new samples gallery and major code folder restructure

pull/280/head
Vladimir Mandic 2021-09-25 11:51:15 -04:00
parent c2a1d57eeb
commit 619f6bcc87
82 changed files with 358 additions and 130 deletions

View File

@ -9,11 +9,13 @@
## Changelog
### **HEAD -> main** 2021/09/24 mandic00@live.com
- new release
### **2.2.3** 2021/09/24 mandic00@live.com
### **origin/main** 2021/09/23 mandic00@live.com
- optimize model loading
- support segmentation for nodejs
- redo segmentation and handtracking
- prototype handtracking

View File

@ -42,6 +42,7 @@ Check out [**Live Demo**](https://vladmandic.github.io/human/demo/index.html) ap
- [*Live:* **Face Extraction and 3D Rendering**](https://vladmandic.github.io/human/demo/face3d/index.html)
- [*Live:* **Multithreaded Detection Showcasing Maximum Performance**](https://vladmandic.github.io/human/demo/multithread/index.html)
- [*Live:* **VR Model with Head, Face, Eye, Body and Hand tracking**](https://vladmandic.github.io/human-vrm/src/human-vrm.html)
- [Examples galery](https://vladmandic.github.io/human/samples/samples.html)
## Project pages
@ -75,6 +76,7 @@ Check out [**Live Demo**](https://vladmandic.github.io/human/demo/index.html) ap
- [**Platform Support**](https://github.com/vladmandic/human/wiki/Platforms)
- [**Diagnostic and Performance trace information**](https://github.com/vladmandic/human/wiki/Diag)
- [**List of Models & Credits**](https://github.com/vladmandic/human/wiki/Models)
- [**Models Download Repository**](https://github.com/vladmandic/human-models)
- [**Security & Privacy Policy**](https://github.com/vladmandic/human/blob/main/SECURITY.md)
- [**License & Usage Restrictions**](https://github.com/vladmandic/human/blob/main/LICENSE)
@ -86,6 +88,15 @@ Check out [**Live Demo**](https://vladmandic.github.io/human/demo/index.html) ap
<hr><br>
## Examples
Visit [Examples galery](https://vladmandic.github.io/human/samples/samples.html) for more examples
<https://vladmandic.github.io/human/samples/samples.html>
![samples](assets/samples.jpg)
<br>
## Options
All options as presented in the demo application...
@ -95,52 +106,15 @@ All options as presented in the demo application...
<br>
## Examples
<br>
**Face Close-up:**
![Face](assets/screenshot-face.jpg)
<br>
**Face under a high angle:**
![Angle](assets/screenshot-angle.jpg)
<br>
**Full Person Details:**
![Pose](assets/screenshot-person.jpg)
<br>
**Pose Detection:**
![Pose](assets/screenshot-pose.jpg)
<br>
**Body Segmentation and Background Replacement:**
![Pose](assets/screenshot-segmentation.jpg)
<br>
**Large Group:**
![Group](assets/screenshot-group.jpg)
<br>
**VR Model Tracking:**
![vrmodel](assets/screenshot-vrm.jpg)
<br>
**Results Browser:**
[ *Demo -> Display -> Show Results* ]<br>
![Results](assets/screenshot-results.png)
<br>
**Face Similarity Matching:**
## Advanced Examples
1. **Face Similarity Matching:**
Extracts all faces from provided input images,
sorts them by similarity to selected face
and optionally matches detected face with database of known people to guess their names
@ -150,13 +124,18 @@ and optionally matches detected face with database of known people to guess thei
<br>
**Face3D OpenGL Rendering:**
2. **Face3D OpenGL Rendering:**
> [demo/face3d](demo/face3d/index.html)
![Face Matching](assets/screenshot-face3d.jpg)
<br>
3. **VR Model Tracking:**
![vrmodel](assets/screenshot-vrm.jpg)
<br>
**468-Point Face Mesh Defails:**
(view in full resolution to see keypoints)

BIN
assets/samples.jpg Executable file

Binary file not shown.

After

Width:  |  Height:  |  Size: 297 KiB

View File

@ -12,7 +12,7 @@ const Human = require('../../dist/human.node.js'); // this is 'const Human = req
const config = { // just enable all and leave default settings
debug: false,
face: { enabled: true }, // includes mesh, iris, emotion, descriptor
hand: { enabled: true },
hand: { enabled: true, maxDetected: 2, minConfidence: 0.5, detector: { modelPath: 'handtrack.json' } }, // use alternative hand model
body: { enabled: true },
object: { enabled: true },
gestures: { enabled: true },

View File

@ -66,14 +66,14 @@
"@tensorflow/tfjs-layers": "^3.9.0",
"@tensorflow/tfjs-node": "^3.9.0",
"@tensorflow/tfjs-node-gpu": "^3.9.0",
"@types/node": "^16.9.6",
"@types/node": "^16.10.1",
"@typescript-eslint/eslint-plugin": "^4.31.2",
"@typescript-eslint/parser": "^4.31.2",
"@vladmandic/build": "^0.5.3",
"@vladmandic/pilogger": "^0.3.3",
"canvas": "^2.8.0",
"dayjs": "^1.10.7",
"esbuild": "^0.13.0",
"esbuild": "^0.13.2",
"eslint": "^7.32.0",
"eslint-config-airbnb-base": "^14.2.1",
"eslint-plugin-import": "^2.24.2",

View File

@ -2,3 +2,11 @@
Sample Images used by `Human` library demos and automated tests
Not required for normal funcioning of library
Samples were generated using default configuration without any fine-tuning using command:
```shell
node test/test-node-canvas.js samples/in/ samples/out/
```
Samples galery viewer: <https://vladmandic.github.io/human/samples/samples.html>

View File

Before

Width:  |  Height:  |  Size: 32 KiB

After

Width:  |  Height:  |  Size: 32 KiB

View File

Before

Width:  |  Height:  |  Size: 8.4 KiB

After

Width:  |  Height:  |  Size: 8.4 KiB

View File

Before

Width:  |  Height:  |  Size: 41 KiB

After

Width:  |  Height:  |  Size: 41 KiB

View File

Before

Width:  |  Height:  |  Size: 381 KiB

After

Width:  |  Height:  |  Size: 381 KiB

View File

Before

Width:  |  Height:  |  Size: 137 KiB

After

Width:  |  Height:  |  Size: 137 KiB

View File

Before

Width:  |  Height:  |  Size: 295 KiB

After

Width:  |  Height:  |  Size: 295 KiB

View File

Before

Width:  |  Height:  |  Size: 359 KiB

After

Width:  |  Height:  |  Size: 359 KiB

View File

Before

Width:  |  Height:  |  Size: 464 KiB

After

Width:  |  Height:  |  Size: 464 KiB

View File

Before

Width:  |  Height:  |  Size: 216 KiB

After

Width:  |  Height:  |  Size: 216 KiB

View File

Before

Width:  |  Height:  |  Size: 206 KiB

After

Width:  |  Height:  |  Size: 206 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

BIN
samples/in/person-linda.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 142 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 79 KiB

BIN
samples/in/person-vlado.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 110 KiB

BIN
samples/out/ai-body.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

BIN
samples/out/ai-face.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.2 KiB

BIN
samples/out/ai-upper.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

BIN
samples/out/group-1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 340 KiB

BIN
samples/out/group-2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 127 KiB

BIN
samples/out/group-3.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 305 KiB

BIN
samples/out/group-4.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 296 KiB

BIN
samples/out/group-5.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 386 KiB

BIN
samples/out/group-6.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 214 KiB

BIN
samples/out/group-7.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 215 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 97 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 182 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 139 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 79 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 166 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 266 KiB

57
samples/samples.html Normal file
View File

@ -0,0 +1,57 @@
<!DOCTYPE html>
<html lang="en">
<head>
<title>Human Examples Gallery</title>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, shrink-to-fit=yes">
<meta name="keywords" content="Human">
<meta name="application-name" content="Human">
<meta name="description" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
<meta name="msapplication-tooltip" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
<meta name="theme-color" content="#000000">
<link rel="manifest" href="../manifest.webmanifest">
<link rel="shortcut icon" href="../../favicon.ico" type="image/x-icon">
<link rel="apple-touch-icon" href="../../assets/icon.png">
<style>
@font-face { font-family: 'Lato'; font-display: swap; font-style: normal; font-weight: 100; src: local('Lato'), url('../../assets/lato-light.woff2') }
html { font-family: 'Lato', 'Segoe UI'; font-size: 24px; font-variant: small-caps; }
body { margin: 24px; background: black; color: white; overflow-x: hidden; overflow-y: auto; text-align: -webkit-center; min-height: 100%; max-height: 100%; }
::-webkit-scrollbar { height: 8px; border: 0; border-radius: 0; }
::-webkit-scrollbar-thumb { background: grey }
::-webkit-scrollbar-track { margin: 3px; }
.text { margin: 24px }
.strip { display: flex; width: 100%; overflow: auto; }
.thumb { height: 150px; margin: 2px; padding: 2px; }
.thumb:hover { filter: grayscale(1); background: white; }
.image-container { margin: 24px 3px 3px 3px }
.image { max-width: -webkit-fill-available; }
</style>
</head>
<body>
<div class="text">Human Examples Gallery</div>
<div id="strip" class="strip"></div>
<div class="image-container">
<img id="image" src="" alt="" class="image" />
</div>
<script>
const samples = [
'ai-body.jpg', 'ai-upper.jpg',
'person-vlado.jpg', 'person-linda.jpg', 'person-celeste.jpg', 'person-tetiana.jpg',
'group-1.jpg', 'group-2.jpg', 'group-3.jpg', 'group-4.jpg', 'group-5.jpg', 'group-6.jpg', 'group-7.jpg',
'daz3d-brianna.jpg', 'daz3d-chiyo.jpg', 'daz3d-cody.jpg', 'daz3d-drew-01.jpg', 'daz3d-drew-02.jpg', 'daz3d-ella-01.jpg', 'daz3d-ella-02.jpg', 'daz3d-gillian.jpg',
'daz3d-hye-01.jpg', 'daz3d-hye-02.jpg', 'daz3d-kaia.jpg', 'daz3d-karen.jpg', 'daz3d-kiaria-01.jpg', 'daz3d-kiaria-02.jpg', 'daz3d-lilah-01.jpg', 'daz3d-lilah-02.jpg',
'daz3d-lilah-03.jpg', 'daz3d-lila.jpg', 'daz3d-lindsey.jpg', 'daz3d-megah.jpg', 'daz3d-selina-01.jpg', 'daz3d-selina-02.jpg', 'daz3d-snow.jpg',
'daz3d-sunshine.jpg', 'daz3d-taia.jpg', 'daz3d-tuesday-01.jpg', 'daz3d-tuesday-02.jpg', 'daz3d-tuesday-03.jpg', 'daz3d-zoe.jpg', 'daz3d-ginnifer.jpg',
'daz3d-_emotions01.jpg', 'daz3d-_emotions02.jpg', 'daz3d-_emotions03.jpg', 'daz3d-_emotions04.jpg', 'daz3d-_emotions05.jpg',
];
const image = document.getElementById('image');
for (const sample of samples) {
const el = document.createElement('img');
el.className = 'thumb';
el.src = el.title = el.alt = `/samples/in/${sample}`;
el.addEventListener('click', () => image.src = image.alt = image.title = el.src.replace('/in/', '/out/'));
document.getElementById('strip')?.appendChild(el);
}
</script>
</body>
</html>

View File

@ -1,3 +1,8 @@
/**
* BlazeFace, FaceMesh & Iris model implementation
* See `facemesh.ts` for entry point
*/
export const MESH_ANNOTATIONS = {
silhouette: [
10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288,

View File

@ -3,7 +3,7 @@
*/
import { TRI468 as triangulation } from './blazeface/coords';
import { mergeDeep, now } from './helpers';
import { mergeDeep, now } from './util';
import type { Result, FaceResult, BodyResult, HandResult, ObjectResult, GestureResult, PersonResult } from './result';
/**

View File

@ -1,8 +1,10 @@
/**
* EfficientPose Module
* EfficientPose model implementation
*
* Based on: [**EfficientPose**](https://github.com/daniegr/EfficientPose)
*/
import { log, join } from '../helpers';
import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js';
import type { BodyResult } from '../result';
import type { GraphModel, Tensor } from '../tfjs/types';

View File

@ -1,8 +1,10 @@
/**
* Emotion Module
* Emotion model implementation
*
* [**Oarriaga**](https://github.com/oarriaga/face_classification)
*/
import { log, join } from '../helpers';
import { log, join } from '../util';
import type { Config } from '../config';
import type { GraphModel, Tensor } from '../tfjs/types';
import * as tf from '../../dist/tfjs.esm.js';

View File

@ -1,6 +1,6 @@
import * as tf from '../dist/tfjs.esm.js';
import * as image from './image/image';
import { mergeDeep } from './helpers';
import { mergeDeep } from './util';
export type Env = {
browser: undefined | boolean,

View File

@ -1,9 +1,9 @@
/**
* Module that analyzes person age
* Obsolete
* Face algorithm implementation
* Uses FaceMesh, Emotion and FaceRes models to create a unified pipeline
*/
import { log, now } from './helpers';
import { log, now } from './util';
import * as tf from '../dist/tfjs.esm.js';
import * as facemesh from './blazeface/facemesh';
import * as emotion from './emotion/emotion';

View File

@ -1,10 +1,13 @@
/**
* HSE-FaceRes Module
* FaceRes model implementation
*
* Returns Age, Gender, Descriptor
* Implements Face simmilarity function
*
* Based on: [**HSE-FaceRes**](https://github.com/HSE-asavchenko/HSE_FaceRec_tf)
*/
import { log, join } from '../helpers';
import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js';
import type { Tensor, GraphModel } from '../tfjs/types';
import type { Config } from '../config';

View File

@ -1,3 +1,8 @@
/**
* FingerPose algorithm implementation
* See `fingerpose.ts` for entry point
*/
import { Finger, FingerCurl, FingerDirection } from './description';
const options = {

View File

@ -1,3 +1,8 @@
/**
* FingerPose algorithm implementation
* See `fingerpose.ts` for entry point
*/
export default class Gesture {
name;
curls;

View File

@ -1,3 +1,8 @@
/**
* FingerPose algorithm implementation
* See `fingerpose.ts` for entry point
*/
import { Finger, FingerCurl, FingerDirection } from './description';
import Gesture from './gesture';

View File

@ -1,5 +1,5 @@
/**
* Gesture detection module
* Gesture detection algorithm
*/
import type { GestureResult } from '../result';

View File

@ -1,3 +1,8 @@
/**
* HandPose model implementation constants
* See `handpose.ts` for entry point
*/
export const anchors = [
{ x: 0.015625, y: 0.015625 },
{ x: 0.015625, y: 0.015625 },

View File

@ -1,3 +1,8 @@
/**
* HandPose model implementation
* See `handpose.ts` for entry point
*/
import * as tf from '../../dist/tfjs.esm.js';
export function getBoxSize(box) {

View File

@ -1,3 +1,8 @@
/**
* HandPose model implementation
* See `handpose.ts` for entry point
*/
import * as tf from '../../dist/tfjs.esm.js';
import * as box from './box';
import * as anchors from './anchors';

View File

@ -1,3 +1,8 @@
/**
* HandPose model implementation
* See `handpose.ts` for entry point
*/
import * as tf from '../../dist/tfjs.esm.js';
import * as box from './box';
import * as util from './util';

View File

@ -1,8 +1,10 @@
/**
* HandPose module entry point
* HandPose model implementation
*
* Based on: [**MediaPipe HandPose**](https://drive.google.com/file/d/1sv4sSb9BSNVZhLzxXJ0jBv9DqD-4jnAz/view)
*/
import { log, join } from '../helpers';
import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js';
import * as handdetector from './handdetector';
import * as handpipeline from './handpipeline';

View File

@ -1,8 +1,12 @@
/**
* Hand Detection and Segmentation
* HandTrack model implementation
*
* Based on:
* - Hand Detection & Skeleton: [**MediaPipe HandPose**](https://drive.google.com/file/d/1sv4sSb9BSNVZhLzxXJ0jBv9DqD-4jnAz/view)
* - Hand Tracking: [**HandTracking**](https://github.com/victordibia/handtracking)
*/
import { log, join } from '../helpers';
import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js';
import type { HandResult } from '../result';
import type { GraphModel, Tensor } from '../tfjs/types';

View File

@ -2,7 +2,7 @@
* Human main module
*/
import { log, now, mergeDeep, validate } from './helpers';
import { log, now, mergeDeep, validate } from './util';
import { Config, defaults } from './config';
import type { Result, FaceResult, HandResult, BodyResult, ObjectResult, GestureResult, PersonResult } from './result';
import * as tf from '../dist/tfjs.esm.js';
@ -168,7 +168,6 @@ export class Human {
this.config = JSON.parse(JSON.stringify(defaults));
Object.seal(this.config);
if (userConfig) this.config = mergeDeep(this.config, userConfig);
validate(defaults, this.config);
this.tf = tf;
this.state = 'idle';
this.#numTensors = 0;
@ -229,21 +228,25 @@ export class Human {
}
/** Reset configuration to default values */
reset = () => {
reset() {
const currentBackend = this.config.backend; // save backend;
this.config = JSON.parse(JSON.stringify(defaults));
this.config.backend = currentBackend;
}
/** Validate current configuration schema */
validate = (userConfig?: Partial<Config>) => validate(defaults, userConfig || this.config);
validate(userConfig?: Partial<Config>) {
return validate(defaults, userConfig || this.config);
}
/** Process input as return canvas and tensor
*
* @param input: {@link Input}
* @returns { tensor, canvas }
*/
image = (input: Input) => image.process(input, this.config);
image(input: Input) {
return image.process(input, this.config);
}
/** Simmilarity method calculates simmilarity between two provided face descriptors (face embeddings)
* - Calculation is based on normalized Minkowski distance between two descriptors

View File

@ -1,5 +1,5 @@
/**
* Image Processing module used by Human
* Image Processing algorithm implementation
*/
import * as tf from '../../dist/tfjs.esm.js';
@ -7,7 +7,7 @@ import * as fxImage from './imagefx';
import type { Tensor } from '../tfjs/types';
import type { Config } from '../config';
import { env } from '../env';
import { log } from '../helpers';
import { log } from '../util';
type Input = Tensor | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas | typeof Image | typeof env.Canvas;
@ -84,11 +84,11 @@ export function process(input: Input, config: Config): { tensor: Tensor | null,
let targetHeight = originalHeight;
if (targetWidth > maxSize) {
targetWidth = maxSize;
targetHeight = targetWidth * originalHeight / originalWidth;
targetHeight = Math.trunc(targetWidth * originalHeight / originalWidth);
}
if (targetHeight > maxSize) {
targetHeight = maxSize;
targetWidth = targetHeight * originalWidth / originalHeight;
targetWidth = Math.trunc(targetHeight * originalWidth / originalHeight);
}
// create our canvas and resize it if needed

View File

@ -1,5 +1,9 @@
/*
WebGLImageFilter by Dominic Szablewski: <https://github.com/phoboslab/WebGLImageFilter>
/**
* Image Filters in WebGL algoritm implementation
*
* Based on: [WebGLImageFilter](https://github.com/phoboslab/WebGLImageFilter)
*
* This module is written in ES5 JS and does not conform to code and style standards
*/
// @ts-nocheck

View File

@ -1,5 +1,5 @@
/**
* Module that interpolates results for smoother animations
* Results interpolation for smoothening of video detection results inbetween detected frames
*/
import type { Result, FaceResult, BodyResult, HandResult, ObjectResult, GestureResult, PersonResult } from './result';

View File

@ -1,4 +1,8 @@
import { log } from './helpers';
/**
* Loader and Validator for all models used by Human
*/
import { log } from './util';
import type { GraphModel } from './tfjs/types';
import * as facemesh from './blazeface/facemesh';
import * as faceres from './faceres/faceres';

View File

@ -1,8 +1,10 @@
/**
* EfficientPose Module
* MoveNet model implementation
*
* Based on: [**MoveNet**](https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html)
*/
import { log, join } from '../helpers';
import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js';
import type { BodyResult } from '../result';
import type { GraphModel, Tensor } from '../tfjs/types';

View File

@ -1,8 +1,10 @@
/**
* CenterNet object detection module
* CenterNet object detection model implementation
*
* Based on: [**NanoDet**](https://github.com/RangiLyu/nanodet)
*/
import { log, join } from '../helpers';
import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js';
import { labels } from './labels';
import type { ObjectResult } from '../result';

View File

@ -1,5 +1,5 @@
/**
* CoCo Labels used by object detection modules
* CoCo Labels used by object detection implementations
*/
export const labels = [
{ class: 1, label: 'person' },

View File

@ -1,8 +1,10 @@
/**
* NanoDet object detection module
* NanoDet object detection model implementation
*
* Based on: [**MB3-CenterNet**](https://github.com/610265158/mobilenetv3_centernet)
*/
import { log, join } from '../helpers';
import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js';
import { labels } from './labels';
import type { ObjectResult } from '../result';

View File

@ -1,5 +1,5 @@
/**
* Module that analyzes existing results and recombines them into a unified person object
* Analyze detection Results and sort&combine them into per-person view
*/
import type { FaceResult, BodyResult, HandResult, GestureResult, PersonResult } from './result';

View File

@ -1,3 +1,8 @@
/**
* PoseNet body detection model implementation
* See `posenet.ts` for entry point
*/
import * as utils from './utils';
import * as kpt from './keypoints';

View File

@ -1,3 +1,8 @@
/**
* PoseNet body detection model implementation constants
* See `posenet.ts` for entry point
*/
import * as kpt from './keypoints';
import type { BodyResult } from '../result';

View File

@ -1,8 +1,9 @@
/**
* Profiling calculations
* Debug only
*/
import { log } from './helpers';
import { log } from './util';
export const data = {};

View File

@ -1,8 +1,12 @@
/**
* EfficientPose Module
* Image segmentation for body detection model
*
* Based on:
* - [**MediaPipe Meet**](https://drive.google.com/file/d/1lnP1bRi9CSqQQXUHa13159vLELYDgDu0/preview)
* - [**MediaPipe Selfie**](https://drive.google.com/file/d/1dCfozqknMa068vVsO2j_1FgZkW_e3VWv/preview)
*/
import { log, join } from '../helpers';
import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js';
import * as image from '../image/image';
import type { GraphModel, Tensor } from '../tfjs/types';

View File

@ -1,9 +1,12 @@
/**
* Module that analyzes person age
* Obsolete
* Age model implementation
*
* Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)
*
* Obsolete and replaced by `faceres` that performs age/gender/descriptor analysis
*/
import { log, join } from '../helpers';
import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js';
import type { Config } from '../config';
import type { GraphModel, Tensor } from '../tfjs/types';

View File

@ -1,9 +1,12 @@
/**
* Module that analyzes person gender
* Obsolete
* Gender model implementation
*
* Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)
*
* Obsolete and replaced by `faceres` that performs age/gender/descriptor analysis
*/
import { log, join } from '../helpers';
import { log, join } from '../util';
import * as tf from '../../dist/tfjs.esm.js';
import type { Config } from '../config';
import type { GraphModel, Tensor } from '../tfjs/types';

View File

@ -1,4 +1,6 @@
import { log, now } from '../helpers';
/** TFJS backend initialization and customization */
import { log, now } from '../util';
import * as humangl from './humangl';
import * as env from '../env';
import * as tf from '../../dist/tfjs.esm.js';

View File

@ -1,9 +1,6 @@
/**
* Custom TFJS backend for Human based on WebGL
* Not used by default
*/
/** TFJS custom backend registration */
import { log } from '../helpers';
import { log } from '../util';
import * as tf from '../../dist/tfjs.esm.js';
import * as image from '../image/image';
import * as models from '../models';

View File

@ -1,6 +1,4 @@
/**
* Export common TensorFlow types
*/
/** TFJS common types exports */
/**
* TensorFlow Tensor type

View File

@ -1,4 +1,8 @@
import { log, now, mergeDeep } from './helpers';
/**
* Warmup algorithm that uses embedded images to excercise loaded models for faster future inference
*/
import { log, now, mergeDeep } from './util';
import * as sample from './sample';
import * as tf from '../dist/tfjs.esm.js';
import * as image from './image/image';

View File

@ -196,7 +196,7 @@ async function test(Human, inputConfig) {
human.reset();
config.async = true;
config.cacheSensitivity = 0;
res = await testDetect(human, 'samples/ai-body.jpg', 'default');
res = await testDetect(human, 'samples/in/ai-body.jpg', 'default');
if (!res || res?.face?.length !== 1 || res?.face[0].gender !== 'female') log('error', 'failed: default result face mismatch', res?.face?.length, res?.body?.length, res?.hand?.length, res?.gesture?.length);
else log('state', 'passed: default result face match');
@ -205,13 +205,13 @@ async function test(Human, inputConfig) {
human.reset();
config.async = false;
config.cacheSensitivity = 0;
res = await testDetect(human, 'samples/ai-body.jpg', 'default');
res = await testDetect(human, 'samples/in/ai-body.jpg', 'default');
if (!res || res?.face?.length !== 1 || res?.face[0].gender !== 'female') log('error', 'failed: default sync', res?.face?.length, res?.body?.length, res?.hand?.length, res?.gesture?.length);
else log('state', 'passed: default sync');
// test image processing
const img1 = await human.image(null);
const img2 = await human.image(await getImage(human, 'samples/ai-face.jpg'));
const img2 = await human.image(await getImage(human, 'samples/in/ai-face.jpg'));
if (!img1 || !img2 || img1.tensor !== null || img2.tensor?.shape?.length !== 4) log('error', 'failed: image input', img1?.tensor?.shape, img2?.tensor?.shape);
else log('state', 'passed: image input', img1?.tensor?.shape, img2?.tensor?.shape);
@ -225,9 +225,9 @@ async function test(Human, inputConfig) {
human.reset();
config.async = false;
config.cacheSensitivity = 0;
let res1 = await testDetect(human, 'samples/ai-face.jpg', 'default');
let res2 = await testDetect(human, 'samples/ai-body.jpg', 'default');
let res3 = await testDetect(human, 'samples/ai-upper.jpg', 'default');
let res1 = await testDetect(human, 'samples/in/ai-face.jpg', 'default');
let res2 = await testDetect(human, 'samples/in/ai-body.jpg', 'default');
let res3 = await testDetect(human, 'samples/in/ai-upper.jpg', 'default');
const desc1 = res1 && res1.face && res1.face[0] && res1.face[0].embedding ? [...res1.face[0].embedding] : null;
const desc2 = res2 && res2.face && res2.face[0] && res2.face[0].embedding ? [...res2.face[0].embedding] : null;
const desc3 = res3 && res3.face && res3.face[0] && res3.face[0].embedding ? [...res3.face[0].embedding] : null;
@ -257,7 +257,7 @@ async function test(Human, inputConfig) {
log('info', 'test object');
human.reset();
config.object = { enabled: true };
res = await testDetect(human, 'samples/ai-body.jpg', 'default');
res = await testDetect(human, 'samples/in/ai-body.jpg', 'default');
if (!res || res?.object?.length !== 1 || res?.object[0]?.label !== 'person') log('error', 'failed: object result mismatch', res?.object?.length);
else log('state', 'passed: object result match');
@ -268,7 +268,7 @@ async function test(Human, inputConfig) {
config.face = { detector: { minConfidence: 0.0001, maxDetected: 1 } };
config.body = { minConfidence: 0.0001, maxDetected: 1 };
config.hand = { minConfidence: 0.0001, maxDetected: 3 };
res = await testDetect(human, 'samples/ai-body.jpg', 'default');
res = await testDetect(human, 'samples/in/ai-body.jpg', 'default');
if (!res || res?.face?.length !== 1 || res?.body?.length !== 1 || res?.hand?.length !== 3 || res?.gesture?.length !== 9) log('error', 'failed: sensitive result mismatch', res?.face?.length, res?.body?.length, res?.hand?.length, res?.gesture?.length);
else log('state', 'passed: sensitive result match');
@ -293,7 +293,7 @@ async function test(Human, inputConfig) {
human.reset();
config.face = { mesh: { enabled: false }, iris: { enabled: false }, description: { enabled: false }, emotion: { enabled: false } };
config.hand = { landmarks: false };
res = await testDetect(human, 'samples/ai-body.jpg', 'default');
res = await testDetect(human, 'samples/in/ai-body.jpg', 'default');
if (!res || res?.face?.length !== 1 || res?.face[0]?.gender || res?.face[0]?.age || res?.face[0]?.embedding) log('error', 'failed: detectors result face mismatch', res?.face);
else log('state', 'passed: detector result face match');
if (!res || res?.hand?.length !== 1 || res?.hand[0]?.landmarks) log('error', 'failed: detectors result hand mismatch', res?.hand?.length);
@ -302,22 +302,22 @@ async function test(Human, inputConfig) {
// test posenet and movenet
log('info', 'test body variants');
config.body = { modelPath: 'posenet.json' };
res = await testDetect(human, 'samples/ai-body.jpg', 'posenet');
res = await testDetect(human, 'samples/in/ai-body.jpg', 'posenet');
if (!res || res?.body?.length !== 1) log('error', 'failed: body posenet');
else log('state', 'passed: body posenet');
config.body = { modelPath: 'movenet-lightning.json' };
res = await testDetect(human, 'samples/ai-body.jpg', 'movenet');
res = await testDetect(human, 'samples/in/ai-body.jpg', 'movenet');
if (!res || res?.body?.length !== 1) log('error', 'failed: body movenet');
else log('state', 'passed: body movenet');
// test handdetect and handtrack
log('info', 'test hand variants');
config.hand = { enabled: true, maxDetected: 2, minConfidence: 0.1, detector: { modelPath: 'handdetect.json' } };
res = await testDetect(human, 'samples/ai-body.jpg', 'handdetect');
res = await testDetect(human, 'samples/in/ai-body.jpg', 'handdetect');
if (!res || res?.hand?.length !== 2) log('error', 'failed: hand handdetect');
else log('state', 'passed: hand handdetect');
config.hand = { enabled: true, maxDetected: 2, minConfidence: 0.1, detector: { modelPath: 'handtrack.json' } };
res = await testDetect(human, 'samples/ai-body.jpg', 'handtrack');
res = await testDetect(human, 'samples/in/ai-body.jpg', 'handtrack');
if (!res || res?.hand?.length !== 2) log('error', 'failed: hand handdetect');
else log('state', 'passed: hand handdetect');
@ -326,28 +326,28 @@ async function test(Human, inputConfig) {
const second = new Human(config);
await testDetect(human, null, 'default');
log('info', 'test: first instance');
await testDetect(first, 'samples/ai-upper.jpg', 'default');
await testDetect(first, 'samples/in/ai-upper.jpg', 'default');
log('info', 'test: second instance');
await testDetect(second, 'samples/ai-upper.jpg', 'default');
await testDetect(second, 'samples/in/ai-upper.jpg', 'default');
// test async multiple instances
log('info', 'test: concurrent');
await Promise.all([
testDetect(human, 'samples/ai-face.jpg', 'default', false),
testDetect(first, 'samples/ai-face.jpg', 'default', false),
testDetect(second, 'samples/ai-face.jpg', 'default', false),
testDetect(human, 'samples/ai-body.jpg', 'default', false),
testDetect(first, 'samples/ai-body.jpg', 'default', false),
testDetect(second, 'samples/ai-body.jpg', 'default', false),
testDetect(human, 'samples/ai-upper.jpg', 'default', false),
testDetect(first, 'samples/ai-upper.jpg', 'default', false),
testDetect(second, 'samples/ai-upper.jpg', 'default', false),
testDetect(human, 'samples/in/ai-face.jpg', 'default', false),
testDetect(first, 'samples/in/ai-face.jpg', 'default', false),
testDetect(second, 'samples/in/ai-face.jpg', 'default', false),
testDetect(human, 'samples/in/ai-body.jpg', 'default', false),
testDetect(first, 'samples/in/ai-body.jpg', 'default', false),
testDetect(second, 'samples/in/ai-body.jpg', 'default', false),
testDetect(human, 'samples/in/ai-upper.jpg', 'default', false),
testDetect(first, 'samples/in/ai-upper.jpg', 'default', false),
testDetect(second, 'samples/in/ai-upper.jpg', 'default', false),
]);
// test monkey-patch
globalThis.Canvas = canvasJS.Canvas; // monkey-patch to use external canvas library
globalThis.ImageData = canvasJS.ImageData; // monkey-patch to use external canvas library
const inputImage = await canvasJS.loadImage('samples/ai-face.jpg'); // load image using canvas library
const inputImage = await canvasJS.loadImage('samples/in/ai-face.jpg'); // load image using canvas library
const inputCanvas = new canvasJS.Canvas(inputImage.width, inputImage.height); // create canvas
const ctx = inputCanvas.getContext('2d');
ctx.drawImage(inputImage, 0, 0); // draw input image onto canvas

90
test/test-node-canvas.js Normal file
View File

@ -0,0 +1,90 @@
const fs = require('fs');
const path = require('path');
const process = require('process');
const log = require('@vladmandic/pilogger');
const canvas = require('canvas');
const tf = require('@tensorflow/tfjs-node'); // for nodejs, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
const Human = require('../dist/human.node.js'); // this is 'const Human = require('../dist/human.node-gpu.js').default;'
const config = { // just enable all and leave default settings
debug: true,
async: false,
cacheSensitivity: 0,
face: { enabled: true },
hand: { enabled: true },
body: { enabled: true },
object: { enabled: true },
gesture: { enabled: true },
/*
face: { enabled: true, detector: { minConfidence: 0.1 } },
hand: { enabled: true, maxDetected: 2, minConfidence: 0.1, detector: { modelPath: 'handtrack.json' } }, // use alternative hand model
body: { enabled: true, minConfidence: 0.1 },
object: { enabled: true, minConfidence: 0.1 },
gesture: { enabled: true },
*/
};
async function main() {
log.header();
globalThis.Canvas = canvas.Canvas; // patch global namespace with canvas library
globalThis.ImageData = canvas.ImageData; // patch global namespace with canvas library
const human = new Human.Human(config); // create instance of human
log.info('Human:', human.version);
const configErrors = await human.validate();
if (configErrors.length > 0) log.error('Configuration errors:', configErrors);
await human.load(); // pre-load models
log.info('Loaded models:', Object.keys(human.models).filter((a) => human.models[a]));
const inDir = process.argv[2];
const outDir = process.argv[3];
if (process.argv.length !== 4) {
log.error('Parameters: <input-directory> <output-directory> missing');
return;
}
if (!fs.existsSync(inDir) || !fs.statSync(inDir).isDirectory() || !fs.existsSync(outDir) || !fs.statSync(outDir).isDirectory()) {
log.error('Invalid directory specified:', 'input:', fs.existsSync(inDir) ?? fs.statSync(inDir).isDirectory(), 'output:', fs.existsSync(outDir) ?? fs.statSync(outDir).isDirectory());
return;
}
const dir = fs.readdirSync(inDir);
const images = dir.filter((f) => fs.statSync(path.join(inDir, f)).isFile() && (f.toLocaleLowerCase().endsWith('.jpg') || f.toLocaleLowerCase().endsWith('.jpeg')));
log.info(`Processing folder: ${inDir} entries:`, dir.length, 'images', images.length);
for (const image of images) {
const inFile = path.join(inDir, image);
/*
const inputImage = await canvas.loadImage(inFile); // load image using canvas library
log.state('Loaded image:', inFile, inputImage.width, inputImage.height);
const inputCanvas = new canvas.Canvas(inputImage.width, inputImage.height); // create canvas
const inputCtx = inputCanvas.getContext('2d');
inputCtx.drawImage(inputImage, 0, 0); // draw input image onto canvas
*/
const buffer = fs.readFileSync(inFile);
const tensor = human.tf.tidy(() => {
const decode = human.tf.node.decodeImage(buffer, 3);
const expand = human.tf.expandDims(decode, 0);
const cast = human.tf.cast(expand, 'float32');
return cast;
});
log.state('Loaded image:', inFile, tensor.shape);
const result = await human.detect(tensor);
tf.dispose(tensor);
log.data(`Detected: ${image}:`, 'Face:', result.face.length, 'Body:', result.body.length, 'Hand:', result.hand.length, 'Objects:', result.object.length, 'Gestures:', result.gesture.length);
const outputCanvas = new canvas.Canvas(tensor.shape[2], tensor.shape[1]); // create canvas
const outputCtx = outputCanvas.getContext('2d');
const inputImage = await canvas.loadImage(buffer); // load image using canvas library
outputCtx.drawImage(inputImage, 0, 0); // draw input image onto canvas
human.draw.all(outputCanvas, result); // use human build-in method to draw results as overlays on canvas
const outFile = path.join(outDir, image);
const outStream = fs.createWriteStream(outFile); // write canvas to new image file
outStream.on('finish', () => log.state('Output image:', outFile, outputCanvas.width, outputCanvas.height));
outStream.on('error', (err) => log.error('Output error:', outFile, err));
const stream = outputCanvas.createJPEGStream({ quality: 0.5, progressive: true, chromaSubsampling: true });
stream.pipe(outStream);
}
}
main();

2
wiki

@ -1 +1 @@
Subproject commit a0497b6d14059099b2764b8f70390f4b6af8db9f
Subproject commit c4642bde54506afd70a5fc32617414fa84b9fc0e