add node-webcam demo

pull/134/head
Vladimir Mandic 2021-05-11 10:11:55 -04:00
parent 374a5a15c1
commit 5d762aa93e
3 changed files with 69 additions and 9 deletions

View File

@ -1,11 +1,10 @@
// @ts-nocheck
const fs = require('fs');
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
const log = require('@vladmandic/pilogger');
// workers actual import tfjs and faceapi modules
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
const tf = require('@tensorflow/tfjs-node');
const Human = require('../dist/human.node.js').default; // or const Human = require('../dist/human.node-gpu.js').default;
@ -38,7 +37,7 @@ const myConfig = {
// you can add any pre-proocessing here such as resizing, etc.
async function image(img) {
const buffer = fs.readFileSync(img);
const tensor = tf.tidy(() => tf.node.decodeImage(buffer).toFloat().expandDims());
const tensor = human.tf.tidy(() => human.tf.node.decodeImage(buffer).toFloat().expandDims());
return tensor;
}
@ -65,10 +64,10 @@ async function main() {
log.data('Worker received message:', process.pid, msg); // generic log
});
// wait until tf is ready
await tf.ready();
// create instance of human
human = new Human(myConfig);
// wait until tf is ready
await human.tf.ready();
// pre-load models
log.state('Worker: PID:', process.pid, `TensorFlow/JS ${human.tf.version_core} Human ${human.version} Backend: ${human.tf.getBackend()}`);
await human.load();

60
demo/node-webcam.js Normal file
View File

@ -0,0 +1,60 @@
const util = require('util');
const log = require('@vladmandic/pilogger');
const nodeWebCam = require('node-webcam');
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
const tf = require('@tensorflow/tfjs-node');
// load specific version of Human library that matches TensorFlow mode
const Human = require('../dist/human.node.js').default; // or const Human = require('../dist/human.node-gpu.js').default;
// options for node-webcam
const optionsCamera = {
callbackReturn: 'buffer', // this means whatever `fswebcam` writes to disk, no additional processing so it's fastest
saveShots: false, // don't save processed frame to disk, note that temp file is still created by fswebcam thus recommendation for tmpfs
};
// options for human
const optionsHuman = {
backend: 'tensorflow',
modelBasePath: 'file://node_modules/@vladmandic/human/models/',
};
const camera = nodeWebCam.create(optionsCamera);
const capture = util.promisify(camera.capture);
const human = new Human(optionsHuman);
const results = [];
const buffer2tensor = human.tf.tidy((buffer) => {
const decode = human.tf.node.decodeImage(buffer, 3);
let expand;
if (decode.shape[2] === 4) { // input is in rgba format, need to convert to rgb
const channels = human.tf.split(decode, 4, 2); // tf.split(tensor, 4, 2); // split rgba to channels
const rgb = human.tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb and ignore alpha
expand = human.tf.reshape(rgb, [1, decode.shape[0], decode.shape[1], 3]); // move extra dim from the end of tensor and use it as batch number instead
} else {
expand = human.tf.expandDims(decode, 0); // inpur ia rgb so use as-is
}
const cast = human.tf.cast(expand, 'float32');
return cast;
});
async function process() {
// trigger next frame every 5 sec
// triggered here before actual capture and detection since we assume it will complete in less than 5sec
// so it's as close as possible to real 5sec and not 5sec + detection time
// if there is a chance of race scenario where detection takes longer than loop trigger, then trigger should be at the end of the function instead
setTimeout(() => process(), 5000);
const buffer = await capture(); // gets the (default) jpeg data from from webcam
const tensor = buffer2tensor(buffer); // create tensor from image buffer
const res = await human.detect(tensor); // run detection
// do whatever here with the res
// or just append it to results array that will contain all processed results over time
results.push(res);
// alternatively to triggering every 5sec sec, simply trigger next frame as fast as possible
// setImmediate(() => process());
}
log.header();
process();

View File

@ -4,6 +4,7 @@ const process = require('process');
const fetch = require('node-fetch').default;
// for NodeJS, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
const tf = require('@tensorflow/tfjs-node'); // or const tf = require('@tensorflow/tfjs-node-gpu');
// load specific version of Human library that matches TensorFlow mode
@ -38,10 +39,10 @@ const myConfig = {
};
async function init() {
// wait until tf is ready
await tf.ready();
// create instance of human
human = new Human(myConfig);
// wait until tf is ready
await human.tf.ready();
// pre-load models
log.info('Human:', human.version);
log.info('Active Configuration', human.config);
@ -66,7 +67,7 @@ async function detect(input) {
// decode image using tfjs-node so we don't need external depenencies
// can also be done using canvas.js or some other 3rd party image library
if (!buffer) return {};
const tensor = tf.tidy(() => {
const tensor = human.tf.tidy(() => {
const decode = human.tf.node.decodeImage(buffer, 3);
let expand;
if (decode.shape[2] === 4) { // input is in rgba format, need to convert to rgb
@ -92,7 +93,7 @@ async function detect(input) {
}
// dispose image tensor as we no longer need it
tf.dispose(tensor);
human.tf.dispose(tensor);
// print data to console
log.data('Results:');