // Called with 2 arguments.\n if (typeof nameOrFn !== 'string' && !(nameOrFn instanceof String)) {\n throw new Error(\n 'When calling with two arguments, the first argument ' +\n 'to tidy() must be a string');\n }\n if (typeof fn !== 'function') {\n throw new Error(\n 'When calling with two arguments, the 2nd argument ' +\n 'to tidy() must be a function');\n }\n name = nameOrFn as string;\n // TODO(nsthorat,smilkov): Do operation logging and performance\n // profiling.\n }\n let result: T;\n return this.scopedRun(\n () => this.startScope(name), () => this.endScope(result), () => {\n result = fn();\n if (result instanceof Promise) {\n console.error('Cannot return a Promise inside of tidy.');\n }\n return result;\n });\n }\n\n private scopedRun(start: () => void, end: () => void, f: () => T): T {\n start();\n try {\n const res = f();\n end();\n return res;\n } catch (ex) {\n end();\n throw ex;\n }\n }\n\n private static nextTensorId = 0;\n private nextTensorId(): number {\n return Engine.nextTensorId++;\n }\n\n private static nextVariableId = 0;\n private nextVariableId(): number {\n return Engine.nextVariableId++;\n }\n\n /**\n * This method is called instead of the public-facing tensor.clone() when\n * saving a tensor for backwards pass. It makes sure to add the clone\n * operation to the tape regardless of being called inside a kernel\n * execution.\n */\n private clone(x: Tensor): Tensor {\n const y: Tensor = ENGINE.runKernel(Identity, {x} as {} as NamedTensorMap);\n const inputs = {x};\n const grad = (dy: Tensor) => ({\n x: () => {\n const dtype = 'float32';\n const gradInputs = {x: dy};\n const attrs = {dtype};\n\n return ENGINE.runKernel(\n Cast, gradInputs as {} as NamedTensorMap,\n // tslint:disable-next-line: no-unnecessary-type-assertion\n attrs as {} as NamedAttrMap) as Tensor;\n }\n });\n const saved: Tensor[] = [];\n this.addTapeNode(this.state.activeScope.name, inputs, [y], grad, saved, {});\n return y;\n }\n\n /**\n * Execute a kernel with the given name and return the output tensor.\n *\n * @param kernelName The name of the kernel to execute.\n * @param inputs A map of input names to tensors.\n * @param attrs A map of attribute names to their values. An attribute is a\n * primitive (non-tensor) input to the kernel.\n * @param inputsToSave A list of tensors, inputs to save for the backprop\n * computation.\n * @param outputsToSave A list of booleans, specifying which output to save\n * for the backprop computation. These are booleans since the output\n * tensors are not visible to the user.\n */\n runKernel(\n kernelName: string, inputs: NamedTensorMap, attrs?: NamedAttrMap): T {\n const hasKernel = getKernel(kernelName, this.backendName) != null;\n if (!hasKernel) {\n throw new Error(`Kernel '${kernelName}' not registered for backend '${\n this.backendName}'`);\n }\n return this.runKernelFunc({kernelName, inputs, attrs});\n }\n\n private shouldCheckForMemLeaks(): boolean {\n return this.ENV.getBool('IS_TEST');\n }\n\n private checkKernelForMemLeak(\n kernelName: string, numDataIdsBefore: number,\n outInfos: TensorInfo[]): void {\n const numDataIdsAfter = this.backend.numDataIds();\n\n // Count the number of data ids associated with the result of the kernel.\n let numOutputDataIds = 0;\n outInfos.forEach(info => {\n // Complex numbers allocate 3 data ids, one for 'real', one for\n // 'imaginary', and one for the container that holds the former two.\n numOutputDataIds += (info.dtype === 'complex64' ? 3 : 1);\n });\n\n // Account for the number of moves during kernel execution. A \"data move\"\n // can happen in the middle of a kernel execution, placing a new (key,value)\n // pair in the data storage. Since data moves have net zero effect (we\n // always remove the data from the old backend), we have to cancel them out\n // when detecting memory leaks.\n const numMoves =\n this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1];\n const dataIdsLeaked =\n numDataIdsAfter - numDataIdsBefore - numOutputDataIds - numMoves;\n if (dataIdsLeaked > 0) {\n throw new Error(\n `Backend '${this.backendName}' has an internal memory leak ` +\n `(${dataIdsLeaked} data ids) after running '${kernelName}'`);\n }\n }\n\n /**\n * Internal helper method to execute a kernel Func\n *\n * Use `runKernel` to execute kernels from outside of engine.\n */\n private runKernelFunc(\n kernelParams: RegisteredKernelInvocation|\n CustomGradKernelInvocation): T {\n let outputs: Tensor[];\n let saved: Tensor[] = [];\n const isTapeOn = this.isTapeOn();\n\n const startingBytecount = this.state.numBytes;\n const startingNumTensors = this.state.numTensors;\n\n if (this.shouldCheckForMemLeaks()) {\n this.state.numDataMovesStack.push(0);\n }\n\n let kernelFunc: () => Tensor[];\n if (this.backendName == null) {\n // backend has not been initialized yet (backend initialization is lazy\n // can be deferred until an op/ kernel is run).\n // The below getter has side effects that will try to initialize the\n // backend and set properties like this.backendName\n // tslint:disable-next-line: no-unused-expression\n this.backend;\n }\n\n let out: TensorInfo|TensorInfo[];\n\n const kernelOrScopeName = isRegisteredKernelInvocation(kernelParams) ?\n kernelParams.kernelName :\n this.state.activeScope != null ? this.state.activeScope.name : '';\n\n // Create the kernelFunc from either a registered kernel OR passed in\n // forward/backward functions (used by custom grad). In this context a\n // kernelFunc wraps a kernel implementation with some bookkeeping.\n\n if (isRegisteredKernelInvocation(kernelParams)) {\n const {kernelName, inputs, attrs} = kernelParams;\n if (this.backendName == null) {\n // backend has not been initialized yet (backend initialization is lazy\n // can be deferred until an op/ kernel is run).\n // The below getter has side effects that will try to initialize the\n // backend and set properties like this.backendName\n // tslint:disable-next-line: no-unused-expression\n this.backend;\n }\n const kernel = getKernel(kernelName, this.backendName);\n util.assert(\n kernel != null,\n () => `Cannot find registered kernel '${kernelName}' for backend '${\n this.backendName}'`);\n\n kernelFunc = () => {\n const numDataIdsBefore = this.backend.numDataIds();\n out = kernel.kernelFunc({inputs, attrs, backend: this.backend});\n const outInfos = Array.isArray(out) ? out : [out];\n if (this.shouldCheckForMemLeaks()) {\n this.checkKernelForMemLeak(kernelName, numDataIdsBefore, outInfos);\n }\n\n const outTensors = outInfos.map((outInfo: TensorInfo|Tensor) => {\n // todo (yassogba) remove this option (Tensor) when node backend\n // methods have been modularized and they all return tensorInfo.\n // TensorInfos do not have a rank attribute.\n if ((outInfo as Tensor).rank != null) {\n return outInfo as Tensor;\n }\n const {dataId, shape, dtype} = outInfo as TensorInfo;\n return this.makeTensorFromDataId(dataId, shape, dtype);\n });\n\n // Save any required inputs and outputs.\n\n // Do not save unless we are recording to the tape. Otherwise it would\n // cause a mem leak since there would be no backprop for these tensors\n // (which would otherwise dispose them).\n if (isTapeOn) {\n const tensorsToSave =\n this.getTensorsForGradient(kernelName, inputs, outTensors);\n saved = this.saveTensorsForBackwardMode(tensorsToSave);\n }\n return outTensors;\n };\n } else {\n const {forwardFunc} = kernelParams;\n // Running a customGrad op.\n const saveFunc: GradSaveFunc = (tensors) => {\n // Do not save unless we are recording to the tape. Otherwise it would\n // cause a mem leak since we would never run backprop, which disposes\n // the kept tensors.\n if (!isTapeOn) {\n return;\n }\n saved = tensors.map(tensor => this.keep(this.clone(tensor)));\n };\n\n kernelFunc = () => {\n const numDataIdsBefore = this.backend.numDataIds();\n out = this.tidy(() => forwardFunc(this.backend, saveFunc));\n const outs = (Array.isArray(out) ? out : [out]) as Tensor[];\n if (this.shouldCheckForMemLeaks()) {\n // Scope name is used to print a more helpful error message if needed.\n this.checkKernelForMemLeak(kernelOrScopeName, numDataIdsBefore, outs);\n }\n return outs;\n };\n }\n\n //\n // Run the kernelFunc. Optionally profiling it.\n //\n const {inputs, attrs} = kernelParams;\n const backwardsFunc = isRegisteredKernelInvocation(kernelParams) ?\n null :\n kernelParams.backwardsFunc;\n\n let kernelProfile: KernelProfile;\n this.scopedRun(\n // Stop recording to a tape when running a kernel.\n () => this.state.kernelDepth++, () => this.state.kernelDepth--, () => {\n if (!this.ENV.getBool('DEBUG') && !this.state.profiling) {\n outputs = kernelFunc();\n } else {\n kernelProfile = this.profiler.profileKernel(\n kernelOrScopeName, inputs, () => kernelFunc());\n if (this.ENV.getBool('DEBUG')) {\n this.profiler.logKernelProfile(kernelProfile);\n }\n outputs = kernelProfile.outputs;\n }\n });\n\n if (isTapeOn) {\n this.addTapeNode(\n kernelOrScopeName, inputs, outputs, backwardsFunc, saved, attrs);\n }\n\n if (this.state.profiling) {\n this.state.activeProfile.kernels.push({\n name: kernelOrScopeName,\n bytesAdded: this.state.numBytes - startingBytecount,\n totalBytesSnapshot: this.state.numBytes,\n tensorsAdded: this.state.numTensors - startingNumTensors,\n totalTensorsSnapshot: this.state.numTensors,\n inputShapes: Object.keys(inputs).map(\n key => inputs[key] != null ? inputs[key].shape : null),\n outputShapes: outputs.map(item => item.shape),\n kernelTimeMs: kernelProfile.timeMs,\n extraInfo: kernelProfile.extraInfo\n });\n }\n return (Array.isArray(out) ? outputs : outputs[0]) as T;\n }\n\n /**\n * Saves tensors used in forward mode for use in backward mode.\n *\n * @param tensors the list of tensors to save.\n */\n private saveTensorsForBackwardMode(tensors: Tensor[]): Tensor[] {\n const saved = tensors.map(tensor => this.keep(this.clone(tensor)));\n return saved;\n }\n\n /**\n * Returns a list of tensors to save for a given gradient calculation.\n *\n * @param kernelName name of kernel to look up gradient for.\n * @param inputs a map of input tensors.\n * @param outputs an array of output tensors from forward mode of kernel.\n */\n private getTensorsForGradient(\n kernelName: string, inputs: NamedTensorMap,\n outputs: Tensor[]): Tensor[]|null {\n const gradConfig = getGradient(kernelName);\n if (gradConfig != null) {\n const inputsToSave: string[] = gradConfig.inputsToSave || [];\n const outputsToSave: boolean[] = gradConfig.outputsToSave || [];\n\n // If saveAllInputs is true, all inputs will be saved. Otherwise, inputs\n // specified in inputsToSave will be saved.\n let inputTensorsToSave: Tensor[];\n if (gradConfig.saveAllInputs) {\n util.assert(\n Array.isArray(inputs),\n () => 'saveAllInputs is true, expected inputs to be an array.');\n\n inputTensorsToSave = Object.keys(inputs).map((key) => inputs[key]);\n } else {\n inputTensorsToSave = inputsToSave.map((inputName) => inputs[inputName]);\n }\n\n const outputTensorsToSave: Tensor[] =\n outputs.filter((_, i) => outputsToSave[i]);\n\n return inputTensorsToSave.concat(outputTensorsToSave);\n }\n // We return an empty list rather than throw an error because the kernel we\n // are looking up may not actually be relevant to backproping through the\n // overall function\n //\n // See 'does not error if irrelevant (pruned) ops are missing grads' test\n // in gradients_test.ts for an example.\n return [];\n }\n\n /**\n * Internal method used by public APIs for tensor creation. Makes a new\n * tensor with the provided shape, dtype and values. It always\n * creates a new data id and writes the values to the underlying backend.\n */\n makeTensor(\n values: DataValues, shape: number[], dtype: DataType,\n backend?: KernelBackend): Tensor {\n if (values == null) {\n throw new Error('Values passed to engine.makeTensor() are null');\n }\n dtype = dtype || 'float32';\n backend = backend || this.backend;\n let backendVals = values as BackendValues;\n if (dtype === 'string' && util.isString(values[0])) {\n backendVals = (values as string[]).map(d => util.encodeString(d));\n }\n const dataId = backend.write(backendVals, shape, dtype);\n const t = new Tensor(shape, dtype, dataId, this.nextTensorId());\n this.trackTensor(t, backend);\n\n // Count bytes for string tensors.\n if (dtype === 'string') {\n const info = this.state.tensorInfo.get(dataId);\n const newBytes = bytesFromStringArray(backendVals as Uint8Array[]);\n this.state.numBytes += newBytes - info.bytes;\n info.bytes = newBytes;\n }\n return t;\n }\n\n /**\n * Internal method used by backends. Makes a new tensor\n * that is a wrapper around an existing data id. It doesn't create\n * a new data id, only increments the ref count used in memory tracking.\n */\n makeTensorFromDataId(\n dataId: DataId, shape: number[], dtype: DataType,\n backend?: KernelBackend): Tensor {\n dtype = dtype || 'float32';\n const t = new Tensor(shape, dtype, dataId, this.nextTensorId());\n this.trackTensor(t, backend);\n return t;\n }\n\n makeVariable(\n initialValue: Tensor, trainable = true, name?: string,\n dtype?: DataType): Variable {\n name = name || this.nextVariableId().toString();\n if (dtype != null && dtype !== initialValue.dtype) {\n initialValue = initialValue.cast(dtype);\n }\n const v = new Variable(initialValue, trainable, name, this.nextTensorId());\n if (this.state.registeredVariables[v.name] != null) {\n throw new Error(`Variable with name ${v.name} was already registered`);\n }\n this.state.registeredVariables[v.name] = v;\n this.incRef(v, this.backend);\n return v;\n }\n\n trackTensor(a: Tensor, backend: KernelBackend): void {\n this.state.numTensors++;\n if (a.dtype === 'string') {\n this.state.numStringTensors++;\n }\n // Bytes for complex numbers are counted by their components. Bytes for\n // string tensors are counted when writing values.\n let bytes = 0;\n if (a.dtype !== 'complex64' && a.dtype !== 'string') {\n bytes = a.size * util.bytesPerElement(a.dtype);\n }\n this.state.numBytes += bytes;\n\n if (!this.state.tensorInfo.has(a.dataId)) {\n this.state.numDataBuffers++;\n this.state.tensorInfo.set(a.dataId, {\n backend: backend || this.backend,\n dtype: a.dtype,\n shape: a.shape,\n bytes\n });\n }\n\n if (!(a instanceof Variable)) {\n this.track(a);\n }\n }\n\n // Track the tensor by dataId and increase the refCount for the dataId in the\n // backend.\n // TODO(pyu10055): This is currently used by makeVariable method, to increase\n // refCount on the backend for the dataId. It can potentially be replaced with\n // Identity op indead of calling backend directly.\n incRef(a: Tensor, backend: KernelBackend): void {\n this.trackTensor(a, backend);\n this.backend.incRef(a.dataId);\n }\n\n removeDataId(dataId: DataId, backend: KernelBackend) {\n if (this.state.tensorInfo.has(dataId) &&\n this.state.tensorInfo.get(dataId).backend === backend) {\n this.state.tensorInfo.delete(dataId);\n this.state.numDataBuffers--;\n }\n }\n disposeTensor(a: Tensor): void {\n if (!this.state.tensorInfo.has(a.dataId)) {\n return;\n }\n const info = this.state.tensorInfo.get(a.dataId);\n\n this.state.numTensors--;\n if (a.dtype === 'string') {\n this.state.numStringTensors--;\n this.state.numBytes -= info.bytes;\n }\n // Don't count bytes for complex numbers as they are counted by their\n // components.\n if (a.dtype !== 'complex64' && a.dtype !== 'string') {\n const bytes = a.size * util.bytesPerElement(a.dtype);\n this.state.numBytes -= bytes;\n }\n\n // Remove the reference to dataId if backend dispose the data successfully\n if (info.backend.disposeData(a.dataId)) {\n this.removeDataId(a.dataId, info.backend);\n }\n\n // TODO(nsthorat): Construct an error and save the stack trace for\n // debugging when in debug mode. Creating a stack trace is too expensive\n // to do unconditionally.\n }\n\n disposeVariables(): void {\n for (const varName in this.state.registeredVariables) {\n const v = this.state.registeredVariables[varName];\n this.disposeVariable(v);\n }\n }\n\n disposeVariable(v: Variable): void {\n this.disposeTensor(v);\n if (this.state.registeredVariables[v.name] != null) {\n delete this.state.registeredVariables[v.name];\n }\n }\n\n memory(): MemoryInfo {\n const info = this.backend.memory() as MemoryInfo;\n info.numTensors = this.state.numTensors;\n info.numDataBuffers = this.state.numDataBuffers;\n info.numBytes = this.state.numBytes;\n if (this.state.numStringTensors > 0) {\n info.unreliable = true;\n if (info.reasons == null) {\n info.reasons = [];\n }\n info.reasons.push(\n 'Memory usage by string tensors is approximate ' +\n '(2 bytes per character)');\n }\n return info;\n }\n\n async profile(query: () => (TensorContainer | Promise)):\n Promise {\n this.state.profiling = true;\n\n const startBytes = this.state.numBytes;\n const startNumTensors = this.state.numTensors;\n\n this.state.activeProfile.kernels = [];\n this.state.activeProfile.result = await query();\n\n this.state.profiling = false;\n\n this.state.activeProfile.peakBytes = Math.max(\n ...this.state.activeProfile.kernels.map(d => d.totalBytesSnapshot));\n this.state.activeProfile.newBytes = this.state.numBytes - startBytes;\n this.state.activeProfile.newTensors =\n this.state.numTensors - startNumTensors;\n for (const kernel of this.state.activeProfile.kernels) {\n kernel.kernelTimeMs = await kernel.kernelTimeMs;\n kernel.extraInfo = await kernel.extraInfo;\n }\n return this.state.activeProfile;\n }\n\n isTapeOn(): boolean {\n return this.state.gradientDepth > 0 && this.state.kernelDepth === 0;\n }\n\n private addTapeNode(\n kernelName: string, inputs: NamedTensorMap, outputs: Tensor[],\n gradientsFunc: GradFunc, saved: Tensor[], attrs: NamedAttrMap): void {\n const tapeNode: TapeNode =\n {id: this.state.nextTapeNodeId++, kernelName, inputs, outputs, saved};\n\n const gradConfig = getGradient(kernelName);\n if (gradConfig != null) {\n gradientsFunc = gradConfig.gradFunc;\n }\n if (gradientsFunc != null) {\n tapeNode.gradient = (dys: Tensor[]) => {\n // TODO(smilkov): To optimize back-prop, pass dys that are not used in\n // the backprop graph to the user as null instead of zeros\n dys = dys.map((dy, i) => {\n if (dy == null) {\n const output = outputs[i];\n const vals = util.makeZerosTypedArray(output.size, output.dtype);\n return this.makeTensor(vals, output.shape, output.dtype);\n }\n return dy;\n });\n // Grad functions of ops with single outputs expect a dy, while ops\n // with multiple outputs expect dys (array of dy).\n return gradientsFunc(dys.length > 1 ? dys : dys[0], saved, attrs);\n };\n }\n this.state.activeTape.push(tapeNode);\n }\n\n keep(result: T): T {\n result.kept = true;\n return result;\n }\n\n private startTape() {\n if (this.state.gradientDepth === 0) {\n this.state.activeTape = [];\n }\n this.state.gradientDepth++;\n }\n\n private endTape() {\n this.state.gradientDepth--;\n }\n\n /**\n * Start a scope. Use this with endScope() to achieve the same functionality\n * as scope() without the need for a function closure.\n */\n startScope(name?: string) {\n const scopeInfo: ScopeState = {\n track: [],\n name: 'unnamed scope',\n id: this.state.nextScopeId++\n };\n if (name) {\n scopeInfo.name = name;\n }\n this.state.scopeStack.push(scopeInfo);\n this.state.activeScope = scopeInfo;\n }\n\n /**\n * End a scope. Use this with startScope() to achieve the same functionality\n * as scope() without the need for a function closure.\n */\n endScope(result?: TensorContainer) {\n const tensorsToTrackInParent = getTensorsInContainer(result);\n const tensorsToTrackInParentSet =\n new Set(tensorsToTrackInParent.map(t => t.id));\n\n // Dispose the arrays tracked in this scope.\n for (let i = 0; i < this.state.activeScope.track.length; i++) {\n const tensor = this.state.activeScope.track[i];\n if (!tensor.kept && !tensorsToTrackInParentSet.has(tensor.id)) {\n tensor.dispose();\n }\n }\n\n const oldScope = this.state.scopeStack.pop();\n this.state.activeScope = this.state.scopeStack.length === 0 ?\n null :\n this.state.scopeStack[this.state.scopeStack.length - 1];\n\n // Track the current result in the parent scope.\n tensorsToTrackInParent.forEach(tensor => {\n // Only track the tensor if was allocated in the inner scope and is not\n // globally kept.\n if (!tensor.kept && tensor.scopeId === oldScope.id) {\n this.track(tensor);\n }\n });\n }\n\n /**\n * Returns gradients of `f` with respect to each of the `xs`. The gradients\n * returned are of the same length as `xs`, but some might be null if `f`\n * was not a function of that `x`. It also takes optional dy to multiply the\n * gradient, which defaults to `1`.\n */\n gradients(\n f: () => T, xs: Tensor[], dy?: T,\n allowNoGradients = false): {value: T, grads: Tensor[]} {\n util.assert(\n xs.length > 0, () => 'gradients() received an empty list of xs.');\n if (dy != null && dy.dtype !== 'float32') {\n throw new Error(`dy must have 'float32' dtype, but has '${dy.dtype}'`);\n }\n\n const y = this.scopedRun(\n () => this.startTape(), () => this.endTape(),\n () => this.tidy('forward', f));\n\n util.assert(\n y instanceof Tensor,\n () => 'The result y returned by f() must be a tensor.');\n // Filter out the nodes that don't connect x => y.\n const filteredTape = getFilteredNodesXToY(this.state.activeTape, xs, y);\n if (!allowNoGradients && filteredTape.length === 0 && xs.length > 0) {\n throw new Error(\n 'Cannot compute gradient of y=f(x) with respect to x. Make sure ' +\n 'that the f you passed encloses all operations that lead from x ' +\n 'to y.');\n }\n\n return this.tidy('backward', () => {\n const accumulatedGradientMap: {[tensorId: number]: Tensor} = {};\n accumulatedGradientMap[y.id] = (dy == null) ? ones(y.shape) : dy;\n\n // Backprop gradients through the filtered nodes.\n backpropagateGradients(\n accumulatedGradientMap, filteredTape,\n // Pass the tidy function to avoid circular dep with `tape.ts`.\n f => this.tidy(f as ScopeFn),\n // Pass an add function to avoide a circular dep with `tape.ts`.\n add);\n const grads = xs.map(x => accumulatedGradientMap[x.id]);\n\n if (this.state.gradientDepth === 0) {\n // This means that we are not computing higher-order gradients\n // and can clean up the tape.\n this.state.activeTape.forEach(node => {\n for (const tensor of node.saved) {\n tensor.dispose();\n }\n });\n this.state.activeTape = null;\n }\n return {value: y, grads};\n });\n }\n\n customGrad(f: CustomGradientFunc):\n (...args: Array) => T {\n util.assert(\n util.isFunction(f),\n () => 'The f passed in customGrad(f) must be a function.');\n return (...inputs: Tensor[]): T => {\n util.assert(\n inputs.every(t => t instanceof Tensor),\n () => 'The args passed in customGrad(f)(x1, x2,...) must all be ' +\n 'tensors');\n\n let res: {\n value: T,\n gradFunc: (dy: T, saved: Tensor[]) => Tensor | Tensor[],\n };\n const inputMap: NamedTensorMap = {};\n inputs.forEach((input, i) => {\n inputMap[i] = input;\n });\n\n const forwardFunc: ForwardFunc = (_, save) => {\n res = f(...[...inputs, save]);\n util.assert(\n res.value instanceof Tensor,\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.value` is a tensor');\n util.assert(\n util.isFunction(res.gradFunc),\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.gradFunc` is a function.');\n return res.value;\n };\n\n const backwardsFunc = (dy: T, saved: Tensor[]) => {\n const gradRes = res.gradFunc(dy, saved);\n const grads: Tensor[] = Array.isArray(gradRes) ? gradRes : [gradRes];\n util.assert(\n grads.length === inputs.length,\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.gradFunc` is a function that returns ' +\n 'the same number of tensors as inputs passed to f(...).');\n util.assert(\n grads.every(t => t instanceof Tensor),\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.gradFunc` is a function that returns ' +\n 'a list of only tensors.');\n const gradMap: {[key: string]: () => Tensor} = {};\n grads.forEach((grad, i) => {\n gradMap[i] = () => grad;\n });\n return gradMap;\n };\n\n return this.runKernelFunc({\n forwardFunc,\n backwardsFunc,\n inputs: inputMap,\n });\n };\n }\n\n readSync(dataId: DataId): BackendValues {\n // Route the read to the correct backend.\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.readSync(dataId);\n }\n read(dataId: DataId): Promise {\n // Route the read to the correct backend.\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.read(dataId);\n }\n\n async time(query: () => void): Promise {\n const start = now();\n const timingInfo = await this.backend.time(query) as TimingInfo;\n timingInfo.wallMs = now() - start;\n return timingInfo;\n }\n\n /**\n * Tracks a Tensor in the current scope to be automatically cleaned up\n * when the current scope ends, and returns the value.\n *\n * @param result The Tensor to track in the current scope.\n */\n private track(result: T): T {\n if (this.state.activeScope != null) {\n result.scopeId = this.state.activeScope.id;\n this.state.activeScope.track.push(result);\n }\n\n return result;\n }\n\n get registeredVariables(): NamedVariableMap {\n return this.state.registeredVariables;\n }\n\n /**\n * Resets the engine state. Removes all backends but does not remove\n * registered backend factories.\n */\n reset(): void {\n // Make any pending promise obsolete.\n this.pendingBackendInitId++;\n\n this.state.dispose();\n this.ENV.reset();\n this.state = new EngineState();\n\n for (const backendName in this.registry) {\n this.disposeRegisteredKernels(backendName);\n this.registry[backendName].dispose();\n delete this.registry[backendName];\n }\n this.backendName = null;\n this.backendInstance = null;\n this.pendingBackendInit = null;\n }\n}\n\nfunction ones(shape: number[]): Tensor {\n const values = makeOnesTypedArray(sizeFromShape(shape), 'float32');\n return ENGINE.makeTensor(values, shape, 'float32');\n}\n\nexport function getOrMakeEngine(): Engine {\n const ns = getGlobalNamespace() as {} as {_tfengine: Engine};\n if (ns._tfengine == null) {\n const environment = new Environment(ns);\n ns._tfengine = new Engine(environment);\n }\n setEnvironmentGlobal(ns._tfengine.ENV);\n\n // Tell the current tensor interface that the global engine is responsible\n // for tracking.\n setTensorTracker(() => ns._tfengine);\n return ns._tfengine;\n}\n\nexport const ENGINE = getOrMakeEngine();\n\n/**\n * A implementation of the add op for use within engine and tape.\n *\n * This allows us to avoid a circular dependency between add.ts and engine.\n * It is exported to be available in tape tests.\n */\nexport function add(a: Tensor, b: Tensor): Tensor {\n // We duplicate Add here to avoid a circular dependency with add.ts.\n const inputs = {a, b};\n return ENGINE.runKernel(Add, inputs as {} as NamedTensorMap);\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// tslint:disable-next-line:no-any\nfunction _isNavigatorDefined(): boolean {\n return typeof navigator !== 'undefined' && navigator != null;\n}\n\nexport function isMobile(nav?: Navigator): boolean {\n if (nav || _isNavigatorDefined()) {\n if (!nav) {\n nav = navigator;\n }\n if (nav.product === 'ReactNative') {\n return true;\n }\n\n // tslint:disable-next-line:no-any\n const a = nav.userAgent || nav.vendor || (window as any).opera;\n // tslint:disable-next-line:max-line-length\n return /(android|bb\\d+|meego).+mobile|avantgo|bada\\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i\n .test(a) ||\n // tslint:disable-next-line:max-line-length\n /1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\\-(n|u)|c55\\/|capi|ccwa|cdm\\-|cell|chtm|cldc|cmd\\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\\-s|devi|dica|dmob|do(c|p)o|ds(12|\\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\\-|_)|g1 u|g560|gene|gf\\-5|g\\-mo|go(\\.w|od)|gr(ad|un)|haie|hcit|hd\\-(m|p|t)|hei\\-|hi(pt|ta)|hp( i|ip)|hs\\-c|ht(c(\\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\\-(20|go|ma)|i230|iac( |\\-|\\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\\/)|klon|kpt |kwc\\-|kyo(c|k)|le(no|xi)|lg( g|\\/(k|l|u)|50|54|\\-[a-w])|libw|lynx|m1\\-w|m3ga|m50\\/|ma(te|ui|xo)|mc(01|21|ca)|m\\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\\-2|po(ck|rt|se)|prox|psio|pt\\-g|qa\\-a|qc(07|12|21|32|60|\\-[2-7]|i\\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\\-|oo|p\\-)|sdk\\/|se(c(\\-|0|1)|47|mc|nd|ri)|sgh\\-|shar|sie(\\-|m)|sk\\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\\-|v\\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\\-|tdg\\-|tel(i|m)|tim\\-|t\\-mo|to(pl|sh)|ts(70|m\\-|m3|m5)|tx\\-9|up(\\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\\-|your|zeto|zte\\-/i\n .test(a.substr(0, 4));\n }\n return false;\n}\n\nexport function isBrowser(): boolean {\n return (typeof window !== 'undefined' && window.document != null) ||\n //@ts-ignore\n (typeof WorkerGlobalScope !== 'undefined');\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport './engine';\n\nimport * as device_util from './device_util';\nimport {env} from './environment';\n\nconst ENV = env();\n\n/**\n * This file contains environment-related flag registrations.\n */\n\n/** Whether to enable debug mode. */\nENV.registerFlag('DEBUG', () => false, debugValue => {\n if (debugValue) {\n console.warn(\n 'Debugging mode is ON. The output of every math call will ' +\n 'be downloaded to CPU and checked for NaNs. ' +\n 'This significantly impacts performance.');\n }\n});\n\n/** Whether we are in a browser (as versus, say, node.js) environment. */\nENV.registerFlag('IS_BROWSER', () => device_util.isBrowser());\n\n/** Whether we are in a browser (as versus, say, node.js) environment. */\nENV.registerFlag(\n 'IS_NODE',\n () => (typeof process !== 'undefined') &&\n (typeof process.versions !== 'undefined') &&\n (typeof process.versions.node !== 'undefined'));\n\n/** Whether this browser is Chrome. */\nENV.registerFlag(\n 'IS_CHROME',\n () => typeof navigator !== 'undefined' && navigator != null &&\n navigator.userAgent != null && /Chrome/.test(navigator.userAgent) &&\n /Google Inc/.test(navigator.vendor));\n\n/**\n * True when the environment is \"production\" where we disable safety checks\n * to gain performance.\n */\nENV.registerFlag('PROD', () => false);\n\n/**\n * Whether to do sanity checks when inferring a shape from user-provided\n * values, used when creating a new tensor.\n */\nENV.registerFlag(\n 'TENSORLIKE_CHECK_SHAPE_CONSISTENCY', () => ENV.getBool('DEBUG'));\n\n/** Whether deprecation warnings are enabled. */\nENV.registerFlag('DEPRECATION_WARNINGS_ENABLED', () => true);\n\n/** True if running unit tests. */\nENV.registerFlag('IS_TEST', () => false);\n\n/** Whether to check computation result for errors. */\nENV.registerFlag('CHECK_COMPUTATION_FOR_ERRORS', () => true);\n\n/** Whether the backend needs to wrap input to imageBitmap. */\nENV.registerFlag('WRAP_TO_IMAGEBITMAP', () => false);\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from './engine';\nimport {env} from './environment';\nimport {Tensor} from './tensor';\nimport {DataType, TensorLike} from './types';\nimport {assert, flatten, inferDtype, isTypedArray, toTypedArray} from './util';\n\nexport function inferShape(val: TensorLike, dtype?: DataType): number[] {\n let firstElem: typeof val = val;\n\n if (isTypedArray(val)) {\n return dtype === 'string' ? [] : [val.length];\n }\n if (!Array.isArray(val)) {\n return []; // Scalar.\n }\n const shape: number[] = [];\n\n while (Array.isArray(firstElem) ||\n isTypedArray(firstElem) && dtype !== 'string') {\n shape.push(firstElem.length);\n firstElem = firstElem[0];\n }\n if (Array.isArray(val) &&\n env().getBool('TENSORLIKE_CHECK_SHAPE_CONSISTENCY')) {\n deepAssertShapeConsistency(val, shape, []);\n }\n\n return shape;\n}\n\nfunction deepAssertShapeConsistency(\n val: TensorLike, shape: number[], indices: number[]) {\n indices = indices || [];\n if (!(Array.isArray(val)) && !isTypedArray(val)) {\n assert(\n shape.length === 0,\n () => `Element arr[${indices.join('][')}] is a primitive, ` +\n `but should be an array/TypedArray of ${shape[0]} elements`);\n return;\n }\n assert(\n shape.length > 0,\n () => `Element arr[${indices.join('][')}] should be a primitive, ` +\n `but is an array of ${val.length} elements`);\n assert(\n val.length === shape[0],\n () => `Element arr[${indices.join('][')}] should have ${shape[0]} ` +\n `elements, but has ${val.length} elements`);\n const subShape = shape.slice(1);\n for (let i = 0; i < val.length; ++i) {\n deepAssertShapeConsistency(val[i], subShape, indices.concat(i));\n }\n}\n\nfunction assertDtype(\n expectedDtype: DataType|'numeric'|'string_or_numeric',\n actualDType: DataType, argName: string, functionName: string) {\n if (expectedDtype === 'string_or_numeric') {\n return;\n }\n if (expectedDtype == null) {\n throw new Error(`Expected dtype cannot be null.`);\n }\n if (expectedDtype !== 'numeric' && expectedDtype !== actualDType ||\n expectedDtype === 'numeric' && actualDType === 'string') {\n throw new Error(\n `Argument '${argName}' passed to '${functionName}' must ` +\n `be ${expectedDtype} tensor, but got ${actualDType} tensor`);\n }\n}\n\nexport function convertToTensor(\n x: T|TensorLike, argName: string, functionName: string,\n parseAsDtype: DataType|'numeric'|'string_or_numeric' = 'numeric'): T {\n if (x instanceof Tensor) {\n assertDtype(parseAsDtype, x.dtype, argName, functionName);\n return x;\n }\n let inferredDtype = inferDtype(x);\n // If the user expects a bool/int/float, use that info to update the\n // inferredDtype when it is not a string.\n if (inferredDtype !== 'string' &&\n ['bool', 'int32', 'float32'].indexOf(parseAsDtype) >= 0) {\n inferredDtype = parseAsDtype as DataType;\n }\n assertDtype(parseAsDtype, inferredDtype, argName, functionName);\n\n if ((x == null) ||\n (!isTypedArray(x) && !Array.isArray(x) && typeof x !== 'number' &&\n typeof x !== 'boolean' && typeof x !== 'string')) {\n const type = x == null ? 'null' : (x as {}).constructor.name;\n throw new Error(\n `Argument '${argName}' passed to '${functionName}' must be a ` +\n `Tensor or TensorLike, but got '${type}'`);\n }\n const inferredShape = inferShape(x, inferredDtype);\n if (!isTypedArray(x) && !Array.isArray(x)) {\n x = [x] as number[];\n }\n const skipTypedArray = true;\n const values = inferredDtype !== 'string' ?\n toTypedArray(x, inferredDtype as DataType) :\n flatten(x as string[], [], skipTypedArray) as string[];\n return ENGINE.makeTensor(values, inferredShape, inferredDtype) as T;\n}\n\nexport function convertToTensorArray(\n arg: Array, argName: string, functionName: string,\n parseAsDtype: DataType|'numeric'|'string_or_numeric' = 'numeric'): T[] {\n if (!Array.isArray(arg)) {\n throw new Error(\n `Argument ${argName} passed to ${functionName} must be a ` +\n '`Tensor[]` or `TensorLike[]`');\n }\n const tensors = arg as T[];\n return tensors.map(\n (t, i) =>\n convertToTensor(t, `${argName}[${i}]`, functionName, parseAsDtype));\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {isPromise} from '../util';\n\nexport const OP_SCOPE_SUFFIX = '__op';\n\n/**\n * Used for wrapping functions that perform math operations on\n * Tensors. The function will be wrapped in a named scope that cleans all\n * memory usage after the function is done.\n */\nexport function op(f: {[name: string]: T}): T {\n const keys = Object.keys(f);\n if (keys.length !== 1) {\n throw new Error(\n `Please provide an object with a single key ` +\n `(operation name) mapping to a function. Got an object with ` +\n `${keys.length} keys.`);\n }\n\n let opName = keys[0];\n const fn = f[opName];\n\n // Strip the underscore from the end of the function name.\n if (opName.endsWith('_')) {\n opName = opName.substring(0, opName.length - 1);\n }\n\n // add an __op suffix to distinguish ops from kernels in tf.profile\n opName = opName + OP_SCOPE_SUFFIX;\n\n // tslint:disable-next-line:no-any\n const f2 = (...args: any[]) => {\n ENGINE.startScope(opName);\n try {\n const result = fn(...args);\n if (isPromise(result)) {\n console.error('Cannot return a Promise inside of tidy.');\n }\n ENGINE.endScope(result);\n return result;\n } catch (ex) {\n ENGINE.endScope(null);\n throw ex;\n }\n };\n Object.defineProperty(f2, 'name', {value: opName, configurable: true});\n\n // tslint:disable-next-line:no-any\n return f2 as any as T;\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {Complex, ComplexInputs} from '../kernel_names';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {op} from './operation';\n\n/**\n * Converts two real numbers to a complex number.\n *\n * Given a tensor `real` representing the real part of a complex number, and a\n * tensor `imag` representing the imaginary part of a complex number, this\n * operation returns complex numbers elementwise of the form [r0, i0, r1, i1],\n * where r represents the real part and i represents the imag part.\n *\n * The input tensors real and imag must have the same shape.\n *\n * ```js\n * const real = tf.tensor1d([2.25, 3.25]);\n * const imag = tf.tensor1d([4.75, 5.75]);\n * const complex = tf.complex(real, imag);\n *\n * complex.print();\n * ```\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nfunction complex_(real: T|TensorLike, imag: T|TensorLike): T {\n const $real = convertToTensor(real, 'real', 'complex');\n const $imag = convertToTensor(imag, 'imag', 'complex');\n util.assertShapesMatch(\n $real.shape, $imag.shape,\n `real and imag shapes, ${$real.shape} and ${$imag.shape}, ` +\n `must match in call to tf.complex().`);\n\n const inputs: ComplexInputs = {real: $real, imag: $imag};\n return ENGINE.runKernel(Complex, inputs as {} as NamedTensorMap);\n}\n\nexport const complex = op({complex_});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {Tensor} from '../tensor';\nimport {TensorLike, TypedArray} from '../types';\nimport {DataType} from '../types';\nimport {assert, assertNonNegativeIntegerDimensions, flatten, inferDtype, isTypedArray, sizeFromShape, toTypedArray} from '../util';\n\n/** This is shared code across all tensor creation methods. */\nexport function makeTensor(\n values: TensorLike, shape: number[], inferredShape: number[],\n dtype?: DataType): Tensor {\n if (dtype == null) {\n dtype = inferDtype(values);\n }\n if (dtype === 'complex64') {\n throw new Error(\n `Cannot construct a complex64 tensor directly. ` +\n `Please use tf.complex(real, imag).`);\n }\n if (!isTypedArray(values) && !Array.isArray(values) &&\n typeof values !== 'number' && typeof values !== 'boolean' &&\n typeof values !== 'string') {\n throw new Error(\n 'values passed to tensor(values) must be a number/boolean/string or ' +\n 'an array of numbers/booleans/strings, or a TypedArray');\n }\n if (shape != null) {\n assertNonNegativeIntegerDimensions(shape);\n\n const providedSize = sizeFromShape(shape);\n const inferredSize = sizeFromShape(inferredShape);\n assert(\n providedSize === inferredSize,\n () =>\n `Based on the provided shape, [${shape}], the tensor should have ` +\n `${providedSize} values but has ${inferredSize}`);\n\n for (let i = 0; i < inferredShape.length; ++i) {\n const inferred = inferredShape[i];\n const flatDimsDontMatch = i === inferredShape.length - 1 ?\n inferred !== sizeFromShape(shape.slice(i)) :\n true;\n assert(\n inferredShape[i] === shape[i] || !flatDimsDontMatch,\n () => `Error creating a new Tensor. Inferred shape ` +\n `(${inferredShape}) does not match the provided ` +\n `shape (${shape}). `);\n }\n }\n\n if (!isTypedArray(values) && !Array.isArray(values)) {\n values = [values] as number[];\n }\n\n shape = shape || inferredShape;\n values = dtype !== 'string' ?\n toTypedArray(values, dtype) :\n flatten(values as string[], [], true) as string[];\n return ENGINE.makeTensor(values as TypedArray, shape, dtype);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from '../tensor';\nimport {inferShape} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport {DataType, Rank, ShapeMap} from '../types';\n\nimport {makeTensor} from './tensor_ops_util';\n\n/**\n * Creates a `tf.Tensor` with the provided values, shape and dtype.\n *\n * ```js\n * // Pass an array of values to create a vector.\n * tf.tensor([1, 2, 3, 4]).print();\n * ```\n *\n * ```js\n * // Pass a nested array of values to make a matrix or a higher\n * // dimensional tensor.\n * tf.tensor([[1, 2], [3, 4]]).print();\n * ```\n *\n * ```js\n * // Pass a flat array and specify a shape yourself.\n * tf.tensor([1, 2, 3, 4], [2, 2]).print();\n * ```\n *\n * @param values The values of the tensor. Can be nested array of numbers,\n * or a flat array, or a `TypedArray`. If the values are strings,\n * they will be encoded as utf-8 and kept as `Uint8Array[]`.\n * @param shape The shape of the tensor. Optional. If not provided,\n * it is inferred from `values`.\n * @param dtype The data type.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nexport function tensor(\n values: TensorLike, shape?: ShapeMap[R], dtype?: DataType): Tensor {\n const inferredShape = inferShape(values, dtype);\n return makeTensor(values, shape, inferredShape, dtype) as Tensor;\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/* Type definitions for exporting and importing of models. */\n\n/**\n * A map from Tensor dtype to number of bytes per element of the Tensor.\n */\nexport const DTYPE_VALUE_SIZE_MAP: {[dtype: string]: number} = {\n 'float32': 4,\n 'float16': 2,\n 'int32': 4,\n 'uint16': 2,\n 'uint8': 1,\n 'bool': 1,\n 'complex64': 8\n};\n\n/**\n * A weight manifest.\n *\n * The weight manifest consists of an ordered list of weight-manifest groups.\n * Each weight-manifest group (\"group\" for short hereafter) consists of a\n * number of weight values stored in a number of paths.\n * See the documentation of `WeightManifestGroupConfig` below for more details.\n */\nexport declare type WeightsManifestConfig = WeightsManifestGroupConfig[];\n\n/**\n * A weight-manifest group.\n *\n * Consists of an ordered list of weight values encoded in binary format,\n * stored in an ordered list of paths.\n */\nexport declare interface WeightsManifestGroupConfig {\n /**\n * An ordered list of paths.\n *\n * Paths are intentionally abstract in order to be general. For example, they\n * can be relative URL paths or relative paths on the file system.\n */\n paths: string[];\n\n /**\n * Specifications of the weights stored in the paths.\n */\n weights: WeightsManifestEntry[];\n}\n\n/**\n * Group to which the weight belongs.\n *\n * - 'optimizer': Weight from a stateful optimizer.\n */\nexport type WeightGroup = 'model'|'optimizer';\n\n/**\n * An entry in the weight manifest.\n *\n * The entry contains specification of a weight.\n */\nexport declare interface WeightsManifestEntry {\n /**\n * Name of the weight, e.g., 'Dense_1/bias'\n */\n name: string;\n\n /**\n * Shape of the weight.\n */\n shape: number[];\n\n /**\n * Data type of the weight.\n */\n dtype: 'float32'|'int32'|'bool'|'string'|'complex64';\n\n /**\n * Type of the weight.\n *\n * Optional.\n *\n * The value 'optimizer' indicates the weight belongs to an optimizer\n * (i.e., used only during model training and not during inference).\n */\n group?: WeightGroup;\n\n /**\n * Information for dequantization of the weight.\n */\n quantization?: {\n scale?: number, // The scaling constant to multiply by.\n min?: number, // The (possibly nudged) minimum weight to add.\n dtype: 'uint16'|'uint8'|'float16' // The dtype of the quantized weights.\n };\n}\n\n/**\n * Options for saving a model.\n * @innamespace io\n */\nexport interface SaveConfig {\n /**\n * Whether to save only the trainable weights of the model, ignoring the\n * non-trainable ones.\n */\n trainableOnly?: boolean;\n\n /**\n * Whether the optimizer will be saved (if exists).\n *\n * Default: `false`.\n */\n includeOptimizer?: boolean;\n}\n\n/**\n * Result of a saving operation.\n */\nexport interface SaveResult {\n /**\n * Information about the model artifacts saved.\n */\n modelArtifactsInfo: ModelArtifactsInfo;\n\n /**\n * HTTP responses from the server that handled the model-saving request (if\n * any). This is applicable only to server-based saving routes.\n */\n responses?: Response[];\n\n /**\n * Error messages and related data (if any).\n */\n errors?: Array<{}|string>;\n}\n\nexport declare interface ModelArtifactsInfo {\n /**\n * Timestamp for when the model is saved.\n */\n dateSaved: Date;\n\n /**\n * TODO (cais,yassogba) consider removing GraphDef as GraphDefs now\n * come in a JSON format and none of our IOHandlers support a non json\n * format. We could conder replacing this with 'Binary' if we want to\n * allow future handlers to save to non json formats (though they will\n * probably want more information than 'Binary').\n * Type of the model topology\n *\n * Type of the model topology\n *\n * Possible values:\n * - JSON: JSON config (human-readable, e.g., Keras JSON).\n * - GraphDef: TensorFlow\n * [GraphDef](https://www.tensorflow.org/extend/tool_developers/#graphdef)\n * protocol buffer (binary).\n */\n modelTopologyType: 'JSON'|'GraphDef';\n\n /**\n * Size of model topology (Keras JSON or GraphDef), in bytes.\n */\n modelTopologyBytes?: number;\n\n /**\n * Size of weight specification or manifest, in bytes.\n */\n weightSpecsBytes?: number;\n\n /**\n * Size of weight value data, in bytes.\n */\n weightDataBytes?: number;\n}\n\n/** Model training configuration. */\nexport declare interface TrainingConfig {\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n // See\n // tslint:disable-next-line:max-line-length\n // https://github.com/tensorflow/tfjs-layers/blob/master/src/keras_format/training_config.ts\n /** Optimizer used for the model training. */\n optimizer_config: {};\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n /** Loss function(s) for the model's output(s). */\n loss: string|string[]|{[key: string]: string};\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n /** Metric function(s) for the model's output(s). */\n metrics?: string[]|{[key: string]: string};\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n weighted_metrics?: string[];\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n sample_weight_mode?: string;\n\n loss_weights?: number[]|{[key: string]: number};\n}\n\n/**\n * The serialized artifacts of a model, including topology and weights.\n *\n * The `modelTopology`, `trainingConfig`, `weightSpecs` and `weightData` fields\n * of this interface are optional, in order to support topology- or weights-only\n * saving and loading.\n *\n * Note this interface is used internally in IOHandlers. For the file format\n * written to disk as `model.json`, see `ModelJSON`.\n */\nexport declare interface ModelArtifacts {\n /**\n * Model topology.\n *\n * For Keras-style `tf.Model`s, this is a JSON object.\n * For TensorFlow-style models (e.g., `SavedModel`), this is the JSON\n * encoding of the `GraphDef` protocol buffer.\n */\n modelTopology?: {}|ArrayBuffer;\n\n /**\n * Serialized configuration for the model's training.\n */\n trainingConfig?: TrainingConfig;\n\n /**\n * Weight specifications.\n *\n * This corresponds to the weightsData below.\n */\n weightSpecs?: WeightsManifestEntry[];\n\n /**\n * Binary buffer for all weight values concatenated in the order specified\n * by `weightSpecs`.\n */\n weightData?: ArrayBuffer;\n\n /**\n * Hard-coded format name for models saved from TensorFlow.js or converted\n * by TensorFlow.js Converter.\n */\n format?: string;\n\n /**\n * What library is responsible for originally generating this artifact.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js v1.0.0'.\n */\n generatedBy?: string;\n\n /**\n * What library or tool is responsible for converting the original model\n * to this format, applicable only if the model is output by a converter.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js Converter v1.0.0'.\n *\n * A value of `null` means the model artifacts are generated without any\n * conversion process (e.g., saved directly from a TensorFlow.js\n * `tf.LayersModel` instance.)\n */\n convertedBy?: string|null;\n\n /**\n * Inputs and outputs signature for saved model.\n */\n signature?: {};\n\n /**\n * User-defined metadata about the model.\n */\n userDefinedMetadata?: {[key: string]: {}};\n\n /**\n * Initializer for the model.\n */\n modelInitializer?: {};\n}\n\n/**\n * The on-disk format of the `model.json` file.\n *\n * TF.js 1.0 always populates the optional fields when writing model.json.\n * Prior versions did not provide those fields.\n */\nexport declare interface ModelJSON {\n /**\n * Model topology.\n *\n * For Keras-style `tf.Model`s, this is a JSON object.\n * For TensorFlow-style models (e.g., `SavedModel`), this is the JSON\n * encoding of the `GraphDef` protocol buffer.\n */\n modelTopology: {};\n\n /** Model training configuration. */\n trainingConfig?: TrainingConfig;\n\n /**\n * Weights manifest.\n *\n * The weights manifest consists of an ordered list of weight-manifest\n * groups. Each weight-manifest group consists of a number of weight values\n * stored in a number of paths. See the documentation of\n * `WeightsManifestConfig` for more details.\n */\n weightsManifest: WeightsManifestConfig;\n\n /**\n * Hard-coded format name for models saved from TensorFlow.js or converted\n * by TensorFlow.js Converter.\n */\n format?: string;\n\n /**\n * What library is responsible for originally generating this artifact.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js v1.0.0'.\n */\n generatedBy?: string;\n\n /**\n * What library or tool is responsible for converting the original model\n * to this format, applicable only if the model is output by a converter.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js Converter v1.0.0'.\n *\n * A value of `null` means the model artifacts are generated without any\n * conversion process (e.g., saved directly from a TensorFlow.js\n * `tf.LayersModel` instance.)\n */\n convertedBy?: string|null;\n\n /**\n * Inputs and outputs signature for saved model.\n */\n signature?: {};\n\n /**\n * User-defined metadata about the model.\n */\n userDefinedMetadata?: {[key: string]: {}};\n\n /**\n * Initializer for the model.\n */\n modelInitializer?: {};\n}\n\n/**\n * Type definition for handlers of loading operations.\n */\nexport type LoadHandler = () => Promise;\n\n/**\n * Type definition for handlers of saving operations.\n */\nexport type SaveHandler = (modelArtifact: ModelArtifacts) =>\n Promise;\n\n/**\n * Interface for a model import/export handler.\n *\n * The `save` and `load` handlers are both optional, in order to allow handlers\n * that support only saving or loading.\n */\n// tslint:disable-next-line:interface-name\nexport interface IOHandler {\n save?: SaveHandler;\n load?: LoadHandler;\n}\n\n/**\n * An interface for the manager of a model store.\n *\n * A model store is defined as a storage medium on which multiple models can\n * be stored. Each stored model has a unique `path` as its identifier.\n * A `ModelStoreManager` for the store allows actions including\n *\n * - Listing the models stored in the store.\n * - Deleting a model from the store.\n */\nexport interface ModelStoreManager {\n /**\n * List all models in the model store.\n *\n * @returns A dictionary mapping paths of existing models to their\n * model artifacts info. Model artifacts info include type of the model's\n * topology, byte sizes of the topology, weights, etc.\n */\n listModels(): Promise<{[path: string]: ModelArtifactsInfo}>;\n\n /**\n * Remove a model specified by `path`.\n *\n * @param path\n * @returns ModelArtifactsInfo of the deleted model (if and only if deletion\n * is successful).\n * @throws Error if deletion fails, e.g., if no model exists at `path`.\n */\n removeModel(path: string): Promise;\n}\n\n/**\n * Callback for the progress of a long-running action such as an HTTP\n * request for a large binary object.\n *\n * `fraction` should be a number in the [0, 1] interval, indicating how\n * much of the action has completed.\n */\nexport type OnProgressCallback = (fraction: number) => void;\n\n/** @innamespace io */\nexport interface LoadOptions {\n /**\n * RequestInit (options) for HTTP requests.\n *\n * For detailed information on the supported fields, see\n * [https://developer.mozilla.org/en-US/docs/Web/API/Request/Request](\n * https://developer.mozilla.org/en-US/docs/Web/API/Request/Request)\n */\n requestInit?: RequestInit;\n\n /**\n * Progress callback.\n */\n onProgress?: OnProgressCallback;\n\n /**\n * A function used to override the `window.fetch` function.\n */\n fetchFunc?: Function;\n\n /**\n * Strict loading model: whether extraneous weights or missing\n * weights should trigger an `Error`.\n *\n * If `true`, require that the provided weights exactly match those\n * required by the layers. `false` means that both extra weights\n * and missing weights will be silently ignored.\n *\n * Default: `true`.\n */\n strict?: boolean;\n\n /**\n * Path prefix for weight files, by default this is calculated from the\n * path of the model JSON file.\n *\n * For instance, if the path to the model JSON file is\n * `http://localhost/foo/model.json`, then the default path prefix will be\n * `http://localhost/foo/`. If a weight file has the path value\n * `group1-shard1of2` in the weight manifest, then the weight file will be\n * loaded from `http://localhost/foo/group1-shard1of2` by default. However,\n * if you provide a `weightPathPrefix` value of\n * `http://localhost/foo/alt-weights`, then the weight file will be loaded\n * from the path `http://localhost/foo/alt-weights/group1-shard1of2` instead.\n */\n weightPathPrefix?: string;\n\n /**\n * Whether the module or model is to be loaded from TF Hub.\n *\n * Setting this to `true` allows passing a TF-Hub module URL, omitting the\n * standard model file name and the query parameters.\n *\n * Default: `false`.\n */\n fromTFHub?: boolean;\n\n /**\n * An async function to convert weight file name to URL. The weight file\n * names are stored in model.json's weightsManifest.paths field. By default we\n * consider weight files are colocated with the model.json file. For example:\n * model.json URL: https://www.google.com/models/1/model.json\n * group1-shard1of1.bin url:\n * https://www.google.com/models/1/group1-shard1of1.bin\n *\n * With this func you can convert the weight file name to any URL.\n */\n weightUrlConverter?: (weightFileName: string) => Promise;\n}\n\n/**\n * Additional options for Platform.fetch\n */\nexport interface RequestDetails {\n /**\n * Is this request for a binary file (as opposed to a json file)\n */\n isBinary?: boolean;\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {complex} from '../ops/complex';\n\nimport {tensor} from '../ops/tensor';\nimport {NamedTensor, NamedTensorMap} from '../tensor_types';\nimport {TypedArray} from '../types';\nimport {sizeFromShape} from '../util';\n\nimport {DTYPE_VALUE_SIZE_MAP, ModelArtifacts, ModelArtifactsInfo, WeightGroup, WeightsManifestEntry} from './types';\n\n/** Number of bytes reserved for the length of the string. (32bit integer). */\nconst NUM_BYTES_STRING_LENGTH = 4;\n\n/**\n * Encode a map from names to weight values as an ArrayBuffer, along with an\n * `Array` of `WeightsManifestEntry` as specification of the encoded weights.\n *\n * This function does not perform sharding.\n *\n * This function is the reverse of `decodeWeights`.\n *\n * @param tensors A map (\"dict\") from names to tensors.\n * @param group Group to which the weights belong (optional).\n * @returns A `Promise` of\n * - A flat `ArrayBuffer` with all the binary values of the `Tensor`s\n * concatenated.\n * - An `Array` of `WeightManifestEntry`s, carrying information including\n * tensor names, `dtype`s and shapes.\n * @throws Error: on unsupported tensor `dtype`.\n */\nexport async function encodeWeights(\n tensors: NamedTensorMap|NamedTensor[], group?: WeightGroup):\n Promise<{data: ArrayBuffer, specs: WeightsManifestEntry[]}> {\n // TODO(adarob, cais): Support quantization.\n const specs: WeightsManifestEntry[] = [];\n const dataPromises: Array> = [];\n\n const names: string[] = Array.isArray(tensors) ?\n tensors.map(tensor => tensor.name) :\n Object.keys(tensors);\n\n for (let i = 0; i < names.length; ++i) {\n const name = names[i];\n const t = Array.isArray(tensors) ? tensors[i].tensor : tensors[name];\n if (t.dtype !== 'float32' && t.dtype !== 'int32' && t.dtype !== 'bool' &&\n t.dtype !== 'string' && t.dtype !== 'complex64') {\n throw new Error(`Unsupported dtype in weight '${name}': ${t.dtype}`);\n }\n const spec: WeightsManifestEntry = {name, shape: t.shape, dtype: t.dtype};\n if (t.dtype === 'string') {\n const utf8bytes = new Promise(async resolve => {\n const vals = await t.bytes() as Uint8Array[];\n const totalNumBytes = vals.reduce((p, c) => p + c.length, 0) +\n NUM_BYTES_STRING_LENGTH * vals.length;\n const bytes = new Uint8Array(totalNumBytes);\n let offset = 0;\n for (let i = 0; i < vals.length; i++) {\n const val = vals[i];\n const bytesOfLength =\n new Uint8Array(new Uint32Array([val.length]).buffer);\n bytes.set(bytesOfLength, offset);\n offset += NUM_BYTES_STRING_LENGTH;\n bytes.set(val, offset);\n offset += val.length;\n }\n resolve(bytes);\n });\n dataPromises.push(utf8bytes);\n } else {\n dataPromises.push(t.data());\n }\n if (group != null) {\n spec.group = group;\n }\n specs.push(spec);\n }\n\n const tensorValues = await Promise.all(dataPromises);\n return {data: concatenateTypedArrays(tensorValues), specs};\n}\n\n/**\n * Decode flat ArrayBuffer as weights.\n *\n * This function does not handle sharding.\n *\n * This function is the reverse of `encodeWeights`.\n *\n * @param buffer A flat ArrayBuffer carrying the binary values of the tensors\n * concatenated in the order specified in `specs`.\n * @param specs Specifications of the names, dtypes and shapes of the tensors\n * whose value are encoded by `buffer`.\n * @return A map from tensor name to tensor value, with the names corresponding\n * to names in `specs`.\n * @throws Error, if any of the tensors has unsupported dtype.\n */\nexport function decodeWeights(\n buffer: ArrayBuffer, specs: WeightsManifestEntry[]): NamedTensorMap {\n // TODO(adarob, cais): Support quantization.\n const out: NamedTensorMap = {};\n let float16Decode: (buffer: Uint16Array) => Float32Array | undefined;\n let offset = 0;\n for (const spec of specs) {\n const name = spec.name;\n const dtype = spec.dtype;\n const shape = spec.shape;\n const size = sizeFromShape(shape);\n let values: TypedArray|string[]|Uint8Array[];\n\n if ('quantization' in spec) {\n const quantization = spec.quantization;\n if (quantization.dtype === 'uint8' || quantization.dtype === 'uint16') {\n if (!('min' in quantization && 'scale' in quantization)) {\n throw new Error(\n `Weight ${spec.name} with quantization ${quantization.dtype} ` +\n `doesn't have corresponding metadata min and scale.`);\n }\n } else if (quantization.dtype === 'float16') {\n if (dtype !== 'float32') {\n throw new Error(\n `Weight ${spec.name} is quantized with ${quantization.dtype} ` +\n `which only supports weights of type float32 not ${dtype}.`);\n }\n } else {\n throw new Error(\n `Weight ${spec.name} has unknown ` +\n `quantization dtype ${quantization.dtype}. ` +\n `Supported quantization dtypes are: ` +\n `'uint8', 'uint16', and 'float16'.`);\n }\n const quantizationSizeFactor = DTYPE_VALUE_SIZE_MAP[quantization.dtype];\n const byteBuffer =\n buffer.slice(offset, offset + size * quantizationSizeFactor);\n const quantizedArray = (quantization.dtype === 'uint8') ?\n new Uint8Array(byteBuffer) :\n new Uint16Array(byteBuffer);\n if (dtype === 'float32') {\n if (quantization.dtype === 'uint8' || quantization.dtype === 'uint16') {\n values = new Float32Array(quantizedArray.length);\n for (let i = 0; i < quantizedArray.length; i++) {\n const v = quantizedArray[i];\n values[i] = v * quantization.scale + quantization.min;\n }\n } else if (quantization.dtype === 'float16') {\n if (float16Decode === undefined) {\n float16Decode = getFloat16Decoder();\n }\n values = float16Decode(quantizedArray as Uint16Array);\n } else {\n throw new Error(\n `Unsupported quantization type ${quantization.dtype} ` +\n `for weight type float32.`);\n }\n } else if (dtype === 'int32') {\n if (quantization.dtype !== 'uint8' && quantization.dtype !== 'uint16') {\n throw new Error(\n `Unsupported quantization type ${quantization.dtype} ` +\n `for weight type int32.`);\n }\n values = new Int32Array(quantizedArray.length);\n for (let i = 0; i < quantizedArray.length; i++) {\n const v = quantizedArray[i];\n values[i] = Math.round(v * quantization.scale + quantization.min);\n }\n } else {\n throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`);\n }\n offset += size * quantizationSizeFactor;\n } else if (dtype === 'string') {\n const size = sizeFromShape(spec.shape);\n values = [];\n for (let i = 0; i < size; i++) {\n const byteLength = new Uint32Array(\n buffer.slice(offset, offset + NUM_BYTES_STRING_LENGTH))[0];\n offset += NUM_BYTES_STRING_LENGTH;\n const bytes = new Uint8Array(buffer.slice(offset, offset + byteLength));\n (values as Uint8Array[]).push(bytes);\n offset += byteLength;\n }\n } else {\n const dtypeFactor = DTYPE_VALUE_SIZE_MAP[dtype];\n const byteBuffer = buffer.slice(offset, offset + size * dtypeFactor);\n\n if (dtype === 'float32') {\n values = new Float32Array(byteBuffer);\n } else if (dtype === 'int32') {\n values = new Int32Array(byteBuffer);\n } else if (dtype === 'bool') {\n values = new Uint8Array(byteBuffer);\n } else if (dtype === 'complex64') {\n values = new Float32Array(byteBuffer);\n const real = new Float32Array(values.length / 2);\n const image = new Float32Array(values.length / 2);\n for (let i = 0; i < real.length; i++) {\n real[i] = values[i * 2];\n image[i] = values[i * 2 + 1];\n }\n const realTensor = tensor(real, shape, 'float32');\n const imageTensor = tensor(image, shape, 'float32');\n out[name] = complex(realTensor, imageTensor);\n realTensor.dispose();\n imageTensor.dispose();\n } else {\n throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`);\n }\n offset += size * dtypeFactor;\n }\n if (dtype !== 'complex64') {\n out[name] = tensor(values, shape, dtype);\n }\n }\n return out;\n}\n\n/**\n * Concatenate TypedArrays into an ArrayBuffer.\n */\nexport function concatenateTypedArrays(xs: TypedArray[]): ArrayBuffer {\n // TODO(adarob, cais): Support quantization.\n if (xs === null) {\n throw new Error(`Invalid input value: ${JSON.stringify(xs)}`);\n }\n\n let totalByteLength = 0;\n\n // `normalizedXs` is here for this reason: a `TypedArray`'s `buffer'\n // can have a different byte length from that of the `TypedArray` itself,\n // for example, when the `TypedArray` is created from an offset in an\n // `ArrayBuffer`. `normliazedXs` holds `TypedArray`s whose `buffer`s match\n // the `TypedArray` in byte length. If an element of `xs` does not show\n // this property, a new `TypedArray` that satisfy this property will be\n // constructed and pushed into `normalizedXs`.\n const normalizedXs: TypedArray[] = [];\n xs.forEach((x: TypedArray) => {\n totalByteLength += x.byteLength;\n // tslint:disable:no-any\n normalizedXs.push(\n x.byteLength === x.buffer.byteLength ? x :\n new (x.constructor as any)(x));\n if (!(x as any instanceof Float32Array || x as any instanceof Int32Array ||\n x as any instanceof Uint8Array)) {\n throw new Error(`Unsupported TypedArray subtype: ${x.constructor.name}`);\n }\n // tslint:enable:no-any\n });\n\n const y = new Uint8Array(totalByteLength);\n let offset = 0;\n normalizedXs.forEach((x: TypedArray) => {\n y.set(new Uint8Array(x.buffer), offset);\n offset += x.byteLength;\n });\n\n return y.buffer;\n}\n\n// Use Buffer on Node.js instead of Blob/atob/btoa\nconst useNodeBuffer = typeof Buffer !== 'undefined' &&\n (typeof Blob === 'undefined' || typeof atob === 'undefined' ||\n typeof btoa === 'undefined');\n\n/**\n * Calculate the byte length of a JavaScript string.\n *\n * Note that a JavaScript string can contain wide characters, therefore the\n * length of the string is not necessarily equal to the byte length.\n *\n * @param str Input string.\n * @returns Byte length.\n */\nexport function stringByteLength(str: string): number {\n if (useNodeBuffer) {\n return Buffer.byteLength(str);\n }\n return new Blob([str]).size;\n}\n\n/**\n * Encode an ArrayBuffer as a base64 encoded string.\n *\n * @param buffer `ArrayBuffer` to be converted.\n * @returns A string that base64-encodes `buffer`.\n */\nexport function arrayBufferToBase64String(buffer: ArrayBuffer): string {\n if (useNodeBuffer) {\n return Buffer.from(buffer).toString('base64');\n }\n const buf = new Uint8Array(buffer);\n let s = '';\n for (let i = 0, l = buf.length; i < l; i++) {\n s += String.fromCharCode(buf[i]);\n }\n return btoa(s);\n}\n\n/**\n * Decode a base64 string as an ArrayBuffer.\n *\n * @param str Base64 string.\n * @returns Decoded `ArrayBuffer`.\n */\nexport function base64StringToArrayBuffer(str: string): ArrayBuffer {\n if (useNodeBuffer) {\n const buf = Buffer.from(str, 'base64');\n return buf.buffer.slice(buf.byteOffset, buf.byteOffset + buf.byteLength);\n }\n const s = atob(str);\n const buffer = new Uint8Array(s.length);\n for (let i = 0; i < s.length; ++i) {\n buffer.set([s.charCodeAt(i)], i);\n }\n return buffer.buffer;\n}\n\n/**\n * Concatenate a number of ArrayBuffers into one.\n *\n * @param buffers A number of array buffers to concatenate.\n * @returns Result of concatenating `buffers` in order.\n */\nexport function concatenateArrayBuffers(buffers: ArrayBuffer[]): ArrayBuffer {\n if (buffers.length === 1) {\n return buffers[0];\n }\n\n let totalByteLength = 0;\n buffers.forEach((buffer: ArrayBuffer) => {\n totalByteLength += buffer.byteLength;\n });\n\n const temp = new Uint8Array(totalByteLength);\n let offset = 0;\n buffers.forEach((buffer: ArrayBuffer) => {\n temp.set(new Uint8Array(buffer), offset);\n offset += buffer.byteLength;\n });\n return temp.buffer;\n}\n\n/**\n * Get the basename of a path.\n *\n * Behaves in a way analogous to Linux's basename command.\n *\n * @param path\n */\nexport function basename(path: string): string {\n const SEPARATOR = '/';\n path = path.trim();\n while (path.endsWith(SEPARATOR)) {\n path = path.slice(0, path.length - 1);\n }\n const items = path.split(SEPARATOR);\n return items[items.length - 1];\n}\n\n/**\n * Populate ModelArtifactsInfo fields for a model with JSON topology.\n * @param modelArtifacts\n * @returns A ModelArtifactsInfo object.\n */\nexport function getModelArtifactsInfoForJSON(modelArtifacts: ModelArtifacts):\n ModelArtifactsInfo {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error('Expected JSON model topology, received ArrayBuffer.');\n }\n\n return {\n dateSaved: new Date(),\n modelTopologyType: 'JSON',\n modelTopologyBytes: modelArtifacts.modelTopology == null ?\n 0 :\n stringByteLength(JSON.stringify(modelArtifacts.modelTopology)),\n weightSpecsBytes: modelArtifacts.weightSpecs == null ?\n 0 :\n stringByteLength(JSON.stringify(modelArtifacts.weightSpecs)),\n weightDataBytes: modelArtifacts.weightData == null ?\n 0 :\n modelArtifacts.weightData.byteLength,\n };\n}\n\n/**\n * Computes mantisa table for casting Float16 to Float32\n * See http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n *\n * @returns Uint32Array, 2048 mantissa lookup values.\n */\nfunction computeFloat16MantisaTable(): Uint32Array {\n const convertMantissa = (i: number): number => {\n let m = i << 13;\n let e = 0;\n\n while ((m & 0x00800000) === 0) {\n e -= 0x00800000;\n m <<= 1;\n }\n m &= ~0x00800000;\n e += 0x38800000;\n\n return m | e;\n };\n\n const mantisaTable = new Uint32Array(2048);\n\n mantisaTable[0] = 0;\n for (let i = 1; i < 1024; i++) {\n mantisaTable[i] = convertMantissa(i);\n }\n for (let i = 1024; i < 2048; i++) {\n mantisaTable[i] = 0x38000000 + ((i - 1024) << 13);\n }\n\n return mantisaTable;\n}\n\n/**\n * Computes exponent table for casting Float16 to Float32\n * See http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n *\n * @returns Uint32Array, 64 exponent lookup values.\n */\nfunction computeFloat16ExponentTable(): Uint32Array {\n const exponentTable = new Uint32Array(64);\n\n exponentTable[0] = 0;\n exponentTable[31] = 0x47800000;\n exponentTable[32] = 0x80000000;\n exponentTable[63] = 0xc7800000;\n for (let i = 1; i < 31; i++) {\n exponentTable[i] = i << 23;\n }\n for (let i = 33; i < 63; i++) {\n exponentTable[i] = 0x80000000 + ((i - 32) << 23);\n }\n\n return exponentTable;\n}\n\n/**\n * Computes offset table for casting Float16 to Float32\n * See http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n *\n * @returns Uint32Array, 6d offset values.\n */\nfunction computeFloat16OffsetTable(): Uint32Array {\n const offsetTable = new Uint32Array(64);\n\n for (let i = 0; i < 64; i++) {\n offsetTable[i] = 1024;\n }\n offsetTable[0] = offsetTable[32] = 0;\n\n return offsetTable;\n}\n\n/**\n * Retrieve a Float16 decoder which will decode a ByteArray of Float16 values\n * to a Float32Array.\n *\n * @returns Function (buffer: Uint16Array) => Float32Array which decodes\n * the Uint16Array of Float16 bytes to a Float32Array.\n */\nexport function getFloat16Decoder(): (buffer: Uint16Array) => Float32Array {\n // Algorithm is based off of\n // http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n\n // Cache lookup tables\n const mantisaTable = computeFloat16MantisaTable();\n const exponentTable = computeFloat16ExponentTable();\n const offsetTable = computeFloat16OffsetTable();\n\n return (quantizedArray: Uint16Array) => {\n const buffer = new ArrayBuffer(4 * quantizedArray.length);\n const bufferUint32View = new Uint32Array(buffer);\n for (let index = 0; index < quantizedArray.length; index++) {\n const float16Bits = quantizedArray[index];\n const float32Bits =\n mantisaTable[offsetTable[float16Bits >> 10] + (float16Bits & 0x3ff)] +\n exponentTable[float16Bits >> 10];\n bufferUint32View[index] = float32Bits;\n }\n return new Float32Array(buffer);\n };\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {IOHandler, LoadOptions} from './types';\n\nexport type IORouter = (url: string|string[], loadOptions?: LoadOptions) =>\n IOHandler;\n\nexport class IORouterRegistry {\n // Singleton instance.\n private static instance: IORouterRegistry;\n\n private saveRouters: IORouter[];\n private loadRouters: IORouter[];\n\n private constructor() {\n this.saveRouters = [];\n this.loadRouters = [];\n }\n\n private static getInstance(): IORouterRegistry {\n if (IORouterRegistry.instance == null) {\n IORouterRegistry.instance = new IORouterRegistry();\n }\n return IORouterRegistry.instance;\n }\n\n /**\n * Register a save-handler router.\n *\n * @param saveRouter A function that maps a URL-like string onto an instance\n * of `IOHandler` with the `save` method defined or `null`.\n */\n static registerSaveRouter(saveRouter: IORouter) {\n IORouterRegistry.getInstance().saveRouters.push(saveRouter);\n }\n\n /**\n * Register a load-handler router.\n *\n * @param loadRouter A function that maps a URL-like string onto an instance\n * of `IOHandler` with the `load` method defined or `null`.\n */\n static registerLoadRouter(loadRouter: IORouter) {\n IORouterRegistry.getInstance().loadRouters.push(loadRouter);\n }\n\n /**\n * Look up IOHandler for saving, given a URL-like string.\n *\n * @param url\n * @returns If only one match is found, an instance of IOHandler with the\n * `save` method defined. If no match is found, `null`.\n * @throws Error, if more than one match is found.\n */\n static getSaveHandlers(url: string|string[]): IOHandler[] {\n return IORouterRegistry.getHandlers(url, 'save');\n }\n\n /**\n * Look up IOHandler for loading, given a URL-like string.\n *\n * @param url\n * @param loadOptions Optional, custom load options.\n * @returns All valid handlers for `url`, given the currently registered\n * handler routers.\n */\n static getLoadHandlers(url: string|string[], loadOptions?: LoadOptions):\n IOHandler[] {\n return IORouterRegistry.getHandlers(url, 'load', loadOptions);\n }\n\n private static getHandlers(\n url: string|string[], handlerType: 'save'|'load',\n loadOptions?: LoadOptions): IOHandler[] {\n const validHandlers: IOHandler[] = [];\n const routers = handlerType === 'load' ?\n IORouterRegistry.getInstance().loadRouters :\n IORouterRegistry.getInstance().saveRouters;\n routers.forEach(router => {\n const handler = router(url, loadOptions);\n if (handler !== null) {\n validHandlers.push(handler);\n }\n });\n return validHandlers;\n }\n}\n\nexport const registerSaveRouter = (loudRouter: IORouter) =>\n IORouterRegistry.registerSaveRouter(loudRouter);\nexport const registerLoadRouter = (loudRouter: IORouter) =>\n IORouterRegistry.registerLoadRouter(loudRouter);\nexport const getSaveHandlers = (url: string|string[]) =>\n IORouterRegistry.getSaveHandlers(url);\nexport const getLoadHandlers =\n (url: string|string[], loadOptions?: LoadOptions) =>\n IORouterRegistry.getLoadHandlers(url, loadOptions);\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport '../flags';\n\nimport {env} from '../environment';\n\nimport {getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, ModelArtifacts, ModelArtifactsInfo, ModelStoreManager, SaveResult} from './types';\n\nconst DATABASE_NAME = 'tensorflowjs';\nconst DATABASE_VERSION = 1;\n\n// Model data and ModelArtifactsInfo (metadata) are stored in two separate\n// stores for efficient access of the list of stored models and their metadata.\n// 1. The object store for model data: topology, weights and weight manifests.\nconst MODEL_STORE_NAME = 'models_store';\n// 2. The object store for ModelArtifactsInfo, including meta-information such\n// as the type of topology (JSON vs binary), byte size of the topology, byte\n// size of the weights, etc.\nconst INFO_STORE_NAME = 'model_info_store';\n\n/**\n * Delete the entire database for tensorflow.js, including the models store.\n */\nexport async function deleteDatabase(): Promise {\n const idbFactory = getIndexedDBFactory();\n\n return new Promise((resolve, reject) => {\n const deleteRequest = idbFactory.deleteDatabase(DATABASE_NAME);\n deleteRequest.onsuccess = () => resolve();\n deleteRequest.onerror = error => reject(error);\n });\n}\n\nfunction getIndexedDBFactory(): IDBFactory {\n if (!env().getBool('IS_BROWSER')) {\n // TODO(cais): Add more info about what IOHandler subtypes are available.\n // Maybe point to a doc page on the web and/or automatically determine\n // the available IOHandlers and print them in the error message.\n throw new Error(\n 'Failed to obtain IndexedDB factory because the current environment' +\n 'is not a web browser.');\n }\n // tslint:disable-next-line:no-any\n const theWindow: any = typeof window === 'undefined' ? self : window;\n const factory = theWindow.indexedDB || theWindow.mozIndexedDB ||\n theWindow.webkitIndexedDB || theWindow.msIndexedDB ||\n theWindow.shimIndexedDB;\n if (factory == null) {\n throw new Error(\n 'The current browser does not appear to support IndexedDB.');\n }\n return factory;\n}\n\nfunction setUpDatabase(openRequest: IDBRequest) {\n const db = openRequest.result as IDBDatabase;\n db.createObjectStore(MODEL_STORE_NAME, {keyPath: 'modelPath'});\n db.createObjectStore(INFO_STORE_NAME, {keyPath: 'modelPath'});\n}\n\n/**\n * IOHandler subclass: Browser IndexedDB.\n *\n * See the doc string of `browserIndexedDB` for more details.\n */\nexport class BrowserIndexedDB implements IOHandler {\n protected readonly indexedDB: IDBFactory;\n protected readonly modelPath: string;\n\n static readonly URL_SCHEME = 'indexeddb://';\n\n constructor(modelPath: string) {\n this.indexedDB = getIndexedDBFactory();\n\n if (modelPath == null || !modelPath) {\n throw new Error(\n 'For IndexedDB, modelPath must not be null, undefined or empty.');\n }\n this.modelPath = modelPath;\n }\n\n async save(modelArtifacts: ModelArtifacts): Promise {\n // TODO(cais): Support saving GraphDef models.\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserLocalStorage.save() does not support saving model topology ' +\n 'in binary formats yet.');\n }\n\n return this.databaseAction(this.modelPath, modelArtifacts) as\n Promise;\n }\n\n async load(): Promise {\n return this.databaseAction(this.modelPath) as Promise;\n }\n\n /**\n * Perform database action to put model artifacts into or read model artifacts\n * from IndexedDB object store.\n *\n * Whether the action is put or get depends on whether `modelArtifacts` is\n * specified. If it is specified, the action will be put; otherwise the action\n * will be get.\n *\n * @param modelPath A unique string path for the model.\n * @param modelArtifacts If specified, it will be the model artifacts to be\n * stored in IndexedDB.\n * @returns A `Promise` of `SaveResult`, if the action is put, or a `Promise`\n * of `ModelArtifacts`, if the action is get.\n */\n private databaseAction(modelPath: string, modelArtifacts?: ModelArtifacts):\n Promise {\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n\n if (modelArtifacts == null) {\n // Read model out from object store.\n const modelTx = db.transaction(MODEL_STORE_NAME, 'readonly');\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const getRequest = modelStore.get(this.modelPath);\n getRequest.onsuccess = () => {\n if (getRequest.result == null) {\n db.close();\n return reject(new Error(\n `Cannot find model with path '${this.modelPath}' ` +\n `in IndexedDB.`));\n } else {\n resolve(getRequest.result.modelArtifacts);\n }\n };\n getRequest.onerror = error => {\n db.close();\n return reject(getRequest.error);\n };\n modelTx.oncomplete = () => db.close();\n } else {\n // Put model into object store.\n const modelArtifactsInfo: ModelArtifactsInfo =\n getModelArtifactsInfoForJSON(modelArtifacts);\n // First, put ModelArtifactsInfo into info store.\n const infoTx = db.transaction(INFO_STORE_NAME, 'readwrite');\n let infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const putInfoRequest =\n infoStore.put({modelPath: this.modelPath, modelArtifactsInfo});\n let modelTx: IDBTransaction;\n putInfoRequest.onsuccess = () => {\n // Second, put model data into model store.\n modelTx = db.transaction(MODEL_STORE_NAME, 'readwrite');\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const putModelRequest = modelStore.put({\n modelPath: this.modelPath,\n modelArtifacts,\n modelArtifactsInfo\n });\n putModelRequest.onsuccess = () => resolve({modelArtifactsInfo});\n putModelRequest.onerror = error => {\n // If the put-model request fails, roll back the info entry as\n // well.\n infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const deleteInfoRequest = infoStore.delete(this.modelPath);\n deleteInfoRequest.onsuccess = () => {\n db.close();\n return reject(putModelRequest.error);\n };\n deleteInfoRequest.onerror = error => {\n db.close();\n return reject(putModelRequest.error);\n };\n };\n };\n putInfoRequest.onerror = error => {\n db.close();\n return reject(putInfoRequest.error);\n };\n infoTx.oncomplete = () => {\n if (modelTx == null) {\n db.close();\n } else {\n modelTx.oncomplete = () => db.close();\n }\n };\n }\n };\n openRequest.onerror = error => reject(openRequest.error);\n });\n }\n}\n\nexport const indexedDBRouter: IORouter = (url: string|string[]) => {\n if (!env().getBool('IS_BROWSER')) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserIndexedDB.URL_SCHEME)) {\n return browserIndexedDB(url.slice(BrowserIndexedDB.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(indexedDBRouter);\nIORouterRegistry.registerLoadRouter(indexedDBRouter);\n\n/**\n * Creates a browser IndexedDB IOHandler for saving and loading models.\n *\n * ```js\n * const model = tf.sequential();\n * model.add(\n * tf.layers.dense({units: 1, inputShape: [100], activation: 'sigmoid'}));\n *\n * const saveResult = await model.save('indexeddb://MyModel'));\n * console.log(saveResult);\n * ```\n *\n * @param modelPath A unique identifier for the model to be saved. Must be a\n * non-empty string.\n * @returns An instance of `BrowserIndexedDB` (sublcass of `IOHandler`),\n * which can be used with, e.g., `tf.Model.save`.\n */\nexport function browserIndexedDB(modelPath: string): IOHandler {\n return new BrowserIndexedDB(modelPath);\n}\n\nfunction maybeStripScheme(key: string) {\n return key.startsWith(BrowserIndexedDB.URL_SCHEME) ?\n key.slice(BrowserIndexedDB.URL_SCHEME.length) :\n key;\n}\n\nexport class BrowserIndexedDBManager implements ModelStoreManager {\n private indexedDB: IDBFactory;\n\n constructor() {\n this.indexedDB = getIndexedDBFactory();\n }\n\n async listModels(): Promise<{[path: string]: ModelArtifactsInfo}> {\n return new Promise<{[path: string]: ModelArtifactsInfo}>(\n (resolve, reject) => {\n const openRequest =\n this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n const tx = db.transaction(INFO_STORE_NAME, 'readonly');\n const store = tx.objectStore(INFO_STORE_NAME);\n // tslint:disable:max-line-length\n // Need to cast `store` as `any` here because TypeScript's DOM\n // library does not have the `getAll()` method even though the\n // method is supported in the latest version of most mainstream\n // browsers:\n // https://developer.mozilla.org/en-US/docs/Web/API/IDBObjectStore/getAll\n // tslint:enable:max-line-length\n // tslint:disable-next-line:no-any\n const getAllInfoRequest = (store as any).getAll() as IDBRequest;\n getAllInfoRequest.onsuccess = () => {\n const out: {[path: string]: ModelArtifactsInfo} = {};\n for (const item of getAllInfoRequest.result) {\n out[item.modelPath] = item.modelArtifactsInfo;\n }\n resolve(out);\n };\n getAllInfoRequest.onerror = error => {\n db.close();\n return reject(getAllInfoRequest.error);\n };\n tx.oncomplete = () => db.close();\n };\n openRequest.onerror = error => reject(openRequest.error);\n });\n }\n\n async removeModel(path: string): Promise {\n path = maybeStripScheme(path);\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n const infoTx = db.transaction(INFO_STORE_NAME, 'readwrite');\n const infoStore = infoTx.objectStore(INFO_STORE_NAME);\n\n const getInfoRequest = infoStore.get(path);\n let modelTx: IDBTransaction;\n getInfoRequest.onsuccess = () => {\n if (getInfoRequest.result == null) {\n db.close();\n return reject(new Error(\n `Cannot find model with path '${path}' ` +\n `in IndexedDB.`));\n } else {\n // First, delete the entry in the info store.\n const deleteInfoRequest = infoStore.delete(path);\n const deleteModelData = () => {\n // Second, delete the entry in the model store.\n modelTx = db.transaction(MODEL_STORE_NAME, 'readwrite');\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const deleteModelRequest = modelStore.delete(path);\n deleteModelRequest.onsuccess = () =>\n resolve(getInfoRequest.result.modelArtifactsInfo);\n deleteModelRequest.onerror = error =>\n reject(getInfoRequest.error);\n };\n // Proceed with deleting model data regardless of whether deletion\n // of info data succeeds or not.\n deleteInfoRequest.onsuccess = deleteModelData;\n deleteInfoRequest.onerror = error => {\n deleteModelData();\n db.close();\n return reject(getInfoRequest.error);\n };\n }\n };\n getInfoRequest.onerror = error => {\n db.close();\n return reject(getInfoRequest.error);\n };\n\n infoTx.oncomplete = () => {\n if (modelTx == null) {\n db.close();\n } else {\n modelTx.oncomplete = () => db.close();\n }\n };\n };\n openRequest.onerror = error => reject(openRequest.error);\n });\n }\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport '../flags';\nimport {env} from '../environment';\n\nimport {assert} from '../util';\nimport {arrayBufferToBase64String, base64StringToArrayBuffer, getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, ModelArtifacts, ModelArtifactsInfo, ModelStoreManager, SaveResult} from './types';\n\nconst PATH_SEPARATOR = '/';\nconst PATH_PREFIX = 'tensorflowjs_models';\nconst INFO_SUFFIX = 'info';\nconst MODEL_TOPOLOGY_SUFFIX = 'model_topology';\nconst WEIGHT_SPECS_SUFFIX = 'weight_specs';\nconst WEIGHT_DATA_SUFFIX = 'weight_data';\nconst MODEL_METADATA_SUFFIX = 'model_metadata';\n\n/**\n * Purge all tensorflow.js-saved model artifacts from local storage.\n *\n * @returns Paths of the models purged.\n */\nexport function purgeLocalStorageArtifacts(): string[] {\n if (!env().getBool('IS_BROWSER') || typeof window === 'undefined' ||\n typeof window.localStorage === 'undefined') {\n throw new Error(\n 'purgeLocalStorageModels() cannot proceed because local storage is ' +\n 'unavailable in the current environment.');\n }\n const LS = window.localStorage;\n const purgedModelPaths: string[] = [];\n for (let i = 0; i < LS.length; ++i) {\n const key = LS.key(i);\n const prefix = PATH_PREFIX + PATH_SEPARATOR;\n if (key.startsWith(prefix) && key.length > prefix.length) {\n LS.removeItem(key);\n const modelName = getModelPathFromKey(key);\n if (purgedModelPaths.indexOf(modelName) === -1) {\n purgedModelPaths.push(modelName);\n }\n }\n }\n return purgedModelPaths;\n}\n\nfunction getModelKeys(path: string): {\n info: string,\n topology: string,\n weightSpecs: string,\n weightData: string,\n modelMetadata: string\n} {\n return {\n info: [PATH_PREFIX, path, INFO_SUFFIX].join(PATH_SEPARATOR),\n topology: [PATH_PREFIX, path, MODEL_TOPOLOGY_SUFFIX].join(PATH_SEPARATOR),\n weightSpecs: [PATH_PREFIX, path, WEIGHT_SPECS_SUFFIX].join(PATH_SEPARATOR),\n weightData: [PATH_PREFIX, path, WEIGHT_DATA_SUFFIX].join(PATH_SEPARATOR),\n modelMetadata:\n [PATH_PREFIX, path, MODEL_METADATA_SUFFIX].join(PATH_SEPARATOR)\n };\n}\n\n/**\n * Get model path from a local-storage key.\n *\n * E.g., 'tensorflowjs_models/my/model/1/info' --> 'my/model/1'\n *\n * @param key\n */\nfunction getModelPathFromKey(key: string) {\n const items = key.split(PATH_SEPARATOR);\n if (items.length < 3) {\n throw new Error(`Invalid key format: ${key}`);\n }\n return items.slice(1, items.length - 1).join(PATH_SEPARATOR);\n}\n\nfunction maybeStripScheme(key: string) {\n return key.startsWith(BrowserLocalStorage.URL_SCHEME) ?\n key.slice(BrowserLocalStorage.URL_SCHEME.length) :\n key;\n}\n\ndeclare type LocalStorageKeys = {\n info: string,\n topology: string,\n weightSpecs: string,\n weightData: string,\n modelMetadata: string\n};\n\n/**\n * IOHandler subclass: Browser Local Storage.\n *\n * See the doc string to `browserLocalStorage` for more details.\n */\nexport class BrowserLocalStorage implements IOHandler {\n protected readonly LS: Storage;\n protected readonly modelPath: string;\n protected readonly keys: LocalStorageKeys;\n\n static readonly URL_SCHEME = 'localstorage://';\n\n constructor(modelPath: string) {\n if (!env().getBool('IS_BROWSER') || typeof window === 'undefined' ||\n typeof window.localStorage === 'undefined') {\n // TODO(cais): Add more info about what IOHandler subtypes are\n // available.\n // Maybe point to a doc page on the web and/or automatically determine\n // the available IOHandlers and print them in the error message.\n throw new Error(\n 'The current environment does not support local storage.');\n }\n this.LS = window.localStorage;\n\n if (modelPath == null || !modelPath) {\n throw new Error(\n 'For local storage, modelPath must not be null, undefined or empty.');\n }\n this.modelPath = modelPath;\n this.keys = getModelKeys(this.modelPath);\n }\n\n /**\n * Save model artifacts to browser local storage.\n *\n * See the documentation to `browserLocalStorage` for details on the saved\n * artifacts.\n *\n * @param modelArtifacts The model artifacts to be stored.\n * @returns An instance of SaveResult.\n */\n async save(modelArtifacts: ModelArtifacts): Promise {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserLocalStorage.save() does not support saving model topology ' +\n 'in binary formats yet.');\n } else {\n const topology = JSON.stringify(modelArtifacts.modelTopology);\n const weightSpecs = JSON.stringify(modelArtifacts.weightSpecs);\n\n const modelArtifactsInfo: ModelArtifactsInfo =\n getModelArtifactsInfoForJSON(modelArtifacts);\n\n try {\n this.LS.setItem(this.keys.info, JSON.stringify(modelArtifactsInfo));\n this.LS.setItem(this.keys.topology, topology);\n this.LS.setItem(this.keys.weightSpecs, weightSpecs);\n this.LS.setItem(\n this.keys.weightData,\n arrayBufferToBase64String(modelArtifacts.weightData));\n const result: ModelArtifacts = {\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy\n };\n if (modelArtifacts.signature != null) {\n result.signature = modelArtifacts.signature;\n }\n if (modelArtifacts.userDefinedMetadata != null) {\n result.userDefinedMetadata = modelArtifacts.userDefinedMetadata;\n }\n if (modelArtifacts.modelInitializer != null) {\n result.modelInitializer = modelArtifacts.modelInitializer;\n }\n this.LS.setItem(this.keys.modelMetadata, JSON.stringify(result));\n\n return {modelArtifactsInfo};\n } catch (err) {\n // If saving failed, clean up all items saved so far.\n this.LS.removeItem(this.keys.info);\n this.LS.removeItem(this.keys.topology);\n this.LS.removeItem(this.keys.weightSpecs);\n this.LS.removeItem(this.keys.weightData);\n this.LS.removeItem(this.keys.modelMetadata);\n\n throw new Error(\n `Failed to save model '${this.modelPath}' to local storage: ` +\n `size quota being exceeded is a possible cause of this failure: ` +\n `modelTopologyBytes=${modelArtifactsInfo.modelTopologyBytes}, ` +\n `weightSpecsBytes=${modelArtifactsInfo.weightSpecsBytes}, ` +\n `weightDataBytes=${modelArtifactsInfo.weightDataBytes}.`);\n }\n }\n }\n\n /**\n * Load a model from local storage.\n *\n * See the documentation to `browserLocalStorage` for details on the saved\n * artifacts.\n *\n * @returns The loaded model (if loading succeeds).\n */\n async load(): Promise {\n const info =\n JSON.parse(this.LS.getItem(this.keys.info)) as ModelArtifactsInfo;\n if (info == null) {\n throw new Error(\n `In local storage, there is no model with name '${this.modelPath}'`);\n }\n\n if (info.modelTopologyType !== 'JSON') {\n throw new Error(\n 'BrowserLocalStorage does not support loading non-JSON model ' +\n 'topology yet.');\n }\n\n const out: ModelArtifacts = {};\n\n // Load topology.\n const topology = JSON.parse(this.LS.getItem(this.keys.topology));\n if (topology == null) {\n throw new Error(\n `In local storage, the topology of model '${this.modelPath}' ` +\n `is missing.`);\n }\n out.modelTopology = topology;\n\n // Load weight specs.\n const weightSpecs = JSON.parse(this.LS.getItem(this.keys.weightSpecs));\n if (weightSpecs == null) {\n throw new Error(\n `In local storage, the weight specs of model '${this.modelPath}' ` +\n `are missing.`);\n }\n out.weightSpecs = weightSpecs;\n\n // Load meta-data fields.\n const metadataString = this.LS.getItem(this.keys.modelMetadata);\n if (metadataString != null) {\n const metadata = JSON.parse(metadataString) as ModelArtifacts;\n out.format = metadata['format'];\n out.generatedBy = metadata['generatedBy'];\n out.convertedBy = metadata['convertedBy'];\n if (metadata['signature'] != null) {\n out.signature = metadata['signature'];\n }\n if (metadata['userDefinedMetadata'] != null) {\n out.userDefinedMetadata = metadata['userDefinedMetadata'];\n }\n if (metadata['modelInitializer'] != null) {\n out.modelInitializer = metadata['modelInitializer'];\n }\n }\n\n // Load weight data.\n const weightDataBase64 = this.LS.getItem(this.keys.weightData);\n if (weightDataBase64 == null) {\n throw new Error(\n `In local storage, the binary weight values of model ` +\n `'${this.modelPath}' are missing.`);\n }\n out.weightData = base64StringToArrayBuffer(weightDataBase64);\n\n return out;\n }\n}\n\nexport const localStorageRouter: IORouter = (url: string|string[]) => {\n if (!env().getBool('IS_BROWSER')) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserLocalStorage.URL_SCHEME)) {\n return browserLocalStorage(\n url.slice(BrowserLocalStorage.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(localStorageRouter);\nIORouterRegistry.registerLoadRouter(localStorageRouter);\n\n/**\n * Factory function for local storage IOHandler.\n *\n * This `IOHandler` supports both `save` and `load`.\n *\n * For each model's saved artifacts, four items are saved to local storage.\n * - `${PATH_SEPARATOR}/${modelPath}/info`: Contains meta-info about the\n * model, such as date saved, type of the topology, size in bytes, etc.\n * - `${PATH_SEPARATOR}/${modelPath}/topology`: Model topology. For Keras-\n * style models, this is a stringized JSON.\n * - `${PATH_SEPARATOR}/${modelPath}/weight_specs`: Weight specs of the\n * model, can be used to decode the saved binary weight values (see\n * item below).\n * - `${PATH_SEPARATOR}/${modelPath}/weight_data`: Concatenated binary\n * weight values, stored as a base64-encoded string.\n *\n * Saving may throw an `Error` if the total size of the artifacts exceed the\n * browser-specific quota.\n *\n * @param modelPath A unique identifier for the model to be saved. Must be a\n * non-empty string.\n * @returns An instance of `IOHandler`, which can be used with, e.g.,\n * `tf.Model.save`.\n */\nexport function browserLocalStorage(modelPath: string): IOHandler {\n return new BrowserLocalStorage(modelPath);\n}\n\nexport class BrowserLocalStorageManager implements ModelStoreManager {\n private readonly LS: Storage;\n\n constructor() {\n assert(\n env().getBool('IS_BROWSER'),\n () => 'Current environment is not a web browser');\n assert(\n typeof window === 'undefined' ||\n typeof window.localStorage !== 'undefined',\n () => 'Current browser does not appear to support localStorage');\n this.LS = window.localStorage;\n }\n\n async listModels(): Promise<{[path: string]: ModelArtifactsInfo}> {\n const out: {[path: string]: ModelArtifactsInfo} = {};\n const prefix = PATH_PREFIX + PATH_SEPARATOR;\n const suffix = PATH_SEPARATOR + INFO_SUFFIX;\n for (let i = 0; i < this.LS.length; ++i) {\n const key = this.LS.key(i);\n if (key.startsWith(prefix) && key.endsWith(suffix)) {\n const modelPath = getModelPathFromKey(key);\n out[modelPath] = JSON.parse(this.LS.getItem(key)) as ModelArtifactsInfo;\n }\n }\n return out;\n }\n\n async removeModel(path: string): Promise {\n path = maybeStripScheme(path);\n const keys = getModelKeys(path);\n if (this.LS.getItem(keys.info) == null) {\n throw new Error(`Cannot find model at path '${path}'`);\n }\n const info = JSON.parse(this.LS.getItem(keys.info)) as ModelArtifactsInfo;\n\n this.LS.removeItem(keys.info);\n this.LS.removeItem(keys.topology);\n this.LS.removeItem(keys.weightSpecs);\n this.LS.removeItem(keys.weightData);\n return info;\n }\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * Classes and functions for model management across multiple storage mediums.\n *\n * Supported client actions:\n * - Listing models on all registered storage mediums.\n * - Remove model by URL from any registered storage mediums, by using URL\n * string.\n * - Moving or copying model from one path to another in the same medium or from\n * one medium to another, by using URL strings.\n */\n\nimport {assert} from '../util';\n\nimport {IORouterRegistry} from './router_registry';\nimport {ModelArtifactsInfo, ModelStoreManager} from './types';\n\nconst URL_SCHEME_SUFFIX = '://';\n\nexport class ModelStoreManagerRegistry {\n // Singleton instance.\n private static instance: ModelStoreManagerRegistry;\n\n private managers: {[scheme: string]: ModelStoreManager};\n\n private constructor() {\n this.managers = {};\n }\n\n private static getInstance(): ModelStoreManagerRegistry {\n if (ModelStoreManagerRegistry.instance == null) {\n ModelStoreManagerRegistry.instance = new ModelStoreManagerRegistry();\n }\n return ModelStoreManagerRegistry.instance;\n }\n\n /**\n * Register a save-handler router.\n *\n * @param saveRouter A function that maps a URL-like string onto an instance\n * of `IOHandler` with the `save` method defined or `null`.\n */\n static registerManager(scheme: string, manager: ModelStoreManager) {\n assert(scheme != null, () => 'scheme must not be undefined or null.');\n if (scheme.endsWith(URL_SCHEME_SUFFIX)) {\n scheme = scheme.slice(0, scheme.indexOf(URL_SCHEME_SUFFIX));\n }\n assert(scheme.length > 0, () => 'scheme must not be an empty string.');\n const registry = ModelStoreManagerRegistry.getInstance();\n assert(\n registry.managers[scheme] == null,\n () => `A model store manager is already registered for scheme '${\n scheme}'.`);\n registry.managers[scheme] = manager;\n }\n\n static getManager(scheme: string): ModelStoreManager {\n const manager = this.getInstance().managers[scheme];\n if (manager == null) {\n throw new Error(`Cannot find model manager for scheme '${scheme}'`);\n }\n return manager;\n }\n\n static getSchemes(): string[] {\n return Object.keys(this.getInstance().managers);\n }\n}\n\n/**\n * Helper method for parsing a URL string into a scheme and a path.\n *\n * @param url E.g., 'localstorage://my-model'\n * @returns A dictionary with two fields: scheme and path.\n * Scheme: e.g., 'localstorage' in the example above.\n * Path: e.g., 'my-model' in the example above.\n */\nfunction parseURL(url: string): {scheme: string, path: string} {\n if (url.indexOf(URL_SCHEME_SUFFIX) === -1) {\n throw new Error(\n `The url string provided does not contain a scheme. ` +\n `Supported schemes are: ` +\n `${ModelStoreManagerRegistry.getSchemes().join(',')}`);\n }\n return {\n scheme: url.split(URL_SCHEME_SUFFIX)[0],\n path: url.split(URL_SCHEME_SUFFIX)[1],\n };\n}\n\nasync function cloneModelInternal(\n sourceURL: string, destURL: string,\n deleteSource = false): Promise {\n assert(\n sourceURL !== destURL,\n () => `Old path and new path are the same: '${sourceURL}'`);\n\n const loadHandlers = IORouterRegistry.getLoadHandlers(sourceURL);\n assert(\n loadHandlers.length > 0,\n () => `Copying failed because no load handler is found for source URL ${\n sourceURL}.`);\n assert(\n loadHandlers.length < 2,\n () => `Copying failed because more than one (${loadHandlers.length}) ` +\n `load handlers for source URL ${sourceURL}.`);\n const loadHandler = loadHandlers[0];\n\n const saveHandlers = IORouterRegistry.getSaveHandlers(destURL);\n assert(\n saveHandlers.length > 0,\n () => `Copying failed because no save handler is found for destination ` +\n `URL ${destURL}.`);\n assert(\n saveHandlers.length < 2,\n () => `Copying failed because more than one (${loadHandlers.length}) ` +\n `save handlers for destination URL ${destURL}.`);\n const saveHandler = saveHandlers[0];\n\n const sourceScheme = parseURL(sourceURL).scheme;\n const sourcePath = parseURL(sourceURL).path;\n const sameMedium = sourceScheme === parseURL(sourceURL).scheme;\n\n const modelArtifacts = await loadHandler.load();\n\n // If moving within the same storage medium, remove the old model as soon as\n // the loading is done. Without doing this, it is possible that the combined\n // size of the two models will cause the cloning to fail.\n if (deleteSource && sameMedium) {\n await ModelStoreManagerRegistry.getManager(sourceScheme)\n .removeModel(sourcePath);\n }\n\n const saveResult = await saveHandler.save(modelArtifacts);\n\n // If moving between mediums, the deletion is done after the save succeeds.\n // This guards against the case in which saving to the destination medium\n // fails.\n if (deleteSource && !sameMedium) {\n await ModelStoreManagerRegistry.getManager(sourceScheme)\n .removeModel(sourcePath);\n }\n\n return saveResult.modelArtifactsInfo;\n}\n\n/**\n * List all models stored in registered storage mediums.\n *\n * For a web browser environment, the registered mediums are Local Storage and\n * IndexedDB.\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Delete the model.\n * await tf.io.removeModel('localstorage://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n * ```\n *\n * @returns A `Promise` of a dictionary mapping URLs of existing models to\n * their model artifacts info. URLs include medium-specific schemes, e.g.,\n * 'indexeddb://my/model/1'. Model artifacts info include type of the\n * model's topology, byte sizes of the topology, weights, etc.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function listModels(): Promise<{[url: string]: ModelArtifactsInfo}> {\n const schemes = ModelStoreManagerRegistry.getSchemes();\n const out: {[url: string]: ModelArtifactsInfo} = {};\n for (const scheme of schemes) {\n const schemeOut =\n await ModelStoreManagerRegistry.getManager(scheme).listModels();\n for (const path in schemeOut) {\n const url = scheme + URL_SCHEME_SUFFIX + path;\n out[url] = schemeOut[path];\n }\n }\n return out;\n}\n\n/**\n * Remove a model specified by URL from a reigstered storage medium.\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Delete the model.\n * await tf.io.removeModel('localstorage://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n * ```\n *\n * @param url A URL to a stored model, with a scheme prefix, e.g.,\n * 'localstorage://my-model-1', 'indexeddb://my/model/2'.\n * @returns ModelArtifactsInfo of the deleted model (if and only if deletion\n * is successful).\n * @throws Error if deletion fails, e.g., if no model exists at `path`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function removeModel(url: string): Promise {\n const schemeAndPath = parseURL(url);\n const manager = ModelStoreManagerRegistry.getManager(schemeAndPath.scheme);\n return manager.removeModel(schemeAndPath.path);\n}\n\n/**\n * Copy a model from one URL to another.\n *\n * This function supports:\n *\n * 1. Copying within a storage medium, e.g.,\n * `tf.io.copyModel('localstorage://model-1', 'localstorage://model-2')`\n * 2. Copying between two storage mediums, e.g.,\n * `tf.io.copyModel('localstorage://model-1', 'indexeddb://model-1')`\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Copy the model, from Local Storage to IndexedDB.\n * await tf.io.copyModel(\n * 'localstorage://demo/management/model1',\n * 'indexeddb://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Remove both models.\n * await tf.io.removeModel('localstorage://demo/management/model1');\n * await tf.io.removeModel('indexeddb://demo/management/model1');\n * ```\n *\n * @param sourceURL Source URL of copying.\n * @param destURL Destination URL of copying.\n * @returns ModelArtifactsInfo of the copied model (if and only if copying\n * is successful).\n * @throws Error if copying fails, e.g., if no model exists at `sourceURL`, or\n * if `oldPath` and `newPath` are identical.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function copyModel(\n sourceURL: string, destURL: string): Promise {\n const deleteSource = false;\n return cloneModelInternal(sourceURL, destURL, deleteSource);\n}\n\n/**\n * Move a model from one URL to another.\n *\n * This function supports:\n *\n * 1. Moving within a storage medium, e.g.,\n * `tf.io.moveModel('localstorage://model-1', 'localstorage://model-2')`\n * 2. Moving between two storage mediums, e.g.,\n * `tf.io.moveModel('localstorage://model-1', 'indexeddb://model-1')`\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Move the model, from Local Storage to IndexedDB.\n * await tf.io.moveModel(\n * 'localstorage://demo/management/model1',\n * 'indexeddb://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Remove the moved model.\n * await tf.io.removeModel('indexeddb://demo/management/model1');\n * ```\n *\n * @param sourceURL Source URL of moving.\n * @param destURL Destination URL of moving.\n * @returns ModelArtifactsInfo of the copied model (if and only if copying\n * is successful).\n * @throws Error if moving fails, e.g., if no model exists at `sourceURL`, or\n * if `oldPath` and `newPath` are identical.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function moveModel(\n sourceURL: string, destURL: string): Promise {\n const deleteSource = true;\n return cloneModelInternal(sourceURL, destURL, deleteSource);\n}\n\nexport {moveModel, copyModel, removeModel, listModels};\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport '../flags';\n\nimport {env} from '../environment';\nimport {BrowserIndexedDB, BrowserIndexedDBManager} from '../io/indexed_db';\nimport {BrowserLocalStorage, BrowserLocalStorageManager} from '../io/local_storage';\nimport {ModelStoreManagerRegistry} from '../io/model_management';\n\nimport {Platform} from './platform';\n\nexport class PlatformBrowser implements Platform {\n // According to the spec, the built-in encoder can do only UTF-8 encoding.\n // https://developer.mozilla.org/en-US/docs/Web/API/TextEncoder/TextEncoder\n private textEncoder: TextEncoder;\n\n fetch(path: string, init?: RequestInit): Promise {\n return fetch(path, init);\n }\n\n now(): number {\n return performance.now();\n }\n\n encode(text: string, encoding: string): Uint8Array {\n if (encoding !== 'utf-8' && encoding !== 'utf8') {\n throw new Error(\n `Browser's encoder only supports utf-8, but got ${encoding}`);\n }\n if (this.textEncoder == null) {\n this.textEncoder = new TextEncoder();\n }\n return this.textEncoder.encode(text);\n }\n decode(bytes: Uint8Array, encoding: string): string {\n return new TextDecoder(encoding).decode(bytes);\n }\n}\n\nif (env().get('IS_BROWSER')) {\n env().setPlatform('browser', new PlatformBrowser());\n\n // Register LocalStorage IOHandler\n try {\n ModelStoreManagerRegistry.registerManager(\n BrowserLocalStorage.URL_SCHEME, new BrowserLocalStorageManager());\n } catch (err) {\n }\n\n // Register IndexedDB IOHandler\n try {\n ModelStoreManagerRegistry.registerManager(\n BrowserIndexedDB.URL_SCHEME, new BrowserIndexedDBManager());\n } catch (err) {\n }\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {env} from '../environment';\n\nimport {Platform} from './platform';\n\n// We are wrapping this within an object so it can be stubbed by Jasmine.\nexport const getNodeFetch = {\n // tslint:disable-next-line:no-require-imports\n importFetch: () => require('node-fetch')\n};\n\ntype FetchFn = (url: string, init?: RequestInit) => Promise;\nlet systemFetch: FetchFn;\n// These getters and setters are for testing so we don't export a mutable\n// variable.\nexport function resetSystemFetch() {\n systemFetch = null;\n}\nexport function setSystemFetch(fetchFn: FetchFn) {\n systemFetch = fetchFn;\n}\nexport function getSystemFetch(): FetchFn {\n return systemFetch;\n}\n\nexport class PlatformNode implements Platform {\n private textEncoder: TextEncoder;\n // tslint:disable-next-line:no-any\n util: any;\n\n constructor() {\n // tslint:disable-next-line:no-require-imports\n this.util = require('util');\n // According to the spec, the built-in encoder can do only UTF-8 encoding.\n // https://developer.mozilla.org/en-US/docs/Web/API/TextEncoder/TextEncoder\n this.textEncoder = new this.util.TextEncoder();\n }\n\n fetch(path: string, requestInits?: RequestInit): Promise {\n if (env().global.fetch != null) {\n return env().global.fetch(path, requestInits);\n }\n\n if (systemFetch == null) {\n systemFetch = getNodeFetch.importFetch();\n }\n return systemFetch(path, requestInits);\n }\n\n now(): number {\n const time = process.hrtime();\n return time[0] * 1000 + time[1] / 1000000;\n }\n\n encode(text: string, encoding: string): Uint8Array {\n if (encoding !== 'utf-8' && encoding !== 'utf8') {\n throw new Error(\n `Node built-in encoder only supports utf-8, but got ${encoding}`);\n }\n return this.textEncoder.encode(text);\n }\n decode(bytes: Uint8Array, encoding: string): string {\n if (bytes.length === 0) {\n return '';\n }\n return new this.util.TextDecoder(encoding).decode(bytes);\n }\n}\n\nif (env().get('IS_NODE')) {\n env().setPlatform('node', new PlatformNode());\n}\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {TensorBuffer} from '../tensor';\nimport {DataType, DataTypeMap, Rank, ShapeMap} from '../types';\nimport * as util from '../util';\n\n/**\n * Creates an empty `tf.TensorBuffer` with the specified `shape` and `dtype`.\n *\n * The values are stored in CPU as `TypedArray`. Fill the buffer using\n * `buffer.set()`, or by modifying directly `buffer.values`.\n *\n * When done, call `buffer.toTensor()` to get an immutable `tf.Tensor` with\n * those values.\n *\n * ```js\n * // Create a buffer and set values at particular indices.\n * const buffer = tf.buffer([2, 2]);\n * buffer.set(3, 0, 0);\n * buffer.set(5, 1, 0);\n *\n * // Convert the buffer back to a tensor.\n * buffer.toTensor().print();\n * ```\n *\n * @param shape An array of integers defining the output tensor shape.\n * @param dtype The dtype of the buffer. Defaults to 'float32'.\n * @param values The values of the buffer as `TypedArray`. Defaults to\n * zeros.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nexport function buffer(\n shape: ShapeMap[R], dtype: D = 'float32' as D,\n values?: DataTypeMap[D]): TensorBuffer {\n dtype = dtype || 'float32' as D;\n util.assertNonNegativeIntegerDimensions(shape);\n return new TensorBuffer(shape, dtype, values);\n}\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {Cast, CastAttrs, CastInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {DataType, TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {op} from './operation';\n\n/**\n * Casts a `tf.Tensor` to a new dtype.\n *\n * ```js\n * const x = tf.tensor1d([1.5, 2.5, 3]);\n * tf.cast(x, 'int32').print();\n * ```\n * @param x The input tensor to be casted.\n * @param dtype The dtype to cast the input tensor to.\n *\n * @doc {heading: 'Tensors', subheading: 'Transformations'}\n */\nfunction cast_(x: T|TensorLike, dtype: DataType): T {\n const $x = convertToTensor(x, 'x', 'cast');\n\n // Sanity checks.\n if (!util.isValidDtype(dtype)) {\n throw new Error(`Failed to cast to unknown dtype ${dtype}`);\n }\n if (dtype === 'string' && $x.dtype !== 'string' ||\n dtype !== 'string' && $x.dtype === 'string') {\n throw new Error('Only strings can be casted to strings');\n }\n\n const inputs: CastInputs = {x: $x};\n const attrs: CastAttrs = {dtype};\n\n return ENGINE.runKernel(\n Cast, inputs as {} as NamedTensorMap, attrs as {} as NamedAttrMap);\n}\n\nexport const cast = op({cast_});\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {Identity, IdentityInputs} from '../kernel_names';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\n\nimport {op} from './operation';\n\n/**\n * Creates a new tensor with the same values and shape as the specified\n * tensor.\n *\n * ```js\n * const x = tf.tensor([1, 2]);\n *\n * x.clone().print();\n * ```\n *\n * @param x The tensor to clone.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nfunction clone_(x: T|TensorLike): T {\n const $x = convertToTensor(x, 'x', 'clone', 'string_or_numeric');\n const inputs: IdentityInputs = {x: $x};\n\n // Note this op is called tf.identity in python. Hence the kernel name used\n // here.\n return ENGINE.runKernel(Identity, inputs as {} as NamedTensorMap);\n}\n\nexport const clone = op({clone_});\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from '../tensor';\n\n/**\n * Prints information about the `tf.Tensor` including its data.\n *\n * ```js\n * const verbose = true;\n * tf.tensor2d([1, 2, 3, 4], [2, 2]).print(verbose);\n * ```\n * @param x The tensor to be printed.\n * @param verbose Whether to print verbose information about the ` Tensor`,\n * including dtype and size.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nexport function print(x: T, verbose = false): void {\n console.log(x.toString(verbose));\n}\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// Required side effectful code for tfjs-core\n\n// Set up Engine and ENV\nimport {getOrMakeEngine} from './engine';\ngetOrMakeEngine();\n\n// Register backend-agnostic flags.\nimport './flags';\n// Register platforms\nimport './platforms/platform_browser';\nimport './platforms/platform_node';\n\n// Set up OpHandler\nimport {buffer} from './ops/buffer';\nimport {cast} from './ops/cast';\nimport {clone} from './ops/clone';\nimport {print} from './ops/print';\nimport {OpHandler, setOpHandler} from './tensor';\nconst opHandler: OpHandler = {\n buffer,\n cast,\n clone,\n print\n};\nsetOpHandler(opHandler);\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// Importing local_storage and indexed_db is necessary for the routers to be\n// registered.\nimport './indexed_db';\nimport './local_storage';\n\nimport {browserFiles} from './browser_files';\nimport {browserHTTPRequest, http, isHTTPScheme} from './http';\nimport {concatenateArrayBuffers, decodeWeights, encodeWeights, getModelArtifactsInfoForJSON} from './io_utils';\nimport {fromMemory, withSaveHandler} from './passthrough';\nimport {getLoadHandlers, getSaveHandlers, registerLoadRouter, registerSaveRouter} from './router_registry';\nimport {IOHandler, LoadHandler, LoadOptions, ModelArtifacts, ModelArtifactsInfo, ModelJSON, ModelStoreManager, OnProgressCallback, RequestDetails, SaveConfig, SaveHandler, SaveResult, WeightGroup, WeightsManifestConfig, WeightsManifestEntry} from './types';\nimport {loadWeights, weightsLoaderFactory} from './weights_loader';\n\nexport {copyModel, listModels, moveModel, removeModel} from './model_management';\nexport {\n browserFiles,\n browserHTTPRequest,\n concatenateArrayBuffers,\n decodeWeights,\n encodeWeights,\n fromMemory,\n getLoadHandlers,\n getModelArtifactsInfoForJSON,\n getSaveHandlers,\n http,\n IOHandler,\n isHTTPScheme,\n LoadHandler,\n LoadOptions,\n loadWeights,\n ModelArtifacts,\n ModelArtifactsInfo,\n ModelJSON,\n ModelStoreManager,\n OnProgressCallback,\n registerLoadRouter,\n registerSaveRouter,\n RequestDetails,\n SaveConfig,\n SaveHandler,\n SaveResult,\n WeightGroup,\n weightsLoaderFactory,\n WeightsManifestConfig,\n WeightsManifestEntry,\n withSaveHandler\n};\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * IOHandlers related to files, such as browser-triggered file downloads,\n * user-selected files in browser.\n */\n\nimport '../flags';\nimport {env} from '../environment';\n\nimport {basename, concatenateArrayBuffers, getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, ModelArtifacts, ModelJSON, SaveResult, WeightsManifestConfig, WeightsManifestEntry} from './types';\n\nconst DEFAULT_FILE_NAME_PREFIX = 'model';\nconst DEFAULT_JSON_EXTENSION_NAME = '.json';\nconst DEFAULT_WEIGHT_DATA_EXTENSION_NAME = '.weights.bin';\n\nfunction defer(f: () => T): Promise {\n return new Promise(resolve => setTimeout(resolve)).then(f);\n}\n\nexport class BrowserDownloads implements IOHandler {\n private readonly modelTopologyFileName: string;\n private readonly weightDataFileName: string;\n private readonly jsonAnchor: HTMLAnchorElement;\n private readonly weightDataAnchor: HTMLAnchorElement;\n\n static readonly URL_SCHEME = 'downloads://';\n\n constructor(fileNamePrefix?: string) {\n if (!env().getBool('IS_BROWSER')) {\n // TODO(cais): Provide info on what IOHandlers are available under the\n // current environment.\n throw new Error(\n 'browserDownloads() cannot proceed because the current environment ' +\n 'is not a browser.');\n }\n\n if (fileNamePrefix.startsWith(BrowserDownloads.URL_SCHEME)) {\n fileNamePrefix = fileNamePrefix.slice(BrowserDownloads.URL_SCHEME.length);\n }\n if (fileNamePrefix == null || fileNamePrefix.length === 0) {\n fileNamePrefix = DEFAULT_FILE_NAME_PREFIX;\n }\n\n this.modelTopologyFileName = fileNamePrefix + DEFAULT_JSON_EXTENSION_NAME;\n this.weightDataFileName =\n fileNamePrefix + DEFAULT_WEIGHT_DATA_EXTENSION_NAME;\n }\n\n async save(modelArtifacts: ModelArtifacts): Promise {\n if (typeof (document) === 'undefined') {\n throw new Error(\n 'Browser downloads are not supported in ' +\n 'this environment since `document` is not present');\n }\n const weightsURL = window.URL.createObjectURL(new Blob(\n [modelArtifacts.weightData], {type: 'application/octet-stream'}));\n\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserDownloads.save() does not support saving model topology ' +\n 'in binary formats yet.');\n } else {\n const weightsManifest: WeightsManifestConfig = [{\n paths: ['./' + this.weightDataFileName],\n weights: modelArtifacts.weightSpecs\n }];\n const modelTopologyAndWeightManifest: ModelJSON = {\n modelTopology: modelArtifacts.modelTopology,\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy,\n weightsManifest\n };\n if (modelArtifacts.signature != null) {\n modelTopologyAndWeightManifest.signature = modelArtifacts.signature;\n }\n if (modelArtifacts.userDefinedMetadata != null) {\n modelTopologyAndWeightManifest.userDefinedMetadata =\n modelArtifacts.userDefinedMetadata;\n }\n if (modelArtifacts.modelInitializer != null) {\n modelTopologyAndWeightManifest.modelInitializer =\n modelArtifacts.modelInitializer;\n }\n const modelTopologyAndWeightManifestURL =\n window.URL.createObjectURL(new Blob(\n [JSON.stringify(modelTopologyAndWeightManifest)],\n {type: 'application/json'}));\n\n // If anchor elements are not provided, create them without attaching them\n // to parents, so that the downloaded file names can be controlled.\n const jsonAnchor = this.jsonAnchor == null ? document.createElement('a') :\n this.jsonAnchor;\n jsonAnchor.download = this.modelTopologyFileName;\n jsonAnchor.href = modelTopologyAndWeightManifestURL;\n // Trigger downloads by evoking a click event on the download anchors.\n // When multiple downloads are started synchronously, Firefox will only\n // save the last one.\n await defer(() => jsonAnchor.dispatchEvent(new MouseEvent('click')));\n\n if (modelArtifacts.weightData != null) {\n const weightDataAnchor = this.weightDataAnchor == null ?\n document.createElement('a') :\n this.weightDataAnchor;\n weightDataAnchor.download = this.weightDataFileName;\n weightDataAnchor.href = weightsURL;\n await defer(\n () => weightDataAnchor.dispatchEvent(new MouseEvent('click')));\n }\n\n return {modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts)};\n }\n }\n}\n\nclass BrowserFiles implements IOHandler {\n private readonly files: File[];\n\n constructor(files: File[]) {\n if (files == null || files.length < 1) {\n throw new Error(\n `When calling browserFiles, at least 1 file is required, ` +\n `but received ${files}`);\n }\n this.files = files;\n }\n\n async load(): Promise {\n const jsonFile = this.files[0];\n const weightFiles = this.files.slice(1);\n\n return new Promise((resolve, reject) => {\n const jsonReader = new FileReader();\n jsonReader.onload = (event: Event) => {\n // tslint:disable-next-line:no-any\n const modelJSON = JSON.parse((event.target as any).result) as ModelJSON;\n const modelTopology = modelJSON.modelTopology;\n if (modelTopology == null) {\n reject(new Error(\n `modelTopology field is missing from file ${jsonFile.name}`));\n return;\n }\n\n if (weightFiles.length === 0) {\n resolve({modelTopology});\n }\n\n const weightsManifest = modelJSON.weightsManifest;\n if (weightsManifest == null) {\n reject(new Error(\n `weightManifest field is missing from file ${jsonFile.name}`));\n return;\n }\n\n let pathToFile: {[path: string]: File};\n try {\n pathToFile =\n this.checkManifestAndWeightFiles(weightsManifest, weightFiles);\n } catch (err) {\n reject(err);\n return;\n }\n\n const weightSpecs: WeightsManifestEntry[] = [];\n const paths: string[] = [];\n const perFileBuffers: ArrayBuffer[] = [];\n weightsManifest.forEach(weightsGroup => {\n weightsGroup.paths.forEach(path => {\n paths.push(path);\n perFileBuffers.push(null);\n });\n weightSpecs.push(...weightsGroup.weights);\n });\n\n weightsManifest.forEach(weightsGroup => {\n weightsGroup.paths.forEach(path => {\n const weightFileReader = new FileReader();\n weightFileReader.onload = (event: Event) => {\n // tslint:disable-next-line:no-any\n const weightData = (event.target as any).result as ArrayBuffer;\n const index = paths.indexOf(path);\n perFileBuffers[index] = weightData;\n if (perFileBuffers.indexOf(null) === -1) {\n const result: ModelArtifacts = {\n modelTopology,\n weightSpecs,\n weightData: concatenateArrayBuffers(perFileBuffers),\n format: modelJSON.format,\n generatedBy: modelJSON.generatedBy,\n convertedBy: modelJSON.convertedBy\n };\n if (modelJSON.signature != null) {\n result.signature = modelJSON.signature;\n }\n if (modelJSON.userDefinedMetadata != null) {\n result.userDefinedMetadata = modelJSON.userDefinedMetadata;\n }\n if (modelJSON.modelInitializer != null) {\n result.modelInitializer = modelJSON.modelInitializer;\n }\n resolve(result);\n }\n };\n weightFileReader.onerror = error =>\n reject(`Failed to weights data from file of path '${path}'.`);\n weightFileReader.readAsArrayBuffer(pathToFile[path]);\n });\n });\n };\n jsonReader.onerror = error => reject(\n `Failed to read model topology and weights manifest JSON ` +\n `from file '${jsonFile.name}'. BrowserFiles supports loading ` +\n `Keras-style tf.Model artifacts only.`);\n jsonReader.readAsText(jsonFile);\n });\n }\n\n /**\n * Check the compatibility between weights manifest and weight files.\n */\n private checkManifestAndWeightFiles(\n manifest: WeightsManifestConfig, files: File[]): {[path: string]: File} {\n const basenames: string[] = [];\n const fileNames = files.map(file => basename(file.name));\n const pathToFile: {[path: string]: File} = {};\n for (const group of manifest) {\n group.paths.forEach(path => {\n const pathBasename = basename(path);\n if (basenames.indexOf(pathBasename) !== -1) {\n throw new Error(\n `Duplicate file basename found in weights manifest: ` +\n `'${pathBasename}'`);\n }\n basenames.push(pathBasename);\n if (fileNames.indexOf(pathBasename) === -1) {\n throw new Error(\n `Weight file with basename '${pathBasename}' is not provided.`);\n } else {\n pathToFile[path] = files[fileNames.indexOf(pathBasename)];\n }\n });\n }\n\n if (basenames.length !== files.length) {\n throw new Error(\n `Mismatch in the number of files in weights manifest ` +\n `(${basenames.length}) and the number of weight files provided ` +\n `(${files.length}).`);\n }\n return pathToFile;\n }\n}\n\nexport const browserDownloadsRouter: IORouter = (url: string|string[]) => {\n if (!env().getBool('IS_BROWSER')) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserDownloads.URL_SCHEME)) {\n return browserDownloads(url.slice(BrowserDownloads.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(browserDownloadsRouter);\n\n/**\n * Creates an IOHandler that triggers file downloads from the browser.\n *\n * The returned `IOHandler` instance can be used as model exporting methods such\n * as `tf.Model.save` and supports only saving.\n *\n * ```js\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * const saveResult = await model.save('downloads://mymodel');\n * // This will trigger downloading of two files:\n * // 'mymodel.json' and 'mymodel.weights.bin'.\n * console.log(saveResult);\n * ```\n *\n * @param fileNamePrefix Prefix name of the files to be downloaded. For use with\n * `tf.Model`, `fileNamePrefix` should follow either of the following two\n * formats:\n * 1. `null` or `undefined`, in which case the default file\n * names will be used:\n * - 'model.json' for the JSON file containing the model topology and\n * weights manifest.\n * - 'model.weights.bin' for the binary file containing the binary weight\n * values.\n * 2. A single string or an Array of a single string, as the file name prefix.\n * For example, if `'foo'` is provided, the downloaded JSON\n * file and binary weights file will be named 'foo.json' and\n * 'foo.weights.bin', respectively.\n * @param config Additional configuration for triggering downloads.\n * @returns An instance of `BrowserDownloads` `IOHandler`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Loading',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nexport function browserDownloads(fileNamePrefix = 'model'): IOHandler {\n return new BrowserDownloads(fileNamePrefix);\n}\n\n/**\n * Creates an IOHandler that loads model artifacts from user-selected files.\n *\n * This method can be used for loading from files such as user-selected files\n * in the browser.\n * When used in conjunction with `tf.loadLayersModel`, an instance of\n * `tf.LayersModel` (Keras-style) can be constructed from the loaded artifacts.\n *\n * ```js\n * // Note: This code snippet won't run properly without the actual file input\n * // elements in the HTML DOM.\n *\n * // Suppose there are two HTML file input (``)\n * // elements.\n * const uploadJSONInput = document.getElementById('upload-json');\n * const uploadWeightsInput = document.getElementById('upload-weights');\n * const model = await tf.loadLayersModel(tf.io.browserFiles(\n * [uploadJSONInput.files[0], uploadWeightsInput.files[0]]));\n * ```\n *\n * @param files `File`s to load from. Currently, this function supports only\n * loading from files that contain Keras-style models (i.e., `tf.Model`s), for\n * which an `Array` of `File`s is expected (in that order):\n * - A JSON file containing the model topology and weight manifest.\n * - Optionally, One or more binary files containing the binary weights.\n * These files must have names that match the paths in the `weightsManifest`\n * contained by the aforementioned JSON file, or errors will be thrown\n * during loading. These weights files have the same format as the ones\n * generated by `tensorflowjs_converter` that comes with the `tensorflowjs`\n * Python PIP package. If no weights files are provided, only the model\n * topology will be loaded from the JSON file above.\n * @returns An instance of `Files` `IOHandler`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Loading',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nexport function browserFiles(files: File[]): IOHandler {\n return new BrowserFiles(files);\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {assert} from '../util';\n\nimport {OnProgressCallback} from './types';\n\n/**\n * Monitor Promise.all progress, fire onProgress callback function.\n *\n * @param promises Promise list going to be monitored\n * @param onProgress Callback function. Fired when a promise resolved.\n * @param startFraction Optional fraction start. Default to 0.\n * @param endFraction Optional fraction end. Default to 1.\n */\nexport function monitorPromisesProgress(\n promises: Array>, onProgress: OnProgressCallback,\n startFraction?: number, endFraction?: number) {\n checkPromises(promises);\n startFraction = startFraction == null ? 0 : startFraction;\n endFraction = endFraction == null ? 1 : endFraction;\n checkFraction(startFraction, endFraction);\n let resolvedPromise = 0;\n\n const registerMonitor = (promise: Promise<{}>) => {\n promise.then(value => {\n const fraction = startFraction +\n ++resolvedPromise / promises.length * (endFraction - startFraction);\n // pass fraction as parameter to callback function.\n onProgress(fraction);\n return value;\n });\n return promise;\n };\n\n function checkPromises(promises: Array>): void {\n assert(\n promises != null && Array.isArray(promises) && promises.length > 0,\n () => 'promises must be a none empty array');\n }\n\n function checkFraction(startFraction: number, endFraction: number): void {\n assert(\n startFraction >= 0 && startFraction <= 1,\n () => `Progress fraction must be in range [0, 1], but ` +\n `got startFraction ${startFraction}`);\n assert(\n endFraction >= 0 && endFraction <= 1,\n () => `Progress fraction must be in range [0, 1], but ` +\n `got endFraction ${endFraction}`);\n assert(\n endFraction >= startFraction,\n () => `startFraction must be no more than endFraction, but ` +\n `got startFraction ${startFraction} and endFraction ` +\n `${endFraction}`);\n }\n\n return Promise.all(promises.map(registerMonitor));\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {env} from '../environment';\n\nimport {NamedTensorMap} from '../tensor_types';\nimport * as util from '../util';\nimport {decodeWeights} from './io_utils';\nimport {monitorPromisesProgress} from './progress';\nimport {DTYPE_VALUE_SIZE_MAP, LoadOptions, WeightsManifestConfig, WeightsManifestEntry} from './types';\n\n/**\n * Reads binary weights data from a number of URLs.\n *\n * @param fetchURLs URLs to send the HTTP requests at, using `fetch` calls.\n * @param requestOptions RequestInit (options) for the HTTP requests.\n * @param fetchFunc Optional overriding value for the `window.fetch` function.\n * @param onProgress Optional, progress callback function, fired periodically\n * before the load is completed.\n * @returns A `Promise` of an Array of `ArrayBuffer`. The Array has the same\n * length as `fetchURLs`.\n */\nexport async function loadWeightsAsArrayBuffer(\n fetchURLs: string[], loadOptions?: LoadOptions): Promise {\n if (loadOptions == null) {\n loadOptions = {};\n }\n\n const fetchFunc = loadOptions.fetchFunc == null ? env().platform.fetch :\n loadOptions.fetchFunc;\n\n // Create the requests for all of the weights in parallel.\n const requests = fetchURLs.map(\n fetchURL =>\n fetchFunc(fetchURL, loadOptions.requestInit, {isBinary: true}));\n\n const fetchStartFraction = 0;\n const fetchEndFraction = 0.5;\n\n const responses = loadOptions.onProgress == null ?\n await Promise.all(requests) :\n await monitorPromisesProgress(\n requests, loadOptions.onProgress, fetchStartFraction,\n fetchEndFraction);\n\n const bufferPromises = responses.map(response => response.arrayBuffer());\n\n const bufferStartFraction = 0.5;\n const bufferEndFraction = 1;\n\n const buffers = loadOptions.onProgress == null ?\n await Promise.all(bufferPromises) :\n await monitorPromisesProgress(\n bufferPromises, loadOptions.onProgress, bufferStartFraction,\n bufferEndFraction);\n return buffers;\n}\n\n/**\n * Reads a weights manifest JSON configuration, fetches the weights and\n * returns them as `Tensor`s.\n *\n * @param manifest The weights manifest JSON.\n * @param filePathPrefix The path prefix for filenames given in the manifest.\n * Defaults to the empty string.\n * @param weightNames The names of the weights to be fetched.\n */\nexport async function loadWeights(\n manifest: WeightsManifestConfig, filePathPrefix = '',\n weightNames?: string[],\n requestInit?: RequestInit): Promise {\n // TODO(nsthorat): Groups are currently fetched atomically. If you need a\n // single weight from a group, the whole group will be fetched. At a future\n // date, we should support fetching only the individual shards within a\n // group that are needed to reconstruct the requested weight.\n // TODO(cais): Use `decodeWeights` for implementation.\n\n const fetchWeights = (fetchUrls: string[]) =>\n loadWeightsAsArrayBuffer(fetchUrls, {requestInit});\n const loadWeights = weightsLoaderFactory(fetchWeights);\n\n return loadWeights(manifest, filePathPrefix, weightNames);\n}\n\n/**\n * Creates a function, which reads a weights manifest JSON configuration,\n * fetches the weight files using the specified function and returns them as\n * `Tensor`s.\n *\n * ```js\n * // example for creating a nodejs weight loader, which reads the weight files\n * // from disk using fs.readFileSync\n *\n * import * as fs from 'fs'\n *\n * const fetchWeightsFromDisk = (filePaths: string[]) =>\n * filePaths.map(filePath => fs.readFileSync(filePath).buffer)\n *\n * const loadWeights = tf.io.weightsLoaderFactory(fetchWeightsFromDisk)\n *\n * const manifest = JSON.parse(\n * fs.readFileSync('./my_model-weights_manifest').toString()\n * )\n * const weightMap = await loadWeights(manifest, './')\n * ```\n * @param fetchWeightsFunction The function used for fetching the weight files.\n * @returns Weight loading function.\n */\nexport function weightsLoaderFactory(\n fetchWeightsFunction: (fetchUrls: string[]) => Promise):\n (manifest: WeightsManifestConfig, filePathPrefix?: string,\n weightNames?: string[]) => Promise {\n return async(\n manifest: WeightsManifestConfig, filePathPrefix = '',\n weightNames?: string[]): Promise => {\n // Collect all the groups, weights, and their relative offsets to be\n // fetched.\n const groupIndicesToFetchMap = manifest.map(() => false);\n const groupWeightsToFetch: {\n [group: number]: Array<{\n manifestEntry: WeightsManifestEntry; groupOffset: number;\n sizeBytes: number;\n }>\n } = {};\n const weightsFound =\n weightNames != null ? weightNames.map(() => false) : [];\n const allManifestWeightNames: string[] = [];\n manifest.forEach((manifestGroupConfig, groupIndex) => {\n let groupOffset = 0;\n manifestGroupConfig.weights.forEach(weightsEntry => {\n const rawDtype = ('quantization' in weightsEntry) ?\n weightsEntry.quantization.dtype :\n weightsEntry.dtype;\n\n const weightsBytes = DTYPE_VALUE_SIZE_MAP[rawDtype] *\n util.sizeFromShape(weightsEntry.shape);\n\n const enqueueWeightsForFetchingFn = () => {\n groupIndicesToFetchMap[groupIndex] = true;\n if (groupWeightsToFetch[groupIndex] == null) {\n groupWeightsToFetch[groupIndex] = [];\n }\n\n groupWeightsToFetch[groupIndex].push({\n manifestEntry: weightsEntry,\n groupOffset,\n sizeBytes: weightsBytes\n });\n };\n\n if (weightNames != null) {\n weightNames.forEach((weightName, weightIndex) => {\n if (weightName === weightsEntry.name) {\n enqueueWeightsForFetchingFn();\n weightsFound[weightIndex] = true;\n }\n });\n } else {\n enqueueWeightsForFetchingFn();\n }\n\n allManifestWeightNames.push(weightsEntry.name);\n groupOffset += weightsBytes;\n });\n });\n\n if (!weightsFound.every(found => found)) {\n const weightsNotFound = weightNames.filter((_, i) => !weightsFound[i]);\n throw new Error(\n `Could not find weights in manifest with names: ` +\n `${weightsNotFound.join(', ')}. \\n` +\n `Manifest JSON has weights with names: ` +\n `${allManifestWeightNames.join(', ')}.`);\n }\n\n // Convert the one-hot boolean groupId => shouldFetch map to a list of group\n // IDs.\n const groupIndicesToFetch =\n groupIndicesToFetchMap.reduce((accumulator, shouldFetch, i) => {\n if (shouldFetch) {\n accumulator.push(i);\n }\n return accumulator;\n }, []);\n\n const fetchUrls: string[] = [];\n groupIndicesToFetch.forEach(i => {\n manifest[i].paths.forEach(filepath => {\n const fetchUrl = filePathPrefix +\n (!filePathPrefix.endsWith('/') ? '/' : '') + filepath;\n fetchUrls.push(fetchUrl);\n });\n });\n const buffers = await fetchWeightsFunction(fetchUrls);\n\n const weightsTensorMap: NamedTensorMap = {};\n let bufferIndexOffset = 0;\n groupIndicesToFetch.forEach(i => {\n const numBuffers = manifest[i].paths.length;\n\n let groupBytes = 0;\n for (let i = 0; i < numBuffers; i++) {\n groupBytes += buffers[bufferIndexOffset + i].byteLength;\n }\n\n // Create a buffer for the whole group.\n const groupBuffer = new ArrayBuffer(groupBytes);\n const groupByteBuffer = new Uint8Array(groupBuffer);\n let groupBufferOffset = 0;\n for (let i = 0; i < numBuffers; i++) {\n const buffer = new Uint8Array(buffers[bufferIndexOffset + i]);\n groupByteBuffer.set(buffer, groupBufferOffset);\n groupBufferOffset += buffer.byteLength;\n }\n\n const weightsEntries = groupWeightsToFetch[i];\n weightsEntries.forEach(weightsEntry => {\n const byteBuffer = groupBuffer.slice(\n weightsEntry.groupOffset,\n weightsEntry.groupOffset + weightsEntry.sizeBytes);\n const nameToTensorMap =\n decodeWeights(byteBuffer, [weightsEntry.manifestEntry]);\n for (const name in nameToTensorMap) {\n weightsTensorMap[name] = nameToTensorMap[name];\n }\n });\n\n bufferIndexOffset += numBuffers;\n });\n\n return weightsTensorMap;\n };\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * IOHandler implementations based on HTTP requests in the web browser.\n *\n * Uses [`fetch`](https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API).\n */\n\nimport {env} from '../environment';\n\nimport {assert} from '../util';\nimport {concatenateArrayBuffers, getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, LoadOptions, ModelArtifacts, ModelJSON, OnProgressCallback, SaveResult, WeightsManifestConfig, WeightsManifestEntry} from './types';\nimport {loadWeightsAsArrayBuffer} from './weights_loader';\n\nconst OCTET_STREAM_MIME_TYPE = 'application/octet-stream';\nconst JSON_TYPE = 'application/json';\nexport class HTTPRequest implements IOHandler {\n protected readonly path: string;\n protected readonly requestInit: RequestInit;\n\n private readonly fetch: Function;\n private readonly weightUrlConverter: (weightName: string) => Promise;\n\n readonly DEFAULT_METHOD = 'POST';\n\n static readonly URL_SCHEME_REGEX = /^https?:\\/\\//;\n\n private readonly weightPathPrefix: string;\n private readonly onProgress: OnProgressCallback;\n\n constructor(path: string, loadOptions?: LoadOptions) {\n if (loadOptions == null) {\n loadOptions = {};\n }\n this.weightPathPrefix = loadOptions.weightPathPrefix;\n this.onProgress = loadOptions.onProgress;\n this.weightUrlConverter = loadOptions.weightUrlConverter;\n\n if (loadOptions.fetchFunc != null) {\n assert(\n typeof loadOptions.fetchFunc === 'function',\n () => 'Must pass a function that matches the signature of ' +\n '`fetch` (see ' +\n 'https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)');\n this.fetch = loadOptions.fetchFunc;\n } else {\n this.fetch = env().platform.fetch;\n }\n\n assert(\n path != null && path.length > 0,\n () => 'URL path for http must not be null, undefined or ' +\n 'empty.');\n\n if (Array.isArray(path)) {\n assert(\n path.length === 2,\n () => 'URL paths for http must have a length of 2, ' +\n `(actual length is ${path.length}).`);\n }\n this.path = path;\n\n if (loadOptions.requestInit != null &&\n loadOptions.requestInit.body != null) {\n throw new Error(\n 'requestInit is expected to have no pre-existing body, but has one.');\n }\n this.requestInit = loadOptions.requestInit || {};\n }\n\n async save(modelArtifacts: ModelArtifacts): Promise {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserHTTPRequest.save() does not support saving model topology ' +\n 'in binary formats yet.');\n }\n\n const init = Object.assign({method: this.DEFAULT_METHOD}, this.requestInit);\n init.body = new FormData();\n\n const weightsManifest: WeightsManifestConfig = [{\n paths: ['./model.weights.bin'],\n weights: modelArtifacts.weightSpecs,\n }];\n const modelTopologyAndWeightManifest: ModelJSON = {\n modelTopology: modelArtifacts.modelTopology,\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy,\n weightsManifest\n };\n if (modelArtifacts.signature != null) {\n modelTopologyAndWeightManifest.signature = modelArtifacts.signature;\n }\n if (modelArtifacts.userDefinedMetadata != null) {\n modelTopologyAndWeightManifest.userDefinedMetadata =\n modelArtifacts.userDefinedMetadata;\n }\n if (modelArtifacts.modelInitializer != null) {\n modelTopologyAndWeightManifest.modelInitializer =\n modelArtifacts.modelInitializer;\n }\n\n init.body.append(\n 'model.json',\n new Blob(\n [JSON.stringify(modelTopologyAndWeightManifest)],\n {type: JSON_TYPE}),\n 'model.json');\n\n if (modelArtifacts.weightData != null) {\n init.body.append(\n 'model.weights.bin',\n new Blob([modelArtifacts.weightData], {type: OCTET_STREAM_MIME_TYPE}),\n 'model.weights.bin');\n }\n\n const response = await this.fetch(this.path, init);\n\n if (response.ok) {\n return {\n modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts),\n responses: [response],\n };\n } else {\n throw new Error(\n `BrowserHTTPRequest.save() failed due to HTTP response status ` +\n `${response.status}.`);\n }\n }\n\n /**\n * Load model artifacts via HTTP request(s).\n *\n * See the documentation to `tf.io.http` for details on the saved\n * artifacts.\n *\n * @returns The loaded model artifacts (if loading succeeds).\n */\n async load(): Promise {\n const modelConfigRequest = await this.fetch(this.path, this.requestInit);\n\n if (!modelConfigRequest.ok) {\n throw new Error(\n `Request to ${this.path} failed with status code ` +\n `${modelConfigRequest.status}. Please verify this URL points to ` +\n `the model JSON of the model to load.`);\n }\n let modelConfig: ModelJSON;\n try {\n modelConfig = await modelConfigRequest.json();\n } catch (e) {\n let message = `Failed to parse model JSON of response from ${this.path}.`;\n // TODO(nsthorat): Remove this after some time when we're comfortable that\n // .pb files are mostly gone.\n if (this.path.endsWith('.pb')) {\n message += ' Your path contains a .pb file extension. ' +\n 'Support for .pb models have been removed in TensorFlow.js 1.0 ' +\n 'in favor of .json models. You can re-convert your Python ' +\n 'TensorFlow model using the TensorFlow.js 1.0 conversion scripts ' +\n 'or you can convert your.pb models with the \\'pb2json\\'' +\n 'NPM script in the tensorflow/tfjs-converter repository.';\n } else {\n message += ' Please make sure the server is serving valid ' +\n 'JSON for this request.';\n }\n throw new Error(message);\n }\n const modelTopology = modelConfig.modelTopology;\n const weightsManifest = modelConfig.weightsManifest;\n const generatedBy = modelConfig.generatedBy;\n const convertedBy = modelConfig.convertedBy;\n const format = modelConfig.format;\n const signature = modelConfig.signature;\n const userDefinedMetadata = modelConfig.userDefinedMetadata;\n\n // We do not allow both modelTopology and weightsManifest to be missing.\n if (modelTopology == null && weightsManifest == null) {\n throw new Error(\n `The JSON from HTTP path ${this.path} contains neither model ` +\n `topology or manifest for weights.`);\n }\n\n let weightSpecs: WeightsManifestEntry[];\n let weightData: ArrayBuffer;\n if (weightsManifest != null) {\n const results = await this.loadWeights(weightsManifest);\n [weightSpecs, weightData] = results;\n }\n\n const artifacts: ModelArtifacts = {\n modelTopology,\n weightSpecs,\n weightData,\n generatedBy,\n convertedBy,\n format\n };\n\n if (signature != null) {\n artifacts.signature = signature;\n }\n if (userDefinedMetadata != null) {\n artifacts.userDefinedMetadata = userDefinedMetadata;\n }\n\n const initializer = modelConfig.modelInitializer;\n if (initializer) {\n artifacts.modelInitializer = initializer;\n }\n\n return artifacts;\n }\n\n private async loadWeights(weightsManifest: WeightsManifestConfig):\n Promise<[WeightsManifestEntry[], ArrayBuffer]> {\n const weightPath = Array.isArray(this.path) ? this.path[1] : this.path;\n const [prefix, suffix] = parseUrl(weightPath);\n const pathPrefix = this.weightPathPrefix || prefix;\n\n const weightSpecs = [];\n for (const entry of weightsManifest) {\n weightSpecs.push(...entry.weights);\n }\n\n const fetchURLs: string[] = [];\n const urlPromises: Array> = [];\n for (const weightsGroup of weightsManifest) {\n for (const path of weightsGroup.paths) {\n if (this.weightUrlConverter != null) {\n urlPromises.push(this.weightUrlConverter(path));\n } else {\n fetchURLs.push(pathPrefix + path + suffix);\n }\n }\n }\n\n if (this.weightUrlConverter) {\n fetchURLs.push(...await Promise.all(urlPromises));\n }\n\n const buffers = await loadWeightsAsArrayBuffer(fetchURLs, {\n requestInit: this.requestInit,\n fetchFunc: this.fetch,\n onProgress: this.onProgress\n });\n return [weightSpecs, concatenateArrayBuffers(buffers)];\n }\n}\n\n/**\n * Extract the prefix and suffix of the url, where the prefix is the path before\n * the last file, and suffix is the search params after the last file.\n * ```\n * const url = 'http://tfhub.dev/model/1/tensorflowjs_model.pb?tfjs-format=file'\n * [prefix, suffix] = parseUrl(url)\n * // prefix = 'http://tfhub.dev/model/1/'\n * // suffix = '?tfjs-format=file'\n * ```\n * @param url the model url to be parsed.\n */\nexport function parseUrl(url: string): [string, string] {\n const lastSlash = url.lastIndexOf('/');\n const lastSearchParam = url.lastIndexOf('?');\n const prefix = url.substring(0, lastSlash);\n const suffix =\n lastSearchParam > lastSlash ? url.substring(lastSearchParam) : '';\n return [prefix + '/', suffix];\n}\n\nexport function isHTTPScheme(url: string): boolean {\n return url.match(HTTPRequest.URL_SCHEME_REGEX) != null;\n}\n\nexport const httpRouter: IORouter =\n (url: string, loadOptions?: LoadOptions) => {\n if (typeof fetch === 'undefined' &&\n (loadOptions == null || loadOptions.fetchFunc == null)) {\n // `http` uses `fetch` or `node-fetch`, if one wants to use it in\n // an environment that is not the browser or node they have to setup a\n // global fetch polyfill.\n return null;\n } else {\n let isHTTP = true;\n if (Array.isArray(url)) {\n isHTTP = url.every(urlItem => isHTTPScheme(urlItem));\n } else {\n isHTTP = isHTTPScheme(url);\n }\n if (isHTTP) {\n return http(url, loadOptions);\n }\n }\n return null;\n };\nIORouterRegistry.registerSaveRouter(httpRouter);\nIORouterRegistry.registerLoadRouter(httpRouter);\n\n/**\n * Creates an IOHandler subtype that sends model artifacts to HTTP server.\n *\n * An HTTP request of the `multipart/form-data` mime type will be sent to the\n * `path` URL. The form data includes artifacts that represent the topology\n * and/or weights of the model. In the case of Keras-style `tf.Model`, two\n * blobs (files) exist in form-data:\n * - A JSON file consisting of `modelTopology` and `weightsManifest`.\n * - A binary weights file consisting of the concatenated weight values.\n * These files are in the same format as the one generated by\n * [tfjs_converter](https://js.tensorflow.org/tutorials/import-keras.html).\n *\n * The following code snippet exemplifies the client-side code that uses this\n * function:\n *\n * ```js\n * const model = tf.sequential();\n * model.add(\n * tf.layers.dense({units: 1, inputShape: [100], activation: 'sigmoid'}));\n *\n * const saveResult = await model.save(tf.io.http(\n * 'http://model-server:5000/upload', {requestInit: {method: 'PUT'}}));\n * console.log(saveResult);\n * ```\n *\n * If the default `POST` method is to be used, without any custom parameters\n * such as headers, you can simply pass an HTTP or HTTPS URL to `model.save`:\n *\n * ```js\n * const saveResult = await model.save('http://model-server:5000/upload');\n * ```\n *\n * The following GitHub Gist\n * https://gist.github.com/dsmilkov/1b6046fd6132d7408d5257b0976f7864\n * implements a server based on [flask](https://github.com/pallets/flask) that\n * can receive the request. Upon receiving the model artifacts via the requst,\n * this particular server reconsistutes instances of [Keras\n * Models](https://keras.io/models/model/) in memory.\n *\n *\n * @param path A URL path to the model.\n * Can be an absolute HTTP path (e.g.,\n * 'http://localhost:8000/model-upload)') or a relative path (e.g.,\n * './model-upload').\n * @param requestInit Request configurations to be used when sending\n * HTTP request to server using `fetch`. It can contain fields such as\n * `method`, `credentials`, `headers`, `mode`, etc. See\n * https://developer.mozilla.org/en-US/docs/Web/API/Request/Request\n * for more information. `requestInit` must not have a body, because the\n * body will be set by TensorFlow.js. File blobs representing the model\n * topology (filename: 'model.json') and the weights of the model (filename:\n * 'model.weights.bin') will be appended to the body. If `requestInit` has a\n * `body`, an Error will be thrown.\n * @param loadOptions Optional configuration for the loading. It includes the\n * following fields:\n * - weightPathPrefix Optional, this specifies the path prefix for weight\n * files, by default this is calculated from the path param.\n * - fetchFunc Optional, custom `fetch` function. E.g., in Node.js,\n * the `fetch` from node-fetch can be used here.\n * - onProgress Optional, progress callback function, fired periodically\n * before the load is completed.\n * @returns An instance of `IOHandler`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Loading',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nexport function http(path: string, loadOptions?: LoadOptions): IOHandler {\n return new HTTPRequest(path, loadOptions);\n}\n\n/**\n * Deprecated. Use `tf.io.http`.\n * @param path\n * @param loadOptions\n */\nexport function browserHTTPRequest(\n path: string, loadOptions?: LoadOptions): IOHandler {\n return http(path, loadOptions);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * IOHandlers that pass through the in-memory ModelArtifacts format.\n */\n\nimport {IOHandler, ModelArtifacts, SaveResult, TrainingConfig, WeightsManifestEntry} from './types';\n\nclass PassthroughLoader implements IOHandler {\n constructor(private readonly modelArtifacts?: ModelArtifacts) {}\n\n async load(): Promise {\n return this.modelArtifacts;\n }\n}\n\nclass PassthroughSaver implements IOHandler {\n constructor(\n private readonly saveHandler:\n (artifacts: ModelArtifacts) => Promise) {}\n\n async save(modelArtifacts: ModelArtifacts) {\n return this.saveHandler(modelArtifacts);\n }\n}\n\n/**\n * Creates an IOHandler that loads model artifacts from memory.\n *\n * When used in conjunction with `tf.loadLayersModel`, an instance of\n * `tf.LayersModel` (Keras-style) can be constructed from the loaded artifacts.\n *\n * ```js\n * const model = await tf.loadLayersModel(tf.io.fromMemory(\n * modelTopology, weightSpecs, weightData));\n * ```\n *\n * @param modelArtifacts a object containing model topology (i.e., parsed from\n * the JSON format).\n * @param weightSpecs An array of `WeightsManifestEntry` objects describing the\n * names, shapes, types, and quantization of the weight data.\n * @param weightData A single `ArrayBuffer` containing the weight data,\n * concatenated in the order described by the weightSpecs.\n * @param trainingConfig Model training configuration. Optional.\n *\n * @returns A passthrough `IOHandler` that simply loads the provided data.\n */\nexport function fromMemory(\n modelArtifacts: {}|ModelArtifacts, weightSpecs?: WeightsManifestEntry[],\n weightData?: ArrayBuffer, trainingConfig?: TrainingConfig): IOHandler {\n if (arguments.length === 1) {\n const isModelArtifacts =\n (modelArtifacts as ModelArtifacts).modelTopology != null ||\n (modelArtifacts as ModelArtifacts).weightSpecs != null;\n if (isModelArtifacts) {\n return new PassthroughLoader(modelArtifacts as ModelArtifacts);\n } else {\n // Legacy support: with only modelTopology.\n // TODO(cais): Remove this deprecated API.\n console.warn(\n 'Please call tf.io.fromMemory() with only one argument. ' +\n 'The argument should be of type ModelArtifacts. ' +\n 'The multi-argument signature of tf.io.fromMemory() has been ' +\n 'deprecated and will be removed in a future release.');\n return new PassthroughLoader({modelTopology: modelArtifacts as {}});\n }\n } else {\n // Legacy support.\n // TODO(cais): Remove this deprecated API.\n console.warn(\n 'Please call tf.io.fromMemory() with only one argument. ' +\n 'The argument should be of type ModelArtifacts. ' +\n 'The multi-argument signature of tf.io.fromMemory() has been ' +\n 'deprecated and will be removed in a future release.');\n return new PassthroughLoader({\n modelTopology: modelArtifacts as {},\n weightSpecs,\n weightData,\n trainingConfig\n });\n }\n}\n\n/**\n * Creates an IOHandler that passes saved model artifacts to a callback.\n *\n * ```js\n * function handleSave(artifacts) {\n * // ... do something with the artifacts ...\n * return {modelArtifactsInfo: {...}, ...};\n * }\n *\n * const saveResult = model.save(tf.io.withSaveHandler(handleSave));\n * ```\n *\n * @param saveHandler A function that accepts a `ModelArtifacts` and returns a\n * `SaveResult`.\n */\nexport function withSaveHandler(\n saveHandler: (artifacts: ModelArtifacts) =>\n Promise): IOHandler {\n return new PassthroughSaver(saveHandler);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * Exports under the tf.math.* namespace.\n */\n\nimport {confusionMatrix} from './ops/confusion_matrix';\n\nexport {confusionMatrix};\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {BatchMatMul, BatchMatMulAttrs, BatchMatMulInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {makeTypesMatch} from '../tensor_util';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\n\nimport {op} from './operation';\n\n/**\n * Computes the dot product of two matrices, A * B. These must be matrices.\n *\n * ```js\n * const a = tf.tensor2d([1, 2], [1, 2]);\n * const b = tf.tensor2d([1, 2, 3, 4], [2, 2]);\n *\n * a.matMul(b).print(); // or tf.matMul(a, b)\n * ```\n * @param a First matrix in dot product operation.\n * @param b Second matrix in dot product operation.\n * @param transposeA If true, `a` is transposed before multiplication.\n * @param transposeB If true, `b` is transposed before multiplication.\n *\n * @doc {heading: 'Operations', subheading: 'Matrices'}\n */\nfunction matMul_(\n a: Tensor|TensorLike, b: Tensor|TensorLike, transposeA = false,\n transposeB = false): T {\n let $a = convertToTensor(a, 'a', 'matMul');\n let $b = convertToTensor(b, 'b', 'matMul');\n [$a, $b] = makeTypesMatch($a, $b);\n\n const inputs: BatchMatMulInputs = {a: $a, b: $b};\n const attrs: BatchMatMulAttrs = {transposeA, transposeB};\n\n return ENGINE.runKernel(\n BatchMatMul, inputs as {} as NamedTensorMap, attrs as {} as NamedAttrMap);\n}\n\nexport const matMul = op({matMul_});\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {OneHot, OneHotAttrs, OneHotInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\n\nimport {op} from './operation';\n\n/**\n * Creates a one-hot `tf.Tensor`. The locations represented by `indices` take\n * value `onValue` (defaults to 1), while all other locations take value\n * `offValue` (defaults to 0). If `indices` is rank `R`, the output has rank\n * `R+1` with the last axis of size `depth`.\n *\n * ```js\n * tf.oneHot(tf.tensor1d([0, 1], 'int32'), 3).print();\n * ```\n *\n * @param indices `tf.Tensor` of indices with dtype `int32`.\n * @param depth The depth of the one hot dimension.\n * @param onValue A number used to fill in the output when the index matches\n * the location.\n * @param offValue A number used to fill in the output when the index does\n * not match the location.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nfunction oneHot_(\n indices: Tensor|TensorLike, depth: number, onValue = 1,\n offValue = 0): Tensor {\n if (depth < 2) {\n throw new Error(`Error in oneHot: depth must be >=2, but it is ${depth}`);\n }\n const $indices = convertToTensor(indices, 'indices', 'oneHot', 'int32');\n\n const inputs: OneHotInputs = {indices: $indices};\n const attrs: OneHotAttrs = {depth, onValue, offValue};\n\n return ENGINE.runKernel(\n OneHot, inputs as unknown as NamedTensorMap,\n attrs as unknown as NamedAttrMap);\n}\n\nexport const oneHot = op({oneHot_});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {Transpose, TransposeAttrs, TransposeInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {op} from './operation';\n\n/**\n * Transposes the `tf.Tensor`. Permutes the dimensions according to `perm`.\n *\n * The returned `tf.Tensor`'s dimension `i` will correspond to the input\n * dimension `perm[i]`. If `perm` is not given, it is set to `[n-1...0]`,\n * where `n` is the rank of the input `tf.Tensor`. Hence by default, this\n * operation performs a regular matrix transpose on 2-D input `tf.Tensor`s.\n *\n * ```js\n * const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]);\n *\n * a.transpose().print(); // or tf.transpose(a)\n * ```\n *\n * @param x The tensor to transpose.\n * @param perm The permutation of the dimensions of a.\n *\n * @doc {heading: 'Operations', subheading: 'Matrices'}\n */\nfunction transpose_(x: T|TensorLike, perm?: number[]): T {\n const $x = convertToTensor(x, 'x', 'transpose');\n\n if (perm == null) {\n perm = $x.shape.map((s, i) => i).reverse();\n }\n util.assert(\n $x.rank === perm.length,\n () => `Error in transpose: rank of input ${$x.rank} ` +\n `must match length of perm ${perm}.`);\n perm.forEach(axis => {\n util.assert(\n axis >= 0 && axis < $x.rank,\n () => `All entries in 'perm' must be between 0 and ${$x.rank - 1}` +\n ` but got ${perm}`);\n });\n\n if ($x.rank <= 1) {\n return $x.clone();\n }\n\n const inputs: TransposeInputs = {x: $x};\n const attrs: TransposeAttrs = {perm};\n\n return ENGINE.runKernel(\n Transpose, inputs as {} as NamedTensorMap, attrs as {} as NamedAttrMap);\n}\n\nexport const transpose = op({transpose_});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor1D, Tensor2D} from '../tensor';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {cast} from './cast';\nimport {matMul} from './mat_mul';\nimport {oneHot} from './one_hot';\nimport {op} from './operation';\nimport {transpose} from './transpose';\n\n/**\n * Computes the confusion matrix from true labels and predicted labels.\n *\n * ```js\n * const labels = tf.tensor1d([0, 1, 2, 1, 0], 'int32');\n * const predictions = tf.tensor1d([0, 2, 2, 1, 0], 'int32');\n * const numClasses = 3;\n * const out = tf.math.confusionMatrix(labels, predictions, numClasses);\n * out.print();\n * // Expected output matrix:\n * // [[2, 0, 0],\n * // [0, 1, 1],\n * // [0, 0, 1]]\n * ```\n *\n * @param labels The target labels, assumed to be 0-based integers\n * for the classes. The shape is `[numExamples]`, where\n * `numExamples` is the number of examples included.\n * @param predictions The predicted classes, assumed to be\n * 0-based integers for the classes. Must have the same shape as `labels`.\n * @param numClasses Number of all classes, as an integer.\n * Its value must be larger than the largest element in `labels` and\n * `predictions`.\n * @returns The confusion matrix as a int32-type 2D tensor. The value at\n * row `r` and column `c` is the number of times examples of actual class\n * `r` were predicted as class `c`.\n *\n * @doc {heading: 'Operations', subheading: 'Evaluation'}\n */\nexport function confusionMatrix_(\n labels: Tensor1D|TensorLike, predictions: Tensor1D|TensorLike,\n numClasses: number): Tensor2D {\n const $labels = convertToTensor(labels, 'labels', 'confusionMatrix');\n const $predictions =\n convertToTensor(predictions, 'predictions', 'confusionMatrix');\n\n util.assert(\n numClasses == null || numClasses > 0 && Number.isInteger(numClasses),\n () => `If provided, numClasses must be a positive integer, ` +\n `but got ${numClasses}`);\n util.assert(\n $labels.rank === 1,\n () => `Expected the rank of labels to be 1, but got ${$labels.rank}`);\n util.assert(\n $predictions.rank === 1,\n () => `Expected the rank of predictions to be 1, ` +\n `but got ${$predictions.rank}`);\n util.assert(\n $labels.shape[0] === $predictions.shape[0],\n () => `Mismatch in the number of examples: ` +\n `${$labels.shape[0]} vs. ${$predictions.shape[0]}. ` +\n `Labels and predictions should have the same number of elements.`);\n util.assert(\n numClasses > 0 && Number.isInteger(numClasses),\n () => `numClasses is required to be a positive integer, but got ` +\n `${numClasses}`);\n // TODO(cais): In the future, if oneHot supports tensors inputs for\n // `numClasses`, `confusionMatrix` can make `numClasses` optional.\n\n const oneHotLabels = oneHot(cast($labels, 'int32'), numClasses) as Tensor2D;\n const oneHotPredictions =\n oneHot(cast($predictions, 'int32'), numClasses) as Tensor2D;\n const oneHotLabelsT: Tensor2D = transpose(oneHotLabels);\n const product: Tensor2D = matMul(oneHotLabelsT, oneHotPredictions);\n return cast(product, 'int32');\n}\n\nexport const confusionMatrix = op({confusionMatrix_});\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {env} from '../environment';\nimport {FromPixels, FromPixelsAttrs, FromPixelsInputs} from '../kernel_names';\nimport {getKernel, NamedAttrMap} from '../kernel_registry';\nimport {Tensor, Tensor2D, Tensor3D} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {PixelData, TensorLike} from '../types';\n\nimport {cast} from './cast';\nimport {op} from './operation';\nimport {tensor3d} from './tensor3d';\n\nlet fromPixels2DContext: CanvasRenderingContext2D;\n\n/**\n * Creates a `tf.Tensor` from an image.\n *\n * ```js\n * const image = new ImageData(1, 1);\n * image.data[0] = 100;\n * image.data[1] = 150;\n * image.data[2] = 200;\n * image.data[3] = 255;\n *\n * tf.browser.fromPixels(image).print();\n * ```\n *\n * @param pixels The input image to construct the tensor from. The\n * supported image types are all 4-channel. You can also pass in an image\n * object with following attributes:\n * `{data: Uint8Array; width: number; height: number}`\n * @param numChannels The number of channels of the output tensor. A\n * numChannels value less than 4 allows you to ignore channels. Defaults to\n * 3 (ignores alpha channel of input image).\n *\n * @returns A Tensor3D with the shape `[height, width, numChannels]`.\n *\n * @doc {heading: 'Browser', namespace: 'browser', ignoreCI: true}\n */\nfunction fromPixels_(\n pixels: PixelData|ImageData|HTMLImageElement|HTMLCanvasElement|\n HTMLVideoElement|ImageBitmap,\n numChannels = 3): Tensor3D {\n // Sanity checks.\n if (numChannels > 4) {\n throw new Error(\n 'Cannot construct Tensor with more than 4 channels from pixels.');\n }\n if (pixels == null) {\n throw new Error('pixels passed to tf.browser.fromPixels() can not be null');\n }\n let isPixelData = false;\n let isImageData = false;\n let isVideo = false;\n let isImage = false;\n let isCanvasLike = false;\n let isImageBitmap = false;\n if ((pixels as PixelData).data instanceof Uint8Array) {\n isPixelData = true;\n } else if (\n typeof (ImageData) !== 'undefined' && pixels instanceof ImageData) {\n isImageData = true;\n } else if (\n typeof (HTMLVideoElement) !== 'undefined' &&\n pixels instanceof HTMLVideoElement) {\n isVideo = true;\n } else if (\n typeof (HTMLImageElement) !== 'undefined' &&\n pixels instanceof HTMLImageElement) {\n isImage = true;\n // tslint:disable-next-line: no-any\n } else if ((pixels as any).getContext != null) {\n isCanvasLike = true;\n } else if (\n typeof (ImageBitmap) !== 'undefined' && pixels instanceof ImageBitmap) {\n isImageBitmap = true;\n } else {\n throw new Error(\n 'pixels passed to tf.browser.fromPixels() must be either an ' +\n `HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData ` +\n `in browser, or OffscreenCanvas, ImageData in webworker` +\n ` or {data: Uint32Array, width: number, height: number}, ` +\n `but was ${(pixels as {}).constructor.name}`);\n }\n if (isVideo) {\n const HAVE_CURRENT_DATA_READY_STATE = 2;\n if (isVideo &&\n (pixels as HTMLVideoElement).readyState <\n HAVE_CURRENT_DATA_READY_STATE) {\n throw new Error(\n 'The video element has not loaded data yet. Please wait for ' +\n '`loadeddata` event on the

models

-
models: { age: null | Object; blazepose: null | Object; efficientpose: null | Object; embedding: null | Object; emotion: null | Object; face: null | Object | MediaPipeFaceMesh; faceres: null | Object; gender: null | Object; handpose: null | HandPose; iris: null | Object; nanodet: null | Object; posenet: null | PoseNet }
+
models: { age: null | Object; blazepose: null | Object; efficientpose: null | Object; embedding: null | Object; emotion: null | Object; face: null | Object | MediaPipeFaceMesh; faceres: null | Object; gender: null | Object; handpose: null | HandPose; iris: null | Object; nanodet: null | Object; posenet: null | Object }
@@ -497,7 +497,7 @@
nanodet: null | Object
  • -
    posenet: null | PoseNet
    +
    posenet: null | Object
  • diff --git a/types/human.d.ts b/types/human.d.ts index 6088ed77..b135c90e 100644 --- a/types/human.d.ts +++ b/types/human.d.ts @@ -76,7 +76,7 @@ export declare class Human { /** Internal: Currently loaded models */ models: { face: facemesh.MediaPipeFaceMesh | Model | null; - posenet: posenet.PoseNet | null; + posenet: Model | null; blazepose: Model | null; efficientpose: Model | null; handpose: handpose.HandPose | null; diff --git a/types/posenet/decodeMultiple.d.ts b/types/posenet/decodeMultiple.d.ts deleted file mode 100644 index bb9a03af..00000000 --- a/types/posenet/decodeMultiple.d.ts +++ /dev/null @@ -1,7 +0,0 @@ -import * as utils from './utils'; -export declare function buildPartWithScoreQueue(scoreThreshold: any, localMaximumRadius: any, scores: any): utils.MaxHeap; -export declare function decodeMultiplePoses(scoresBuffer: any, offsetsBuffer: any, displacementsFwdBuffer: any, displacementsBwdBuffer: any, nmsRadius: any, maxDetections: any, scoreThreshold: any): { - keypoints: any; - box: any; - score: number; -}[]; diff --git a/types/posenet/decodeParts.d.ts b/types/posenet/decodeParts.d.ts deleted file mode 100644 index bde5db80..00000000 --- a/types/posenet/decodeParts.d.ts +++ /dev/null @@ -1,3 +0,0 @@ -export declare function getPointsConfidence(heatmapScores: any, heatMapCoords: any): number[]; -export declare function getOffsetPoints(heatMapCoordsBuffer: any, outputStride: any, offsetsBuffer: any): any; -export declare function argmax2d(inputs: any): any; diff --git a/types/posenet/decodeSingle.d.ts b/types/posenet/decodeSingle.d.ts deleted file mode 100644 index 2eb0ab14..00000000 --- a/types/posenet/decodeSingle.d.ts +++ /dev/null @@ -1,13 +0,0 @@ -export declare function decodePose(root: any, scores: any, offsets: any, outputStride: any, displacementsFwd: any, displacementsBwd: any): any[]; -export declare function decodeSinglePose(heatmapScores: any, offsets: any, minScore: any): Promise<{ - keypoints: { - position: { - y: any; - x: any; - }; - part: string; - score: number; - }[]; - box: any[]; - score: number; -}>; diff --git a/types/posenet/posenet.d.ts b/types/posenet/posenet.d.ts index 13e4cf38..f65a7ac1 100644 --- a/types/posenet/posenet.d.ts +++ b/types/posenet/posenet.d.ts @@ -1,8 +1,2 @@ -export declare class PoseNet { - baseModel: any; - inputSize: number; - constructor(baseModel: any); - estimatePoses(input: any, config: any): Promise; - dispose(): void; -} -export declare function load(config: any): Promise; +export declare function predict(input: any, config: any): Promise; +export declare function load(config: any): Promise; diff --git a/types/posenet/posenetModel.d.ts b/types/posenet/posenetModel.d.ts deleted file mode 100644 index 1c716b52..00000000 --- a/types/posenet/posenetModel.d.ts +++ /dev/null @@ -1,7 +0,0 @@ -export declare class BaseModel { - model: any; - inputSize: number; - constructor(model: any); - predict(input: any): any; - dispose(): void; -} diff --git a/types/posenet/poses.d.ts b/types/posenet/poses.d.ts new file mode 100644 index 00000000..183de4e0 --- /dev/null +++ b/types/posenet/poses.d.ts @@ -0,0 +1,8 @@ +import * as utils from './utils'; +export declare function decodePose(root: any, scores: any, offsets: any, outputStride: any, displacementsFwd: any, displacementsBwd: any): any[]; +export declare function buildPartWithScoreQueue(scoreThreshold: any, scores: any): utils.MaxHeap; +export declare function decode(offsetsBuffer: any, scoresBuffer: any, displacementsFwdBuffer: any, displacementsBwdBuffer: any, nmsRadius: any, maxDetections: any, scoreThreshold: any): { + keypoints: any; + box: any; + score: number; +}[];